WorldWideScience

Sample records for isotopic equilibrium method

  1. Isotope anomalies in oxygen isotope exchange equilibrium systems

    International Nuclear Information System (INIS)

    Kotaka, M.

    1997-01-01

    The purpose of the present work is to elucidate the isotope anomalies in oxygen isotope exchange equilibrium systems, according to the calculations of the equilibrium constants for oxygen isotopic exchange reactions, and the calculations of the oxygen isotope separation factors between two phases. The equilibrium constants (K65, K67, K68 and K69) of 16 O- 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O exchange reactions between diatomic oxides were calculated in a wide temperature range on the basis of quantum statistical mechanics. Many equilibrium constants showed the anomalous mass effects, and then had the crossover temperatures and the mass independent fractionation (MIF) temperatures which held K67 = K65, K67 = K68, or K67 = K69, etc. For example, the equilibrium constants for the reactions between OH and the other diatomic oxides (MO) showed the anomalous mass effects, when M was Li, Na, Mg, K, Fe, Al, Ge, Zr, Pt, etc. The 16 O 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O oxygen isotope separation factors (S65, S67, S68 and S69) between two phases were calculated, when OH and CO were in the first phase, and SiO was in the second phase. Although the oxygen isotopic exchange equilibria in the two phases had no MIF and crossover temperatures, the separation factors showed the anomalous mass effects and had the temperatures. According to what is called the normal mass effects for the equilibrium constant of isotopic exchange reaction, the value of InK68/InK67 is 1.885. Therefore, the value of InS68/InS67 should be 1.885 too. The value calculated, however, widely changed. It can be concluded from the results obtained in the present work that some oxygen isotopic exchange equilibria cause the anomalous mass effects, the anomalous oxygen isotope separation factors, and then isotope anomalies

  2. A new method for studying iodine metabolism; the isotopic equilibrium method - kinetic and quantitative aspects of measurements made on rats

    International Nuclear Information System (INIS)

    Simon, C.

    1964-05-01

    The isotopic equilibrium method which has been developed in the case of the rat has made it possible to measure the absolute values of the principal parameters of iodine metabolism in this animal. The quantities and concentrations of iodine have been measured in the thyroid gland and in the plasma with a sensitivity of 0.001 μg of 127 I. This sensitivity has made it possible to measure pools as small as the iodide and the free iodotyrosines of the thyroid and to demonstrate the absence of free iodotyrosines in the plasma of the normal rat. In vivo, the isotopic equilibrium method has made it possible to measure the iodine content of the thyroid gland and to calculate the intensity of this gland's secretion without removing it. By double labelling with 125 I and 131 I the isotopic equilibrium method has made it possible to measure the flux, intensity of the intrathyroidal recycling as well as the turnover rates of all the iodine containing compounds of the thyroid gland. For this gland no precursor-product relationship has been found between The iodotyrosines (MIT and DIT) and the iodothyronines (T 4 and T 3 ). The absence of this relationship is due to the heterogeneity of the thyroglobulin turnover. It has been shown furthermore that there exists in the plasma an organic fraction of the iodine which is different to thyroglobulin and which is renewed more rapidly than the circulating hormones T 3 and T 4 . The isotopic equilibrium method is very useful for series measurements of iodine. It makes it possible furthermore to improve the biochemical fractionations by adding carriers without affecting the subsequent 127 I measurements. (author) [fr

  3. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  4. Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.

    Science.gov (United States)

    He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming

    2018-02-28

    Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.

    Science.gov (United States)

    Kowalczyk, Piotr; MacElroy, J M D

    2006-08-03

    We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.

  6. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    Science.gov (United States)

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  7. Equilibrium deuterium isotope effect of surprising magnitude

    International Nuclear Information System (INIS)

    Goldstein, M.J.; Pressman, E.J.

    1981-01-01

    Seemingly large deuterium isotope effects are reported for the preference of deuterium for the α-chloro site to the bridgehead or to the vinyl site in samples of anti-7-chlorobicyclo[4.3.2]undecatetraene-d 1 . Studies of molecular models did not provide a basis for these large equilibrium deuterium isotope effects. The possibility is proposed that these isotope effects only appear to be large for want of comparison with isotope effects measured for molecules that might provide even greater contrasts in local force fields

  8. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    Science.gov (United States)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  9. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    Science.gov (United States)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  10. NMR spectroscopic determination of an equilibrium isotope effect on the hydration of cobalt(II)

    International Nuclear Information System (INIS)

    Evilia, R.F.; Saunders, M.

    1985-01-01

    A recently reported NMR method for the measurement of deuterium equilibrium isotope effects is applied to the hydration of the paramagnetic cobalt(II) ion. An isotope effect of about 1.3% is measured. A substantial difference between the intrinsic shift of H 2 O and D 2 O when coordinated to cobalt is also measured

  11. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  12. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  13. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  14. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    Science.gov (United States)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  15. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  16. A study of chemical equilibrium of tri-component mixtures of hydrogen isotopes

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, I.; Peculea, M.

    1998-01-01

    In this paper we present a model for computing the equilibrium constants for chemical reactions between hydrogen's isotopes as function of temperature. The equilibrium constants were expressed with the aid of Gibbs potential and the partition function of the mixture. We assessed the partition function for hydrogen's isotopes having in view that some nuclei are fermions and other bosons. As results we plotted the values of equilibrium constants as function of temperature. Knowing these values we determined the deuterium distribution on species (for mixture H 2 -HD-D 2 ) as function of total deuterium concentration and the tritium distribution on species (for mixtures D 2 -DT-T 2 and H 2 -HT-T 2 ) as function of total tritium concentration. (authors)

  17. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  18. The temporal evolution of magnesium isotope fractionation during hydromagnesite dissolution, precipitation, and at equilibrium

    Science.gov (United States)

    Oelkers, Eric H.; Berninger, Ulf-Niklas; Pérez-Fernàndez, Andrea; Chmeleff, Jérôme; Mavromatis, Vasileios

    2018-04-01

    This study provides experimental evidence of the resetting of the magnesium (Mg) isotope signatures of hydromagnesite in the presence of an aqueous fluid during its congruent dissolution, precipitation, and at equilibrium at ambient temperatures over month-long timescales. All experiments were performed in batch reactors in aqueous sodium carbonate buffer solutions having a pH from 7.8 to 9.2. The fluid phase in all experiments attained bulk chemical equilibrium within analytical uncertainty with hydromagnesite within several days, but the experiments were allowed to continue for up to 575 days. During congruent hydromagnesite dissolution, the fluid first became enriched in isotopically light Mg compared to the dissolving hydromagnesite, but this Mg isotope composition became heavier after the fluid attained chemical equilibrium with the mineral. The δ26Mg composition of the fluid was up to ∼0.35‰ heavier than the initial dissolving hydromagnesite at the end of the dissolution experiments. Hydromagnesite precipitation was provoked during one experiment by increasing the reaction temperature from 4 to 50 °C. The δ26Mg composition of the fluid increased as hydromagnesite precipitated and continued to increase after the fluid attained bulk equilibrium with this phase. These observations are consistent with the hypothesis that mineral-fluid equilibrium is dynamic (i.e. dissolution and precipitation occur at equal, non-zero rates at equilibrium). Moreover the results presented in this study confirm (1) that the transfer of material from the solid to the fluid phase may not be conservative during stoichiometric dissolution, and (2) that the isotopic compositions of carbonate minerals can evolve even when the mineral is in bulk chemical equilibrium with its coexisting fluid. This latter observation suggests that the preservation of isotopic signatures of carbonate minerals in the geological record may require a combination of the isolation of fluid-mineral system

  19. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg

    NARCIS (Netherlands)

    Wiederhold, Jan G.; Cramer, Christopher J.; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-01-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound

  20. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  1. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes

    Science.gov (United States)

    Cao, Xiaobin; Liu, Yun

    2011-12-01

    With a growing interest in small 17O-anomaly, there is a pressing need for the precise ratio, ln 17α/ln 18α, for a particular mass-dependent fractionation process (MDFP) (e.g., for an equilibrium isotope exchange reaction). This ratio (also denoted as " θ") can be determined experimentally, however, such efforts suffer from the demand of well-defined process or a set of processes in addition to high precision analytical capabilities. Here, we present a theoretical approach from which high-precision ratios for MDFPs can be obtained. This approach will complement and serve as a benchmark for experimental studies. We use oxygen isotope exchanges in equilibrium processes as an example. We propose that the ratio at equilibrium, θE ≡ ln 17α/ln 18α, can be calculated through the equation below: θa-bE=κa+(κa-κb){ln18βb}/{ln18α} where 18βb is the fractionation factor between a compound "b" and the mono-atomic ideal reference material "O", 18αa-b is the fractionation factor between a and b and it equals to 18βa/ 18βb and κ is a new concept defined in this study as κ ≡ ln 17β/ln 18β. The relationship between θ and κ is similar to that between α and β. The advantages of using κ include the convenience in documenting a large number of θ values for MDFPs and in estimating any θ values using a small data set due to the fact that κ values are similar among O-bearing compounds with similar chemical groups. Frequency scaling factor, anharmonic corrections and clumped isotope effects are found insignificant to the κ value calculation. However, the employment of the rule of geometric mean (RGM) can significantly affect the κ value. There are only small differences in κ values among carbonates and the structural effect is smaller than that of chemical compositions. We provide κ values for most O-bearing compounds, and we argue that κ values for Mg-bearing and S-bearing compounds should be close to their high temperature limitation (i.e., 0.5210 for

  2. Lithium isotope separation factors of some two-phase equilibrium systems

    International Nuclear Information System (INIS)

    Palko, A.A.; Drury, J.S.; Begun, G.M.

    1976-01-01

    Isotope separation factors of seventeen two-phase equilibrium systems for lithium isotope enrichment have been determined. In all cases, lithium amalgam was used as one of the lithium-containing phases and was equilibrated with an aqueous or organic phase containing a lithium compound. In all systems examined, isotopic exchange was found to be extremely rapid, and 6 Li was concentrated in the amalgam phase. The isotopic separation factor for the LiOH(aqueous) vs Li(amalgam) system has been studied as a function of temperature from -2 to 80 degreeC. The values obtained have been compared with the ''electrolysis'' and exchange separation factors given in the literature. The two-phase systems, LiCl(ethylenediamine) vs Li(amalgam) and LiCl(propylenediamine) vs Li(amalgam), have been studied, and the isotopic separation factors have been determined as functions of the temperature. The factors for the two systems have been found to be substantially the same (within limits of the errors involved) over the temperature range studied (0 to 100 degreeC) as those for the aqueous system. The isotopic separation factors for the seventeen systems have been tabulated, and correlations have been drawn that show the salt and solvent effects upon the values obtained

  3. Fine print in isotope effects: the glucose anomeric equilibrium and binding of glucose to human brain hexokinase

    International Nuclear Information System (INIS)

    Lewis, B.E; Schramm, V.L.

    2002-01-01

    Binding isotope effects are a sensitive measure of changes in molecular vibrational character that occur during ligand-receptor binding. In this study, we have measured isotope effects on the binding of glucose to human brain hexokinase using the ultrafiltration method, with the following results: 0.991±0.001, 0.908±0.003, 1.010±0.001, 0.974±0.002, 1.022±0.002 for [ 14 C]-glucose mixed with [1- 3 H]-, [2- 3 H]-, [3- 3 H]-, [5- 3 H]-, [6,6- 3 H]-glucose, respectively. Comparing the observed data with isotope effects on the anomeric equilibrium in glucose reported previously proves the existence of binding isotope effects in this system. Preliminary computational results are presented to explain the observed binding isotope effects in terms of hydrogen bond patterns and molecular crowding found in the binary complex of sugar and enzyme. (author)

  4. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  5. Structural isotopic effect of the α/β-phase transition in the vanadium hydride and its influence on the equilibrium coefficient of separation of hydrogen isotopes in the gas-solid system

    International Nuclear Information System (INIS)

    Magomedbekov, Eh.P.; Bochkarev, A.V.

    1999-01-01

    Equilibrium coefficient of hydrogen isotope separation (α H-D ) in the system of vanadium hydride VH n (solid, n ∼ 0.7)-H 2 (g) is measured by the counterbalancing method in a circulation facility and by the method of laser desorption at 298, 373, and 437 K. It is shown that the combination of highly anharmonic potential in the lattice octahedral sites and in significant difference in the energy of hydrogen atom coordination for tetra- and octahedral sites is the reason for unusual behaviour of the hydrogen isotope separation coefficient and the difference in crystal structures of vanadium hydride and deuteride [ru

  6. A new method for studying iodine metabolism; the isotopic equilibrium method - kinetic and quantitative aspects of measurements made on rats; Une nouvelle methode d'etude du metabolisme de l'iode: la methode d'equilibre isotopique - aspects cinetiques et quantitatifs obtenus chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    The isotopic equilibrium method which has been developed in the case of the rat has made it possible to measure the absolute values of the principal parameters of iodine metabolism in this animal. The quantities and concentrations of iodine have been measured in the thyroid gland and in the plasma with a sensitivity of 0.001 {mu}g of {sup 127}I. This sensitivity has made it possible to measure pools as small as the iodide and the free iodotyrosines of the thyroid and to demonstrate the absence of free iodotyrosines in the plasma of the normal rat. In vivo, the isotopic equilibrium method has made it possible to measure the iodine content of the thyroid gland and to calculate the intensity of this gland's secretion without removing it. By double labelling with {sup 125}I and {sup 131}I the isotopic equilibrium method has made it possible to measure the flux, intensity of the intrathyroidal recycling as well as the turnover rates of all the iodine containing compounds of the thyroid gland. For this gland no precursor-product relationship has been found between The iodotyrosines (MIT and DIT) and the iodothyronines (T{sub 4} and T{sub 3}). The absence of this relationship is due to the heterogeneity of the thyroglobulin turnover. It has been shown furthermore that there exists in the plasma an organic fraction of the iodine which is different to thyroglobulin and which is renewed more rapidly than the circulating hormones T{sub 3} and T{sub 4}. The isotopic equilibrium method is very useful for series measurements of iodine. It makes it possible furthermore to improve the biochemical fractionations by adding carriers without affecting the subsequent {sup 127}I measurements. (author) [French] La methode d'equilibre isotopique, mise au point chez le rat, a permis de mesurer en valeur absolue les principaux parametres du metabolisme de l'iode chez cet animal. Les quantites ou les concentrations d'iode ont ete mesurees pour la thyroide et pour le plasma avec une

  7. Equilibrium and generators

    International Nuclear Information System (INIS)

    Balter, H.S.

    1994-01-01

    This work studies the behaviour of radionuclides when it produce a desintegration activity,decay and the isotopes stable creation. It gives definitions about the equilibrium between activity of parent and activity of the daughter, radioactive decay,isotope stable and transient equilibrium and maxim activity time. Some considerations had been given to generators that permit a disgregation of two radioisotopes in equilibrium and its good performance. Tabs

  8. Using the Wolfsberg--Schactschneider program to calculate equilibrium constants for isotopic acetylenes

    International Nuclear Information System (INIS)

    Liu, D.K.K.; Pyper, J.W.

    1977-01-01

    Equilibrium constants were calculated for the gas-phase isotopic exchange reactions C 2 H 2 + C 2 D 2 = 2C 2 HD and C 2 H 2 + D 2 O = C 2 D 2 + H 2 O at temperatures ranging from 40 to 2000 0 K. No corrections to the harmonic approximation were made. The results agree quite well with experimental measurements

  9. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes

    DEFF Research Database (Denmark)

    Ellehøj, Mads Dam; Steen-Larsen, Hans Christian; Johnsen, Sigfus Johann

    2013-01-01

    RATIONALE: The equilibrium fractionation factors govern the relative change in the isotopic composition during phase transitions of water. The commonly used results, which were published more than 40 years ago, are limited to a minimum temperature of -33 degrees C. This limits the reliability...... values, with a temperature dependency in accordance with theory for equilibrium fractionation. We obtain the following expressions for the temperature dependency of the fractionation coefficients: ln(alpha(delta 2H)) = 0.2133 - 203.10/T + 48888/T-2 ln(alpha(delta 18O)) = 0.0831 - 49.192/T + 8312.5/T2...... Compared with previous experimental work, a significantly larger for H-2 is obtained while, for O-18, is larger for temperatures below -20 degrees C and slightly lower for temperatures above this. CONCLUSIONS: Using the new values for alpha, a Rayleigh distillation model shows significant changes in both...

  10. Optimizing design parameter for light isotopes separation by distillation method

    International Nuclear Information System (INIS)

    Ahmadi, M.

    1999-01-01

    mentioned rules, pressure decrease, results in separation factor increase, and higher is separation factor in distillation process, lower is theoretical trays needed to do the separation. Therefore choice of optimum pressure (proper vacuum) and method of computing number of theoretical trays needed is very important. Required vacuum in the condenser of distillation apparat ous(including: condenser, tower and re boiler), is determined in such a way that outlet vapour from the tower could be condensed. In the other hand, proper vacuum is set by the temperature of coolant used. Common calculation methods to compute number of theoretical trays needed to separate constituent components of a solution, may be used by doing some modifications for isotopic separation via distillation process. Therefore to generalize common calculation methods for distillation to compute number of theoretical trays needed in a isotopic enrichment process, enrichment in ideal tray and other hydrodynamic specifications, it is first of all necessary to define isotopes as components. For obtaining equilibrium equations between hydrogen isotopes to apply for comp ting number of theoretical trays for isotopic enrichment through distillation process, firstly equilibrium equations between hydrogen isotopes in liquid phase is obtained base on reaction constant coefficient for these isotopes and then equilibrium equations in vapour phase are analysed base on ideal gas laws. By taking into consideration the separation factor, equations obtained for both phases are combined and finally the amount of hydrogen isotopes and separation factor are defined independently considering equilibrium equations in liquid and vapour phases. Therefore using mathematical method for both liquid and vapour phases of isotopes and common distillation method, number of theoretical trays are calculated and then profiting return equations presented, enrichment of isotopes for each theoretical tray may be calculated. To achieve know

  11. Assessment of local and regional isotopic equilibrium in the mantle

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, A W; Hart, S R [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1978-02-01

    The assumption of local equilibrium during partial melting is fundamental to the interpretation of isotope and trace element data for mantle-derived rocks. If disequilibrium melting is significant, the scale of the chemical and isotopic heterogeneity in the mantle indicated by the data could be as small as the grain size of the mantle rock, and the isotope data themselves are then of doubtful value to the understanding of mantle processes. To assess the scale of isotopic heterogeneity in a partially molten asthenosphere the authors review the Sr isotopic data of volcanic rocks from oceanic regions and the available experimental data on diffusion kinetics in minerals and melts similar to those existing in the mantle. Although diffusion data are scarce and afflicted with uncertainties, most of the diffusion coefficients for cations in mantle minerals at temperatures of 1000 to 1200/sup 0/C appear to be greater than 10/sup -13/ cm/sup 2/ s/sup -1/. Struntium diffusion in liquid basalt is more rapid, with diffusion coefficients of D = 10/sup -7/ to 10/sup -6/ cm/sup 2/ s/sup -1/ near 1300/sup 0/C. Simple model calculations show that, with these D values, a fluid-free mantle can maintain a state of disequilibrium on a centimeter scale for periods of 10/sup 8/ to 10/sup 9/ years. The state of disequilibrium found in many mantle-derived xenoliths is thus easily explained. A partially molten mantle, on the other hand, will tend to equilibrate locally in less than 10/sup 5/ to 10/sup 6/ years. The analytical data on natural rocks likewise indicate that the inhomogeneities are both old (> 1.5 b.y.) and regional in character and that the consistent isotopic differences between ocean island and ocean floor volcanics cannot be explained by small-scall hetorogeneity of the source rock.

  12. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    International Nuclear Information System (INIS)

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-01-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO 2 excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37 0 C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O 2 and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO 2 production

  13. A new method for studying iodine metabolism; the isotopic equilibrium method - kinetic and quantitative aspects of measurements made on rats; Une nouvelle methode d'etude du metabolisme de l'iode: la methode d'equilibre isotopique - aspects cinetiques et quantitatifs obtenus chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    The isotopic equilibrium method which has been developed in the case of the rat has made it possible to measure the absolute values of the principal parameters of iodine metabolism in this animal. The quantities and concentrations of iodine have been measured in the thyroid gland and in the plasma with a sensitivity of 0.001 {mu}g of {sup 127}I. This sensitivity has made it possible to measure pools as small as the iodide and the free iodotyrosines of the thyroid and to demonstrate the absence of free iodotyrosines in the plasma of the normal rat. In vivo, the isotopic equilibrium method has made it possible to measure the iodine content of the thyroid gland and to calculate the intensity of this gland's secretion without removing it. By double labelling with {sup 125}I and {sup 131}I the isotopic equilibrium method has made it possible to measure the flux, intensity of the intrathyroidal recycling as well as the turnover rates of all the iodine containing compounds of the thyroid gland. For this gland no precursor-product relationship has been found between The iodotyrosines (MIT and DIT) and the iodothyronines (T{sub 4} and T{sub 3}). The absence of this relationship is due to the heterogeneity of the thyroglobulin turnover. It has been shown furthermore that there exists in the plasma an organic fraction of the iodine which is different to thyroglobulin and which is renewed more rapidly than the circulating hormones T{sub 3} and T{sub 4}. The isotopic equilibrium method is very useful for series measurements of iodine. It makes it possible furthermore to improve the biochemical fractionations by adding carriers without affecting the subsequent {sup 127}I measurements. (author) [French] La methode d'equilibre isotopique, mise au point chez le rat, a permis de mesurer en valeur absolue les principaux parametres du metabolisme de l'iode chez cet animal. Les quantites ou les concentrations d'iode ont ete mesurees pour la thyroide et pour le

  14. Using Beads and Divided Containers to Study Kinetic and Equilibrium Isotope Effects in the Laboratory and in the Classroom

    Science.gov (United States)

    Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J.

    2017-01-01

    The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…

  15. Pre-equilibrium emission and nuclear level densities in neutron induced reactions on Fe, Cr and Ni isotopes

    International Nuclear Information System (INIS)

    Ivascu, M.; Avrigeanu, M.; Ivascu, I.; Avrigeanu, V.

    1989-01-01

    The experimentally well known (n,p), (n,α) and (n,2n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron, proton and alpha-particle emission spectra at 14.8 MeV from Fe, Cr and Ni isotopes are calculated in the frame of a generalized Geometry-Dependent-Hybrid pre-equilibrium emission model, including angular momentum and parity conservation and alpha-particle emission, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incident orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of this process are suggested by calculations of the residual nuclei level populations. Finally, the unitary account of the (n, p) and (n, 2n) reaction excitation functions for Fe, Cr and Ni isotopes has allowed the proper establishment of the limits of the transition excitation range between the two different nuclear level density models used at medium and higher excitation energies, respectively. (author). 83 refs, 15 figs

  16. The Isotopologue Record of Repeat Vital Effect Offenders: Tracking (Dis)equilibrium Effects in Sea Urchins and Nannofossil Using Clumped Isotopes

    Science.gov (United States)

    John, C. M.; Davies, A.; Drury, A. J.

    2016-12-01

    Vital effects vary between species and affect various isotopic systems in unequal proportion. The magnitude of the response of different isotopic systems might thus be key in understanding biologically-mediated disequilibrium, especially in groups that show a tendency to be "repeat offenders" with regards to vital effects. Here we present carbon, oxygen, and clumped isotope data from echinoderm calcite and nannofossil ooze, both of which exhibit strong vital effects in bulk isotopes. Our study is the first to investigate the clumped isotope (dis)equilibrium of echinoids. Results from two echinoids, three marine gastropods and a bivalve mollusk from modern beach deposits of Bali, Indonesia, highlight a significant offset in clumped isotopes of a regular echinoid test from expected values, interpreted as evidence of a similar "vital effect" as observed in surface corals. This is in contrast to the test of an irregular "sand dollar" echinoid, with clumped isotope values within error of expected sea surface temperature. Furthermore, data on the inter-skeletal variability in the clumped isotopic composition of two regular echinoid species shows that the spines of the echinoids are in equilibrium with seawater with respect to clumped isotopes, but the test is not. For the nannofossil material, no clumped isotope vital effects are observed, consistent with previously published studies but at odds with strong vital effects in carbon and oxygen isotopes, often correlated with cell-size. In addition, we reveal that the <63 micron fraction of deep-sea ooze could constitute useful material for clumped isotope studies. An intriguing result of our study is that vital effects are mostly absent in clumped isotopes, even in phylums known for important isotopic effects. It remains to be explained why some parts of the echinoids show clear vital effects, notably enrichment in clumped isotopes of urchin tests. Mechanisms that could explain this include pH effects during calcification

  17. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  18. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    Science.gov (United States)

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  19. Isotope methods in hydrology

    International Nuclear Information System (INIS)

    Moser, H.; Rauert, W.

    1980-01-01

    Of the investigation methods used in hydrology, tracer methods hold a special place as they are the only ones which give direct insight into the movement and distribution processes taking place in surface and ground waters. Besides the labelling of water with salts and dyes, as in the past, in recent years the use of isotopes in hydrology, in water research and use, in ground-water protection and in hydraulic engineering has increased. This by no means replaces proven methods of hydrological investigation but tends rather to complement and expand them through inter-disciplinary cooperation. The book offers a general introduction to the application of various isotope methods to specific hydrogeological and hydrological problems. The idea is to place the hydrogeologist and the hydrologist in the position to recognize which isotope method will help him solve his particular problem or indeed, make a solution possible at all. He should also be able to recognize what the prerequisites are and what work and expenditure the use of such methods involves. May the book contribute to promoting cooperation between hydrogeologists, hydrologists, hydraulic engineers and isotope specialists, and thus supplement proven methods of investigation in hydrological research and water utilization and protection wherever the use of isotope methods proves to be of advantage. (orig./HP) [de

  20. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    Science.gov (United States)

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  1. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  2. Study of oxalic acid effect on equilibrium and kinetics of isotopic exchange between penta- and hexavalent neptunium in nitric acid solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Ionnikova, N.I.

    1989-01-01

    Spectrophotometry at 25 deg C and ionic force μ=1.0 mol/l (KNO 3 +HNO 3 ) was used to show that at HNO 3 concentration 0.1-1.0 mol/l H 2 C 2 O 4 introduction to nitric acid solutions of Np 5+ in the presence of nitrite-ion resulted in the shift of equilibrium between Np 5+ and Np 6+ to the side of Np 6+ accumulation. The presence of H 2 C 2 O 4 at HNO 3 concentration > 1.0 mol/l doesn't affect the equilibrium position. The values of nominal equilibrium constant at different HNO 3 and H 2 C 2 O 4 concentrations were calculated. It was found that isotope exchange ( 239 Np/ 237 Np) between Np 5+ and Np 6+ in oxalate solutions proceeded more slowly than in oxalate absence. Rate constants of isotope exchange calculated at 9 deg C, μ=1.0 mol/l (KNO 3 ), H 2 C 2 O 4 concentration 0.01 mol/l and pH=2.2 and 3.5 are equal to 0.49x10 3 and 0.67x10 2 l/mol·min respectively. Mechanism of isotope exchange including electron transport between Np 5+ and Np 6+ oxalate complexes is suggested

  3. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  4. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  5. New NMR method for measuring the difference between corresponding proton and deuterium chemical shifts: isotope effects on exchange equilibria

    International Nuclear Information System (INIS)

    Saunders, M.; Saunders, S.; Johnson, C.A.

    1984-01-01

    A convenient and accurate method is described for measuring the difference between a proton frequency and the corresponding deuterium frequency in its deuterated analogue relative to a reference system by using the deuterium lock in a Fourier-transform NMR spectrometer. This measurement is a sensitive way of measuring equilibrium isotope effects for hydrogen-deuterium exchange. A value of 1.60 per H-D pair is obtained for the equilibrium 2H 3 O + + 3D 2 O in equilibrium 2D 3 O + + 3H 2 O at 30 0 C in aqueous perchloric acid (HClO 4 ). 7 references, 2 tables

  6. Numerical method for partial equilibrium flow

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)

    1981-01-01

    A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step

  7. Isotopic enrichment of 15N by ionic exchange cromatography

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Matsui, E.; Salati, E.

    1979-01-01

    The ionic exchange chromatographic method in columns of resin which is employed in the study of isotopic enrichment of 15 N is presented. Determinations are made of the isotopic separation constant for the exchange of isotopes 15 N and 14 N in the equilibrium involving ammonium hidroxide in the solution phase and ions NH 4 + adsorbed in cationic resins: Dowex 50W-X8 and X12, 100-200 mesh. Experiments are also conducted for determination of height of theoretical plates for situations of equilibrium of the NH 4 + band in two systems of resin's columns aimed at estimating the experimental conditions used. The isotopic analyses of nitrogen are carried out by mass spectrometry [pt

  8. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  9. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.; Sessions, Alex L.; Lawson, Michael; Shuai, Yanhua; Bishop, Andrew; Podlaha, Olaf G.; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Niemann, Martin; Steen, Arne S.; Huang, Ling; Chimiak, Laura; Valentine, David L.; Fiebig, Jens; Luhmann, Andrew J.; Seyfried, William E.; Etiope, Giuseppe; Schoell, Martin; Inskeep, William P.; Moran, James J.; Kitchen, Nami

    2017-11-01

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.

  10. Basic methods of isotope analysis

    International Nuclear Information System (INIS)

    Ochkin, A.V.; Rozenkevich, M.B.

    2000-01-01

    The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru

  11. Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism

    Science.gov (United States)

    Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.

    2017-10-01

    Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.

  12. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl

  13. Method and device for isotope separation

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1976-01-01

    The method works with a converted Q machine. The plasma containing the isotopes to be separated is crossed by a magnetic field running in the direction of the plasma column. More energy is transfered to the chosen isotope by oscillating magnetic and/or electric fields or by sound waves by using the specific resonance frequency for the selected isotope. The isotopes thus heated to different extents can be separated according to various methods given in the patent claims. (GG) [de

  14. Assessment of surface reactivity of thorium oxide in conditions close to chemical equilibrium by isotope exchange {sup 229}Th/{sup 232}Th method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Muresan, Tomo; Perrigaud, Katy; Vandenborre, Johan; Ribet, Solange; Grambow, Bernd [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Takamasa, Inai [TOKAI Univ., Kanagawa (Japan)

    2017-08-01

    This work aims to assess the solubility and the surface reactivity of crystallized thorium at pH 3.0 in presence of three types of solids: synthesized powder at 1300 C, crushed kernel, and intact kernel. In this study, the kernel is composed by the core solid from high temperature reactors (HTR) sphere particles. The originality of this work consisted in following in a sequential order the kinetic of dissolution, the surface reactivity in presence of isotope tracer {sup 229}Th, and its desorption process. Long time experiments (634 days) allowed to get deeper understanding on the behavior of the surface reactivity in contact with the solution. Solubility values are ranging from 0.3 x 10{sup -7} mol.L{sup -1} to 3 x 10{sup -7} mol.L{sup -1} with a dissolution rate of 10{sup -6}-10{sup -4} g.m{sup -2} day{sup -1}. PHREEQC modeling showed that crystallized ThO{sub 2}(cr, 20 nm) phase controls the equilibrium in solution. Isotope exchange between {sup 229}Th and {sup 232}Th indicated that well-crystallized phase exist as an inert surface regarding to the absence of exchange between surface solid and solution.

  15. Isotope exchange between alkaline earth metal hydroxide and HTO water in the equilibrium state

    International Nuclear Information System (INIS)

    Imaizumi, H.; Gounome, J.; Kano, N.

    1997-01-01

    In order reveal to what extent tritium ( 3 H or T) can be incorporated into hydroxides, the isotope exchange reaction (OT-for-OH exchange reaction) between each alkaline earth metal hydroxide (M(OH) 2 ), where M means alkaline earth metal (M=Ca, Sr or Ba) and HTO water was observed homogeneously at 30 deg C under equilibrium after mixing. Consequently, the followings were obtained: a quantitative relation between the electronegativity of each M ion and the ability (of the M ion) incorporating OT - into the M hydroxide can be found and the ability is small when the temperature is high, the exchange rate for the OT-for-OH exchange reaction is small when the electronegativity of the M ion in the M hydroxide is great, as for the dissociation of HTO water, it seems that formula (HTO ↔ T + + OH - ) is more predominant than the formula (HTO ↔H + + OT - ) when the temperature is high and the method used in this work is useful to estimate the reactivity of a certain alkaline material. (author)

  16. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M.J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-01-01

    Multiply isotopically substituted molecules (‘clumped’ isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature–time conditions corresponding to ‘low,’ ‘mature,’ and ‘over-mature’ stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions (‘high’ to ‘over-mature’ stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where ‘secondary’ cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation

  17. Equilibrium isotope exchange kinetics of native and site-specific mutant forms of E. coli aspartate transcarbamoylase

    International Nuclear Information System (INIS)

    Wedler, F.C.; Hsuanyu, Y.; Kantrowitz, E.R.

    1987-01-01

    Isotope exchange kinetics at equilibrium (EIEK) have been used to probe the kinetic and regulatory mechanisms of native aspartate transcarbamoylase (ATCase) from E. coli at pH 7.0, 30 0 . Substrate saturation patterns were most consistent with a preferred order random kinetic mechanism: C-P prior to L-Asp, C-Asp released before Pi, with the Asp ↔ C-Asp exchange rate 5X faster than C-P ↔ Pi. Computer simulations allow one to fit the EIEK experimental data and to arrive at the best set of kinetic constants for a given enzyme state. These approaches have been applied to modified ATCase. Bound CTP and ATP were observed, respectively, to inhibit and activate differentially Asp ↔ C-Asp, but not C-P ↔ Pi, indicating that these modifiers alter the association-dissociation rates of L-Asp and C-Asp but not of C-P or Pi. Low levels of PALA activated both exchange rates (due to shifting the T-R equilibrium), but higher [PALA] completely blocked both exchanges. The effects of a site-specific mutation of Tyr240 Phe have been similarly probed by EIEK methods. The Phe240 mutant enzyme exhibited kinetic properties markedly different from native ATCase: the data indicate that Phe240 ATCase is much closer to an R-state enzyme than is native enzyme

  18. Isotope effects on chemical shifts in tautomeric systems with double proton transfer. Citronin

    International Nuclear Information System (INIS)

    Hansen, P.E.; Langgard, M.; Bolvig, S.

    1998-01-01

    Primary and secondary deuterium isotope effects on 1 H and 13 C chemical shifts are measured in citrinin, a tautomeric compound with an unusual doubly intramolecularly hydrogen bonded structure. The isotope effects are to a large extent dominated by equilibrium contributions and deuteration leads to more of the deuterated enol forms rather than the deuterated acid form. 1 H 13 C and 17 O nuclear shieldings are calculated using density functional ab initio methods. A very good correlation between calculated nuclear shieldings and experimental 1 H and 13 C chemical shifts is obtained. The tautomeric equilibrium can be analyzed based on the isotope effects on B-6 and C-8 carbons and shows an increase in the o-quinone form on lowering the temperature. Furthermore, upon deuteration the largest equilibrium shift is found for deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration is increasing at lower temperature. (author)

  19. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

    International Nuclear Information System (INIS)

    Guidry, M W; Hix, W R; Billings, J J

    2013-01-01

    In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

  20. Method for separating krypton isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1980-01-01

    Methods and apparatus for separating krypton isotopes utilizing low temperature selective infrared excitation of 85krypton difluoride in an isotopic compound mixture. Multiphoton ir excitation and uv excitation techniques are used, as well as cryogenic matrix isolation and inert buffer gas isolation techniques

  1. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  2. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    Science.gov (United States)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  3. Isotopic equilibrium constants of the deuterium exchange between HDO and H2S, H2Se and H2Te

    International Nuclear Information System (INIS)

    Marx, D.

    1959-11-01

    We have determined experimentally the equilibrium constant K of each of the following isotope exchanges: SH 2 + OHD ↔ SHD + OH 2 ; SeH 2 + OHD ↔ SeHD + OH 2 ; TeH 2 + OHD ↔ TeHD + OH 2 . In gaseous phase, statistical thermodynamics leads to the expression: K (Z OHD x Z RH 2 )/(Z OH 2 x Z RHD ) x e W/T (R being the elements S, Se or Te). Z, the partition functions, have been calculated and, through our experimental results, the constant W has been determined. Having obtained W, the equilibrium constant K has been calculated for a series of temperatures. (author) [fr

  4. Determination of tin equilibrium isotope fractionation factors from synchrotron radiation experiments

    NARCIS (Netherlands)

    Polyakov, VB; Mineev, SD; Clayton, RN; Hu, G; Mineev, KS

    2005-01-01

    A method of determination of the reduced isotopic partition function ratio (beta-factor) from the partial density of state (PDOS) obtained by inelastic nuclear resonant X-ray scattering (INRXS) in synchrotron radiation experiments has been established. The method has been demonstrated by the example

  5. Assessment of Stable Isotope Distribution in Complex Systems

    Science.gov (United States)

    He, Y.; Cao, X.; Wang, J.; Bao, H.

    2017-12-01

    Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern

  6. Low energy methods of molecular laser isotope separation

    International Nuclear Information System (INIS)

    Makarov, G N

    2015-01-01

    Of the many proposals to date for laser-assisted isotope separation methods, isotope-selective infrared (IR) multiphoton dissociation (MPD) of molecules has been the most fully developed. This concept served as the basis for the development and operation of the carbon isotope separation facility in Kaliningrad, Russia. The extension of this method to heavy elements, including uranium, is hindered by, among other factors, the high power consumption and the lack of high-efficiency high-power laser systems. In this connection, research and development covering low energy methods for the laser separation of isotopes (including those of heavy atoms) is currently in high demand. This paper reviews approaches to the realization of IR-laser-induced isotope-selective processes, some of which are potentially the basis on which low-energy methods for molecular laser isotope separation can be developed. The basic physics and chemistry, application potential, and strengths and weaknesses of these approaches are discussed. Potentially promising alternatives to the title methods are examined. (reviews of topical problems)

  7. The asymmetric rotator model applied to odd-mass iridium isotopes

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1980-04-01

    The method of inversion of the eigenvalue problem previously developed for nuclei with axial symmetry is extended to asymmetric equilibrium shapes. This new approach of the asymmetric rotator model is applied to the odd-mass iridium isotopes. A satisfactory and coherent description of the observed energy spectra is obtained, especially for the lighter isotopes

  8. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  9. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N. [National Research Centre Kurchatov Institute (Russian Federation); Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu., E-mail: yuri.titarenko@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  10. Isotope effects on chemical equilibria

    International Nuclear Information System (INIS)

    Golding, P.D.

    1974-01-01

    The thermodynamic equilibrium constants of three deuterated substituted acetic acids are reported. The calculation of secondary isotope effects of the second kind for the three isotopic acid pairs has been accomplished by the appropriate comparison of thermodynamic equilibrium constants, and by the comparison of isotopic slopes. The effect of substituent variation on the isotope effects reported here disqualifies the simple inductive model as a legitimate description of secondary isotope effects of the second kind. The correlation of diminishing isotope effect per deuterium atom with increasing acidity is also invalidated by the present results. The syntheses of 9-thia-9,10-dihydrophenanthrene-9-oxide and thioxanthene-10-oxide are described. These compounds have been partially deuterated at their respective methylene positions. Spectral evidence indicates stereoselectivity of the methylene protons in the exchange reactions of both compounds. (author)

  11. Isotope effects on nuclear shielding

    International Nuclear Information System (INIS)

    Hansen, P.E.

    1983-01-01

    This review concentrates upon empirical trends and practical uses of mostly secondary isotope effects, both of the intrinsic and equilibrium types. The text and the tables are arranged in the following fashion. The most 'popular' isotope effect is treated first, deuterium isotope effects on 13 C nuclear shielding, followed by deuterium on 1 H nuclear shieldings, etc. Focus is thus on the isotopes producing the effect rather than on the nuclei suffering the effect. After a brief treatment of each type of isotope effect, general trends are dealt with. Basic trends of intrinsic isotope effects such as additivity, solvent effects, temperature effects, steric effects, substituent effects and hyperconjugation are discussed. Uses of isotope effects for assignment purposes, in stereochemical studies, in hydrogen bonding and in isotopic tracer studies are dealt with. Kinetic studies, especially of phosphates, are frequently performed by utilizing isotope effects. In addition, equilibrium isotope effects are treated in great detail as these are felt to be new and very important and may lead to new uses of isotope effects. Techniques used to obtain isotope effects are briefly surveyed at the end of the chapter. (author)

  12. Method of isotope separation by chemi-ionization

    International Nuclear Information System (INIS)

    Wexler, S.; Young, C.E.

    1977-01-01

    A method is disclosed for separating isotopes in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. cThis method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes. 10 claims, 1 figure

  13. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  14. Lattice Boltzmann method with the cell-population equilibrium

    International Nuclear Information System (INIS)

    Zhou Xiaoyang; Cheng Bing; Shi Baochang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions

  15. Method for isotope separation by photodeflection

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states

  16. A new estimation method for nuclide number densities in equilibrium cycle

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi; Ando, Yoshihira.

    1997-01-01

    A new method is proposed for estimating nuclide number densities of LWR equilibrium cycle by multi-recycling calculation. Conventionally, it is necessary to spend a large computation time for attaining the ultimate equilibrium state. Hence, the cycle in nearly constant fuel composition has been considered as an equilibrium state which can be achieved by a few of recycling calculations on a simulated cycle operation under a specific fuel core design. The present method uses steady state fuel nuclide number densities as the initial guess for multi-recycling burnup calculation obtained by a continuously fuel supplied core model. The number densities are modified to be the initial number densities for nuclides of a batch supplied fuel. It was found that the calculated number densities could attain to more precise equilibrium state than that of a conventional multi-recycling calculation with a small number of recyclings. In particular, the present method could give the ultimate equilibrium number densities of the nuclides with the higher mass number than 245 Cm and 244 Pu which were not able to attain to the ultimate equilibrium state within a reasonable number of iterations using a conventional method. (author)

  17. Thermodynamics of calcium-isotope-exchange reactions. 1. Exchange between isotopic calcium carbonates and aqueous calcium ions

    International Nuclear Information System (INIS)

    Zhang, R.S.; Nash, C.P.; Rock, P.A.

    1988-01-01

    This paper reports the authors results for the direct experimental determination of the equilibrium constant for the calcium-isotope-exchange reaction 40 CaCO 3 (s) + 44 CaCl 2 (aq) reversible 44 CaCO 2 (s) + 40 CaCl 2 (aq). The reaction was studied in electrochemical double cells without liquid junction of the type shown in eq 2. The experimental value of the equilibrium constant at 295 +/- 2 K is K = 1.08 +/- 0.02. The experimental value for K is compared with the values of K calculated for various model reactions according to the statistical thermodynamic theory of isotope effects. The isotopic solid carbonates were modeled according to both the Debye and Kieffer theories. No structured models of solvated isotopic aqueous calcium ions yield calculated equilibrium constants in agreement with their experimental results. This conclusion is in agreement with published molecular dynamics calculations which show that the aqueous solvation of Ca 2 =(aq) is essentially unstructured

  18. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  19. The fractioning factor and the number of theorical plates in isotopic enrichment columns determined simultaneously

    International Nuclear Information System (INIS)

    Ducatti, Carlos

    1997-01-01

    Using an analytical approach and an analytical graphical method, it was determined simultaneously the fractioning factor and the number of theoretical plates in isotopic enrichment columns during the conditions of dinamical isotopic equilibrium. (author). 5 refs., 2 figs., 2 tabs

  20. Isotope effects in gas-phase chemical reactions and photodissociation processes: Overview

    International Nuclear Information System (INIS)

    Kaye, J.A.

    1992-01-01

    The origins of isotope effects in equilibrium and non-equilibrium chemical processes are reviewed. In non-equilibrium processes, attention is given to isotope effects in simple bimolecular reactions, symmetry-related reactions, and photodissociation processes. Recent examples of isotope effects in these areas are reviewed. Some indication of other scientific areas for which measurements and/or calculations of isotope effects are used is also given. Examples presented focus on neutral molecule chemistry and in many cases complement examples considered in greater detail in the other chapters of this volume

  1. Modeling Equilibrium Fe Isotope Fractionation in Fe-Organic Complexes: Implications for the use of Fe Isotopes as a Biomarker and Trends Based on the Properties of Bound Ligands

    Science.gov (United States)

    Domagal-Goldman, S.; Kubicki, J. D.

    2006-05-01

    Fe Isotopes have been proposed as a useful tracer of biological and geochemical processes. Key to understanding the effects these various processes have on Fe isotopes is accurate modeling of the reactions responsible for the isotope fractionations. In this study, we examined the theoretical basis for the claims that Fe isotopes can be used as a biomarker. This was done by using molecular orbital/density functional theory (MO/DFT) calculations to predict the equilibrium fractionation of Fe isotopes due to changes in the redox state and the bonding environment of Fe. Specifically, we predicted vibrational frequencies for iron desferrioxamine (Fe-DFOB), iron triscatechol (Fe(cat)3), iron trisoxalate (Fe(ox)3), and hexaaquo iron (Fe(H2O)6) for complexes containing both ferrous (Fe2+) and ferric (Fe3+) iron. Using these vibrational frequencies, we then predicted fractionation factors between these six complexes. The predicted fractionation factors resulting from changes in the redox state of Fe fell in the range 2.5- 3.5‰. The fractionation factors resulting from changes in the bonding environment of Fe ranged from 0.2 to 1.4‰. These results indicate that changes in the bonding strength of Fe ligands are less important to Fe isotope fractionation processes than are changes to the redox state of Fe. The implications for use of Fe as a tracer of biological processes is clear: abiological redox changes must be ruled out in a sample before Fe isotopes are considered as a potential biomarker. Furthermore, the use of Fe isotopes to measure the redox state of the Earths surface environment through time is supported by this work, since changes in the redox state of Fe appear to be the more important driver of isotopic fractionations. In addition to the large differences between redox-driven fractionations and ligand-driven fractionations, we will also show general trends in the demand for heavy Fe isotopes as a function of properties of the bound ligand. This will help the

  2. An alternative extragradient projection method for quasi-equilibrium problems.

    Science.gov (United States)

    Chen, Haibin; Wang, Yiju; Xu, Yi

    2018-01-01

    For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion property with respect to a given initial point. The global convergence of the method is established under the assumptions of pseudomonotonicity of the equilibrium function and of continuity of the underlying multi-valued mapping. Furthermore, we show that the generated sequence converges to the nearest point in the solution set to the initial point. Numerical experiments show the efficiency of the method.

  3. Heavy-atom isotope effects on binding of reactants to lactate dehydrogenase and pyruvate kinase

    International Nuclear Information System (INIS)

    Gawlita, E.

    1993-04-01

    18 O and 13 C kinetic isotope effects have been measured on the reaction of pyruvate kinase with phospho-enol-pyruvate and ADP using a remote label technique. The magnitude of both investigated isotope effects showed a dependence on the concentration of ADP. However, while the carbon effect was simply 'washed out' to unity at high ATP concentration, the oxygen effect becomes inverse and reached 0.9928 at the highest used concentration of ADP. Such a result testifies that the assumption of the negligible effect of isotopic substitution on enzyme-substrate associations remains correct only for carbon effects. An equilibrium 18 O isotope effect on association of oxalate with lactate dehydrogenase in the presence of NADHP has been evaluated by both experimental and theoretical means. Experimental methods, which involved equilibrium dialysis and gas chromatographic/mass spectrometric measurement of isotopic ration, yielded an inverse value of 0.9840. Semiempirical methods involved vibrational analysis of oxalate in two different environments. The comparison of calculated values with the experimentally determined isotope effect indicated that the AM 1 Hamiltonian proved superior to its PM 3 counterpart in this modelling. 160 refs, 8 figs, 18 tabs

  4. Method and device for the enrichment of isotopes

    International Nuclear Information System (INIS)

    Stehle, H.

    1976-01-01

    A variation of a method for isotope enrichment by laser radiation is proposed which improves the selectivity and with it the economy of the method by eliminating undesired reactions caused by thermal activation. The method according to the invention is applied discontinuously in three steps: The isotope mixture and the reacting agents are fed to a vessel, a laser beam is passed through, and the contents are emptied into a vacuum tank while expanding adiabatically. The time steps are controlled. The method is explained using the example of separating an isotope mixture of UF 6 . (UWI) [de

  5. A method for external measurement of toroidal equilibrium parameters

    International Nuclear Information System (INIS)

    Brunsell, P.; Hellblom, G.; Brynolf, J.

    1992-01-01

    A method has been developed for determining from external magnetic field measurements the horizontal shift, the vertical shift and the poloidal field asymmetry parameter (Λ) of a toroidal plasma in force equilibrium. The magnetic measurements consist of two toroidal differential flux loops, giving the average vertical magnetic field and the average radial magnetic field respectively, together with cosine-coils for obtaining the m=1 cosine harmonic of the external poloidal magnetic field component. The method is used to analyse the evolution of the toroidal equilibrium during reversed-field pinch discharges in the Extrap T1-U device. We find that good equilibrium control is needed for long plasma pulses. For non-optimized externally applied vertical fields, the diagnostic clearly shows a horizontal drift motion of the pinch resulting in earlier discharge termination. (au)

  6. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  7. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  8. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Feldman, B. J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  9. Discriminating background from anthropogenic lead by isotopic methods

    International Nuclear Information System (INIS)

    Nelson, B.K.; O'Brien, H.E.

    1995-01-01

    The goal of this pilot project was to evaluate the practicality of using natural variations in the isotopic composition of lead to test for the presence of anthropogenic lead in soil, surface water and ground water. Complex chemical reactions in the environment may cause measured lead concentrations to be ambiguous indicators of anthropogenic lead component. The lead isotope tracer technique has the potential to identify both the presence and proportion of anthropogenic lead in the environment. The tested the lead isotope technique at Eielson Air Force Base, Alaska, on sources of suspected fuel contamination. Although the results are specific to this base, the general technique of using lead isotopes to trace the movement of anthropogenic lead is applicable to other CERCLA sites. The study had four objectives: (1) characterize the natural lead isotope composition of bedrock, stream sediment and soils; (2) characterize the isotopic composition of the contaminant lead derived from fuel; (3) evaluate the sensitivity of the isotopic method to distinguishing between anthropogenic and natural lead in soil and water samples and (4) evaluate the analytical feasibility and accuracy of the method at the Isotope Geochemistry Laboratory at the University of Washington

  10. ATTA - A new method of ultrasensitive isotope trace analysis

    International Nuclear Information System (INIS)

    Bailey, K.; Chen, C.Y.; Du, X.; Li, Y.M.; Lu, Z.-T.; O'Connor, T.P.; Young, L.

    2000-01-01

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. This method is free of contamination from other isotopes and elements and can be applied to various different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1x10 -7 . System improvements could increase the efficiency by many orders of magnitude

  11. Specific equilibrium behavior of hydrogen isotopes adsorbed onto synthetic zeolite A-type governed by lithium cations

    International Nuclear Information System (INIS)

    Takashima, Shoji; Kotoh, Kenji

    2013-01-01

    Highlights: • Isotherms for H 2 and D 2 adsorbed onto SZ-LiA at 77.4 K are shown. • The adsorption isotherms exhibit specific deviation in the range lower than 10 Pa. • SZ-LiA indicates the power of several 100-times at 0.1 Pa, compared with SZ-NaA. • Experimental isotherms are described empirically by a dual-site Langmuir equation. • The isotope effect on adsorption isotherms appears in the Langmuir constants. -- Abstract: Since synthetic zeolites (SZs) are powerfully adsorptive for hydrogen isotopes at cryogenic temperatures such as liquefied nitrogen, adsorption processes using these have been considered applicable to such as recovery of tritium from the lithium blanket of DT fusion reactor system. Onto these zeolites the adsorptions isotherms for hydrogen isotopes onto SZ-NaA, SZ-CaA and SZ-NaX at 77.4 K were already clarified experimentally and analytically. These isotherms exhibit similar profiles of Langmuir type. In this work, adsorption isotherms were examined for H 2 and D 2 on SZ-LiA at 77.4 K. SZ-LiA was made from SZ-NaA by exchanging its sodium ions for lithium ones, provided by TOSOH Corp. The experimental results demonstrate the specific equilibrium behavior of hydrogen isotopes adsorbed on SZ-LiA, deviating from isothermal profiles on SZ-CaA and SZ-NaX. SZ-LiA show the isothermal profiles of adsorption for H 2 and D 2 similar to on the conventional zeolites in the range from around 1 kPa to the atmospheric pressure, but exhibit a plateau around 1 mol/kg between 0.1 Pa and 100 Pa, while other zeolites show linearly profiling isotherms. This deviation indicates the adsorptive power of SZ-LiA remarkably greater than that of the others

  12. A method for high accuracy determination of equilibrium relative humidity

    DEFF Research Database (Denmark)

    Jensen, O.M.

    2012-01-01

    This paper treats a new method for measuring equilibrium relative humidity and equilibrium dew-point temperature of a material sample. The developed measuring device is described – a Dew-point Meter – which by means of so-called Dynamic Dew-point Analysis permits quick and very accurate...

  13. A method of uranium isotopes concentration analysis

    International Nuclear Information System (INIS)

    Lin Yuangen; Jiang Meng; Wu Changli; Duan Zhanyuan; Guo Chunying

    2010-01-01

    A basic method of uranium isotopes concentration is described in this paper. The iteration method is used to calculate the relative efficiency curve, by analyzing the characteristic γ energy spectrum of 235 U, 232 U and the daughter nuclide of 238 U, then the relative activity can be calculated, at last the uranium isotopes concentration can be worked out, and the result is validated by the experimentation. (authors)

  14. Analysis of equilibrium in a tokamak by the finite-difference method

    International Nuclear Information System (INIS)

    Kim, K.E.; Jeun, G.D.

    1983-01-01

    Ideal magnetohydrodynamic equilibrium in a Tokamak having a small radius with an elongated rectangular cross section is studied by applying the finite-difference method to the Grad-Shafranov equation to determine possible limitations for *b=8*pPsup(2)/Bsup(2). The coupled first-order differential equations resulting from the finite-difference Grad-Shafranov equation is solved by the numarical method:1)We concluded that equilibrium consideration alone gives no limitation even for *b approx.1. 2)We have obtained the equilibrium magnetic field configuration charcterized by a set of three parameters;the aspect ratio, *b,and the safety factor. (Author)

  15. Methods for removing radioactive isotopes from contaminated streams

    International Nuclear Information System (INIS)

    Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.

    1979-01-01

    Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream

  16. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  17. Method of eliminating gaseous hydrogen isotopes

    International Nuclear Information System (INIS)

    Nagakura, Masaaki; Imaizumi, Hideki; Suemori, Nobuo; Aizawa, Takashi; Naito, Taisei.

    1983-01-01

    Purpose: To prevent external diffusion of gaseous hydrogen isotopes such as tritium or the like upon occurrence of tritium leakage accident in a thermonuclear reactor by recovering to eliminate the isotopes rapidly and with safety. Method: Gases at the region of a reactor container where hydrogen isotopes might leak are sucked by a recycing pump, dehumidified in a dehumidifier and then recycled from a preheater through a catalytic oxidation reactor to a water absorption tower. In this structure, the dehumidifier is disposed at the upstream of the catalytic oxidation reactor to reduce the water content of the gases to be processed, whereby the eliminating efficiency for the gases to be processed can be maintained well even when the oxidation reactor is operated at a low temperature condition near the ambient temperature. This method is based on the fact that the oxidating reactivity of the catalyst can be improved significantly by eliminating the water content in the gases to be processed. (Yoshino, Y.)

  18. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  19. An isotope method for the measurement of creaming

    International Nuclear Information System (INIS)

    Wiechen, A.; Heine, K.

    1974-01-01

    The principle of a method is described which allows the course of creaming to be recorded continously and automatically by means of isotopes. Without affecting the colloidal system of milk, an isotope is added in hydrosoluble form and with only small amounts of carriers. A small detector sensitive to the respective radiation of the isotope is used to measure the decrease of counting rate on the head of the creaming cylinder, the decrease of rate being due to the effective recess of the radiation source and to the absorption of rays in the cream layer. The choice of the isotope, i.e. kind and energy of its radiation, and of the detector allows to adapt the sensitivity of the method to the rate of creaming. The method described appears to be superior to those techniques in which sedimentation balances are used; it could therefore supply useful information in research work on the process of creaming. (orig.) [de

  20. Method for separating isotopes

    International Nuclear Information System (INIS)

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  1. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  2. Method of isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, R K

    1975-05-22

    Isotopes of a gaseous compound can be separated by multi-infrared photoabsorption which follows a selective dissociation of the excited molecules by single photon absorption of photons of visible or UV radiation. The process involves three steps. Firstly, the molecules to be separated are irradiated with a high-energy IR laser, whereby the molecules of the compound containing the lighter isotopes are preferably excited. They are then irradiated by a second laser with UV or visible light whose frequency of radiation brings the excited molecules into a form in which they can be separated from the non-excited molecules. The third step is the reformation of the substances according to known methods. A power density of at least 10/sup 4/ watt/cm/sup 2/ per torr gas pressure with an irradiation time of 10/sup -10/ to 5 x 10/sup -5/ seconds in the presence of a second gas with at least 5 times higher partial pressure is necessary for the IR radiation. The method may be used for UF/sub 6/ for which an example is given here.

  3. Basic methods of isotope analysis; Osnovnye metody analiza izotopov

    Energy Technology Data Exchange (ETDEWEB)

    Ochkin, A V; Rozenkevich, M B

    2000-07-01

    The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered.

  4. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  5. The empirical equilibrium structure of diacetylene

    OpenAIRE

    Thorwirth, S.; Harding, M. E.; Muders, D.; Gauss, J.

    2008-01-01

    High-level quantum-chemical calculations are reported at the MP2 and CCSD(T) levels of theory for the equilibrium structure and the harmonic and anharmonic force fields of diacetylene, HCCCCH. The calculations were performed employing Dunning's hierarchy of correlation-consistent basis sets cc-pVXZ, cc-pCVXZ, and cc-pwCVXZ, as well as the ANO2 basis set of Almloef and Taylor. An empirical equilibrium structure based on experimental rotational constants for thirteen isotopic species of diacety...

  6. Generalized multivalued equilibrium-like problems: auxiliary principle technique and predictor-corrector methods

    Directory of Open Access Journals (Sweden)

    Vahid Dadashi

    2016-02-01

    Full Text Available Abstract This paper is dedicated to the introduction a new class of equilibrium problems named generalized multivalued equilibrium-like problems which includes the classes of hemiequilibrium problems, equilibrium-like problems, equilibrium problems, hemivariational inequalities, and variational inequalities as special cases. By utilizing the auxiliary principle technique, some new predictor-corrector iterative algorithms for solving them are suggested and analyzed. The convergence analysis of the proposed iterative methods requires either partially relaxed monotonicity or jointly pseudomonotonicity of the bifunctions involved in generalized multivalued equilibrium-like problem. Results obtained in this paper include several new and known results as special cases.

  7. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavouring products.

    Science.gov (United States)

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-12-01

    For the implementation of Regulation (EC) No 2065/2003 related to smoke flavourings used or intended for use in or on foods a method based on solid-phase micro extraction (SPME) GC/MS was developed for the characterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimisation. The best general conditions to quantitatively analyse the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 60°C extraction temperature, 30 min extraction time, 250°C desorption temperature, 180 s desorption time, 15 s agitation time, and 250 rpm agitation speed. Under the optimised conditions, 119 wood pyrolysis products including furan/pyran derivatives, phenols, guaiacol, syringol, benzenediol, and their derivatives, cyclic ketones, and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% <5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimised isotope dilution SPME-GC/MS based analytical method proved to be fit for purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavourings.

  8. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    Dave, S.M.

    1980-01-01

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  9. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1980-01-01

    Recent deep-sea benthic foraminifera from five East Pacific Rise box core tops have been analyzed for oxygen and carbon isotopic composition. The five equatorial stations, with water depths of between 3200 and 4600 m, yielded fourteen specific and generic taxonomic groups. Of the taxa analyzed, Uvigerina spp. most closely approaches oxygen isotopic equilibrium with ambient sea water. Pyrgo spp. was next closest to isotopic equilibrium, being on the average 0.59 per thousand depleted in 18 O relative to Uvigerina spp. Oridorsalis umbonatus also has relatively high delta 18 O values. Most other taxa were depleted in 18 O by large amounts. In no taxa was the carbon in the CaCO 3 secreted in carbon isotopic equilibrium with the dissolved HCO 3 - of ambient sea water. (Auth.)

  10. Computational methods for reversed-field equilibrium

    International Nuclear Information System (INIS)

    Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.

    1980-01-01

    Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described

  11. Rotational spectra of rare isotopic species of fluoroiodomethane: determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations.

    Science.gov (United States)

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2012-07-14

    Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD(2)FI, as well as of the (13)C-containing species, (13)CH(2)FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH(2)FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011); G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)] enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).

  12. Isotope angiocardiography. Method and preliminary own studies

    Energy Technology Data Exchange (ETDEWEB)

    Stepinska, J; Ruzyllo, W; Konieczny, W [Centrum Medyczne Ksztalcenia Podyplomowego, Warsaw (Poland)

    1979-01-01

    Method of technetium isotope 99 m pass through the heart recording with the aid of radioisotope scanner connected with seriograph and computer is being presented. Preliminary tests were carried out in 26 patients with coronary disease without or with previous myocardial infarction, cardiomyopathy, ventricular septal defect and in patients with artificial mitral and aortic valves. The obtained scans were evaluated qualitatively and compared with performed later contrast X-rays of the heart. Size of the right ventricle, volume and rate of left atrial evacuation, size and contractability of left ventricle were evaluated. Similarity of direct and isotope angiocardiographs, non-invasional character and repeatability of isotope angiocardiography advocate its usefulness.

  13. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    Science.gov (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  15. Isotope separation in plasma by ion-cyclotron resonance method

    International Nuclear Information System (INIS)

    Dubinov, A.E.; Kornilova, I.Yu.; Selemir, V.D.

    2001-01-01

    Contemporary state of investigation on isotope separation in plasma using selective ion-cyclotron resonance (ICR) heating is considered. The main attention is paid to necessary conditions of heating selectivity, plasma creation methods in isotope ICR-separation facilities, selection of antenna systems for heating, and principles of more-heated component selection. Experimental results obtained at different isotope mixtures separation are presented [ru

  16. Application and validation of isotope dilution method (IDM) for predicting bioavailability of hydrophobic organic contaminants in soil.

    Science.gov (United States)

    Wang, Jie; Taylor, Allison; Schlenk, Daniel; Gan, Jay

    2018-05-01

    Risk assessment of hydrophobic organic contaminants (HOCs) using the total chemical concentration following exhaustive extraction may overestimate the actual availability of HOCs to non-target organisms. Existing methods for estimating HOC bioavailability in soil have various operational limitations. In this study, we explored the application of isotope dilution method (IDM) to quantify the accessible fraction (E) of DDTs and PCBs in both historically-contaminated and freshly-spiked soils. After addition of 13 C or deuterated analogues to a soil sample, the phase distribution of isotope-labeled and native chemicals reached an apparent equilibrium within 48 h of mixing. The derived E values in the three soils ranged from 0.19 to 0.82, depending on the soil properties and also the contact time of HOCs (i.e., aging). The isotope dilution method consistently predicted greater accumulation into earthworm (Eisenia fetida) than that by polyethylene (PE) or solid phase microextraction (SPME) sampler, likely because desorption in the gut enhanced bioavailability of soil-borne HOCs. A highly significant linear regression (R 2  = 0.91) was found between IDM and 24-h Tenax desorption, with a slope statistically identical to 1. The IDM-derived accessible concentration (C e ) was further shown to accurately predict tissue residues in earthworm exposed in the same soils. Given the relatively short duration and simple steps, IDM has the potential to be readily adopted for measuring HOC bioaccessibility in soil and for improving risk assessment and evaluation of remediation efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Assessing wine quality using isotopic methods

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stefanescu, Ioan

    2010-01-01

    Full text: The analytical methods used to determine the isotope ratios of deuterium, carbon-13 and oxygen-18 in wines have gained official recognition from the Office International de la Vigne et du Vin (OIV) and National Organisation of Vine and Wine. The amount of stable isotopes in water and carbon dioxide from plant organic materials and their distribution in sugar and ethanol molecules are influenced by geo-climatic conditions of the region, grape varieties and the year of harvest. For wine characterization, to prove the botanical and geographical origin of the raw material, the isotopic analysis by continuous flow mass spectrometry CF-IRMS has made a significant contribution. This paper emphasize the results of a study concerning the assessing of water adulterated wines and non-grape alcohol and sugar additions at different concentration levels, using CF-IRMS analytical technique. (authors)

  18. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  19. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  20. Computational study of substrate isotope effect probes of transition state structure for acetylcholinesterase catalysis

    International Nuclear Information System (INIS)

    Sikorski, R.S.; Malany, S.; Seravalli, J.; Quinn, D.M.

    2002-01-01

    Secondary isotope effects for carbonyl addition reactions of methyl thioacetate, acetone and acetaldehyde have been calculated by ab initio quantum mechanical methods in an effect to interpret measured β-deuterium isotope effects on acetylcholinesterase-catalysed hydrolysis of acetylthiocholine. The calculated β-deuterium isotope effect for equilibrium addition of methanol to methyl thioacetate is D3 K eq = 0.965, and the corresponding effect for addition of methoxide ion to methyl thioacetate wherein three waters are hydrogen bonded to the carbonyl oxyanion is D3 K eq = 1.086. Neither of these calculated isotope effects is an inverse as the experimental β-deuterium isotope effect for acetylcholinesterase-catalysed hydrolysis of acetylthiocholine, D3 K eq = 0.90±0.03. Structural comparisons show that the water-solvated methoxide adduct of methyl thioacetate is more expanded than is the natural methanol addition adduct, and suggest that the degree of which the isotope effect is inverse (i.e. less than) is inversely correlated to the degree of expansion of the adduct. A similar correlation of α-deuterium and β-deuterium secondary isotope effects with the degree of expansion of the adducts is found for equilibrium additions of methanol and methoxide ion to acetylaldehyde. These computational results suggest that the markedly inverse β-deuterium isotope effect for the acetylcholinesterase reaction arises from enzymatic compression of the transition state. (author)

  1. An equilibrium for frustrated quantum spin systems in the stochastic state selection method

    International Nuclear Information System (INIS)

    Munehisa, Tomo; Munehisa, Yasuko

    2007-01-01

    We develop a new method to calculate eigenvalues in frustrated quantum spin models. It is based on the stochastic state selection (SSS) method, which is an unconventional Monte Carlo technique that we have investigated in recent years. We observe that a kind of equilibrium is realized under some conditions when we repeatedly operate a Hamiltonian and a random choice operator, which is defined by stochastic variables in the SSS method, to a trial state. In this equilibrium, which we call the SSS equilibrium, we can evaluate the lowest eigenvalue of the Hamiltonian using the statistical average of the normalization factor of the generated state. The SSS equilibrium itself has already been observed in unfrustrated models. Our study in this paper shows that we can also see the equilibrium in frustrated models, with some restriction on values of a parameter introduced in the SSS method. As a concrete example, we employ the spin-1/2 frustrated J 1 -J 2 Heisenberg model on the square lattice. We present numerical results on the 20-, 32-, and 36-site systems, which demonstrate that statistical averages of the normalization factors reproduce the known exact eigenvalue to good precision. Finally, we apply the method to the 40-site system. Then we obtain the value of the lowest energy eigenvalue with an error of less than 0.2%

  2. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  3. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  4. Isotope separation process

    International Nuclear Information System (INIS)

    Cabicar, J.; Stamberg, K.; Katzer, J.

    1983-01-01

    A process for separating isotopes by the method of controlled distribution is claimed. A first phase is either a solution of isotopic components and a ligand (from 10 - 6 M to a saturated solution), or a gaseous mixture of isotopic components, or a gaseous mixture of isotopic components and an inert gas. The isotopes are in the starting mixture in molar ratio from 1:10 5 to 1:10 - 5 . The second phase is a solid sorbent such as styrene-divinylbenzene ion exchangers, or bio-sorbents on the basis of mycelium of lower fungi and sorbents on the basis of cellulose, or an extraction agent such as tributyl phosphate and trioctyl amine, if need be, kept by a carrier such as teflon, silica gel and cellulose. The two-phase system exhibits non-linear equilibrium isotherm for sorption and/or desorption or for extraction and/or re-extraction. After bringing both phases into contact the rate of transport of isotopic components from one phase into another is not equal. Retardation of isotopic exchange takes place by complexation of isotopes with ligands such as cabonate, sulphate, citrate, chloride and ethylenediamine tetraacetate ions, or by using sorbents and extraction agents with chelating functional groups such as carboxyl and hyroxyl groups, groups on the basis of phosphorus, nitrogen and sulphur and/or by operating in darkness, or in the light having wave length between 2.5x10 2 and 10 9 nm. The contact time is between 10 - 2 and 10 6 s, temperature between 10 2 and 10 3 K, the number of stirrer revolutions between 10 - 2 and 10 4 revolutions per s, flow rate at column arrangement between 10 - 6 and 10 - 1 m/s and the size of particles of sorbent between 10 - 6 and 10 - 2 m

  5. Kinetic isotope effect in the thermolysis of methylenecyclobutane

    International Nuclear Information System (INIS)

    Chickos, J.S.

    1979-01-01

    The intramolecular kinetic isotope effect for the thermolysis of equilibrated methylenecyclobutane-d 2 was investigated at 515 0 C as a function of pressure. A high-pressure value of k/sub H/k/sub D/ (ethylene/ethylene-d 2 ) = 0.9 was obtained at 13 cm of N 2 pressure. This value decreased to 0.86 at 70 μm total pressure. No intermolecular kinetic isotope effect was measured for the formation of ethylene from labeled and unlabeled methylenecyclobutane. The pressure and temperature dependence of the intramolecular kinetic isotope effect was used as evidence in establishing the inverse nature of the effect. The isotope effect observed was explained in terms of competing equilibrium and kinetic isotope effects in which the equilibrium isotope effects dominate. It was concluded on the bases of these results that an acyclic intermediate is involved in the fragmentation of methylenecyclobutane to ethylene and allene. The results also support the notion that deuterium prefers to accumulate at the methylene group with the greatest p character in the carbon--hydrogen bond. 1 figure, 4 tables

  6. Isotope decay equations solved by means of a recursive method

    International Nuclear Information System (INIS)

    Grant, Carlos

    2009-01-01

    The isotope decay equations have been solved using forward finite differences taking small time steps, among other methods. This is the case of the cell code WIMS, where it is assumed that concentrations of all fissionable isotopes remain constant during the integration interval among other simplifications. Even when the problem could be solved running through a logical tree, all algorithms used for resolution of these equations used an iterative programming formulation. That happened because nearly all computer languages used up to a recent past by the scientific programmers did not support recursion, such as the case of the old versions of FORTRAN or BASIC. Nowadays also an integral form of the depletion equations is used in Monte Carlo simulation. In this paper we propose another programming solution using a recursive algorithm, running through all descendants of each isotope and adding their contributions to all isotopes in each generation. The only assumption made for this solution is that fluxes remain constant during the whole time step. Recursive process is interrupted when a stable isotope was attained or the calculated contributions are smaller than a given precision. These algorithms can be solved by means an exact analytic method that can have some problems when circular loops appear for isotopes with alpha decay, and a more general polynomial method. Both methods are shown. (author)

  7. Radium 226 and uranium isotopes simultaneously determination in water samples using liquid scintillation counter

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Akel, B.; Saaid, S.; Nashawati, A.

    2007-04-01

    In this work a method has been developed to determine simultaneously Radium 226 and Uranium isotopes in water samples by low back ground Liquid Scintillation Counter. Radium 226 was determined by its progeny Polonium 214 after one month of sample storage in order to achieve the equilibrium between Radium 226 and Polonium 214. Uranium isotopes were determined by subtracting Radium 226 activity from total alpha activity. The method detection limits were 0.049 Bq/L and 0.176 Bq/L for Radium 226 and Uranium isotopes respectively. The repeatability limits were ± 0.32 Bq/L and ± 0.9 Bq/L for Radium 226 and Uranium isotopes respectively. While relative errors were % 9.5 and %18.2 for Radium 226 and Uranium isotopes respectively. On the other hand, the report presented the results of different standard and natural samples.(author)

  8. A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis

    Science.gov (United States)

    Ingraham, Neil L.; Shadel, Craig

    1992-12-01

    not enough to affect the remaining unbound introduced soil water. Pretreatment of the soil to equilibrate the heat-labile water to the test water produced good results for the toluene distillation but not the vacuum/heat extraction method. Vapors collected over the soils also show stable isotopic variations related to soilwater content. These vapors also appear to be in closer equilibrium with the free water, as extracted by the toluene method, than with the originally introduced water; thus, the soil vapors do not appear to be isotopically affected by the heat-labile water. The toluene method appears to be better for extracting soil water for stable isotopic analysis because it allows more precise temperature control and excludes the extraction of heat-labile water which is isotopically fractionated. The bound nature of this heat-labile water limits association with the hydrologically active soil water; thus, the exclusion of this water from the soil water attained by toluene distillation may be advantageous. However, the azeotropic nature of toluene distillation affords no benefit and the extraction procedure must continue to completion.

  9. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  10. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  11. An innovative method for extracting isotopic information from low-resolution gamma spectra

    International Nuclear Information System (INIS)

    Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.

    1998-01-01

    A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, 137 Cs, and 133 Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied

  12. Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Alvarez-Estrada

    2012-02-01

    Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.

  13. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  14. Separation of the mercury isotopes by the indirect photochemical method

    International Nuclear Information System (INIS)

    Botter nee Bergheaud, F.; Scaringella nee Desnoyer, M.; Wacongne, M.

    1976-01-01

    A method of photochemical separation of the mercury isotopes by the so-called indirect route in which a gas stream of oxygen and butadiene containing a mixture of mercury isotopes is passed through one or a number of vessels placed in series. The gas stream is irradiated by a lamp containing mercury which is depleted in one or a number of the isotopes and said isotopes are recovered in a trap placed downstream of the vessel or vessels

  15. Method for adding additional isotopes to actinide-only burnup credit

    International Nuclear Information System (INIS)

    Lancaster, D.B.; Fuentes, E.; Kang, C.

    1998-01-01

    The Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages requires computer code validation to be performed against a benchmark set of chemical assays for isotopic concentration and against a benchmark set of critical experiments for package criticality. Both sets contain all the isotopes included in the methodology. The chemical assays used include the uranium and plutonium isotopes, while the critical experiments were composed of UO 2 or MOX rods, covering the isotopes in the actinide only approach. Since other isotopes are not included in the validation benchmark sets, it would be necessary to justify both the content and worth of any additional isotope for which burnup credit is to be taken (i.e., both the concentration and criticality effect of each particular isotope must be validated). A method is proposed here that can be used for any number of additional isotopes. As does the actinide-only burnup credit methodology, this method makes use of chemical assay data to establish the conservatism in the prediction of each isotope's concentration. Criticality validation is also performed using a benchmark set of UO 2 and MOX critical experiments, where the additional isotopes are validated using worth experiments to conservatively account for any uncertainty in their cross sections. The remaining requirements (analysis and modeling parameters, loading criteria generation, and physical implementation and controls) are performed exactly as described in the actinide-only burnup credit methodology. This report provides insight into each particular requirement in the new methodology

  16. Hg stable isotope analysis by the double-spike method.

    Science.gov (United States)

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  17. Monte Carlo estimates of interfacial tension in the two-dimensional Ising model from non-equilibrium methods

    International Nuclear Information System (INIS)

    Híjar, Humberto; Sutmann, Godehard

    2008-01-01

    Non-equilibrium methods for estimating free energy differences are used in order to calculate the interfacial tension between domains with opposite magnetizations in two-dimensional Ising lattices. Non-equilibrium processes are driven by changing the boundary conditions for two opposite sides of the lattice from periodic to antiperiodic and vice versa. This mechanism, which promotes the appearance and disappearance of the interface, is studied by means of Monte Carlo simulations performed at different rates and using different algorithms, thus allowing for testing the applicability of non-equilibrium methods for processes driven far from or close to equilibrium. Interfaces in lattices with different widths and heights are studied and the interface tension as a function of these quantities is obtained. It is found that the estimates of the interfacial tension from non-equilibrium procedures are in good agreement with previous reports as well as with exact results. The efficiency of the different procedures used is analyzed and the dynamics of the interface under these perturbations is briefly discussed. A method for determining the efficiency of non-equilibrium methods as regards thermodynamic perturbation is also presented. It is found that for all cases studied, the Crooks non-equilibrium method for estimating free energy differences is the most efficient one

  18. Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes

    Science.gov (United States)

    Watkins, J. M.; Depaolo, D. J.; Richter, F. M.; Fantle, M. S.; Simon, J. I.; Ryerson, F. J.; Ewing, S. A.; Turchyn, A. V.; Yang, W.; Owens, T. L.

    2008-12-01

    Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 ‰, but gradual small improvements in analytical capability now yield 0.05 to 0.1 ‰ resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior. For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop appropriate experimental tests and

  19. pH-Free Measurement of Relative Acidities, Including Isotope Effects.

    Science.gov (United States)

    Perrin, Charles L

    2017-01-01

    A powerful pH-free multicomponent NMR titration method can measure relative acidities, even of closely related compounds, with excellent accuracy. The history of the method is presented, along with details of its implementation and a comparison with earlier NMR titrations using a pH electrode. Many of its areas of applicability are described, especially equilibrium isotope effects. The advantages of the method, some practical considerations, and potential pitfalls are considered. © 2017 Elsevier Inc. All rights reserved.

  20. A More Practical Method for Explaining Equilibrium

    OpenAIRE

    Yi-Jang Yu

    2014-01-01

    The aim of this study is to suggest a more practical method for explaining market equilibrium in a two-dimensional risk-return world. Its main difference from textbook contents is to define, in both qualitative and quantitative ways, the environment or the system factor and treat it as an endogenous variable. Once the two-dimensional framework that is capable of managing uncertainty and environmental relationship can be reasonably established, a greater number of economic issues can be effect...

  1. Extension of CE/SE method to non-equilibrium dissociating flows

    KAUST Repository

    Wen, C.Y.

    2017-12-08

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  2. Isotope correlations for safeguards surveillance and accountancy methods

    International Nuclear Information System (INIS)

    Persiani, P.J.; Kalimullah.

    1982-01-01

    Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The ICT allows the verification of: fabricator's uranium and plutonium content specifications, shipper/receiver differences between fabricator output and reactor input, reactor plant inventory changes, reprocessing batch specifications and shipper/receiver differences between reactor output and reprocessing plant input. The investigation indicates that there exist predictable functional relationships (i.e. correlations) between isotopic concentrations over a range of burnup. Several cross-correlations serve to establish the initial fuel assembly-averaged compositions. The selection of the more effective correlations will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors through the correlations have been examined to identify the sensitivity of the isotope correlations to measurement errors, and to establish criteria for measurement accuracy in the development and selection of measurement methods. 6 figures, 3 tables

  3. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    International Nuclear Information System (INIS)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ( 18 O/ 16 O) and carbon ( 13 C/ 12 C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs

  4. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  5. Optimization of the isotope separation in columns

    International Nuclear Information System (INIS)

    Kaminskij, V.A.; Vetsko, V.M.; Tevzadze, G.A.; Devdariani, O.A.; Sulaberidze, G.A.

    1982-01-01

    The general method for the multi-parameter optimization of cascade plants of packed columns is proposed. As an optimization effectiveness function a netcost of the isotopic product is selected. The net cost is comprehensively characterizing the sum total of capital costs for manufacturing the products as well as determining the choice of the most effective directions for capital investments and rational limits of improvement of the products quality. The method is based on main representations of the cascade theory, such as the ideal flow profile and form efficiency as well as mathematical model of the packed column specifying the bonds between its geometric and operating parameters. As a result, the isotopic products cost function could be bound with such parameters as the equilibrium stage height, ultimate packing capacity, its element dimensions, column diameter. It is concluded that the suggested approach to the optimization of isotope separation processes is rather a general one. It permits to solve a number of special problems, such as estimation of advisability of using heat-pump circuits and determining the rational automation level. Besides, by means of the method suggested one can optimize the process conditions with regard to temperature and pressure

  6. Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2004-01-01

    The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions

  7. An approximate method for calculating composition of the non-equilibrium explosion products of hydrocarbons and oxygen

    International Nuclear Information System (INIS)

    Shargatov, V A; Gubin, S A; Okunev, D Yu

    2016-01-01

    We develop a method for calculating the changes in composition of the explosion products in the case where the complete chemical equilibrium is absent but the bimolecular reactions are in quasi-equilibrium with the exception bimolecular reactions with one of the components of the mixture. We investigate the possibility of using the method of 'quasiequilibrium' for mixtures of hydrocarbons and oxygen. The method is based on the assumption of the existence of the partial chemical equilibrium in the explosion products. Without significant loss of accuracy to the solution of stiff differential equations detailed kinetic mechanism can be replaced by one or two differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the solution of a stiff system for chemically non-equilibrium mixtures replacing it when bimolecular reactions are near to equilibrium. (paper)

  8. Glacial-interglacial changes in the surface water characteristics of the Andaman Sea: Evidence from stable isotopic ratios of planktonic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Ahmad, S.M.; Patil, D.J.; Rao, P.S.; Nath, B.N.; Rao, B.R.; Rajagopalan, G.

    ; Nature 343 549--551 Shackleton N J 1974 Attainment of isotopic equilibrium between ocean water and benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial; In: Les Methodes quantitatives d'etude des variation du... climat au cours du pleistocene. Coll. Int. CNRS Paris 119 203--210 156 S M Ahmad et al ...

  9. Assessment of phyto-available cadmium in soils using isotopic methods

    International Nuclear Information System (INIS)

    Gerard, Emilie

    2000-01-01

    The quantification of phyto-available Cd in soils is necessary to determine the transfer risk of this toxic element to plants. Isotopic methods (isotopic exchange kinetics (IEK), isotopic dilution) were used to characterize the phyto-available Cd and, practically, to select chemical methods for determining available Cd to plants. Rye grass (Lolium perenne L.), lettuce (Lactuca saliva L.) and the Cd hyper-accumulator Thlaspi caerulescens J. Presl. and C. Presl. were selected as test plants because of their wide range of Cd uptake ability. The chosen soils had different pH and displayed a Cd-contamination gradient due the atmospheric deposition of industrial particles. In the acidic soil, plants had access to the same metal pool, the one that was isotopically exchangeable with Cd 2+ . This was also the case for rye grass on the calcareous Soils but there, lettuce and T. caerulescens accessed a bigger and non-isotopically exchangeable pool that accounted for 16 to 52 % of the plant available Cd. Most of the Cd was isotopically exchangeable in a short time in the acidic soil (87 % within 21 days). In the calcareous soils two pools were identified, one pool was isotopically exchangeable in a very short time, and the other one Was not exchangeable after 21 days (21 to 10 % of the total Cd). Actually, the quantities of labile cd in the industrial particles which had contaminated these soils were very small. IEK methods and the measurement of the isotopic composition of Cd 2+ in soil solutions allowed for the estimation of the phyto-available Cd in soils, but cannot he commonly used. Most of the chemical extractants studied such as CaCl 2 or DTP A are suitable to assess the phyto-available Cd. However, on calcareous soils, the choice of extractant needs to sometimes be modified in relation to the rate of Cd plant absorption. (author) [fr

  10. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  11. Energy expenditures of plasma method of isotope separation

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    1986-01-01

    The estimations are performed of specific energy expenditares in isotope separation of binary mixtures in different plasma systems with weak medium ionization (plasma centrifuge, gas discharge system with travelling magnetic field, direct current discharge). Potential advantages of plasma centrifuge over other gas discharge facilities are pointed out. The comparison of specific energy expenditure values in case of using plasma and conventional methods of isotope separation is carried out

  12. Method and apparatus for isotope separation from a gas stream

    International Nuclear Information System (INIS)

    Szoke, A.

    1978-01-01

    A method and apparatus are described for isotope separation and in particular for separating the desired isotope from the gas in which it is contained by irradiating it with a laser. The laser selectively provides kinetic energy to the isotope through inelastic events, monomolecular or bimolecular, in order to cause it to segregate within or fly out of the gas stream in which it is contained

  13. Inverse methods for estimating primary input signals from time-averaged isotope profiles

    Science.gov (United States)

    Passey, Benjamin H.; Cerling, Thure E.; Schuster, Gerard T.; Robinson, Todd F.; Roeder, Beverly L.; Krueger, Stephen K.

    2005-08-01

    Mammalian teeth are invaluable archives of ancient seasonality because they record along their growth axes an isotopic record of temporal change in environment, plant diet, and animal behavior. A major problem with the intra-tooth method is that intra-tooth isotope profiles can be extremely time-averaged compared to the actual pattern of isotopic variation experienced by the animal during tooth formation. This time-averaging is a result of the temporal and spatial characteristics of amelogenesis (tooth enamel formation), and also results from laboratory sampling. This paper develops and evaluates an inverse method for reconstructing original input signals from time-averaged intra-tooth isotope profiles. The method requires that the temporal and spatial patterns of amelogenesis are known for the specific tooth and uses a minimum length solution of the linear system Am = d, where d is the measured isotopic profile, A is a matrix describing temporal and spatial averaging during amelogenesis and sampling, and m is the input vector that is sought. Accuracy is dependent on several factors, including the total measurement error and the isotopic structure of the measured profile. The method is shown to accurately reconstruct known input signals for synthetic tooth enamel profiles and the known input signal for a rabbit that underwent controlled dietary changes. Application to carbon isotope profiles of modern hippopotamus canines reveals detailed dietary histories that are not apparent from the measured data alone. Inverse methods show promise as an effective means of dealing with the time-averaging problem in studies of intra-tooth isotopic variation.

  14. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2009-01-01

    equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid

  15. Defining an absolute reference frame for 'clumped' isotope studies of CO 2

    Science.gov (United States)

    Dennis, Kate J.; Affek, Hagit P.; Passey, Benjamin H.; Schrag, Daniel P.; Eiler, John M.

    2011-11-01

    We present a revised approach for standardizing and reporting analyses of multiply substituted isotopologues of CO 2 (i.e., 'clumped' isotopic species, especially the mass-47 isotopologues). Our approach standardizes such data to an absolute reference frame based on theoretical predictions of the abundances of multiply-substituted isotopologues in gaseous CO 2 at thermodynamic equilibrium. This reference frame is preferred over an inter-laboratory calibration of carbonates because it enables all laboratories measuring mass 47 CO 2 to use a common scale that is tied directly to theoretical predictions of clumping in CO 2, regardless of the laboratory's primary research field (carbonate thermometry or CO 2 biogeochemistry); it explicitly accounts for mass spectrometric artifacts rather than convolving (and potentially confusing) them with chemical fractionations associated with sample preparation; and it is based on a thermodynamic equilibrium that can be experimentally established in any suitably equipped laboratory using commonly available materials. By analyzing CO 2 gases that have been subjected to established laboratory procedures known to promote isotopic equilibrium (i.e., heated gases and water-equilibrated CO 2), and by reference to thermodynamic predictions of equilibrium isotopic distributions, it is possible to construct an empirical transfer function that is applicable to data with unknown clumped isotope signatures. This transfer function empirically accounts for the fragmentation and recombination reactions that occur in electron impact ionization sources and other mass spectrometric artifacts. We describe the protocol necessary to construct such a reference frame, the method for converting gases with unknown clumped isotope compositions to this reference frame, and suggest a protocol for ensuring that all reported isotopic compositions (e.g., Δ 47 values; Eiler and Schauble, 2004; Eiler, 2007) can be compared among different laboratories and

  16. Assessment of methods for analyzing gaseous mixtures of hydrogen isotopes and helium

    International Nuclear Information System (INIS)

    Attalla, A.; Bishop, C.T.; Bohl, D.R.; Buxton, T.L.; Sprague, R.E.; Warner, D.K.

    1976-01-01

    Mass spectrographic methods have served well in the past to analyze gaseous mixtures of the hydrogen isotopes. Alternate methods of analyses are reviewed which offer wider ranges and variety of isotopic determinations. This report describes possible improvements of the mass spectrographic determinations, gas chromatography, anti-Stokes Raman spectroscopy, microwave-induced optical emission spectroscopy, and methods of measuring tritium using radiation detection devices. Precision, accuracy, limitations, and costs are included for some of the methods mentioned. Costs range from $70,000 for the anti-Stokes Raman spectroscopy equipment, which can determine hydrogen isotopes but not helium, to less than $10,000 for the gas chromatographic equipment, which can determine hydrogen isotopes and helium with precision and accuracy comparable to those of the mass spectrometer

  17. Phase stability analysis of liquid-liquid equilibrium with stochastic methods

    Directory of Open Access Journals (Sweden)

    G. Nagatani

    2008-09-01

    Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.

  18. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    Science.gov (United States)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    Mercury (Hg) is a toxic element that can cause severe health problems to humans. Mercury is emitted to the atmosphere from both natural and anthropogenic sources and can be transported over long distances before it is deposited to aquatic and terrestrial environments. Aside from accumulation in soil solid phases, Hg deposited in soils may migrate to surface- and ground-water or enter the food chain, depending on its lability. There are many operationally-defined extraction methods proposed to quantify soil labile metals. However, these methods are by definition prone to inaccuracies such as non-selectivity, underestimation or overestimation of the labile metal pool. The isotopic dilution technique (ID) is currently the most promising method for discrimination between labile and non-labile metal fractions in soil with a minimum disturbance to soil-solid phases. ID assesses the reactive metal pool in soil by defining the fraction of metal both in solid and solution phases that is isotopically-exchangeable known as the 'E-value'. The 'E-value' represents the metal fraction in a dynamic equilibrium with the solution phase and is potentially accessible to plants. This is carried out by addition of an enriched metal isotope to soil suspensions and quantifying the fraction of metal that is able to freely exchange with the added isotope by measuring the equilibrium isotopic ratio by ICP-MS. E-value (mg kg-1) is then calculated as follows: E-Value = (Msoil/ W) (CspikeVspike/ Mspike) (Iso1IAspike -Iso2IAspikeRss / Iso2IAsoil Rss - Iso1IAsoil) where M is the average atomic mass of the metal in the soil or the spike, W is the mass of soil (kg), Cspike is the concentration of the metal in the spike (mg L-1), Vspike is the volume of spike (L), IA is isotopic abundance, and Rss is the equilibrium ratio of isotopic abundances (Iso1:Iso2). Isotopic dilution has been successfully applied to determine E-values for several elements. However, to our knowledge, this method has not yet

  19. Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements

    Science.gov (United States)

    Falk, E. S.; Guo, W.; Paukert, A. N.; Matter, J. M.; Mervine, E. M.; Kelemen, P. B.

    2016-11-01

    Carbonate formation at hyperalkaline springs is typical of serpentinization in peridotite massifs worldwide. These travertines have long been known to exhibit large variations in their carbon and oxygen isotope compositions, extending from apparent equilibrium values to highly depleted values. However, the exact causes of these variations are not well constrained. We analyzed a suite of well-characterized fresh carbonate precipitates and travertines associated with hyperalkaline springs in the peridotite section of the Samail ophiolite, Sultanate of Oman, and found their clumped isotope compositions vary systematically with formation environments. Based on these findings, we identified four main processes controlling the stable isotope compositions of these carbonates. These include hydroxylation of CO2, partial isotope equilibration of dissolved inorganic carbon, mixing between isotopically distinct carbonate end-members, and post-depositional recrystallization. Most notably, in fresh crystalline films on the surface of hyperalkaline springs and in some fresh carbonate precipitates from the bottom of hyperalkaline pools, we observed large enrichments in Δ47 (up to ∼0.2‰ above expected equilibrium values) which accompany depletions in δ18O and δ13C, yielding about 0.01‰ increase in Δ47 and 1.1‰ decrease in δ13C for every 1‰ decrease in δ18O, relative to expected equilibrium values. This disequilibrium trend, also reflected in preserved travertines ranging in age from modern to ∼40,000 years old, is interpreted to arise mainly from the isotope effects associated with the hydroxylation of CO2 in high-pH fluids and agrees with our first-order theoretical estimation. In addition, in some fresh carbonate precipitates from the bottom of hyperalkaline pools and in subsamples of one preserved travertine terrace, we observed additional enrichments in Δ47 at intermediate δ13C and δ18O, consistent with mixing between isotopically distinct carbonate end

  20. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    Science.gov (United States)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  1. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    Science.gov (United States)

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  2. Method and apparatus for controlled condensation isotope separation

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Lee, J.T. Jr.; Kim, K.C.

    1981-01-01

    The invention provides a method for producing controlled homogeneous condensation of a molecular feed gas containing several isotopes. The feed gas flows at supersonic rates through an expansion nozzle under conditions at which the gas would normally condense. The gas is irradiated with laser radiation of a wavelength that selectively excites those molecules in the feed gas that contain a particular isotope, thus preventing their condensation. Condensate particles may be aerodynamically separated from the flowing gas stream

  3. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Y., E-mail: y.iwamoto0805@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Yamamoto, S. [Nagoya University Graduate School of Medicine, 1-1-20, Daikominami, Higashi-ku, Nagoya-shi, Aichi 461-8673 (Japan)

    2016-09-21

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying “hot spots” or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are “degenerated” in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50–150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  4. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    Science.gov (United States)

    Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.

    2016-09-01

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  5. Isotopic composition of precipitations in Brazil: isothermic models and the influence of evapotranspiration in the Amazonic Basin

    International Nuclear Information System (INIS)

    Dall'Olio, Attilio.

    1976-11-01

    The simplest theoretical models of the isotopic fractionation of water during equilibrium isothermical processes are analized in detail. The theoretical results are applied to the interpretation of the stable isotope concentrations in the precipitations of 11 Brazilian cities that belong to the international network of IAEA/WMO. The analysis shows that the experimental data are fairly consistent with such equilibrium models; no non-equilibrium processes need to be assumed. The study of the stable isotope content of precipitations in the Amazonic Basin suggests some modifications to the models in order that the evapotranspiration contribution to the vapour balance be taken into account [pt

  6. A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.

    Science.gov (United States)

    Bonin, Alice; Tsilanizara, Aimé

    2017-06-01

    Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Investigation of complexing equilibrium of polyacrylate-anion with cadmium ions by polarographic method

    Energy Technology Data Exchange (ETDEWEB)

    Avlyanov, Zh K; Kabanov, N M; Zezin, A B

    1985-01-01

    Polarographic investigation of cadmium complex with polyacrylate-anion in aqueous KCl solution is carried out. It is shown that the polarographic method allows one to define equilibrium constants of polymer metallic complex (PMC) formation even in the case when current magnitudes are defined by PMC dissociation reaction kinetic characteristics. The obtained equilibrium constants of stepped complexing provide the values of mean coordination PAAxCd complex number of approximately 1.5, that coincides with the value obtained by the potentiometric method.

  8. Investigation of complexing equilibrium of polyacrylate-anion with cadmium ions by polarographic method

    International Nuclear Information System (INIS)

    Avlyanov, Zh.K.; Kabanov, N.M.; Zezin, A.B.

    1985-01-01

    Polarographic investigation of cadmium complex with polyacrylate-anion in aqueous KCl solution is carried out. It is shown that the polarographic method allows one to define equilibrium constants of polymer metallic complex (PMC) formation even in the case, when current magnitudes are defined by PMC dissociation reaction kinetic characteristics. The obtained equilibrium constants of stepped complexing provide the values of mean coordination PAAxCd complex number of approximately 1.5, that coinsides with the value obtained by the potentiometric method

  9. Solution of the isotopic depletion equation using decomposition method and analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: fprata@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)

  10. Solution of the isotopic depletion equation using decomposition method and analytical solution

    International Nuclear Information System (INIS)

    Prata, Fabiano S.; Silva, Fernando C.; Martinez, Aquilino S.

    2011-01-01

    In this paper an analytical calculation of the isotopic depletion equations is proposed, featuring a chain of major isotopes found in a typical PWR reactor. Part of this chain allows feedback reactions of (n,2n) type. The method is based on decoupling the equations describing feedback from the rest of the chain by using the decomposition method, with analytical solutions for the other isotopes present in the chain. The method was implemented in a PWR reactor simulation code, that makes use of the nodal expansion method (NEM) to solve the neutron diffusion equation, describing the spatial distribution of neutron flux inside the reactor core. Because isotopic depletion calculation module is the most computationally intensive process within simulation systems of nuclear reactor core, it is justified to look for a method that is both efficient and fast, with the objective of evaluating a larger number of core configurations in a short amount of time. (author)

  11. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  12. Excitation functions and isotopic effects in (n, p) reactions for stable nickel isotopes from reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lalremruata, B. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: marema@physics.unipune.ernet.in; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai 58 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: vnb@physics.unipune.ernet; Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: sanjay@physics.unipune.ernet.in

    2009-05-01

    The excitation function for (n, p) reactions from reaction threshold to 20 MeV on five nickel isotopes viz; {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni and {sup 64}Ni were calculated using Talys-1.0 nuclear model code involving the fixed set of global parameters. A good agreement between the calculated and measured data is obtained with minimum effort on parameter fitting and only one free parameter called 'Shell damping factor'. This is of importance to the validation of nuclear model approaches with increased predictive power. The systematic decrease in (n, p) cross-sections with increasing neutron number in reactions induced by neutrons on isotopes of nickel is explained in terms of the proton separation energy and the pre-equilibrium model. The compound nucleus and pre-equilibrium reaction mechanism as well as the isotopic effects were also studied.

  13. Gluconeogenesis from labeled carbon: estimating isotope dilution

    International Nuclear Information System (INIS)

    Kelleher, J.K.

    1986-01-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA

  14. Analytical method for the isotopic characterization of soils

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita; Cozzella, Maria Letizia; Mariani, Mario

    2014-01-01

    The aim of this work was to develop an analytical method in order to determine the isotopic composition of different elements in soil samples and to determine the existence of contamination. The method used in the digestion of the samples was the EPA 3050B, and some metal concentration were determined including uranium and thorium. For elements with even lower concentrations such as plutonium and radium a treatment after mineralization by EPA, was necessary. The measurement technique used was mass spectrometry with quadrupole and plasma induced associated (ICP-MS). Results of the analysis performed in two laboratories showed a good correspondence. This method allowed to perform the isotopic characterization of studied soils and results showed that the studied soils do not present any local pollution and that the presence of plutonium-239, is due to global failure

  15. Hydrogen equilibrium pressure measurements in the Li-N-H system by static manometric method

    International Nuclear Information System (INIS)

    Ananda, N.S.; Jat, R.A.; Sawant, S.G.; Parida, S.C.; Singh, Z.; Venugopal, V.

    2010-01-01

    Light weight hydrogen storage materials are very promising in terms of their high gravimetric hydrogen storage capacity and low cost. One such reported system is the Li-N-H system with a theoretical hydrogen capacity of 11.5 wt% according to the following equilibrium reactions; (1) Li 3 N+H 2 → Li 2 NH + LiH and (2) Li 2 NH+H 2 → LiNH 2 + LiH. The enthalpy of reaction (1) is -165 kJ/mole of H 2 whereas that of reaction (2) is -45 kJ/mole of H 2 . Hence, the second reaction is of utmost importance for low temperature release of hydrogen with a capacity of 6.5 wt%. The equilibrium hydrogen pressures of the above two reactions have been reported by pressure-composition isotherm studies at a pressure range of 3-15 atm., in which the mid-point of the sloping plateau of P-C isotherm is considered as the equilibrium pressure. This method may not yield the true equilibrium pressure. Hence, in this study, we have carried out measurements of equilibrium pressure using a static manometric method where we have considered reaction (2) only

  16. Investigation of Chemical Equilibrium Kinetics by the Electromigration Method

    CERN Document Server

    Bozhikov, G A; Bontchev, G D; Maslov, O D; Milanov, M V; Dmitriev, S N

    2002-01-01

    Measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the complex formation of Hf(IV) and DTPA is determined.

  17. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy gamma-ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma-ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented

  18. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  19. Stable isotope compositions (O-C) of reef fish otoliths from the Taiaro lagoon (Tuamotu, French Polynesia): isotopic and biologic implications

    International Nuclear Information System (INIS)

    Blamart, D.; Juillet-Leclerc, A.; Ouahdi, R.; Escoubeyrou, K.; Lecomte-Finiger, R.

    2002-01-01

    Nuclei (larval stage) and outer parts (adult stage) of fish otoliths from the Taiaro closed lagoon (French Polynesia) and adjacent ocean have been analysed for the C-O isotopic compositions. δ 18 O values of the nuclei of both populations indicate that isotopic equilibrium is reached. This implies that the lagoonal fish population has done its complete biological cycle in the lagoon and represents an adaptation in a closed system. δ 18 O values of the outer parts show a slight isotopic disequilibrium ( 13 C values exhibit a strong isotopic disequilibrium related to metabolic activity. (authors)

  20. Isotope correlations for safeguards surveillance and accountancy methods

    International Nuclear Information System (INIS)

    Persiani, P.J.; Kalimullah.

    1983-01-01

    Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The US/DOE/OSS Isotope Correlations for Surveillance and Accountancy Methods (ICSAM) program has been structured into three phases: (1) the analytical development of Isotope Correlation Technique (ICT) for actual power reactor fuel cycles; (2) the development of a dedicated portable ICT computer system for in-field implementation, and (3) the experimental program for measurement of U, Pu isotopics in representative spent fuel-rods of the initial 3 or 4 burnup cycles of the Commonwealth Edison Zion -1 and -2 PWR power plants. Since any particular correlation could generate different curves depending upon the type and positioning of the fuel assembly, a 3-D reactor model and 2-group cross section depletion calculation for the first cycle of the ZION-2 was performed with each fuel assembly as a depletion block. It is found that for a given PWR all assemblies with a unique combination of enrichment zone and number of burnable poison rods (BPRs) generate one coincident curve. Some correlations are found to generate a single curve for assemblies of all enrichments and number of BPRs. The 8 axial segments of the 3-D calculation generate one coincident curve for each correlation. For some correlations the curve for the full assembly homogenized over core-height deviates from the curve for the 8 axial segments, and for other correlations coincides with the curve for the segments. The former behavior is primarily based on the transmutation lag between the end segment and the middle segments. The experimental implication is that the isotope correlations exhibiting this behavior can be determined by dissolving a full assembly but not by dissolving only an axial segment, or pellets

  1. The study of multicomponent separation of Xe isotope by centrifugal method

    International Nuclear Information System (INIS)

    Jinyan Wu; Fu Zhuge

    1996-01-01

    The element Xe has nine isotopes in nature, the separation performance of each component mutually affects the others, so the binary separation theory can't be employed to study the multicomponent separation. Especially, when the molecular wight of a certain component is in the middle of its isotope components, the effect of the others on this component must be considered. In this paper, first, the multicomponent separation of Xe isotopes in a gas centrifuge is studied, with the consideration of the effect of the concentration on the diffusion coefficient and average molecular weight. The multicomponent diffusion equations are solved by the finite difference method. Second, the enrichment of Xe isotopes in a cascade is studied. On the basis of the study of a gas centrifuge, the simplified separation equations of a gas centrifuge for cascade calculation are obtained. Furthermore, the complete equations of the cascade separation are established according to the conservation of mass of each component and solved by a numerical method. The study of this paper can be extended for other isotope separation calculations. (author)

  2. Calculation of isotopic mass and energy production by a matrix operator method

    International Nuclear Information System (INIS)

    Lee, C.E.

    1976-08-01

    The Volterra method of the multiplicative integral is used to determine the isotopic density, mass, and energy production in linear systems. The solution method, assumptions, and limitations are discussed. The method allows a rapid accurate calculation of the change in isotopic density, mass, and energy production independent of the magnitude of the time steps, production or decay rates, or flux levels

  3. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  4. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  5. Tritium isotope fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, Franz

    1989-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by determining the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to cell water. The determination of the R-value always involves isotope fractionation is applied analytical procedures and hence the evaluation of the true OBT -value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fractionation in the cell water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure tritium water systems as well as in real biological systems, e.g. corn plant. The results are systematically analyzed and the influence of isotope effects on the R-value is rigorously quantified

  6. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Dowell, M.R.W.

    1985-05-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented. 4 refs., 4 tabs

  7. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    Science.gov (United States)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  8. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    Science.gov (United States)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  9. Numerical computation of FCT equilibria by inverse equilibrium method

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki

    1986-11-01

    FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)

  10. Theory of chemical equilibrium in a lattice

    International Nuclear Information System (INIS)

    Dietrich, K.; Dufour, M.; Balazs, N.L.

    1989-01-01

    The chemical equilibrium is studied for the reaction A+B↔C, assuming that, initially, the particles B form a lattice and the particles A are statistically distributed on interstices. A mass action law is derived which defines the numbers n A , n B , n C of particles A, B, C in the chemical equilibrium assuming the initial distribution to be known. It predicts a considerably larger number n C of fused particles C compared to the mass action law for the gaseous phase. The result holds for an ordinary as well as for a nuclear lattice. Its possible relevance for the production of proton-rich isotopes in the universe is discussed. (orig.)

  11. Spectral isotopic methods of determining nitrogen and carbon in plant specimens with laser volatization

    International Nuclear Information System (INIS)

    Lazeeva, G.S.

    1986-01-01

    Methods have been devised for the local determination of nitrogen and carbon isotope compositions in plant specimens, which provide separate and joint determination. Local laser evaporation has been combined with spectroscopic determination of the isotope compositions in the gas phase. A continuous-wave CO 2 laser is preferable for the local evaporation; the carbon isotope composition may be determined directly on the sum of the evaporation products, whereas nitrogen must first be separated as N 2 . Methods have also been developed for the local determination of total nitrogen and carbon in a sample with isotope dilution on the basis of laser evaporation. In order to eliminate systematic errors in determining total carbon in plant material, an evaporation method free from a rim has been devised. These methods have been used in determining isotope concentration profiles in plant specimens grown in experiments employing labeled nitrogen and carbon

  12. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  13. Sodium isotopic exchange rate between crystalline zirconium phosphate and molten NaNO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Yamada, Y [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1975-12-01

    The isotopic exchange rate of sodium ion between crystalline zirconium phosphate and molten NaNO/sub 3/ has been measured at 312/sup 0/C and 362/sup 0/C by batch method. The equilibrium was reached within 20 minutes at either temperature, and the rate was very rapid as compared with that of sodium-potassium ion exchange.

  14. Evaluation of isotopic dilution method for measuring N2 fixation in azolla: comparison with other methods

    International Nuclear Information System (INIS)

    Sah, R.N.; Goyal, S.S.; Rains, D.W.; Paige, D.F.

    1989-01-01

    An isotopic dilution method that overcomes the drawbacks of commonly used methods for measuring N 2 fixation by aquatic N‐fixers such as Azolla pinnata‐Anabaena azollae association (Azolla) is presented. The method was compared with 15 N2 gas (while maintaining CO 2 ) and the difference methods of measuring N 2 fixation. The isotopic dilution method was used for two conditions: a. For 15 N‐free growth medium, Azolla was pre‐enriched with 15 N, and N 2 fixation was determined by measuring the dilution of 15 N in the tissue. b. For the growth medium containing N, N2 fixation was determined by providing 15 N enriched ammonium sulfate in the growth medium and measuring 15 N to 14 N ratio in the tissue. An airtight chamber, necessary for 15 N 2 gas and acetylene reduction methods, was not representative of the growing environment of Azolla. Temperature in the airtight chamber was far from uniform and CO 2 was rapidly depleted. The isotopic dilution method is simpler, relatively inexpensive, subject to fewer errors and applicable to more diverse conditions, and yet was as accurate as 15 N2‐gas method. (author)

  15. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  16. Investigations on application of multigrid method to MHD equilibrium analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro

    2000-01-01

    The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

  17. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  18. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  19. Development, optimisation, and application of ICP-SFMS methods for the measurement of isotope ratios

    International Nuclear Information System (INIS)

    Stuerup, S.

    2000-07-01

    The measurement of isotopic composition and isotope ratios in biological and environmental samples requires sensitive, precise, and accurate analytical techniques. The analytical techniques used are traditionally based on mass spectrometry, among these techniques is the ICP-SFMS technique, which became commercially available in the mid 1990s. This technique is characterised by high sensitivity, low background, and the ability to separate analyte signals from spectral interferences. These features are beneficial for the measurement of isotope ratios and enable the measurement of isotope ratios of elements, which it has not previously been possible to measure due to either spectral interferences or poor sensitivity. The overall purpose of the project was to investigate the potential of the single detector ICP-SFMS technique for the measurement of isotope ratios in biological and environmental samples. One part of the work has focused on the fundamental aspects of the ICP-SFMS technique with special emphasize on the features important to the measurement of isotope ratios, while another part has focused on the development, optimisation and application of specific methods for the measurement of isotope ratios of elements of nutritional interest and radionuclides. The fundamental aspects of the ICP-SFMS technique were investigated theoretically and experimentally by the measurement of isotope ratios applying different experimental conditions. It was demonstrated that isotope ratios could be measured reliably using ICP-SFMS by educated choice of acquisition parameters, scanning mode, mass discrimination correction, and by eliminating the influence of detector dead time. Applying the knowledge gained through the fundamental study, ICP-SFMS methods for the measurement of isotope ratios of calcium, zinc, molybdenum and iron in human samples and a method for the measurement of plutonium isotope ratios and ultratrace levels of plutonium and neptunium in environmental samples

  20. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  1. A Predictor-Corrector Method for Solving Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Zong-Ke Bao

    2014-01-01

    Full Text Available We suggest and analyze a predictor-corrector method for solving nonsmooth convex equilibrium problems based on the auxiliary problem principle. In the main algorithm each stage of computation requires two proximal steps. One step serves to predict the next point; the other helps to correct the new prediction. At the same time, we present convergence analysis under perfect foresight and imperfect one. In particular, we introduce a stopping criterion which gives rise to Δ-stationary points. Moreover, we apply this algorithm for solving the particular case: variational inequalities.

  2. Isotope separations using chromatographic methods

    International Nuclear Information System (INIS)

    Leseticky, L.

    1985-01-01

    A survey is given of chromatographic separations of compounds only differing in isotope composition. Isotope effects on physical properties which allow chromatographic separation (vapour tension, adsorption heat, partition coefficient) are very small, with the exception of the simplest molecules. Therefore, separation factors only assume the value of several per cent. From this ensues the necessity of using columns which are specially and very carefully prepared and have a separation efficiency of the order of 10 4 theoretical plates. Briefly discussed is liquid chromatography on ion exchangers which with a varied degree of success was used for separating simple inorganic compounds or ions. Ion exchange chromatography of amino acids labelled with tritium, and chromatography of tritium labelled steroids also provided only a certain degree of separation. A detailed analysis is presented of gas chromatography separation of various deuterium and tritium labelled low-molecular compounds, to which a number of studies has been devoted in the literature. Very promising is the method of complexation gas chromatography based on the reversible formation of a complex of the ligand (the compound being separated) and the compound of the (transition) metal as the steady-state phase. (author)

  3. The global equilibrium method and its hybrid implementation for identifying heterogeneous elastic material parameters

    KAUST Repository

    Lubineau, Gilles

    2011-04-01

    New identification strategies have to be developed in order to perform the identification quickly and at very-low cost. A popular class of approaches relies on full-field measurement obtained through digital image correlation. We propose here a global equilibrium approach. It is based on the virtual field method in case specific virtual fields are used. It can also be seen as a generalization of the equilibrium gap method. This approach is easy to implement and we prove that it provides better or comparable results to the constitutive equation gap method that is known to be a very accurate reference. © 2010 Elsevier B.V.

  4. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  5. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  6. Overview on recent developments: alternative isotope production methods in Canada

    International Nuclear Information System (INIS)

    Huynh, K.

    2012-01-01

    The purpose of this paper is to provide an update on the Government of Canada's programs in alternative isotope production methods for securing supply of technetium 99m for Canadians. The supply disruptions of isotopes in 2007 and 2009/2010 caused by unplanned outages at AECL's National Research Universal (NRU) reactor highlighted the fragility of the supply chain that delivers medical isotopes, specifically Technetium 99m (Tc99m) to patients in Canada and globally. Tc99m, which is derived from its parent, molybdenum99 (Mo99) is the most widely used medical isotope for imaging, and accounts for 80 percent of nuclear medicine diagnostic procedures. Prior to the outage, nearly all the Mo99 produced for the world market came from five aging government owned research reactors in Canada, France, the Netherlands, Belgium and South Africa. The NRU, the largest of these, produced about 30 to 40 percent of the world supply of isotopes prior to 2009 - since its return to service in 2010, its world market share is estimated at 15 to 20%.

  7. Method and apparatus for separating uranium isotopes

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-01-01

    A uranium compound in the solid phase (uranium borohydride four) is subjected to radiation of a first predetermined frequency that excites the uranium-235 isotope-bearing molecules but not the uranium-238 isotope-bearing molecules. The compound is simultaneously subjected to radiation of a second predetermined frequency which causes the excited uranium-235 isotope-bearing molecules to chemically decompose but which does not affect the uranium-238 isotope-bearing molecules. Sufficient heat is then applied to the irradiated compound in the solid phase to vaporize the non-decomposed uranium-238 isotope-bearing molecules but not the decomposed uranium-235 isotope-bearing molecules, thereby physically separating the uranium-235 isotope-bearing molecules from the uranium-238 isotope-bearing molecules. The uranium compound sample in the solid phase is deposited or grown in an elongated tube supported within a dewar vessel having a clear optical path tail section surrounded by a coolant. Two sources of radiation are focused on the uranium compound sample. A heating element is attached to the elongated tube to vaporize the irradiated compound

  8. Method to separate isotopes

    International Nuclear Information System (INIS)

    Coenen, H.; Neuschuetz, D.

    1980-01-01

    An extraction by means of supercritical pure gases (e.g. CD 2 ) or gas mixtures is proposed to separate isotopes, especially H/D, Li-6/Li-7, and U-235/U-238, and water or benzol is used as entrainer. The extraction shall be carried out at pressure rates of about 350 bar above the critical pressure with the temperature being by up to 100 0 C above the critical temperature. A NaCl-solution and the change of the isotopic ratio Cl-35/Cl-37 are investigated for example purpose. (UWI) [de

  9. The application of isotopic dating methods for prospection and exploration of nuclear raw material

    International Nuclear Information System (INIS)

    Komlev, L.V.; Anderson, E.B.

    1977-01-01

    Among the geological and geochemical methods for prospecting and searching the nuclear raw material, the isotope-dating methods determine the most important search criterion - the time of the ore-forming. The elaboration and use of these methods in uranium-ore regions reveal a series of geochemical epochs of uranium and thorium accumulation connected naturally with the history of geological evolution of the earth crust. The isotope-dating methods enable with confidence to establish the stages of tectono-magmatic activity resulting in the redistribution and the local concentration of uranium. The wide use of isotopic methods is a necessary condition for reasonable trends of the modern geological exploration [ru

  10. Generator coordinate method for triaxial quadrupole collective dynamics in strontium isotopes

    International Nuclear Information System (INIS)

    Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P.H.

    1991-01-01

    We discuss the algebraic structure of the generator coordinate method for triaxial quadrupole collective motion. The collective solutions are classified according to the representations of the permutation group of the intrinsic axes. Our method amounts to an approximate angular momentum projection. We apply it to a study of the spherical to deformed shape transition in light even strontium isotopes 78-88 Sr. We find that triaxial configurations play a significant role in explaining the structure of the transitional isotopes 80-82 Sr

  11. Investigation of equilibrium core by recycling MA and LLFP in fast reactor cycle. 2. Investigation of LLFP confined in Equilibrium Core with element separation

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Shono, Akira; Ishikawa, Makoto

    2000-02-01

    A feasibility study has been performed on a self-consistent fuel cycle system in the nuclear fuel recycle system with fast reactors. In this system, the self-generated MAs (Minor Actinides) and LLFPs (Long-Lived Fission Products) are confined and incinerated in the fast reactor, which is called the 'Equilibrium Core' concept. However, as the isotope separations for selected LLFPs have been assumed in this cycle system, it seems that this assumption is far from realistic one from the viewpoint of economy with respect to the fuel cycle system. In this study, the possibility for realization of the 'Equilibrium Core' concept is evaluated for three fuel types such as oxide, nitride and metallic fuels, provided that the isotopic separation of LLFPs is changed to the element one. This study provides, that is to say, how many LLFP elements can be confined in the 'Equilibrium Core' with element separation. This report examines the nuclear properties of the Equilibrium Core' for various combinations of LLFP incineration schemes from the viewpoints of the risk of geological disposal and the limit in confinable quantity of LLFPs. From the viewpoint of the risk of geological disposal estimated by the retardation factor, it is possible to confine with element separation for Tc, I and Se even in the oxide fueled core. From the standpoint of the limit of confinable amounts of LLFPs, on the other hand, Tc, I, Se, Sn and Cs can be confined with element separate only in case that the nitride fuel is chosen. (author)

  12. Studying of isotope structure of uranium by alpha-spectrometric method

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Petukhov, O.F.; Petrenko, V.Z.

    2004-01-01

    Full text: The knowledge of isotope structure of uranium in waters, in minerals and in finished goods gives the helpful information on the radiation and nuclear-physical processes occurring in natural environments. Besides, customers put a question before uranium producing enterprises on the control of limiting concentration of an isotope 234 U in finished goods (uranium protoxide-oxide). For these reasons studying and development of techniques of definition of isotope structure of uranium is an actual task. In this connection for researches alpha - spectrometers 'PROGRESS-ALPHA' produced by R and D 'DOZE' Russia and firms 'Canberra' the USA were used. The isotope structure of uranium ( 234 U, 235 U, 238 U) was determined on a known ratio 234 U/ 238 U, which is equal to 53,41micrograms/gram. Identification of isotopes carried out by 4198 keV ( 235 U), 4395 keV ( 234 U) and 4773 keV ( 238 U). The technique of radiochemical preparation of samples to the analysis included: clearing of organic chemistry and preventing natural isotopes; drawing by a method electrolytic sedimentation on a metal substrate (d=24mm) an active stain, the area 4,5 cm 2 , with isotropy distribution of ions 234 U, 235 U, 238 U. As standards, the international and All-Russian standards with known contents 234 U were used. The isotope structure of uranium in uranium protoxide-oxide, chemical concentrates, technological solutions is determined. Infringements of isotope balance 234 U/ 238 U on separate sites of fulfilled uranium deposits and in technological products are found out

  13. Design study of fuel circulating system using Pd alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Aizawa, T.; Kasahara, T.; Yamanaka, T.

    1981-01-01

    It is expected that the method of permeating through Pd-alloy membrances is effective for isotope separation and the refining of fuel gas. In this paper, the design study of the Fuel Circulating System (FCS) using Pb-alloy membranes is described. The study is mainly focused on the main vacuum, fuel gas refining, isotope separating, and tritium containment systems. In the fuel gas refining system, impurities are effectively removed by using Pd-alloy membranes. For the isotope separation system, the diffusion method through Pd-alloy membranes was adopted. From the standpoint of the safety and economy, a three-stage tritium containment system was adopted to control tritium release to the environment as low as possible. The principal conclusion drawn from the design study was as follows. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane method is attractive for isotope separation and the refining of fuel gas. For a large amount of tritium inventory, handling and control technologies should be completed by the experimental evaluation and development of the components and materials used for the FCS. A three-stage containment system was adopted to control tritium release to environment as low as possible. Consideration to prevent tritium escape will be necessary for fuel gas refiners and isotope separators. (Kato, T.)

  14. Equilibrium leach testing of Magnox swarf and sludge

    International Nuclear Information System (INIS)

    Amin, A.; Angus, M.J.; Kirkham, I.A.; Tyson, A.

    1988-10-01

    A static equilibrium leach test has been developed to simulate repository conditions after ground water has penetrated the near field barrier. The repository components - waste, matrix and backfill - have been equilibrated with water for up to one year. Leachates were analysed for U, Pu, Np 237 , Am 241 , Cs 137 , Sr 90 , Tc 99 , I 129 and C 14 . Results are presented for leaching from Magnox fuel cladding wastes using a combination of matrices, backfills and atmospheric conditions. The equilibrium concentrations were generally very low and have been compared with the concentration of each isotope in drinking water that would give an adult an annual effective dose equivalent of 0.1mSv. (author)

  15. Equilibrium leach testing of Magnox swarf and sludge

    International Nuclear Information System (INIS)

    Amin, A.; Angus, M.J.; Kirkham, I.A.; Tyson, A.

    1987-10-01

    A static equilibrium leach test has been developed to simulate repository conditions after ground water has penetrated the near field barrier. The repository components - waste, matrix and backfill - have been equilibrated with water for up to one year. Leachates were analysed for U, Pu, Np 237 , Am 241 , Cs 137 , Sr 90 , Tc 99 , I 129 and C 14 . Results are presented for leaching from Magnox fuel cladding wastes using a combination of matrices, backfills and atmospheric conditions. The equilibrium concentrations were generally very low and have been compared with the concentration of each isotope in drinking water that would give an adult an annual effective dose equivalent of 0.1mSv. (author)

  16. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large Δ44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  17. Isotope exchange kinetic of phosphorus in soils from Pernambuco State -Brazil

    International Nuclear Information System (INIS)

    Figueiredo, F.J.B. de.

    1989-12-01

    The applicability of isotopic exchange kinetics of 32 p to characterize phosphorus available to plants and to diagnose the reactivity of soil-fertilizer-P in six soils from Pernambuco is described. This methodology was compared with anion exchange resin, isotopic exchange equilibrium methods (E-value and L-value) and P absorption by plants. The first greenhouse experiment had the following treatments: 1) with P and, 2) with addition of 43.7 mg P/Kg of soil, incubated for O, 42 and 84 days before seeding. The kinetic of isotopic exchange (KIE), resin-P and E-value were determined before seeding and after harvesting pearl millet grown for 42 days. Results indicated that the KIE parameters rated the soils more efficiently, in terms of available P and soil-fertilizer-P reactivity, than resin-P, E-value and L-value. (author). 38 refs, 2 figs, 18 tabs

  18. A statistical method for evaluation of the experimental phase equilibrium data of simple clathrate hydrates

    DEFF Research Database (Denmark)

    Eslamimanesh, Ali; Gharagheizi, Farhad; Mohammadi, Amir H.

    2012-01-01

    We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot, and the r......We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot...... in exponential form is used to represent/predict the hydrate dissociation pressures for three-phase equilibrium conditions (liquid water/ice–vapor-hydrate). The investigated hydrate formers are methane, ethane, propane, carbon dioxide, nitrogen, and hydrogen sulfide. It is interpreted from the obtained results...

  19. INTRAMOLECULAR ISOTOPE EFFECTS IN HYDROCARBON MASS SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, D. P.; Schachtschneider, J. H.

    1963-07-15

    Approximate calculations based on the quasi-equilibrium rate theory of the origin of mass spectra are shown to lead to an approximately correct magnitude for the intramolecular ( pi /sup -/) isotope effect on C--H bond dissociation probabilities of various deuterohydrocarbons. (auth)

  20. Solvent isotope effects on the rates of alkylation of thiolamine models of papain

    International Nuclear Information System (INIS)

    Wandinger, A.; Creighton, D.J.

    1980-01-01

    As a test of whether it is chemically reasonable to attribute any or all of the observed kinetic solvent deuterium isotope effects reported on papain to the fundamental properties of the tautomerization equilibrium, the magnitudes of the solvent deuterium isotope effects on the rates of alkylation of the tautomeric forms of cysteine and β-mercaptoethylamine were determined for bromo- and chloroacetate, bromo- and chloroacetamide, as well as for methylbromoacetate. These thiolamines are viewed as elementary chemical models of the sulfhydryl group tautomerization equilibrium envisioned in the active site of papain. (Auth.)

  1. Film thickness determining method of the silicon isotope superlattices by SIMS

    International Nuclear Information System (INIS)

    Takano, Akio; Shimizu, Yasuo; Itoh, Kohei M.

    2008-01-01

    It is becoming important to evaluate silicon self-diffusion with progress of a silicon semiconductor industry. In order to evaluate the self-diffusion of silicon, silicon isotope superlattices (SLs) is the only marker. For this reason, it is important to correctly evaluate a film thickness and a depth distribution of isotope SLs by secondary ion mass spectrometry (SIMS). As for film thickness, it is difficult to estimate the thicknesses correctly if the cycles of SLs are short. In this work, first, we report the determination of the film thickness for short-period SLs using mixing roughness-information (MRI) analysis to SIMS profile. Next, the uncertainty of the conventional method to determine the film thicknesses of SLs is determined. It was found that the conventional methods cannot correctly determine film thickness of short-period-isotope SLs where film thickness differs for every layer

  2. Distance, dialogue and reflection : Interpersonal reflective equilibrium as method for professional ethics education

    NARCIS (Netherlands)

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support

  3. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic

    International Nuclear Information System (INIS)

    Fairbanks, R.G.; Wiebe, P.H.; Be, A.W.H.

    1980-01-01

    Thirteen species of planktonic foraminifera collected with vertically stratified zooplankton tows in the slope water, Gulf Stream cold core ring, and northern Sargasso Sea show significant differences in their vertical distributions in the upper 200 meters of these different hydrographic regimes. Gulf Stream cold core rings may be responsible for a southern displacement of the faunal boundary associated with the Gulf Stream when reconstructed from the deep-sea sediment record. Oxygen isotope analyses of seven species reveal that nonspinose species (algal symbiont-barren) apparently calcify in oxygen isotope equilibrium, whereas spinose species usually calcify out of oxygen isotope equilibrium by approximately -0.3 to -0.4 per mil in delta 18 O values. The isotope data indicate that foraminifera shells calcify in depth zones that are significantly narrower than the overall vertical distribution of a species would imply

  4. Determination of equilibrium constants of formation and decomposition of 11-tungstophosphate heteropolyanion by the method of Raman spectroscopy

    International Nuclear Information System (INIS)

    Detusheva, L.G.; Khankhasaeva, S.Ts.; Yurchenko, Eh.N.; Lazarenko, T.P.; Kozhevnikov, I.V.

    1990-01-01

    Method of quantitative IR spectroscopy was used to determine equilibrium constants of formation of H x PW 11 O 39 (7-x)- (1) from H y P 2 W 21 O 71 (6-Y)- and W 10 O 32 4- at pH 2.8-4.0 and its decomposition at pH 7-8. Equilibrium constant of (1) formation in logarithmic coordinates changes linearly with growth of initial concentration of H 3 PW 12 O 40 (2) from 0.005 to 0.1 mol/l. Equilibrium constant of (1) decomposition is characterized by complex dependence on initial concentration of (2) due to proceeding of parallel reactions. Equilibrium concentrations of compounds in solutions of tungstophosphoric heteropolyacid at pH 3.25 and 7.68, calculated according to determined equilibrium constants and determined by the method of NMR on 31 P nuclei, were correlated

  5. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  6. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  7. Comparative determination of sucrose content in sugar beet by polarimetric and isotope dilution methods

    Energy Technology Data Exchange (ETDEWEB)

    Malec, K; Szuchnik, A [Institute of Nuclear Research, Warsaw (Poland); Rydel, S; Walerianaczyk, E [Instytut Przemyslu Cukrowniczego, Warsaw (Poland)

    1976-01-01

    The comparative determination of sucrose content in sugar beets has been investigated by following methods: polarimetric, direct isotope dilution and double carrier-isotope dilution analysis. Basing upon the obtained results it has been ascertained, that in the case of worse quality beets the polarimetric determinations differ greatly from isotopic data.

  8. A Convenient Method for Estimation of the Isotopic Abundance in Uranium Bearing Samples

    International Nuclear Information System (INIS)

    AI -Saleh, F.S.; AI-Mukren, Alj.H.; Farouk, M.A.

    2008-01-01

    A convenient and simple method for estimation of the isotopic abundance in some uranium bearing samples using gamma-ray spectrometry is developed using a hyper pure germanium spectrometer and a standard uranium sample with known isotopic abundance

  9. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  10. Method for the enrichment of isotopes

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.; Gebauhr, W.

    1976-01-01

    A method for the enrichment of isotopes, especially of uranium compounds, is described, working according to the principle of selective excitation by laser beams. As the starting compound, UF 6 is mentioned; the reaction partness are atomic gases (hydrogen, oxygen, nitrogen) or radicals (CH 3 , CHO). According to the invention, the gas mixture flows through the reaction space with a velocity so large that in leaving it, recombination of the reaction partner will already take place again. In this way, competing thermal reactions will be avoided and energy transfer fo excited 235 U molecules to non-excited 238 U molecules is eliminated to a large extent. A suitable equipment for implementing the method is described. (UWI) [de

  11. Equilibrium method for estimating the first hydrolysis constant of tetravalent plutonium

    International Nuclear Information System (INIS)

    Silver, G.L.

    2010-01-01

    A new method for estimating the numerical value of the first hydrolysis constant of tetravalent plutonium is illustrated by examples. It uses the pH and the equilibrium fractions of two of the Pu oxidation states. They are substituted into one or more of a choice of formulas that render explicit estimates of the hydrolysis constant. (author)

  12. Raman spectroscopic studies of isotopic diatomic molecules and a technique for measuring stable isotope ratios using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    A method for measuring stable isotope ratios using Raman scattering has been developed. This method consists of simultaneously counting photons scattered out of a high-intensity laser beam by different isotopically-substituted molecules. A number of studies of isotopic diatomic molecules have been made. The Q-branches of the Raman spectra of the isotopic molecules 14 N 15 N and 16 O 18 O were observed at natural abundance in nitrogen and oxygen samples. Comparison of the ratios of the intensities of the Q-branches of the major nitrogen and oxygen isotopic molecules with mass spectrometric determinations of the isotopic compositions yielded scattering cross sections of 14 N 15 N relative to 14 N 14 N and 16 O 18 O relative to 16 O 16 O. These cross section ratios differ from unity, a difference which can be explained by considering nuclear mass effects on the Franck-Condon factors of the molecular transitions. The measured intensities of the 14 N 15 N and 16 O 18 O Q-branches provided the baseline data needed to make the previously-mentioned extrapolation. High-resolution (approximately 0.15 cm -1 ) spectra of the Q-branches of 14 N 14 N and 16 O 16 O yielded a direct determination of α/sub e/ (the difference between the rotational constant in the ground and first excited vibrational states) for these molecules. The measured values are in excellent agreement with those obtained by other means. Complete Raman spectra (pure rotation, rotation-vibration, and high-resolution Q-branch) were obtained on a sample of pure 18 O 18 O. Analysis of this data yielded the molecular parameters: the equilibrium internuclear separation r/sub e/, the moment of inertia I/sub e/, and the energy parameters α/sub e/, B/sub e/, and ΔG/sub 1 / 2 /. These are in good agreement with data obtained by microwave spectroscopy

  13. Normalization Methods and Selection Strategies for Reference Materials in Stable Isotope Analyses - Review

    International Nuclear Information System (INIS)

    Skrzypek, G.; Sadler, R.; Paul, D.; Forizs, I.

    2011-01-01

    A stable isotope analyst has to make a number of important decisions regarding how to best determine the 'true' stable isotope composition of analysed samples in reference to an international scale. It has to be decided which reference materials should be used, the number of reference materials and how many repetitions of each standard is most appropriate for a desired level of precision, and what normalization procedure should be selected. In this paper we summarise what is known about propagation of uncertainties associated with normalization procedures and propagation of uncertainties associated with reference materials used as anchors for the determination of 'true' values for δ''1''3C and δ''1''8O. Normalization methods Several normalization methods transforming the 'raw' value obtained from mass spectrometers to one of the internationally recognized scales has been developed. However, as summarised by Paul et al. different normalization transforms alone may lead to inconsistencies between laboratories. The most common normalization procedures are: single-point anchoring (versus working gas and certified reference standard), modified single-point normalization, linear shift between the measured and the true isotopic composition of two certified reference standards, two-point and multipoint linear normalization methods. The accuracy of these various normalization methods has been compared by using analytical laboratory data by Paul et al., with the single-point and normalization versus tank calibrations resulting in the largest normalization errors, and that also exceed the analytical uncertainty recommended for δ 13 C. The normalization error depends greatly on the relative differences between the stable isotope composition of the reference material and the sample. On the other hand, the normalization methods using two or more certified reference standards produces a smaller normalization error, if the reference materials are bracketing the whole range of

  14. Deuterium isotope effects on the ring inversion equilibrium in cyclohexane: the A value of deuterium and its origin

    International Nuclear Information System (INIS)

    Anet, F.A.L.; Kopelevich, M.

    1986-01-01

    It has been reported recently that the deuterium in cyclohexane-d 1 prefers the equatorial over the axial position by about 200 J/mol (i.e., ca. 50 cal/mol), as shown by three different kinds of NMR measurements. Such an isotope effect is unexpectedly large, and this has led the authors to reinvestigate the problem using Saunder's isotopic perturbation method. The authors thereby established that the free energy difference (the A value for deuterium) is 6.3 +/- 1.5 cal/mol, with deuterium more stable equatorial than axial. This value is supported by molecular mechanics calculations based in part on experimental vibrational frequencies. 17 references, 1 figure

  15. Characterization of a new candidate isotopic reference material for natural Pb using primary measurement method.

    Science.gov (United States)

    Nonose, Naoko; Suzuki, Toshihiro; Shin, Ki-Cheol; Miura, Tsutomu; Hioki, Akiharu

    2017-06-29

    A lead isotopic standard solution with natural abundance has been developed by applying a mixture of a solution of enriched 208 Pb and a solution of enriched 204 Pb ( 208 Pb- 204 Pb double spike solution) as bracketing method. The amount-of-substance ratio of 208 Pb: 204 Pb in this solution is accurately measured by applying EDTA titrimetry, which is one of the primary measurement methods, to each enriched Pb isotope solution. Also metal impurities affecting EDTA titration and minor lead isotopes contained in each enriched Pb isotope solution are quantified by ICP-SF-MS. The amount-of-substance ratio of 208 Pb: 204 Pb in the 208 Pb- 204 Pb double spike solution is 0.961959 ± 0.000056 (combined standard uncertainty; k = 1). Both the measurement of lead isotope ratios in a candidate isotopic standard solution and the correction of mass discrimination in MC-ICP-MS are carried out by coupling of a bracketing method with the 208 Pb- 204 Pb double spike solution and a thallium internal addition method, where thallium solution is added to the standard and the sample. The measured lead isotope ratios and their expanded uncertainties (k = 2) in the candidate isotopic standard solution are 18.0900 ± 0.0046 for 206 Pb: 204 Pb, 15.6278 ± 0.0036 for 207 Pb: 204 Pb, 38.0626 ± 0.0089 for 208 Pb: 204 Pb, 2.104406 ± 0.00013 for 208 Pb: 206 Pb, and 0.863888 ± 0.000036 for 207 Pb: 206 Pb. The expanded uncertainties are about one half of the stated uncertainty for NIST SRM 981, for 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, or one eighth, for 208 Pb: 206 Pb and 207 Pb: 206 Pb, The combined uncertainty consists of the uncertainties due to lead isotope ratio measurements and the remaining time-drift effect of mass discrimination in MC-ICP-MS, which is not removed by the coupled correction method. In the measurement of 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, the latter contribution is two or three times larger than the former. When the coupling of

  16. A numerical cloud model to interpret the isotope content of hailstones

    International Nuclear Information System (INIS)

    Jouzel, J.; Brichet, N.; Thalmann, B.; Federer, B.

    1980-07-01

    Measurements of the isotope content of hailstones are frequently used to deduce their trajectories and updraft speeds within severe storms. The interpretation was made in the past on the basis of an adiabatic equilibrium model in which the stones grew exclusively by interaction with droplets and vapor. Using the 1D steady-state model of Hirsch with parametrized cloud physics these unrealistic assumptions were dropped and the effects of interactions between droplets, drops, ice crystals and graupel on the concentrations of stable isotopes in hydrometeors were taken into account. The construction of the model is briefly discussed. The resulting height profiles of D and O 18 in hailstones deviate substantially from the equilibrium case, rendering most earlier trajectory calculations invalid. It is also seen that in the lower cloud layers the ice of the stones is richer due to relaxation effects, but at higher cloud layers (T(a) 0 C) the ice is much poorer in isotopes. This yields a broader spread of the isotope values in the interval 0>T(a)>-35 0 C or alternatively, it means that hailstones with a very large range of measured isotope concentrations grow in a smaller and therefore more realistic temperature interval. The use of the model in practice will be demonstrated

  17. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    Science.gov (United States)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  18. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  19. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    International Nuclear Information System (INIS)

    Kuehnel, Matthias

    2014-02-01

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  20. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  1. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    Gascoyne, M.; Kotzer, T.

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL's experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, 2 H/ 18 O, 14 C, 34 S) of groundwaters, but will determine values of more exotic and unusual ratios, such as 6 Li/ 7 Li, and B 11 /B 10 , whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine 3 He/ 4 He, 36 Cl/Cl and 129 I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs

  2. Distance, Dialogue and Reflection: Interpersonal Reflective Equilibrium as Method for Professional Ethics Education

    Science.gov (United States)

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support this claim. The first group of arguments focus on a…

  3. Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods

    Science.gov (United States)

    Fibiger, D.; Hastings, M.

    2012-04-01

    We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary

  4. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  5. The empirical equilibrium structure of diacetylene

    Science.gov (United States)

    Thorwirth, Sven; Harding, Michael E.; Muders, Dirk; Gauss, Jürgen

    2008-09-01

    High-level quantum-chemical calculations are reported at the MP2 and CCSD(T) levels of theory for the equilibrium structure and the harmonic and anharmonic force fields of diacetylene, H sbnd C tbnd C sbnd C tbnd C sbnd H. The calculations were performed employing Dunning's hierarchy of correlation-consistent basis sets cc-pV XZ, cc-pCV XZ, and cc-pwCV XZ, as well as the ANO2 basis set of Almlöf and Taylor. An empirical equilibrium structure based on experimental rotational constants for 13 isotopic species of diacetylene and computed zero-point vibrational corrections is determined (reemp:r=1.0615 Å,r=1.2085 Å,r=1.3727 Å) and in good agreement with the best theoretical structure (CCSD(T)/cc-pCV5Z: r=1.0617 Å, r=1.2083 Å, r=1.3737 Å). In addition, the computed fundamental vibrational frequencies are compared with the available experimental data and found in satisfactory agreement.

  6. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  7. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Science.gov (United States)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during

  8. Experimental substantiation of separation techniques of lead and uranium microamounts using isotopic dilution method as control method

    International Nuclear Information System (INIS)

    Agapova, A.A.; Shcherbinina, N.K.

    1983-01-01

    Methods,ensuring at low levels of contamination a high degree of lead and uranium microamount separation from solutions of geological samples, have been selected and subjected to the detailed testing. The method of isotope dilution, , combining high accuracy and sensitivity of determinations, is used as the main control methods, is used as the main control method. Using the method, processe es of uranium extpaction are traced, special attention is paid to the detailed description of lead extraction at all the stages of the methods selected. Opera ations of ion exchange for lead and uranium in microcolumns with the Bio-Rad r sin are considered, as well as operations of lead electrolytic separation. The chemical procedures suggested permit to solve one of the main methodical tasks f sample preparation, containing microgram amounts of lead and uranium, for high h-prcision measurement of their isotope composition using mass-spectrometric method

  9. THE GENERALIZED MAXIMUM LIKELIHOOD METHOD APPLIED TO HIGH PRESSURE PHASE EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.Foi empregado o método da máxima verossimilhança generalizado para determinação de parâmetros de interação binária entre os componentes do óleo essencial de laranja e dióxido de carbono. Foram usados dados experimentais de equilíbrio líquido-vapor de misturas binárias de dióxido de carbono e componentes do óleo essencial de laranja. O equilíbrio líquido-vapor foi modelado com as equações de Peng-Robinson e de Soave-Redlich-Kwong usando a metodologia proposta em 1979 por Asselineau, Bogdanic e Vidal. A escolha destes sistemas teve como objetivo demonstrar que o método da máxima verosimilhança produz parâmetros de interação binária, para equações cúbicas de estado capazes de descrever satisfatoriamente até mesmo o equilíbrio para o binário etanol/CO2. Os resultados comprovam que tanto a equação de Peng-Robinson quanto a de Soave-Redlich-Kwong podem ser empregadas para descrever o equilíbrio de fases para o sistemas: componentes do óleo essencial de laranja/CO2.

  10. A New Iterative Method for Equilibrium Problems and Fixed Point Problems

    Directory of Open Access Journals (Sweden)

    Abdul Latif

    2013-01-01

    Full Text Available Introducing a new iterative method, we study the existence of a common element of the set of solutions of equilibrium problems for a family of monotone, Lipschitz-type continuous mappings and the sets of fixed points of two nonexpansive semigroups in a real Hilbert space. We establish strong convergence theorems of the new iterative method for the solution of the variational inequality problem which is the optimality condition for the minimization problem. Our results improve and generalize the corresponding recent results of Anh (2012, Cianciaruso et al. (2010, and many others.

  11. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.

    Science.gov (United States)

    Zhao, Pei; Kim, Sungjin; Chen, Xiao; Einarsson, Erik; Wang, Miao; Song, Yenan; Wang, Hongtao; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2014-11-25

    Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.

  12. Equilibrium reconstruction in the TCA/Br tokamak

    International Nuclear Information System (INIS)

    Sa, Wanderley Pires de

    1996-01-01

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author)

  13. Studies of carbon--isotope fractionation. Annual progress report, December 1, 1974--November 30, 1975

    International Nuclear Information System (INIS)

    Ishida, T.

    1975-01-01

    The vapor pressure isotope effect of 13 C/ 12 C-substitution in CClF 3 was measured at temperatures between 169 0 and 206 0 K by means of cryogenic distillation. The 13 C/ 12 C-vapor pressure isotope effect in CHF 3 was also studied at temperatures between 161 0 and 205 0 K by a similar method. The construction of a cryostat has progressed as scheduled. The investigation of carbon isotope exchange equilibria between carbon dioxide and various carbamates dissolved in various organic solvents has continued. The five-stage system of Taylor-Ghate design was improved to shorten the transient time. A single stage apparatus was designed, built, and tested. These systems are used to measure the equilibrium constants and various phase equilibria involved in the carbon dioxide--carbamate system. The investigation of the explicit method of total isotope effect has made progress. A satisfactory approximation was found for the classical partition function of a Morse oscillator. The method gives a reasonable result at rho identical with 1 / 2 √(u/sub e//x/sub e/) greater than 1.5. The medium cluster approach was applied to isotopic methanes to investigate the effects of intermolecular distance and mutual orientations of molecules in the liquid upon vapor pressure isotope effect. It was found that all geometrical effects studied tend to vanish as the size of clusters is increased. Isotope effect in the zero-point energy shifts on condensation was calculated on the basis of London dispersion forces in liquid and a semi-empirical molecular orbital theory, and was favorably compared with experimental results

  14. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations

    Directory of Open Access Journals (Sweden)

    C. J. Van Meerbeeck

    2009-03-01

    Full Text Available Dansgaard-Oeschger events occurred frequently during Marine Isotope Stage 3 (MIS3, as opposed to the following MIS2 period, which included the Last Glacial Maximum (LGM. Transient climate model simulations suggest that these abrupt warming events in Greenland and the North Atlantic region are associated with a resumption of the Thermohaline Circulation (THC from a weak state during stadials to a relatively strong state during interstadials. However, those models were run with LGM, rather than MIS3 boundary conditions. To quantify the influence of different boundary conditions on the climates of MIS3 and LGM, we perform two equilibrium climate simulations with the three-dimensional earth system model LOVECLIM, one for stadial, the other for interstadial conditions. We compare them to the LGM state simulated with the same model. Both climate states are globally 2°C warmer than LGM. A striking feature of our MIS3 simulations is the enhanced Northern Hemisphere seasonality, July surface air temperatures being 4°C warmer than in LGM. Also, despite some modification in the location of North Atlantic deep water formation, deep water export to the South Atlantic remains unaffected. To study specifically the effect of orbital forcing, we perform two additional sensitivity experiments spun up from our stadial simulation. The insolation difference between MIS3 and LGM causes half of the 30–60° N July temperature anomaly (+6°C. In a third simulation additional freshwater forcing halts the Atlantic THC, yielding a much colder North Atlantic region (−7°C. Comparing our simulation with proxy data, we find that the MIS3 climate with collapsed THC mimics stadials over the North Atlantic better than both control experiments, which might crudely estimate interstadial climate. These results suggest that freshwater forcing is necessary to return climate from warm interstadials to cold stadials during MIS3. This changes our perspective, making the stadial

  15. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    Science.gov (United States)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime

  16. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.; Kotzer, T

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL`s experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, {sup 2}H/{sup 18}O, {sup 14}C, {sup 34}S) of groundwaters, but will determine values of more exotic and unusual ratios, such as {sup 6}Li/{sup 7}Li, and B{sup 11}/B{sup 10}, whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine {sup 3}He/{sup 4}He, {sup 36}Cl/Cl and {sup 129}I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs.

  17. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    Science.gov (United States)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  18. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Borysiuk, Maciek, E-mail: maciek.borysiuk@pixe.lth.se; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: {sup 16}O, {sup 17}O and {sup 18}O. We procured samples highly enriched with all three isotopes. Isotopes {sup 16}O and {sup 18}O were easily detected in the enriched samples, but no significant signal from {sup 17}O was detected in the same samples. The measured yield was too low to detect {sup 18}O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with {sup 16}O was clearly visible.

  19. On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method

    Czech Academy of Sciences Publication Activity Database

    Červinka, Michal

    2010-01-01

    Roč. 2010, č. 4 (2010), s. 730-753 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : equilibrium problems with complementarity constraints * homotopy * C-stationarity Subject RIV: BC - Control Systems Theory Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/cervinka-on computation of c-stationary points for equilibrium problems with linear complementarity constraints via homotopy method.pdf

  20. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    International Nuclear Information System (INIS)

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J.

    1990-01-01

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  1. Pb and Sr isotopic compositions of ancient pottery: a method to discriminate production sites

    International Nuclear Information System (INIS)

    Zhang Xun; Chen Jiangfeng; Ma Lin; He Jianfeng; Wang Changsui; Qiu Ping

    2004-01-01

    The discriminating of production sites of ancient pottery samples using multi-isotopic systematics was described. Previous work has proven that Pb isotopic ratios can be used for discriminating the production sites of ancient pottery under certain conditions. The present work suggests that although Nd isotopic ratios are not sensitive to the production sites of ancient pottery, Sr isotopic ratios are important for the purpose. Pb isotopic ratios are indistinguishable for the pottery excavated from the Jiahu relict, Wuyang, Henan Province and for famous Qin Terra-cotta Figures. But, the 87 Sr/ 86 Sr ratios for the former (about 0.715) are significantly lower than that of the latter (0.717-0.718). The authors concluded that a combined use of Pb and Sr isotopes would be a more powerful method for discriminating the production site of ancient pottery. (authors)

  2. alfa-Deuterium kinetic isotope effects in reactions of methyllithium. Is better aggregation the cause of lower reactivity?

    DEFF Research Database (Denmark)

    Holm, Torkil

    1996-01-01

    The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium......The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium...

  3. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    Science.gov (United States)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  4. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  5. Kinetic investigation of heterogeneous catalytic reactions by means of the kinetic isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F; Dermietzel, J [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung

    1978-09-01

    The application of the kinetic isotope method to heterogeneous catalytic processes is possible for surface compounds by using the steady-state relation. However, the characterization of intermediate products becomes ambiguous if sorption rates are of the same order of magnitude as surface reactions rates. The isotopic exchange reaction renders possible the estimation of sorption rates.

  6. A variational method in out-of-equilibrium physical systems.

    Science.gov (United States)

    Pinheiro, Mario J

    2013-12-09

    We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles. However, we use the fundamental equation of thermodynamics on differential forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. From this approach, a topological torsion current emerges of the form , where Aj and ωk denote the components of the vector potential (gravitational and/or electromagnetic) and where ω denotes the angular velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism of particular devices.

  7. Particle Swarm Optimization Algorithm Coupled with Finite Element Limit Equilibrium Method for Geotechnical Practices

    Directory of Open Access Journals (Sweden)

    Hongjun Li

    2012-01-01

    Full Text Available This paper proposes a modified particle swarm optimization algorithm coupled with the finite element limit equilibrium method (FELEM for the minimum factor of safety and the location of associated noncircular critical failure surfaces for various geotechnical practices. During the search process, the stress compatibility constraints coupled with the geometrical and kinematical compatibility constraints are firstly established based on the features of slope geometry and stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical meaning of the factor of safety can be formulated on the basis of strength reserving theory rather than the overloading theory. Consequently, compared with the limit equilibrium method (LEM and the shear strength reduction method (SSRM through several numerical examples, the FELEM in conjunction with the improved search strategy is proved to be an effective and efficient approach to routine analysis and design in geotechnical practices with a high level of confidence.

  8. Effects of euthanasia method on stable-carbon and stable-nitrogen isotope analysis for an ectothermic vertebrate.

    Science.gov (United States)

    Atwood, Meredith A

    2013-04-30

    Stable isotope analysis is a critical tool for understanding ecological food webs; however, results can be sensitive to sample preparation methods. To limit the possibility of sample contamination, freezing is commonly used to euthanize invertebrates and preserve non-lethal samples from vertebrates. For destructive sampling of vertebrates, more humane euthanasia methods are preferred to freezing and it is essential to evaluate how these euthanasia methods affect stable isotope results. Stable isotope ratios and elemental composition of carbon and nitrogen were used to evaluate whether the euthanasia method compromised the integrity of the sample for analysis. Specifically, the stable isotope and C:N ratios were compared for larval wood frogs (Rana sylvatica  =  Lithobates sylvaticus), an ectothermic vertebrate, that had been euthanized by freezing with four different humane euthanasia methods: CO2, benzocaine, MS-222 (tricaine methanesulfonate), and 70% ethanol. The euthanasia method was not related to the δ(13)C or δ(15)N values and the comparisons revealed no differences between freezing and any of the other treatments. However, there were slight (non-significant) differences in the isotope ratios of benzocaine and CO2 when each was compared with freezing. The elemental composition was altered by the euthanasia method employed. The percentage nitrogen was higher in CO2 treatments than in freezing, and similar (non-significant) trends were seen for ethanol treatments relative to freezing. The resulting C:N ratios were higher for benzocaine treatments than for both CO2 and ethanol. Similar (non-significant) trends suggested that the C:N ratios were also higher for animals euthanized by freezing than for both CO2 and ethanol euthanasia methods. The euthanasia method had a larger effect on elemental composition than stable isotope ratios. The percentage nitrogen and the subsequent C:N ratios were most affected by the CO2 and ethanol euthanasia methods, whereas

  9. Precise determination of sodium in serum by simulated isotope dilution method of inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Yan Ying; Zhang Chuanbao; Zhao Haijian; Chen Wenxiang; Shen Ziyu; Wang Xiaoru; Chen Dengyun

    2007-01-01

    A new precise and accurate method for the determination of sodium in serum by inductively coupled plasma mass spectrometry (ICP-MS) was developed. Since 23 Na is the single isotope element, 27 Al is selected as simulated isotope of Na. Al is spiked into serum samples and Na standard solution. 23 Na/ 27 Al ratio in the Na standard solution is determined to assume the natural Na isotope ratio. The serums samples are digested by purified HNO 3 /H 2 O 2 and diluted to get about 0.6 μg·g -1 Al solutions, and the 23 Na/ 27 Al ratios of the serum samples are obtained to calculate the accurate Na concentrations basing on the isotope dilution method. When the simulated isotope dilution method of ICP-MS is applied and Al is selected as the simulated isotope of Na, the precise and accurate Na concentrations in the serums are determined. The inter-day precision of CV<0.13% for one same serum sample is obtained during 3 days 4 measurements. The spike recoveries are between 99.69% and 100.60% for 4 different serum samples and 3 days multi-measurements. The results of measuring standard reference materials of serum sodium are agree with the certified value. The relative difference between 3 days is 0.22%-0.65%, and the relative difference in one bottle is 0.15%-0.44%. The ICP-MS and Al simulated isotope dilution method is proved to be not only precise and accurate, but also quick and convenient for measuring Na in serum. It is promising to be a reference method for precise determination of Na in serum. Since Al is a low cost isotope dilution reagent, the method is possible to be widely applied for serum Na determination. (authors)

  10. Method of preparing mercury with an arbitrary isotopic distribution

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  11. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  12. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    Science.gov (United States)

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  13. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Science.gov (United States)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  14. Isotopic ratio method for determining uranium contamination

    International Nuclear Information System (INIS)

    Miles, R.E.; Sieben, A.K.

    1994-01-01

    The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort

  15. Testing sequential extraction methods for the analysis of multiple stable isotope systems from a bone sample

    Science.gov (United States)

    Sahlstedt, Elina; Arppe, Laura

    2017-04-01

    Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.

  16. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  17. Predictions and Verification of an Isotope Marine Boundary Layer Model

    Science.gov (United States)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  18. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  19. Introduction of a method for determining uranium isotope ratio by α-spectroscopy and application to study the migration of this element in uranium occurence

    International Nuclear Information System (INIS)

    Bastos, K.F.

    1981-01-01

    A method of U and Th isotope ratio determination by α-spectroscopy to analyse the migration process of these elements at an uranium bearing region in Goias, Brazil, is described. The method consists of simultaneous extraction of U and Th with TOPO/cyclohexane, reextraction of Th with H 2 SO 4 (0.3M) and further purification of both phases. The interferent coextracted ions are eliminated by scrubbing with EDTA/NaNO 3 , and pure U is extracted with (NH 4 ) 2 CO 3 . The counting sources are prepared via extraction with TTA or MIBK, and evaporation of suitable aliquots on stainless steel disks. The recovery of U about 98% is obtained. The energy resolutions of U 238 peak (E α =4.195 MeV) are 52 and 83 KeV. The counting efficiencies are between 11 and 21+. Th is separated from the stripping solution by direct coprecipitation with macro amounts of LaF 3 and subsequent extraction with TTA/benzene for source preparation. Alternatively coprecipitation is proposed with micro quantities of LaF 3 and posterior filtration with membrane filters, where LaF 3 layer was previously deposited. This method allows direct counting of the filters and is superior in relation to energy resolution and counting efficiency. The U 238 /U 234 and U 234 /Th 230 isotope ratios in geological standards and prospecting samples were determined. The U 234 /Th 230 isotope ratio was used for analysing the migration of these elements because the most of analysed samples presented values, for this ratio, greater than unity, indicating that the anomalous concentrations of U are due to secondary enrichment processes. Aditional results of non equilibrium of the radioactivity of samples by γ-spectroscopy, are presented. (author) [pt

  20. Isotopic geothermometers in geothermal areas. A comparative experimental study in Larderella, Italy

    International Nuclear Information System (INIS)

    Nuti, S.; Panichi, C.

    1979-06-01

    The stable isotope composition of some geothermal fluid components has been determined in view of evaluating the temperature at depth in Italian geothermal fields (Larderello, Mt. Amiata, Travale). The isotopic systems used are: 13 C(CO 2 -CH 4 ), 18 O(CO 2 -H 2 O), D(H 2 -CH 4 ) and D(H 2 O-H 2 ), for which the isotopic equilibrium variation with temperature are known either experimentally or theoretically. The 18 O(CO 2 -H 2 O) geothermometer gives temperatures similar to those observed at the well-head, and provides therefore useful information on the physical state of water (steam or evaporating liquid water) at the well bottom. On the contrary, all other geothermometers produce too high temperatures which can be explained by incomplete equilibration or lack of equilibrium between components and, perhaps in some cases, by the insufficient knowledge of the fractionation factors. The comparison between the different isotopic geothermometers, along with some chemical and physico-chemical evidence, suggests that the reaction already proposed, i.e. CO 2 +4H 2 =CH 4 +2H 2 O, is unable to explain the isotopic composition observed. On the contrary, the water dissociation reaction (H 2 O=H 2 +1/2O 2 ) and the synthesis reaction of methane (C+2H 2 =CH 4 ) and carbon dioxide (C+O 2 =CO 2 ) seem able to provide an appropriate explanation of the isotopic behaviour of the geothermal field fluid components

  1. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  2. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  3. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  4. Isotopic method of leaks detection in oil pipelines

    International Nuclear Information System (INIS)

    Listwam, W.; Mottl, J.

    1974-01-01

    Isotopic method of leaks detection in oil pipelines of diameter 200-800 mm is described. Tracer is injected into pipeline in the form of CH 3 Br 82 . After few hours one or two detectors are passed through pipeline to detect leaks. Detector set consists of scintillation radiometer with Na I/Tl crystal, electronic blecks with one-channel analyzer, recorder and storage batteries. Detector set is built on integrated circuits. (Z.M.)

  5. Investigation of chemical equilibrium kinetics by the electromigration method

    International Nuclear Information System (INIS)

    Bozhikov, G.A.; Ivanov, P.I.; Maslov, O.D.; Dmitriev, S.N.; Bontchev, G.D.; Milanov, M.V.

    2003-01-01

    The measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the formation a complex by Hf(IV) and diethylenetriaminepentaacetic acid (DTPA) is determined. The electrophoretic mobility, diffusion coefficient and stability constant of the [HfDTPA] - complex are calculated, taking into account experimental electrophoretic data obtained at 298.15±0.05 K and constant ionic strength. No-carrier-added 175 Hf radionuclide was used in electromigration experiments at concentrations of 10 -10 -10 -11 M. (orig.)

  6. A determination of elementary separation factors of isotopes 235U and 238U in the ionic exchange process and of eluents in the water-glycerine system

    International Nuclear Information System (INIS)

    Murgulescu, S.E.

    1977-01-01

    In the experiments focused on uranium isotope separation by ion and chemical exchange, the water-glycerine system was employed. The principle of the method consists in shifting a uranium band along an ion-exchange resin column by means of an eluent. The isotope effect of reactions determining the band heading into the column where complex bands between the metal ion and the ligand form and break up under the resin influence, is determined by the difference in affinity between the two isotopes as against the eluent. The isotope effect in question determines a unit deviation of the equilibrium constant for the classical isotope exchange reaction. Starting from the experimental results obtained, it was concluded that the ion and chemical exchange between the IV and VI valence forms of uranium can be applied to isotope separation in terms of the separation unit. As against the methods that have been applied at present (gaseous scattering, hydro-extracting and the nozzle method), for which every new stage corresponds to a separation elementary factor, several separation elementary factors can be cumulated into a single stage in a chemical and ion exchange unit, by the optimization of the shifting band and length. (author)

  7. Numerical Verification Of Equilibrium Chemistry

    International Nuclear Information System (INIS)

    Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

  8. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay

    International Nuclear Information System (INIS)

    Prince, J.R.

    1979-01-01

    Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium

  9. An improved FT-TIMS method of measuring uranium isotope ratios in the uranium-bearing particles

    International Nuclear Information System (INIS)

    Chen, Yan; Wang, Fan; Zhao, Yong-Gang; Li, Li-Li; Zhang, Yan; Shen, Yan; Chang, Zhi-Yuan; Guo, Shi-Lun; Wang, Xiao-Ming; Cui, Jian-Yong; Liu, Yu-Ang

    2015-01-01

    An improved method of Fission Track technique combined with Thermal Ionization Mass Spectrometry (FT-TIMS) was established in order to determine isotope ratio of uranium-bearing particle. Working standard of uranium oxide particles with a defined diameter and isotopic composition were prepared and used to review the method. Results showed an excellent agreement with certified values. The developed method was used to analyze isotope ratio of single uranium-bearing particle in swipe samples successfully. The analysis results of uranium-bearing particles in swipe samples accorded with the operation history of the origin. - Highlights: • The developed method was successfully applied in the analysis of real swipe sample. • Uranium-bearing particles were confined in the middle of track detector. • The fission tracks of collodion film and PC film could be confirmed each other. • The thickness of collodion film should be no more than about 60 μm. • The method could avoid losing uranium-bearing particles in the etching step.

  10. Isotopic evidences of past upwelling intensity in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    and understand the history of upwelling as it is recorded in deep-sea sediments. The southwest (SW) monsoon strongly influences the climatic conditions in South and Southeast Asia and biological productivity in the Arabian Sea. ability at the ODP Site 728... climatic change and ocean history (McCrea, 1950; Epstein et al., 1953; Emiliani, 1955). The isotopic role of planktic forami- nifera expanded, it was recognized that foraminifera did not secret their shells in isotopic equilibrium with ambient water (Be...

  11. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    da Silva, D A F; Biscola, N P; Dos Santos, L D; Sartori, M M P; Denadai, J C; da Silva, E T; Ducatti, C; Bicudo, S D; Barraviera, B; Ferreira, R S

    2016-11-01

    Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13 C and 15 N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15 N equilibrium 5 days after MBM removal (54th day). Conversely, 15 N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15 N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15 N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ 13 C and δ 15 N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  13. Method and apparatus for separating isotopes

    International Nuclear Information System (INIS)

    Harris, S.E.

    1976-01-01

    Isotope separation is achieved between species A and B having an absorption resonance separated by an isotopic shift by selectively exciting a portion of species A using a tunable photon source of narrow emission line with and subsequently causing collisions with an optically excited third species to selectively ionize the excited portion of species A. When ionized, species A is easily separated by any technique, using its ionized condition to distinguish it from species B. 18 claims, 3 drawing figures

  14. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  15. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  16. Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry

    Science.gov (United States)

    Zhu, H.; Zhang, Z.; Liu, F.; Li, X.

    2017-12-01

    To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would

  17. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Science.gov (United States)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-11-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.

  18. MHD equilibrium identification on ASDEX-Upgrade

    International Nuclear Information System (INIS)

    McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.

    1992-01-01

    A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs

  19. Tritium Isotope Separation Using Adsorption-Distillation Column

    International Nuclear Information System (INIS)

    Fukada, Satoshi

    2005-01-01

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, α H-T equi . The adsorption action improved not only HETP but also α H-T equi . Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors

  20. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water

    International Nuclear Information System (INIS)

    Luz, B.; Kolodny, V.; Horowitz, M.

    1984-01-01

    The delta 18 O of mammalian bone-phosphate varies linearly with delta 18 O of environmental water, but is not in isotopic equilibrium with that water. This situation is explained by a model of delta 18 O in body water in which the important fluxes of exchangeable oxygen through the body are taken into account. Fractionation of oxygen isotopes between body and environmental drinking water is dependent on the rates of drinking and respiration. Isotopic fractionation can be estimated from physiological data and the estimates correlate very well with observed fractionation. Species whose water consumption is large relative to its energy expenditure is sensitive to isotopic ratio changes in environmental water. (author)

  1. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Satoshi; Oi, Takao [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2015-10-01

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H{sup +} ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  2. Stable Isotopic Composition of Rainfall in Western Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ketchemen-Tandia, B.; Ngo Boum, S.; Ebonji Seth, C. R.; Nkoue Ndong, G. R.; Wonkam, C. [Universite de Douala, Douala (Cameroon); Huneau, F. [Universite de Bordeaux, EA Georessources and Environnement, Talence (France); Celle-Jeanton, H. [Clermont Universite, Clermont-Ferrand (France)

    2013-07-15

    Monthly rainfall collected at the douala station (Western cameroon) from 2006 to 2008 was analysed for oxygen-18 and deuterium content. The dataset, which is now integrated into the GNIP database, was compared to the local groundwater record in order to define the input function of regional hydrosystems. The isotope data displays a wide range of values from -0.59 to -6.14 per mille for oxygen-18 and from -7.75 to -38.8 per mille for deuterium, closely following the GMWL (global Meteoric Water line), suggesting that rain formation processes occurred under isotopic equilibrium conditions between the condensate and the corresponding vapour. No significant evaporation tendency was found. The comparison with the previous studies in the area provides a realistic pattern of isotope concentrations in both surface and groundwater throughout Cameroon. (author)

  3. Equilibrium Temperature Profiles within Fission Product Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  4. Two-step extraction method for lead isotope fractionation to reveal anthropogenic lead pollution.

    Science.gov (United States)

    Katahira, Kenshi; Moriwaki, Hiroshi; Kamura, Kazuo; Yamazaki, Hideo

    2018-05-28

    This study developed the 2-step extraction method which eluted the Pb adsorbing on the surface of sediments in the first solution by aqua regia and extracted the Pb absorbed inside particles into the second solution by mixed acid of nitric acid, hydrofluoric acid and hydrogen peroxide solution. We applied the method to sediments in the enclosed water area and found out that the isotope ratios of Pb in the second solution represented those of natural origin. This advantage of the method makes it possible to distinguish the Pb between natural origin and anthropogenic source on the basis of the isotope ratios. The results showed that the method was useful to discuss the Pb sources and that anthropogenic Pb in the sediment samples analysed was mainly derived from China because of transboundary air pollution.

  5. Reverse isotope dilution method for determining benzene and metabolites in tissues

    International Nuclear Information System (INIS)

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-01-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of the radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue

  6. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  7. Gas isotope separation method using plasma sheet

    International Nuclear Information System (INIS)

    Takayama, K.; Takagi, K.; Fukvi, R.

    1988-03-01

    A high frequency electric field is applied to a plasma sheet with a frequency equal to the cyclotronic frequency of the ions to be separated. Because of resonance the cyclotronic radius of the isotope has increased and the electric charge is eliminated by collision with a separator and the isotope is separated in neutral particles [fr

  8. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  9. Carbon isotope ratios and isotopic correlations between components in fruit juices

    Science.gov (United States)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  10. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  11. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  12. Equilibrium models and variational inequalities

    CERN Document Server

    Konnov, Igor

    2007-01-01

    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  13. Application of the 3D Iced-Ale method to equilibrium and stability problems of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.

    1977-01-01

    A numerical study of the equilibrium and stability properties of the Scyllac experiment at Los Alamos is described. The formulation of the numerical method, which is an extension of the ICED-ALE method to magnetohydrodynamic flow in three dimensions, is given. The properties of the method are discussed, including low computational diffusion, local conservation, and implicit formulation in the time variable. Also discussed are the problems encountered in applying boundary conditions and computing equilibria. The results of numerical computations of equilibria indicate that the helical field amplitudes must be doubled from their design values to produce equilibrium in the Scyllac experiment. This is consistent with other theoretical and experimental results

  14. Application of the isotopic index in isotope geochemical investigation

    International Nuclear Information System (INIS)

    Schuetze, H.

    1982-06-01

    A method is described which allows to calculate approximately isotope exchange equilibria between different crystalline silicates. The algorithm uses a newly introduced isotopic index. It is defined using isotopic increments of the variant types of silicatic bonds. This isotopic index gives a quantitative measure of the ability to enrich 18 O or 30 Si, respectively. The dependence of isotopic fractionations on temperature can be calculated approximately by means of the isotopic index, too. On this theoretical base some problems of magmatism and two varieties of an isotope geochemical model of the evolution of the Earth's crust are treated. Finally, the possibility is demonstrated to give prognostic statements about the likelihood of ore bearing of different granites. (author)

  15. Semiempirical method to determine the uranium isotopic compositions

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2008-01-01

    In a nuclear reactor design calculation, some variations of U 235 enrichment are commonly needed. This will affect the isotopic compositions of the 3 main uranium isotopes i.e. U 234 , U 235 and U 238 for the respective enrichment. Due to the limited compositions data available, it is urgent to make an approximate way that can be used to determine the compositions of the 3 isotopes, for the desired enrichments. This paper presents the theoretical background used for constructing a semi empirical formula to estimate the composition of the 3 uranium isotopes as a function of U 235 enrichment, obtained based on the measurement data available. Based on the available data, and the lack of compositions data within the enrichment range between 3.5 % and around 12 %, it is concluded that 2 separate linear equations i.e. for ≤ 3.5 % and ≥ 3.5 % might be needed for U 235 isotope. For the U 234 isotope, a polynomial equation of 4 th order is well suited to be used for the whole range of enrichment between 0.711 % and 20 %, whilst for higher enrichment (> 20 %), a power function seems to give a better approach. The composition of U 238 can then be determined from the U 235 and U 234 composition at the desired enrichment of U 235 . (author)

  16. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang

    2012-01-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones....... Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore...

  17. Electroplating method for producing ultralow-mass fissionable deposits

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit

  18. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Álvarez-Estrada

    2014-03-01

    Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not

  19. Salt effects on isotope partitioning and their geochemical implications: An overview

    International Nuclear Information System (INIS)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500 degree C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms

  20. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  1. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  2. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  3. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C

    Science.gov (United States)

    Deng, Yuying; Li, Yingzhou; Li, Long

    2018-04-01

    Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.

  4. The outline of the processes for lithium isotope separation by ion exchange method

    International Nuclear Information System (INIS)

    Fujine, Sachio; Saito, Keiichiro; Naruse, Yuji; Shiba, Koreyuki; Kosuge, Masao; Itoi, Toshiaki; Kitsukawa, Tomohiko.

    1981-10-01

    A plant of lithium isotope separation by displacement chromatography is preliminary designed. The construction expenses of a 100 kg 7 Li/year plant and the unit cost of separation are estimated on the basis of the data taken from the literature, and the feasibility is studied. Experimental equipment of continuous displacement chromatography is set up and is tested with the stable automatic operation. These results indicate that the ion exchange method is promising for industrial lithium isotope separation. (author)

  5. ICP-MS as the method of the determination of gallium, indium and thallium isotope ratios in the studies of isotope effects in the chromatography systems

    International Nuclear Information System (INIS)

    Herdzik, I.

    2006-01-01

    The procedure of the determination of gallium, indium and thallium isotope ratios and its application to the studies of the isotope effects in chromatography systems by the ICP-MS method (inductively coupled plasma-mass spectrometry) are presented. It was shown that it is possible to determine the isotope ratios of gallium ( 69/71 Ga), indium ( 113/115 In) and thallium ( 203/205 Tl) with the relative standard deviation 0.03-0.07%. Such precision appeared to be sufficient to calculate the unit separation factors in the column chromatographic processes. (author) [pl

  6. Isotope Fractionation of Water During Evaporation Without Condensation

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2005-01-01

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  7. Hydrogen isotope recovering and reutilizing method and its device

    International Nuclear Information System (INIS)

    Ide, Takahiro.

    1988-01-01

    Purpose: To enable safety and convenient recovery and reutilization of gaseous tritium and other hydrogen isotopes. Constitution: Two kinds of metal hydrides different from each other in the dissociation pressure at an identical temperature are combined, in which a metal hydride of higher dissociation pressure is used for recovery and reutilization for most portion of gaseous hydrogen isotope gases, while the metal hydride of lower dissociation pressure is used for the recovery and reutilization of the remaining gaseous hydrogen isotopes. This enables to extremely lower the concentration of the remaining gaseous hydrogen isotopes, that is, the concentration of tritium in the recoverying system. In addition, since the heating temperature required for releasing the gaseous hydrogen isotopes absorbed in both of the metal hydrides is within such a range as causing no problem for the permeation of the gaseous hydrogen isotopes, there is no requirement for the countermeasure to tritium permeation or the facility for recovering permeated tritium and there is no problem for the material degradation due to the heating at high temperature. (Kawakami, Y.)

  8. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  9. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  10. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  11. Quantum mechanical calculation of the adsorption of hydrogen isotopes on metallic nickel

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Liu Youcheng; Wang Hongyan; Jiang Gang; Tan Mingliang

    1998-01-01

    The electronic ground state of NiH, NiD and NiT is derived to be 2 Σ + based on atomic and molecular reaction statics, then, energy E, heat capacity at constant volume C V and entropy S of these molecules have been calculated using QCISD/6-311G ** method. considering the characteristics of different motion types, the electronic and vibrational energy or entropy of molecule are assumed to be the corresponding values of their solid states. Then, it is easy to calculate ΔH degree, ΔS degree, ΔG degree and equilibrium pressure and examine the isotopic effect. The present method is somehow applicable to theoretical study on the storage-hydrogen materials

  12. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    Science.gov (United States)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed

  13. Determination of photooxygenation products of rotenone with isotope dilution method

    International Nuclear Information System (INIS)

    Chubachi, Mitsuo; Hamada, Masayuki

    1975-01-01

    When rotenone dissolved in certain solvent was photochemically oxidized, rotenolones, dehydrorotenone and rotenonone were obtained as main products. In order to determine the quantitative yields of these compounds in photooxygenation products, four compounds mentioned above were labeled with carbon-14 and the isotope dilution method by these labeled compounds was applied to the product analysis. (auth.)

  14. Isotopic method of testing the dynamics of melt flow through a sedimentation tank

    International Nuclear Information System (INIS)

    Bazaniak, Z.; Chamer, R.; Stec, J.; Przybytniak, W.

    1981-01-01

    The isotopic method of a simultaneous measurement of copper matte and slag flow parameters is discussed. For marking Cu-64 and Zr 95/97, isotopes characterized by various gamma radiation energy are used. The chemical form of copper and zirconium compounds was chosen from the viewpoint of assuring a selective solubility in the tested phases. To interpret the results of isotopic tests, the Wolf-Resnick model was made. The obtained results have confirmed the hypothesis of a possible occurrence of the copper matte flotation effect. In order to reduce of copper uplifted with the shaft slag, a redesigning is suggested of the sedimentation tank that would assure a reduction of the ideal mixing participation and an increase of the zone characterized by the piston flow. (author)

  15. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    Science.gov (United States)

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  16. Multicomponent isotopic separation and recirculation analysis

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1976-01-01

    A digital computer program for design of multicomponent distillation columns has been developed based on an exact method of solution of the governing equations. Although this computer program was developed for enrichment of the spent fuels from presently conceived tokamak-type fusion power reactors by cryogenic distillation, the program can be used for the design of any multicomponent distillation column, provided, of course, the necessary thermodynamic and phase equilibrium data are available. To prove the versatility of the computer program, parametric investigations to study the effect of design and operating variables on the composition of the product streams was carried out for the case of separating hydrogen isotopes. The computer program is very efficient; hence, a number of parametric investigations can be carried out with limited resources. The program does, however, require a fairly large computer storage space

  17. The non-equilibrium Green's function method for nanoscale device simulation

    CERN Document Server

    Pourfath, Mahdi

    2014-01-01

    For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies, and scattering self-energie...

  18. Isotope Effect on the Thermal Conductivity of Graphene

    Directory of Open Access Journals (Sweden)

    Hengji Zhang

    2010-01-01

    Full Text Available The thermal conductivity (TC of isolated graphene with different concentrations of isotope (C13 is studied with equilibrium molecular dynamics method at 300 K. In the limit of pure C12 or C13 graphene, TC of graphene in zigzag and armchair directions are ~630 W/mK and ~1000W/mK, respectively. We find that the TC of graphene can be maximally reduced by ~80%, in both armchair and zigzag directions, when a random distribution of C12 and C13 is assumed at different doping concentrations. Therefore, our simulation results suggest an effective way to tune the TC of graphene without changing its atomic and electronic structure, thus yielding a promising application for nanoelectronics and thermoelectricity of graphene-based nano device.

  19. Adsorption of hydrogen isotopes by metals in non-equilibrium conditions

    International Nuclear Information System (INIS)

    Livshits, A.I.; Notkin, M.E.; Pustovojt, Yu.M.

    1982-01-01

    To study the interaction of thermonuclear plasma and additions with metallic walls, nonequilibrium system of thermal atomary hydrogen - ''cold'' (300-1100 K) metal is experimentally investigated. Atomary hydrogen was feeded to samples of Ni and Pd in the shape of atomic beam, coming into vacuum from high-frequency gaseous discharge. It is shown that hydrogen solubility under nonequilibrium conditions increases with surface passivation (contamination); in this case it surpasses equilibrium solubility by value orders. Nickel and iron dissolve more hydrogen than palladium at a certain state of surface ( passivation) and gas (atomary hydrogen). The sign of the temperature dependence of hydrogen solubility in passivated N 1 and Fe changes when alterating molecular hydrogen by atomary hydrogen

  20. Chemical and isotopic methods for characterization of pollutant sources in rain water

    International Nuclear Information System (INIS)

    Verma, M.P.

    1996-01-01

    The acid rain formation is related with industrial pollution. An isotopic and chemical study of the spatial and temporary distribution of the acidity in the rain gives information about the acidity source. The predominant species in the acid rain are nitrates and sulfates. For the rain monitoring is required the determination of the anion species such as HCO 3 , Cl, SO 4 , NO 3 and p H. So it was analyzed the cations Na + , K + , Ca 2+ and Mg 2+ to determine the quality analysis. All of them species can be determined with enough accuracy, except HCO 3 by modern equipment such as, liquid chromatograph, atomic absorption, etc. The HCO 3 concentration is determined by traditional methods like acid-base titration. This work presents the fundamental concepts of the titration method for samples with low alkalinity (carbonic species), for rain water. There is presented a general overview over the isotopic methods for the characterization of the origin of pollutant sources in the rain. (Author)

  1. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    Science.gov (United States)

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  2. Theorical and experimental analysis of nitrogen-15 isotope enrichment by nitrogen monoxide and nitric acid system

    International Nuclear Information System (INIS)

    Ducatti, C.

    1985-01-01

    Nitrogen-15 isotope enrichment by chemical exchange in NO/HNO 3 system was studied using two different theories. The isotope fractionation factors obtained by the countercurrent theory was compared to those estimated by the isotope equipartition theory were confronted through a model. A column in countercurrent was built at laboratory scale and parameters such as: number of theoretical plates, height equivalent to a theoretical plate, type of packing, total height of column, production of H 15 NO 3 /week, obtained under isotope dynamic equilibrium conditions, were studied in comparison to those in the literature. (Author) [pt

  3. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  4. A TIMS-based method for the high precision measurements of the three-isotope potassium composition of small samples

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel; Bizzarro, Martin

    2011-01-01

    A novel thermal ionization mass spectrometry (TIMS) method for the three-isotope analysis of K has been developed, and ion chromatographic methods for the separation of K have been adapted for the processing of small samples. The precise measurement of K-isotopes is challenged by the presence of ...

  5. Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method

    International Nuclear Information System (INIS)

    Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.

    2010-01-01

    Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes

  6. Approximate method of calculation of non-equilibrium flow parameters of chemically reacting nitrogen tetroxide in the variable cross-section channels with energy exchange

    International Nuclear Information System (INIS)

    Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.

    1986-01-01

    It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems

  7. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    Science.gov (United States)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  8. Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange

    International Nuclear Information System (INIS)

    Knochel, A.; Eggers, I.; Klatte, B.; Wilken, R. D.

    1985-01-01

    A process for enriching and separating heavy hydrogen isotopes having a heavy hydrogen cation (deuterium and/or tritium) from substance streams containing them, wherein the respectively present hydrogen isotopes are exchanged in chemical equilibria. A protic, acid solution containing deuterium and/or tritium is brought into contact with a value material from the group of open-chained polyethers or aminopolyethers, macro-monocyclic or macro-polycyclic polyethers, macro-monocyclic or macro-polycyclic amino polyethers, and mixtures of these values, in their free or proton salt form to form a reaction product of the heavy hydrogen cation with the value or value salt and bring about enrichment of deuterium and/or tritium in the reaction product. The reaction product containing the value or value salt is separated from the solution. The separated reaction product is treated to release the hydrogen isotope(s) to be enriched in the form of deuterium oxide (HDO) and/or tritium oxide (HTO) by regenerating the value or its salt, respectively. The regenerated value is returned for reuse

  9. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    Science.gov (United States)

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  10. Measuring volatile organic compounds and stable isotopes emitted from trees and soils of the Biosphere 2 Rainforest

    Science.gov (United States)

    Meraz, J. C.; Meredith, L. K.; Van Haren, J. L. M.; Volkmann, T. H. M.

    2017-12-01

    Rainforest trees and soils play an important role in volatile organic compound (VOC) emissions. It is known that many rainforest tree species emit these organic compounds, such as terpenes, which can have an impact on the atmosphere and can be indicative of their metabolic functions. Some VOCs also absorb infrared radiation at wavelengths at which water isotopes are measured with laser spectrometers. Normal concentrations are not high enough for ambient sampling, but increased concentrations resulting from soil and plant samples extracted using equilibrium methods affect observed isotope ratios. There is thus a need to characterize volatile emissions from soil and plant samples, and to develop better methods to account for VOC interference during water isotope measurements. In this study, we collected soil and leaf samples from plants of the Biosphere 2 Rainforest Biome, a mesocosm system created to stimulate natural tropical rainforest habitats . Volatile concentrations were measured using a Gasmet DX4015 FTIR analyzer and a custom sampling system with sulfur hexafluoride (SF6) used as a tracer gas to test for leakage, and a commercial laser spectrometer was used for isotopic analysis. We determined that the different types of tree species emit different kinds of VOCs, such as isoprenes, alcohols, and aldehydes, that will potentially have to be accounted for. This study will help build the understanding of which organic compounds are emitted and develop new methods to test for water isotopes and gas fluxes in clear and precise measures. Such measures can help characterize the functioning of environmental systems such as the Biosphere 2 Rainforest Biome.

  11. Proceedings of the symposium on isotope geology progress: technology, methods, theory and application

    International Nuclear Information System (INIS)

    2003-11-01

    The symposium was held in Beijing, Nov. 7-11, and the proceedings collects 122 articles, the contents include: new technology and new methods on isotopic test; isotope fractionation mechanism; the early evolution of the solar system and the Earth; continental dynamics and evolution of orogenic belts; minerals, energy and water; major history events on life origin, evolution and geology; changes in the Earth's global and modern environment--the oceans, the atmosphere, rivers and lakes, karst and soil, ecological agriculture and modern environment

  12. Laser separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1981-01-01

    Method and apparatus for separating uranium isotopes are claimed. The method comprises the steps of irradiating a uranyl source material at a wavelength selective to a desired isotope and at an effective temperature for isotope spectral line splitting below about 77 deg.K., further irradiating the source material within the fluorescent lifetime of the source material to selectively photochemically reduce the excited isotopic species, and chemically separating the reduced isotope species from the remaining uranyl salt compound

  13. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  14. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1995-01-01

    This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati....... The resulting linear algebraic equations are solved by line-Gauss-Seidel....

  15. Isotopic characterization of uranium in soils of the Ipanema National Forest (FLONA-Ipanema)

    International Nuclear Information System (INIS)

    Silva, F.B.; Marques, F.H.; Enzweiler, J.; Ladeira, F.S.B.

    2015-01-01

    The National Forest of Ipanema (FLONA) is situated on a geological anomaly, known as 'Domo de Aracoiaba'. The soils of the area include Oxisols, Inceptsols and Alfisols. The amount of uranium and respective isotope activities in a soil depend on the parental rock and on the pedologic processes. The aim of this study was to investigate the activities for uranium isotopes ("2"3"8U, "2"3"4U, "2"3"5U) and the activity ratio (AR) "2"3"4U/ "2"3"8U or secular equilibrium for different soil types of the area collected at horizons A and B. The amount of uranium showed no significant differences for soils generated from alkaline intrusive rocks and sandstone, however, secular equilibrium was observed for Oxisol (RA = 1), while Inceptsol presented RA> 1 and the other soils, Alfisols, presented RA values <1. (author)

  16. Possibilities and scope of the double isotope effect method in the elucidation of mechanisms of enzyme catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H L; Medina, R [Technische Univ. Muenchen, Freising (Germany, F.R.). Lehrstuhl fuer Allgemeine Chemie und Biochemie

    1991-01-01

    Kinetic isotope effects on enzyme catalyzed reactions are indicative for the first irreversible in a sequence of individual steps. Hints on the relative velocities of other steps can only be obtained from the partitioning factor R and its dependence on external reaction conditions. In general, the experimental data needed are obtained from isotope abundance measurements in a defined position of the substrate or product as a function of turnover. This method does not reveal events dealing with neighbour atoms or preceding the main isotope sensitive step. In the method presented here, the analytical measurement is extended to the second atom involved in a bond fission of formation (Double Isotope Effect Method). It is shown that the additional results obtained support the identification of the main isotopically sensitive step and its relative contribution to the overall reaction rate, the identification of other kinetically significant steps and the differentiation between stepwise and concerted reaction mechanisms. The method and its advantages are demonstrated on reactions comprising C-N-bond splitting (urease and arginase reaction), C-C-bound fission (reactions catalyzed by pyruvate-dehydrogenase, pyruvate-formiate-lyase and lactate-oxidase), C-O-bound formation (ribulose-bisphosphate-oxygenase reaction), and N-O-bond fission (nitrate- and nitrite-reductase reactions). (orig.).

  17. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  18. Rawls’s Wide Reflective Equilibrium as a Method for Engaged Interdisciplinary Collaboration

    Science.gov (United States)

    Taebi, Behnam

    2017-01-01

    The introduction of new technologies in society is sometimes met with public resistance. Supported by public policy calls for “upstream engagement” and “responsible innovation,” recent years have seen a notable rise in attempts to attune research and innovation processes to societal needs, so that stakeholders’ concerns are taken into account in the design phase of technology. Both within the social sciences and in the ethics of technology, we see many interdisciplinary collaborations being initiated that aim to address tensions between various normative expectations about science and engineering and the actual outcomes. However, despite pleas to integrate social science research into the ethics of technology, effective normative models for assessing technologies are still scarce. Rawls’s wide reflective equilibrium (WRE) is often mentioned as a promising approach to integrate insights from the social sciences in the normative analysis of concrete cases, but an in-depth discussion of how this would work in practice is still lacking. In this article, we explore to what extent the WRE method can be used in the context of technology development. Using cases in engineering and technology development, we discuss three issues that are currently neglected in the applied ethics literature on WRE. The first issue concerns the operationalization of abstract background theories to moral principles. The second issue concerns the inclusiveness of the method and the demand for openness. The third issue is how to establish whether or not an equilibrium has been reached. These issues should be taken into account when applying the methods to real-world cases involving technological risks. Applying the WRE method in the context of engaged interdisciplinary collaboration requires sensitivity for issues of power and representativeness to properly deal with the dynamics between the technical and normative researchers involved as well as society at large. PMID:29657348

  19. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  20. Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (δ15N) as natural tracers.

    Science.gov (United States)

    Badillo, Daniel; Herzka, Sharon Z; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ(15)N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources.

  1. Comparison of isotope dilution and excretion methods for determining the half-life of ascorbic acid in the guinea pig

    International Nuclear Information System (INIS)

    Kipp, D.E.; Rivers, J.M.

    1984-01-01

    The half-life of ascorbic acid (AA) in guinea pigs was investigated by the isotope dilution and excretion methods. The dilution method measures [1-14C]AA disappearance from the plasma, whereas the excretion method measures the elimination of [1-14C]AA and the metabolites from the body. Two groups of animals underwent both isotope studies in reverse order. Animals were conditioned to the experimental procedures and fed 2.5 mg AA/100 g body weight orally to maintain a daily intake of the vitamin independent of food consumption. The two isotope procedures imposed similar stress on the animals, as determined by plasma cortisol levels and body weight changes. The AA half-life calculations of the rapidly exchangeable pool by the isotope dilution method yielded values of 1.23 and 0.34 hours for the two groups, respectively. The half-life of the slowly exchangeable pool for the two groups was 60.2 and 65.8 hours, respectively. The half-life of AA in the rapidly exchangeable pool, as measured by the excretion studies, was 4.57-8.75 hours. For the slowly exchangeable pool, it was 146-149 hours. The longer half-life of both pools obtained with the excretion method indicates that the isotope is disappearing from the plasma more rapidly than it is being excreted. This suggests that a portion of the [1-14C]AA leaving the plasma is removed to a body pool that is not sampled by the isotope excretion method

  2. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  3. Stable-isotope-enrichment program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    This paper has attempted to present a brief description of the production steps, from the selection and preparation of the initial feedstock to the recovery and distribution of the isotopically enriched materials. The facility suffers from the disadvantage of coping with utility and support systems that are rapidly becoming obsolescent and that the current operational level is insufficient to maintain sales inventory equilibrium. The electromagnetic isotope enrichment facility does, however, have the operational equipment and capability to almost triple the current production. This increased production can be achieved as rapidly as an expanded operational crew can be trained

  4. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  5. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  6. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  7. Testing isotopic labeling with [¹³C₆]glucose as a method of advanced glycation sites identification.

    Science.gov (United States)

    Kielmas, Martyna; Kijewska, Monika; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-01

    The Maillard reaction occurring between reducing sugars and reactive amino groups of biomolecules leads to the formation of a heterogeneous mixture of compounds: early, intermediate, and advanced glycation end products (AGEs). These compounds could be markers of certain diseases and of the premature aging process. Detection of Amadori products can be performed by various methods, including MS/MS techniques and affinity chromatography on immobilized boronic acid. However, the diversity of the structures of AGEs makes detection of these compounds more difficult. The aim of this study was to test a new method of AGE identification based on isotope (13)C labeling. The model protein (hen egg lysozyme) was modified with an equimolar mixture of [(12)C(6)]glucose and [(13)C(6)]glucose and then subjected to reduction of the disulfide bridges followed by tryptic hydrolysis. The digest obtained was analyzed by LC-MS. The glycation products were identified on the basis of characteristic isotopic patterns resulting from the use of isotopically labeled glucose. This method allowed identification of 38 early Maillard reaction products and five different structures of the end glycation products. This isotopic labeling technique combined with LC-MS is a sensitive method for identification of advanced glycation end products even if their chemical structure is unknown. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A simplified method for obtaining high-purity perchlorate from groundwater for isotope analyses.

    Energy Technology Data Exchange (ETDEWEB)

    vonKiparski, G; Hillegonds, D

    2011-04-04

    Investigations into the occurrence and origin of perchlorate (ClO{sub 4}{sup -}) found in groundwater from across North America have been sparse until recent years, and there is mounting evidence that natural formation mechanisms are important. New opportunities for identifying groundwater perchlorate and its origin have arisen with the utilization of improved detection methods and sampling techniques. Additionally, application of the forensic potential of isotopic measurements has begun to elucidate sources, potential formation mechanisms and natural attenuation processes. Procedures developed appear to be amenable to enable high precision stable isotopic analyses, as well as lower precision AMS analyses of {sup 36}Cl. Immediate work is in analyzing perchlorate isotope standards and developing full analytical accuracy and uncertainty expectations. Field samples have also been collected, and will be analyzed when final qa/qc samples are deemed acceptable.

  9. The use of trace element data to complement stable isotope methods in the characterization of grape musts

    International Nuclear Information System (INIS)

    Day, M.P.; Zhang, B.L.; Martin, G.J.

    1994-01-01

    Objective physico-chemical methods for the characterization of agricultural produce are important ways of providing impartial information on the composition and origin of food products. Of those techniques successful in this area, stable isotope analyses and especially Site Specific Natural Isotope Fractionation studied by nuclear magnetic resonance (SNIF-NMR) are among the most noteworthy. The use of this technique allows the determination of geographical origin of a variety of finished and raw materials in the food industry. The current capabilities of this technique in the wine industry allow the general area of production to be determined. Trace element concentrations have been analyzed for five regions of France (1989 vintage) in order to improve the accuracy of the SNIF-NMR method. When used in conjunction with stable isotope ratios, the elements Zn, Ca, Sr, and Mg increase the overall classification from 78% (with isotope data only) to 89%. (author)

  10. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  11. A moving mesh finite difference method for equilibrium radiation diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  12. A moving mesh finite difference method for equilibrium radiation diffusion equations

    International Nuclear Information System (INIS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-01-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation

  13. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  14. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  15. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  16. Development of precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ohno, Takeshi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2007-01-01

    We have developed precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector-ICP-mass spectrometry (MC-ICP-MS) for experimental and environmental studies of their behavior. In order to obtain precise isotopic data using MC-ICP-MS, the mass discrimination effect was corrected by an exponential law correction method. The resulting isotopic data demonstrated that highly precise isotopic analyses (better than 0.1 per mille as 2SD) could be achieved. We also adopted a de-solvating nebulizer system to improve the sensitivity. This system could minimize the water load into the plasma and provided about five times larger intensity of analyte than a conventional nebulizer system did. (author)

  17. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    in the soil, deviations from the equilibrium are more or less pronounced. We hypothesized that the 18Op is the result of other processes such the mineralization of organic P by phosphatases. These first results of 18Op on forest soils are suggesting that isotopic equilibrium driven by biological cycling (pyrophosphatase) is not always overprinting other processes. In addition, together with information on P speciation/concentration, 18Op seems to provide direct insights on P cycling at the ecosystem level. Blake R.E., Neil J.R.O., Surkov A.V. (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. American Journal of Science 305: 596-620 Moir J.O., Tiessen H. Characterization of available P by sequential extraction. Soil Sampling and Methods of Analysis, Second Edition. Ed. by M.R. Carter and E.G. Gregorich CRC Press 2007 Tamburini F., Pfahler V, Bünemann E.K., Guelland K., Bernasconi S.M., Frossard E. (2012) Oxygen Isotopes Unravel the Role of Microorganisms in Phosphate Cycling in Soils. Environmental Science & Technology 46: 5956-5962

  18. A reduction method for phase equilibrium calculations with cubic equations of state

    Directory of Open Access Journals (Sweden)

    D. V. Nichita

    2006-09-01

    Full Text Available In this work we propose a new reduction method for phase equilibrium calculations using a general form of cubic equations of state (CEOS. The energy term in the CEOS is a quadratic form, which is diagonalized by applying a linear transformation. The number of the reduction parameters is related to the rank of the matrix C with elements (1-Cij, where Cij denotes the binary interaction parameters (BIPs. The dimensionality of the problem depends only on the number of reduction parameters, and is independent of the number of components in the mixture.

  19. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  20. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  1. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  2. Lead isotope in mineral exploration

    International Nuclear Information System (INIS)

    Gulson, B.L.

    1986-01-01

    This book provides an up-to-date state-of-the-art review of lead isotopes in mineral exploration. Beginning with an historical review on suggested uses of lead isotopes in mineral exploration, the author then outlines the theoretical aspects of lead isotopes and illustrates that the method is based on well-known principles of radioactive decay, from which isotopic signatures for different styles of mineralization are derived. The varying isotopic signatures are then introduced. The major part of the book details over 40 case histories for base and precious metals, uranium and tin using sampling media such as sulfides, gossans, soils, weathered bedrock, vegetation and groundwaters. Advantages and disadvantages of each are discussed. Examples are given of the use of lead isotopes in testing conceptual models for exploration. The success rate and cost-effectiveness of the method are illustrated by actual exploration examples. Analytical advances which should lower the cost of the method and future uses are outlined. Many of the case histories use recently published or unpublished data, 27 tables of which are given in an appendix. Details of sampling, the methods for obtaining the isotope ratios, and a commercially-available integrated lead isotope service are also provided. (Auth.)

  3. Stable Isotope Systematics of Martian Perchlorate

    Science.gov (United States)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  4. The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil or sediment

    NARCIS (Netherlands)

    Beelen P van; Verbruggen EMJ; Peijnenburg WJGM; ECO

    2002-01-01

    The equilibrium partitioning method (EqP-method) can be used to derive environmental quality standards (like the Maximum Permissible Concentration or the intervention value) for soil or sediment, from aquatic toxicity data and a soil/water or sediment/water partitioning coefficient. The validity of

  5. Rate of radiocarbon retention onto calcite by isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, Janne; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2016-11-01

    Radiocarbon ({sup 14}C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO{sub 3}) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of {sup 14}C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  6. Rate of radiocarbon retention onto calcite by isotope exchange

    International Nuclear Information System (INIS)

    Lempinen, Janne; Lehto, Jukka

    2016-01-01

    Radiocarbon ( 14 C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO 3 ) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of 14 C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  7. Averaged description of 3D MHD equilibrium

    International Nuclear Information System (INIS)

    Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.

    2001-01-01

    A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential

  8. A Computational Method for Determining the Equilibrium Composition and Product Temperature in a LH2/LOX Combustor

    Science.gov (United States)

    Sozen, Mehmet

    2003-01-01

    In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.

  9. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    Science.gov (United States)

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Equilibrium problems for Raney densities

    Science.gov (United States)

    Forrester, Peter J.; Liu, Dang-Zheng; Zinn-Justin, Paul

    2015-07-01

    The Raney numbers are a class of combinatorial numbers generalising the Fuss-Catalan numbers. They are indexed by a pair of positive real numbers (p, r) with p > 1 and 0 0 and similarly use both methods to identify the equilibrium problem for (p, r) = (θ/q + 1, 1/q), θ > 0 and q \\in Z+ . The Wiener-Hopf method is used to extend the latter to parameters (p, r) = (θ/q + 1, m + 1/q) for m a non-negative integer, and also to identify the equilibrium problem for a family of densities with moments given by certain binomial coefficients.

  11. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  12. Teaching Chemical Equilibrium with the Jigsaw Technique

    Science.gov (United States)

    Doymus, Kemal

    2008-03-01

    This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).

  13. Deuterium kinetic isotope effects in the 1,4-dimethylenecyclohexane boat cope rearrangement

    International Nuclear Information System (INIS)

    Gajewski, J.J.; Jimenez, J.L.

    1986-01-01

    In order to examine the extent of bond making in the boat-like 3,3-sigmatropic shift transition states, trans-2,3-dimethyl-1,4-dimethylenecyclohexane (T) and its exomethylene tetradeuteria derivative (TXD) were prepared. The 3,3-shift of TXD at 305 0 C results in interconversion of starting material, 5,5,6,6-tetradeuterio-trans-2,3-dimethyl-1,4-dimethylene-cyclohexane (TND), and 2,2,3,3-tetradeuterio-anti-1,4-diethylidenecyclohexane (AD). A kinetic analysis of the first-order rate equations for the three-component system in both protio and deuterio species by numerical integration of the data and simplex minimization of the rate constants with symmetry and the assumption of no equilibrium or kinetic isotope effect on the TND-AD reaction gives a bond making kinetic isotope effect of 1/1.04 (0.04). The equilibrium isotope effects observed are 1/1.16 (0.04) so that the extent of bond formation in this boat-like bicyclo[2.2.2]octyl transition state is roughly 25%, a value to be compared with ca. 67% in chair-like acyclic 3,3-shift transition states. This rules out significant intervention of a bicyclo[2.2.2]octane-1,4-diyl intermediate or transition state. 30 references, 6 figures, 4 tables

  14. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    International Nuclear Information System (INIS)

    Grossmann, E.L.

    1984-01-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta 13 C of bicarbonate ion and thus aragonite-HCO 3 - and calcite-HCO 3 - isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in 18 O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar delta 13 C values and yield an average epsilonsub(cl-b) value of -0.2 +- 0.1 per mille between 8 deg and 10 deg C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B, argentea, Slope and Basin dwellers, are -0.7 +- 0.1 per mille enriched relative to ambient bicarbonate for 3 to 9 deg C. (author)

  15. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum

    International Nuclear Information System (INIS)

    Fry, B.; Gest, H.; Hayes, J.M.

    1984-01-01

    Small inverse isotope effects of 1-3 per thousand were consistently observed for the oxidation of sulfide to elemental sulfur during anaerobic photometabolism by Chromatium vinosum. The inverse fractionation can be accounted for by an equilibrium isotope effect between H 2 S and HS - , and may indicate that C. vinosum (and other photosynthetic bacteria) utilizes H 2 S rather than HS - as the substrate during sulfide oxidation. (Auth.)

  16. Isotopic methods or immuno diagnosis: The Radioimmunoassay and immunoradiometric assay

    International Nuclear Information System (INIS)

    Caso, R.

    1997-01-01

    This work offers an explanation about the more used isotopic techniques for immuno diagnosis: the radioimmunoassay (RIA) and immunoradiometric assay (IRMA). It describes the basic principles of these assays, the antigen-antibody reaction, the radioiodination methods with I-125 for antigens and antibodies, the purification and characterization of labelled compounds. On the order hand they present work gives a review of the methods for separate the bound and free fractions. At the end it offers the principles of the quality control of immunoassay and the future lines of research in the field of RIA and IRMA

  17. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  18. Uranium Isotopes in Calcium Carbonate: A Possible Proxy for Paleo-pH and Carbonate Ion Concentration?

    Science.gov (United States)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.

    2015-12-01

    Natural variations of 238U/235U in marine carbonates are being explored as a paleoredox proxy. However, in order for this proxy to be robust, it is important to understand how pH and alkalinity affect the fractionation of 238U/235U during coprecipitation with calcite and aragonite. Recent work suggests that the U/Ca ratio of foraminiferal calcite may vary with seawater [CO32-] concentration due to changes in U speciation[1]. Here we explore analogous isotopic consequences in inorganic laboratory co-precipitation experiments. Uranium coprecipitation experiments with calcite and aragonite were performed at pH 8.5 ± 0.1 and 7.5 ± 0.1 using a constant addition method [2]. Dissolved U in the remaining solution was periodically collected throughout the experiments. Samples were purified with UTEVA resin and 238U/235U was determined using a 233U-236U double-spike and MC-ICP-MS, attaining a precision of ± 0.10 ‰ [3]. Small but resolvable U isotope fractionation was observed in aragonite experiments at pH ~8.5, preferentially enriching heavier U isotopes in the solid phase. 238U/235U of the dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00002 - 1.00009. In contrast, no resolvable U isotope fractionation was detected in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among dissolved U species is the most likely mechanism driving these isotope effects. Our quantitative model of this process assumes that charged U species are preferentially incorporated into CaCO3 relative to the neutral U species Ca2UO2(CO3)3(aq), which we hypothesize to have a lighter equilibrium U isotope composition than the charged U species. According to this model, the magnitude of U isotope fractionation should scale with the fraction of the neutral U species in the solution, in agreement with our experimental results. These findings suggest that U isotope variations in

  19. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.

    2009-04-23

    Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO 2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO 2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical-analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems. © 2009 Springer Science+Business Media B.V.

  20. Simulation of startup period of hydrogen isotope separation distillation column

    International Nuclear Information System (INIS)

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, Eh.P.

    2003-01-01

    Kinetic procedure for the mathematical simulation of start-up regime of rectification columns for molecular hydrogen isotope separation was developed. Nonstationary state (start-up period) of separating column for rectification of multi-component mixture was calculated. Full information on equilibrium and kinetic physicochemical properties of components in separating mixtures was used for the calculations. Profile of concentration of components by height of column in task moment of time was calculated by means of differential equilibriums of nonstationary mass transfer. Calculated results of nonstationary state of column by the 2 m height, 30 mm diameter during separation of the mixture: 5 % protium, 70 % deuterium, 25 % tritium were illustrated [ru

  1. Detecting isotopic ratio outliers

    Science.gov (United States)

    Bayne, C. K.; Smith, D. H.

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.

  2. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1986-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers

  3. A new cascade method for studying isotope effect in chemical exchange system without valance change

    International Nuclear Information System (INIS)

    Wen Xiaoning; Luo Wenzong

    1987-01-01

    A new cascade method for studying isotope effect in chemical exchange system without valance change is developed and described. This method is simple to use and consumes less extractant as compared with the commonly used Woodward method. It is also convenient for unstable systems

  4. Reconstruction of prehistoric plant production and cooking practices by a new isotopic method

    Energy Technology Data Exchange (ETDEWEB)

    Hastorf, C A [California Univ., Los Angeles (USA). Dept. of Anthropology; DeNiro, M J [California Univ., Los Angeles (USA). Dept. of Earth and Space Sciences

    1985-06-06

    A new method is presented based on isotopic analysis of burnt organic matter, allowing the characterization of previously unidentifiable plant remains extracted from archaeological contexts. The method is used to reconstruct prehistoric production, preparation and consumption of plant foods, as well as the use of ceramic vessels, in the Upper Mantaro Valley region of the central Peruvian Andes.

  5. Isotope exchange kinetic of phosphorus in soils from Pernambuco State -Brazil; Cinetica de diluicao isotopica de fosforo em solos de Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, F J.B. de

    1989-12-01

    The applicability of isotopic exchange kinetics of {sup 32} p to characterize phosphorus available to plants and to diagnose the reactivity of soil-fertilizer-P in six soils from Pernambuco is described. This methodology was compared with anion exchange resin, isotopic exchange equilibrium methods (E-value and L-value) and P absorption by plants. The first greenhouse experiment had the following treatments: (1) with P and, (2) with addition of 43.7 mg P/Kg of soil, incubated for O, 42 and 84 days before seeding. The kinetic of isotopic exchange (KIE), resin-P and E-value were determined before seeding and after harvesting pearl millet grown for 42 days. Results indicated that the KIE parameters rated the soils more efficiently, in terms of available P and soil-fertilizer-P reactivity, than resin-P, E-value and L-value. (author). 38 refs, 2 figs, 18 tabs.

  6. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    Science.gov (United States)

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  7. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  8. Modeling of the equilibrium of a tokamak plasma

    International Nuclear Information System (INIS)

    Grandgirard, V.

    1999-12-01

    The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)

  9. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2014-01-01

    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  10. Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of α-hexachlorocyclo-hexane in the environment.

    Science.gov (United States)

    Badea, Silviu-Laurentiu; Vogt, Carsten; Gehre, Matthias; Fischer, Anko; Danet, Andrei-Florin; Richnow, Hans-Hermann

    2011-05-30

    α-Hexachlorocyclohexane (α-HCH) is the only chiral isomer of the eight 1,2,3,4,5,6-HCHs and we have developed an enantiomer-specific stable carbon isotope analysis (ESIA) method for the evaluation of its fate in the environment. The carbon isotope ratios of the α-HCH enantiomers were determined for a commercially available α-HCH sample using a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) system equipped with a chiral column. The GC-C-IRMS measurements revealed δ-values of -32.5 ± 0.8‰ and -32.3 ± 0.5‰ for (-) α-HCH and (+) α-HCH, respectively. The isotope ratio of bulk α-HCH was estimated to be -32.4 ± 0.6‰ which was in accordance with the δ-values obtained by GC-C-IRMS (-32.7 ± 0.2‰) and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) of the bulk α-HCH (-32.1 ± 0.1‰). The similarity of the isotope ratio measurements of bulk α-HCH by EA-IRMS and GC-C-IRMS indicates the accuracy of the chiral GC-C-IRMS method. The linearity of the α-HCH ESIA method shows that carbon isotope ratios can be obtained for a signal size above 100 mV. The ESIA measurements exhibited standard deviations (2σ) that were mostly IRMS method, the isotope compositions of individual enantiomers in biodegradation experiments of α-HCH with Clostridium pasteurianum and samples from a contaminated field site were determined. The isotopic compositions of the α-HCH enantiomers show a range of enantiomeric and isotope patterns, suggesting that enantiomeric and isotope fractionation can serve as an indicator for biodegradation and source characterization of α-HCH in the environment. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  12. Atomic and molecular isotope separation

    International Nuclear Information System (INIS)

    Melamed, N.T.

    1979-01-01

    A method for differentially exciting a selected isotopic species in a mixture of isotopic species is described characterized in that almost the entire isotopic mixture is placed in an excited gaseous state; and a preselected isotopic species is then selectively de-excited through stimulated emission

  13. Double isotopic method using dansyl chloride for the determination of GABA in rat C6 astrocytoma cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, R.L.; Quay, W.B.; Perez-Polo, J.R.

    1986-01-01

    Methods are described for the quantitative measurement of GABA in culture. The method can be adapted to any amino acid or dansyl-chloride-reactive species. The sensitivity and selectivity of the procedure result from the double isotopic design in which (/sup 14/C)-labeled internal standard was added to the samples before reaction with (3M)-labeled dansyl chloride. Values obtained by ion-exchange amino acid analysis of cultures agree closely with the values obtained by the double isotopic method. This method is sensitive enough to measure GABA intracellularly and the condition medium.

  14. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of ...

  15. Study of Thermal Equilibrium in Heavy Ion Collisions via the Ma Coincidence Method - Test of Applicability

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2002-01-01

    The coincidence method of judging whether a system reached thermal equilibrium is shortly presented. It is used on the model data to test, whether it is applicable in the low-relativistic energy range. Also, the cuts corresponding to real detectors are introduced and their influence is briefly discussed. (author)

  16. Gibbs equilibrium averages and Bogolyubov measure

    International Nuclear Information System (INIS)

    Sankovich, D.P.

    2011-01-01

    Application of the functional integration methods in equilibrium statistical mechanics of quantum Bose-systems is considered. We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. We consider some problems related to integration with respect to this measure

  17. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  18. Isotopic shifts in chemical exchange systems. 1. Large isotope effects in the complexation of Na+ isotopes by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1981-01-01

    The complexation of 24 Na + and 22 Na + by 18 of the most widely used macrocyclic polyethers (crown ethers and monocyclic and bicyclic aminopolyethers) has been investigated in view of possible equilibrium isotope shifts. Solvated salts and polyether complexes were distributed differently into two phases and isotope ratios determined in both phases. Chloroform/water systems were shown to be particularly suitable to the investigations allowing favorable distribution for Na + and 13 of the 18 polyethers employed. With crown ethers 24 Na + enrichment varied from nonsignficant values (for large crown ethers) up to 3.1 +- 0.4% (18-crown-6). In the case of bicyclic aminopolyethers, ligands with cages of optimum size to accommodate Na + showed 24 Na + enrichment between O (nonsignificant) (2.2/sub B/2./sub B/) and 5.2 +- 1.8% (2.2.1). In contrast, for 2.2.2. and its derivatives, being too large for Na + , 22 Na + enrichment varying from O (nonsignificant) (2.2.2.p) up to 5.4 +- 0.5% (2.2.2.) has been observed. These values are remarkably high. They are explained by different bonding in solvate structure and polyether complex by using the theoretical approach of Bigeleisen

  19. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    Science.gov (United States)

    Bullen, Tomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  20. Measurement of plant and soil water isotope composition by direct equilibration methods

    Science.gov (United States)

    Scrimgeour, C. M.

    1995-11-01

    Water contained in plant and soil samples can be analysed for 2H and 18O content by direct equilibration while contained within the sample matrix. Methods for this are described and compared with the commonly used azeotropic distillation of samples before isotope analysis. For δ18O, direct equilibration with CO 2 gives results in good agreement with azeotropic distillation, i.e. within 0.5%o at natural abundance. Direct equilibration is a practical method for individual twig samples containing less than 0.5 ml of water, and offers significant operator time savings compared with azeotropic distillation. Batches of up to 100 samples can be prepared in less time than required for a single azeotropic distillation, and analysis by automated continuous-flow isotope ratio mass spectrometry after equilibration for 3 days again requires a minimum of operator time. Complete equilibration of plant water with H 2 for δ2H measurement occurs only after the plant material has been heated to 100°C under vacuum. The method described here is barely precise enough for natural abundance measurements ( δ 2H ± 15‰ ) but is well suited to field tracer studies with deuterium oxide.

  1. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    International Nuclear Information System (INIS)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-01-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si 0.5 Ge 0.5 . It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si 0.5 Ge 0.5 transistors by 45% compared to conventional lead methods

  2. Dose estimation by simultaneous measurement of the radon/thoron concentration and the equilibrium factors in air using a passive dosemeter

    International Nuclear Information System (INIS)

    Urban, M.

    1984-03-01

    Responsible for an increased radiation exposure is the inhalation of radon and its short lived daughters. A time integrating passive dosemeter was developed to determine the concentrations of the radon isotopes as well as their equilibrium factors. The α energy spectrum inside a dosemeter is measured by means of a nuclear track detector. The concentrations in air and the equilibrium factors are calculated by using a new mathematical dosemeter model. A small pilot study in houses was done to test the dosemeter. (orig.) [de

  3. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  4. Validation of a dual-isotope plasma ratio method for measurement of cholesterol absorption in rats

    International Nuclear Information System (INIS)

    Zilversmit, D.B.; Hughes, L.B.

    1974-01-01

    Several methods for measuring cholesterol absorption in the rat have been compared. After administration of an oral dose of labeled cholesterol ( 14 C or 3 H) and an intravenous dose of colloidal labeled cholesterol ( 3 H or 14 C) the ratio of the two labels in plasma or whole blood 48 hr or more after dosing compared closely to the ratio of areas under the respective specific activity-time curves. The area ratio method is independent of a time lag between the appearance of oral and intravenous label in the bloodstream. Both measures of cholesterol absorption agree fairly well with a method based on measuring the unabsorbed dietary cholesterol in a pooled fecal sample. The plasma isotope ratio method gave more reproducible results than the fecal collection method when the measurement was repeated in the same animals 5 days after the first measurement. Cholesterol absorption was overestimated by the use of Tween 20-solubilized labeled cholesterol for the intravenous dose. The plasma disappearance curves of injected labeled colloidal cholesterol and cholesterol-labeled chylomicrons infused intravenously over a 3.5-h period in the same animal coincided within experimental error from the first day until 75 days after injection. The plasma isotope ratio method for cholesterol absorption gave the same results in rats practicing coprophagy as in those in which this practice was prevented. The addition of sulfaguanidine to the diet lowered cholesterol absorption as measured by the plasma isotope ratio to the same degree as that measured by the fecal collection method. (U.S.)

  5. Use of the nonsteady monotonic heating method for complex determination of thermophysical properties of chemically reacting mixture in the case of non-equilibrium proceeding of the chemical reaction

    International Nuclear Information System (INIS)

    Serebryanyj, G.Z.

    1984-01-01

    Theoretical analysis is made for the monotonic heating method as applied for complex determination of thermophysical properties of chemically reacting gases. The possibility is shown of simultaneous determination of frozen and equilibrium heat capacity, frozen and equilibrium heat conduction provided non-equilibrium occuring of the reaction in the wide range of temperatures and pressures. The monotonic heating method can be used for complex determination of thermophysical properties of chemically reacting systems in case of non-equilibrium proceeding of the chemical reaction

  6. Environmental hydrochemical and stabile isotope methods used to characterise the relation between karst water and surface water

    Directory of Open Access Journals (Sweden)

    Romeo Eftimi

    2017-03-01

    Full Text Available Karst aquifers are characterized by high heterogeneity of groundwater flow. The classical study methods such as boreholes, pumping tests, and point observations give important data but cannot be extended to the entire aquifer. However the environmental hydrochemical and stabile isotope methods could give important information about large scale aquifer characterization. Some study examples from Albania, shown in this paper, demonstrate the successful application of the isotope methods, which are more powerful if applied in combination with hydrochemical ones, for the identification of the karst water recharge sources. Among the isotope methods the altitude effect seems to be more indicative for the solution of the problem concerned. For characterising the lithology of karst rocks and the physical aspects of karst aquifers (type of groundwater flow the combined use of some hydrochemical parameters like the water conductivity, total hardness, ionic ratios rCa/ rMg, rSO4/r/mg, CO2 pressure and the indexes of calcite and (Sic and of dolomite saturation (Sid, result very useful.

  7. Thermodynamic Modeling and Optimization of the Copper Flash Converting Process Using the Equilibrium Constant Method

    Science.gov (United States)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang

    2018-05-01

    Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively.

  8. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs

  9. Isotope inequilibrium of glucose metabolites in intact cells and particlefree supernatants of Ehrlich ascites tumor

    International Nuclear Information System (INIS)

    Daehnfeldt, J.L.; Winge, P.

    1975-01-01

    With an enzyme degradative technique, isotope inequilibrium of glucose metabolites was demonstrated in intact cells and particle-free supernatants of Ehrlich ascites tumor using I- 14 C-glucose as tracer. Inequilibrium was found between glucose and glucose-6-phosphate, glucose and fructose-6-phosphate, glucose and 6-phosphogluconate, while glucose-6-phosphate and fructose-6-phosphate were found to be in near equilibrium within the incubation time investigated. Glucose and lactate were found to be in near equilibrium after 8 min in intact cells. Calculations based on the equilibrium levels found, showed that these inequilibria could not be explained by the effects of the pentose cycle. (U.S.)

  10. Equilibrium and non-equilibrium phenomena in arcs and torches

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.

    2000-01-01

    A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.

  11. Magnesium isotopic composition of the Earth and chondrites

    Science.gov (United States)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites

  12. Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport

    International Nuclear Information System (INIS)

    Lynch, J.E.

    1985-01-01

    Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs

  13. Hydrogen-isotopic composition of some hydrous manganese minerals

    International Nuclear Information System (INIS)

    Hariya, Y.; Tsutsumi, M.

    1981-01-01

    Initial data on the hydrogen-isotopic compositions in hydrous Mn minerals from various occurrences fall in a wide range from -298 to -84per thousand, relative to SMOW. deltaD-values of todorokite and cryptomelane from Tertiary deposits show -89 and -150per thousand. 10 A-manganite and delta-MnO 2 from deep-sea nodules have relatively restricted deltaD-values ranging from -96 to -84per thousand. The deltaD-values for manganese bog ores from recent hot springs show almost -105per thousand. It is recognized that the isotopic values obtained for the deep-sea nodules and recent bog ores are slightly different ranged. Manganite and groutite are unique in their hydrogen-isotopic compositions, having the most depleted deltaD-values ranging from -298 to -236per thousand. MnO(OH) minerals are more deuterium-depleted hydrous minerals than any other hydrothermal minerals from various ore deposits. Hydrogen-isotope fractionation factors between manganite and water were experimentally determined to be 0.7894, 0.7958 and 0.8078 at 150 0 , 200 0 and 250 0 C respectively. The present experimental results indicate that if manganites were formed at temperatures below 250 0 C, under isotopic equilibrium conditions most of the manganite mineralization in the Tertiary manganese deposits must have precipitated from meteoric hydrothermal solutions. (Auth.)

  14. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  15. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    Science.gov (United States)

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  16. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    Science.gov (United States)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  17. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    Science.gov (United States)

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Intermittent many-body dynamics at equilibrium

    Science.gov (United States)

    Danieli, C.; Campbell, D. K.; Flach, S.

    2017-06-01

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.

  19. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  20. Isothermal and non-isothermal conditions of isotope separation by chemical exchange method

    International Nuclear Information System (INIS)

    Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.

    1992-01-01

    The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)

  1. On price equilibrium with multi-product firms

    NARCIS (Netherlands)

    Z. Sándor (Zsolt)

    2004-01-01

    textabstractIn this paper we provide a result that shows existence and uniqueness of Nash equilibrium in cases in which existent methods are problematic to apply. We employ this result to the model with simple logit demand, and show existence and uniqueness of price equilibrium when firms produce

  2. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    International Nuclear Information System (INIS)

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-01-01

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept

  3. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Andrew J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Capo, Rosemary C. [Univ. of Pittsburgh, PA (United States); Stewart, Brian W. [Univ. of Pittsburgh, PA (United States); Phan, Thai T. [Univ. of Pittsburgh, PA (United States); Jain, Jinesh C. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hakala, Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Guthrie, George D. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-09-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  4. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, Jacqueline Alexandra [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-11-22

    This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.

  5. Discovery of the cadmium isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Thoennessen, M.

    2010-01-01

    Thirty-seven cadmium isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  6. Discovery of the iron isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Twenty-eight iron isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  7. Discovery of the silver isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Ginepro, J.Q.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Thirty-eight silver isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  8. Isotope applications in the environmental field

    International Nuclear Information System (INIS)

    DeWitt, R.

    1978-01-01

    Established uses of enriched isotopes in the environmental field were surveyed to determine future trends in isotope needs. Based on established isotope uses, on the projected increase in the pollution problem, and on the apparent social and economic pressure for pollution abatement, a significant demand for enriched isotopes appears to be developing for the assessment and control of air, water, and soil pollutants. Isotopic techniques will be used in combination with conventional methods of detection and measurement, such as gas chromatography, x-ray fluorescence, and atomic absorption. Recent advances in economical isotope separation methods, instrumentation, and methodology promise to place isotopic technology within the reach of most research and industrial institutions. Increased application of isotope techniques appears most likely to occur in areas where data are needed to characterize the movement, behavior, and fate of pollutants in the environment

  9. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  10. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu, E-mail: heyuyhe@gmail.com; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-11-24

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si{sub 0.5}Ge{sub 0.5}. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si{sub 0.5}Ge{sub 0.5} transistors by 45% compared to conventional lead methods.

  11. Preservation Methods Alter Carbon and Nitrogen Stable Isotope Values in Crickets (Orthoptera: Grylloidea).

    Science.gov (United States)

    Jesus, Fabiene Maria; Pereira, Marcelo Ribeiro; Rosa, Cassiano Sousa; Moreira, Marcelo Zacharias; Sperber, Carlos Frankl

    2015-01-01

    Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ15N, δ13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ13C and δ15N and C/N atomic values. Chemical preservatives caused δ13C enrichment as great as 1.5‰, and δ15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ15N depletion up to 1.8‰. Freezing depleted δ13C and δ15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets.

  12. Preservation Methods Alter Carbon and Nitrogen Stable Isotope Values in Crickets (Orthoptera: Grylloidea.

    Directory of Open Access Journals (Sweden)

    Fabiene Maria Jesus

    Full Text Available Stable isotope analysis (SIA is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i freshly processed (control; preserved in fuel ethanol for (ii 15 and (iii 60 days; preserved in commercial ethanol for (iv 15 and (v 60 days; fresh material frozen for (vi 15 and (vii 60 days. After oven drying, samples were analyzed for δ15N, δ13C values, N(%, C(% and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ13C and δ15N and C/N atomic values. Chemical preservatives caused δ13C enrichment as great as 1.5‰, and δ15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ15N depletion up to 1.8‰. Freezing depleted δ13C and δ15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls. We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets.

  13. A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease*

    Science.gov (United States)

    Englander, S. Walter

    2012-01-01

    A new method for measuring the hydrogen exchange of macromolecules in solution is described. The method uses tritium to trace the movement of hydrogen, and utilizes Sephadex columns to effect, in about 2 minutes, a separation between tritiated macromolecule and tritiated solvent great enough to allow the measurement of bound tritium. High sensitivity and freedom from artifact is demonstrated and the possible value of the technique for investigation of other kinds of colloid-small molecule interaction is indicated. Competition experiments involving tritium, hydrogen, and deuterium indicate the absence of any equilibrium isotope effect in the ribonuclease-hydrogen isotope system, though a secondary kinetic isotope effect is apparent when ribonuclease is largely deuterated. Ribonuclease shows four clearly distinguishable kinetic classes of exchangeable hydrogens. Evidence is marshaled to suggest the independently measurable classes II, III, and IV (in order of decreasing rate of exchange) to represent “random-chain” peptides, peptides involved in α-helix, and otherwise shielded side-chain and peptide hydrogens, respectively. PMID:14075117

  14. APPLICATION OF A GENERALIZED MAXIMUM LIKELIHOOD METHOD IN THE REDUCTION OF MULTICOMPONENT LIQUID-LIQUID EQUILIBRIUM DATA

    Directory of Open Access Journals (Sweden)

    L. STRAGEVITCH

    1997-03-01

    Full Text Available The equations of the method based on the maximum likelihood principle have been rewritten in a suitable generalized form to allow the use of any number of implicit constraints in the determination of model parameters from experimental data and from the associated experimental uncertainties. In addition to the use of any number of constraints, this method also allows data, with different numbers of constraints, to be reduced simultaneously. Application of the method is illustrated in the reduction of liquid-liquid equilibrium data of binary, ternary and quaternary systems simultaneously

  15. Isotopic perturbation of degeneracy. Carbon-13 nuclear magnetic resonance spectra of dimethylcyclopentyl and dimethylnorbornyl cations

    International Nuclear Information System (INIS)

    Saunders, M.; Telkowski, L.; Kates, M.R.

    1977-01-01

    The large chemical shifts in 13 C NMR were used to measure the deuterium induced splittings and shifts in the 1 H NMR spectra of dimethylcyclopentyl and dimethylnorbornyl cations, where the deuterium perturbs the degenerate equilibrium. The isotope splitting obtained are tabulated

  16. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  17. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  18. Equilibrium and Kinetic Studies of Systems of Hydrogen Isotopes, Lithium Hydrides, Aluminum and LiAlO2

    International Nuclear Information System (INIS)

    Owen, J.H.

    2001-01-01

    This paper described measurements of (1) the distribution of tritium and helium throughout both phases of irradiated Li-Al alloy, (2) the migration rate of tritium during moderate heating, (3) equilibrium pressures as functions of temperature of H2, D2, or T2 in contact with lithium hydrides + aluminum, Li-Al alloy, or irradiated Li-Al alloy, (4) the equilibrium constant for the reaction as a function of temperature, and (5) extraction rates of tritium from irradiated LiAlO2 targets at elevated temperatures

  19. Heterogeneous distribution of Zn stable isotopes in mice and applications to medical sciences

    Science.gov (United States)

    Moynier, F.; Fujii, T.; Shaw, A.; Le Borgne, M.

    2013-12-01

    Zinc is required for the function of more than 300 enzymes involved in many metabolic pathways, and is a vital micronutrient for living organisms. To investigate if Zn isotopes could be used to better understand metal homeostasis, as well as a biomarker for diseases, we assessed the distribution of natural Zn isotopes in various mouse tissues. We found that, with respect to Zn isotopes, most mouse organs are isotopically distinct and that the total range of variation within one mouse encompasses the variations observed in the Earth's crust. Therefore, biological activity must have a major impact on the distribution of Zn isotopes in inorganic materials. The most striking aspect of the data is that red blood cells and bones are enriched by ~0.5 per mil in 66Zn relative to 64Zn when compared to serum, and up to ~1 per mil when compared to the brain and liver. This fractionation is well explained by the equilibrium distribution of isotopes between different bonding environments of Zn in different organs. Differences in gender and genetic background did not appear to affect the isotopic distribution of Zn. Together, these results suggest that potential use of Zn isotopes as a tracer for dietary Zn, and for detecting disturbances in Zn metabolism due to pathological conditions.

  20. Standard test method for radiochemical determination of uranium isotopes in soil by alpha spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the determination of alpha-emitting uranium isotopes in soil. This test method describes one acceptable approach to the determination of uranium isotopes in soil. 1.2 The test method is designed to analyze 10 g of soil; however, the sample size may be varied to 50 g depending on the activity level. This test method may not be able to completely dissolve all forms of uranium in the soil matrix. Studies have indicated that the use of hydrofluoric acid to dissolve soil has resulted in lower values than results using total dissolution by fusion. 1.3 The lower limit of detection is dependent on count time, sample size, detector, background, and tracer yield. The chemical yield averaged 78 % in a single laboratory evaluation, and 66 % in an interlaboratory collaborative study. 1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, ass...

  1. Isotopic method for investigation of process of periodic sedimentation of argillaceous suspensions

    International Nuclear Information System (INIS)

    Kohman, L.; Woznicki, T.

    1976-01-01

    The process of periodic sedimentation of kaolinic suspension in water has been investigated, by isotopic tracer method. the tracer was either the irradiated matrix material or 198 Au, adsorbed on the kaolin grains. The velocity of suspension level lowering (the sedimentation curve) and the variation in density in vertical section of sediment layer have been determined. (author)

  2. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry

    International Nuclear Information System (INIS)

    Conway, Tim M.; Rosenberg, Angela D.; Adkins, Jess F.; John, Seth G.

    2013-01-01

    Graphical abstract: ‘Metal-free’ seawater doped with varying concentrations of ‘zero’ isotope standards, processed through our simultaneous method, and then analyzed by double spike MC-ICPMS for Fe, Zn and Cd isotope ratios. All values were determined within 2 σ error (error bars shown) of zero. -- Highlights: •The first simultaneous method for isotopic analysis of Fe, Zn and Cd in seawater. •Designed for 1 L samples, a 1–20 fold improvement over previous methods. •Low blanks and high precision allow measurement of low concentration samples. •Small volume and fast processing are ideal for high-resolution large-scale studies. •Will facilitate investigation of marine trace-metal isotope cycling. -- Abstract: The study of Fe, Zn and Cd stable isotopes (δ 56 Fe, δ 66 Zn and δ 114 Cd) in seawater is a new field, which promises to elucidate the marine cycling of these bioactive trace metals. However, the analytical challenges posed by the low concentration of these metals in seawater has meant that previous studies have typically required large sample volumes, highly limiting data collection in the oceans. Here, we present the first simultaneous method for the determination of these three isotope systems in seawater, using Nobias PA-1 chelating resin to extract metals from seawater, purification by anion exchange chromatography, and analysis by double spike MC-ICPMS. This method is designed for use on only a single litre of seawater and has blanks of 0.3, 0.06 and <0.03 ng for Fe, Zn and Cd respectively, representing a 1–20 fold reduction in sample size and a 4–130 decrease in blank compared to previously reported methods. The procedure yields data with high precision for all three elements (typically 0.02–0.2‰; 1σ internal precision), allowing us to distinguish natural variability in the oceans, which spans 1–3‰ for all three isotope systems. Simultaneous extraction and purification of three metals makes this method ideal for high

  3. Determination of gross plasma equilibrium from magnetic multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, C.E.

    1986-05-01

    A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies.

  4. Determination of gross plasma equilibrium from magnetic multipoles

    International Nuclear Information System (INIS)

    Kessel, C.E.

    1986-05-01

    A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies

  5. Laser isotope separation

    International Nuclear Information System (INIS)

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re and Tc

  6. Chemical equilibria relating the isotopic hydrogens at low temperatures

    International Nuclear Information System (INIS)

    Pyper, J.W.; Souers, P.C.

    1976-01-01

    Hydrogen fusion will require a fuel mixture of liquefied or frozen D 2 and T 2 . The composition of this fuel mixture is described by the equilibrium constant K/sub DT/. The theory of isotopic exchange reactions is discussed as applied to the hydrogen isotopes. A literature survey of the values of K/sub HD/, K/sub HT/, and K/sub DT/ found no values of K/sub DT/ for temperatures below 25 0 K and no values of K/sub HD/ and K/sub HT/ for temperatures below 50 0 K. The existing data are critically evaluated, and simplified formulas for the three equilibrium constants in the temperature range 50 to 300 0 K are derived from them. Harmonic approximation theory with rotational correction was used to calculate values of K/sub HD/, K/sub HT/, and K/sub DT/ in the temperature range 4.2 to 50 0 K. It is found that K/sub DT/ = 2.995 exp(-10.82/T) in the temperature range 16.7 to 33.3 0 K to an accuracy of 1%. Tables, graphs, and equations of K/sub HD/, K/sub HT/, and K/sub DT/ are given for the temperature range 4.2 to 50 0 K. 27 references, 14 tables, 8 figures

  7. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  8. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  9. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  10. A new method of accurate determination of isotopic composition and concentration of strontium in a spike solution used for geochronological works

    International Nuclear Information System (INIS)

    Yanagi, Takeru

    1990-01-01

    A new method of accurate determination of isotopic composition and concentration of a strontium-84 spike solution was devised for simultaneous determination of strontium contents and isotopic compositions in rocks and minerals by measuring strontium isotopic ratios in spiked samples. In this method, the isotopic composition of strontium in the spike were determined so as to minimize the sum of squares of deviations of spike strontium-84 concentrations which were calculated from measured isotopic ratios of strontium in five different mixtures of the spike and the standard solution. The method can eliminate all mass discriminations occurred during the measurements on a surface ionization mass spectrometer. The results were tested by measuring 87 Sr/ 86 Sr ratios of Eimer and Amend SrCO 3 and JB-1 geochemical reference material, and by determining the strontium content in JB-1. The measurements of strontium isotope ratios in spiked samples give average values of 0.708007±0.000052 and 0.70417±0.00004 for 87 Sr/ 86 Sr ratios of E and A SrCO 3 and JB-1, respectively. The strontium content in JB-1 was estimated at 457.1±1.3 ppm. These values are very close to reported respective values. (author)

  11. Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies

    Science.gov (United States)

    Descamps, Pascal

    2016-02-01

    In a previous paper (Descamps, P. [2015]. Icarus 245, 64-79), we developed a specific method aimed to retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elongated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures. The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics. Such synthetic irregular models are used to generate lightcurves from which our method is successfully applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random sphere.

  12. Determination of the separation factor of uranium isotopes by gaseous diffusion

    International Nuclear Information System (INIS)

    Bilous, O.; Counas, G.

    1958-01-01

    A 12-stage pilot separation cascade with a low output has been constructed to measure the separation factor of uranium isotopes by gaseous diffusion. The report describes some of the separation results obtained, and also provides information on the time necessary for equilibrium to be established and on the influence of various perturbations on the pressure profile in the cascade. (author) [fr

  13. A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method

    Science.gov (United States)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed

    2016-10-01

    The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.

  14. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  15. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1980-01-01

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235 UF 6 from 238 UF 6 . (U.K.)

  16. Isotopic depletion with Monte Carlo

    International Nuclear Information System (INIS)

    Martin, W.R.; Rathkopf, J.A.

    1996-06-01

    This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation

  17. Isotope methods for the control of food products and beverages

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, C; Reniero, F [Commission of the European Communities, Joint Research Centre, Ispra (Italy)

    2001-10-01

    The measurement of the stable isotope contents provides useful information for the detection of many frauds in food products. Nuclear magnetic resonance (NMR) and isotopic ratio mass spectroscopy (IRMS) are the two main analytical techniques used for the determination of stable isotope contents in food products. These analytical techniques have been considerably improved in the last years offering wider possibilities of applications for food analysis. A review of the applications for the control of food products and beverages is presented. The need for new reference materials is discussed. (author)

  18. Isotope methods for the control of food products and beverages

    International Nuclear Information System (INIS)

    Guillou, C.; Reniero, F.

    2001-01-01

    The measurement of the stable isotope contents provides useful information for the detection of many frauds in food products. Nuclear magnetic resonance (NMR) and isotopic ratio mass spectroscopy (IRMS) are the two main analytical techniques used for the determination of stable isotope contents in food products. These analytical techniques have been considerably improved in the last years offering wider possibilities of applications for food analysis. A review of the applications for the control of food products and beverages is presented. The need for new reference materials is discussed. (author)

  19. Study of the isotopic exchange associated with ionic exchange for the radiochemical separation of 233-Th

    International Nuclear Information System (INIS)

    Sepulveda Munita, C.J.A.

    1983-01-01

    The isotopic ion exchange procedure is applied in order to establish an analytical method for the determination of thorium by means of the 233 Th activity, when the presence of interfering elements does not allow a direct non-destructive activation analysis. The separation is based on the retention of 233 Th by a thorium saturated resin, due to the isotopic exchange effect, and subsequent elution of the interfering radioisotopes with a solution of thorium in diluted hydrochloric acid. The interfering elements were those which either present a great affinity for the resin or emit gamma rays with energies close to that of 233 Th (86.6 KeV), when a NaI(Tl) detector is used to obtain the gama-ray spectra of the irradiated samples. The equilibrium time for the thorium isotopic ion exchange and the distribution coefficients for the interfering elements were determined by using Bio-Rad AG 50W resins (100-200 mesh), with 4% to 8% of divinylbenzene. The best separation conditions were established in terms of the thorium and hydrochloric acid concentrations in the solution, the resin cross-linking degree, and the solution flow through the resin. The analytical method was applied to the determination of thorium in samples of ammonium diuranate as well in standard rock samples from the United States Geological Survey. The sensitivity, precision and accuracy of the method are also discussed. (Author) [pt

  20. Practical aspects of the environmental behavior of strontium isotopes

    International Nuclear Information System (INIS)

    Madelmont, Claude; Bittel, Robert; Daburon, Francois.

    1977-03-01

    The practical aspects of contamination patterns of the food chain by strontium isotopes are reviewed - plants with special emphasis on the consequences of irrigation (contamination level at equilibrium); dairy products and the adjustement of a general model to regional conditions (a table of quantitative parameters for some French regions is included); marine and freshwater products. One should keep in mind that transfer parameters may change with time and cannot be assessed definitively [fr

  1. Module description of TOKAMAK equilibrium code MEUDAS

    International Nuclear Information System (INIS)

    Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa

    2002-01-01

    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  2. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  3. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  5. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  6. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  7. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1976-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. In one embodiment, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by selective dissociation of said excited molecules by the absorption of a single photon of visible or ultraviolet light. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 11 Claims, 2 Drawing Figures

  8. A simple cleanup method for the isolation of nitrate from natural water samples for O isotopes analysis

    International Nuclear Information System (INIS)

    Haberhauer, G.; Blochberger, K.

    1999-09-01

    The analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. O-isotope nitrate analysis require sample free of other oxygen-containing compounds. More than 100 % of non-NO 3 - oxygen relative to NO 3 - oxygen can still be found in forest soil water samples after cleanup if improper cleanup strategies, e.g., adsorption onto activated carbon, are used. Such non-NO 3 - oxygen compounds will bias O-isotropic data. Therefore, an efficient cleanup method was developed to isolate nitrate from natural water samples. In a multistep cleanup procedure using adsorption onto water-insoluble poly(vinylpyrrolidone), removal of almost all other oxygen-containing compounds, such as fulvic acids, and isolation of nitrate was achieved. The method supplied samples free of non-NO 3 - oxygen which can be directly combusted to CO 2 for subsequent O-isotope analysis. (author)

  9. Real time equilibrium reconstruction for tokamak discharge control

    International Nuclear Information System (INIS)

    Ferron, J.R.; Walker, M.L.; Lao, L.L.; St John, H.E.; Humphreys, D.A.; Leuer, J.A.

    1998-01-01

    A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described. (author)

  10. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  11. Using a Spreadsheet Scroll Bar to Solve Equilibrium Concentrations

    Science.gov (United States)

    Raviolo, Andres

    2012-01-01

    A simple, conceptual method is described for using the spreadsheet scroll bar to find the composition of a system at chemical equilibrium. Simulation of any kind of chemical equilibrium can be carried out using this method, and the effects of different disturbances can be predicted. This simulation, which can be used in general chemistry…

  12. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    Science.gov (United States)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  13. Wide angle isotope separator

    International Nuclear Information System (INIS)

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  14. Geochemical and isotopic methods for management of artificial recharge in mazraha station (Damascus)

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.; Kadkoy, N.

    2009-11-01

    Artificial recharge of shallow groundwater at specially designed facilities is an attractive option increasing the storage capacity of potable water in arid and semi arid region such as Syria, Damascus Oasis. This operation needs integral management and detailed knowledge of groundwater dynamics and quantity and quality development of water. The objective of this study is to determine the temporal and spatial variations of chemical and environmental isotopic characteristics of groundwater during injection and recovery process. The geochemical and environmental isotope techniques are ideally suited for these investigations. 400 to 500 x10 3 m 3 of spring water were injected annually into the ambient groundwater in Mazraha station, Damascus Oasis, which is used later for drinking purpose. Native groundwater and injected water are calcium bicarbonate type with EC of about 850±100 μS/cm and 300±50 μS/cm respectively. The injected water is under saturated with respect to calcite, while ambient groundwater is over saturated and the mixed water is in equilibrium after injection. It was observed that The injection process created a dilution cloud decreasing chemical concentrations progressively that improve the groundwater quality. After completed injection, the dilution center moved about 200 m during 85 days to the south southeast according to the ambient groundwater flow path. Based on this observation, the hydraulic conductivity of the aquifer is estimated about 7.5±1.3x10 -4 m/s. The spatial distribution maps of CFC-11 and CFC-12, after injection, showed the same shape and flow direction of the spatial distribution of chemical elements. The effective diameter of artificial recharge is limited to about 250 m from the injection wells, as EC, Cl- and NO 3 - concentrations are effected significantly. Mixing ratio of 30% is required in order to lower nitrate concentration to less than 50 mg/l in native groundwater for potable water. Depending on pumping rate, the

  15. Isotope exchange reaction in Li2ZrO3 packed bed

    International Nuclear Information System (INIS)

    Kawamura, Y.; Enoeda, M.; Okuno, K.

    1998-01-01

    To understand the release behavior of bred tritium in a solid breeder blanket, the tritium transfer rate and tritium inventory for various mass transfer processes should be investigated. The contribution of the surface reactions (adsorption, desorption and two kinds of isotope exchange reactions) to the release process cannot be ignored. It is believed that two kinds of isotope exchange reactions (gaseous hydrogen-tritiated water and water vapor-tritiated water) occur on the surface of the solid breeder materials when hydrogen is added to the sweep gas to enhance the tritium release rate. The isotope exchange reaction study in H-D systems was carried out using a Li 2 ZrO 3 packed bed. The exchange reaction between gaseous hydrogen and water was the rate controlling step among the two kinds of exchange reactions. The reaction rate constants were quantified, and experimental equations were proposed. The equilibrium constant of the isotope exchange reaction in the H-D system was obtained from experimental data and was found to be 1.17. (orig.)

  16. Determination of the separation factor of uranium isotopes by gaseous diffusion; Determination des facteurs de separation des isotopes de l'uranium par diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, O; Counas, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A 12-stage pilot separation cascade with a low output has been constructed to measure the separation factor of uranium isotopes by gaseous diffusion. The report describes some of the separation results obtained, and also provides information on the time necessary for equilibrium to be established and on the influence of various perturbations on the pressure profile in the cascade. (author) [French] Une cascade pilote de 12 etages de separation a faible debit a ete construite pour mesurer le facteur de separation des isotopes de l'uranium par diffusion gazeuse. Le rapport decrit certains des resultats de separation obtenus et fournit egalement des donnees sur les temps de mise en equilibre et l'influence de diverses perturbations sur le profil des pressions dans la cascade. (auteur)

  17. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  18. Investigation of reaction equilibrium in reactor materials by EMF methods

    International Nuclear Information System (INIS)

    Ullmann, H.; Teske, K.; Reetz, T.; Rettig, D.; Kozlov, F.A.; Kuznecov, E.K.

    1979-01-01

    By means of electrochemical cells with solid electrolytes measurements of the chemical activities of oxygen and hydrogen in a sodium test loop were performed. The reaction equilibrium of oxygen and hydrogen in dilute solutions of sodium was investigated. The activities of both oxygen and hydrogen decrease with increasing concentration of the reaction partner. From the relation between the activivy of one component and the analytic concentration of the reaction partner the equilibrium constant of the reaction 0+H = OH was determinded to lg K sub(diss) = -(1,502+-0,216)-(1356+-140)/T. An electrochemical cell with an iron membrane and a solid electrolyte was used to measure the activity of carbon in a carborizing medium. The cell output was stable over a period of more than 1000 hours at a carbon activity of 1. (orig.) [de

  19. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  20. Evaluation of Isotope 32P Method to Mark Culex pipiens (Diptera: Culicidae in a Laboratory

    Directory of Open Access Journals (Sweden)

    Chongxing Zhang

    2016-01-01

    Full Text Available Background: The aim of the current study was to develop a marking technique as an internal marker to mark post blood meal mosquitoes by using stable phosphate isotope 32P and determine the optimal concentration of it.Methods: An isotonic physiological saline solution, containing different concentration of radioactive isotope 32P-labeled disodium phosphate (Na2H32PO4 was injected into rabbits via the jugular vein in the laboratory. Emerged Cx. pipiens were marked after feeding on rabbit. At the same time, the labeled conditions of emerged Cx. pipiens were also measured by placing feces of No. 6 rabbit into containers with mosquito larvae and pupae inside.Results: According to the label condition of Cx. pipiens after taking blood and the effect of different dosage Na2H32PO4 on rabbit health, the optimal concentration of radioactive isotope was determined, that is, 0.1211 mCi/kg. By placing feces of No. 6 rabbit into containers with mosquito larvae and pupae inside, the emerged mosquitoes were also labeled. Therefore, feeding mosquitoes on the animal injected with radioactive Na2H32PO4 was more prac­tical for detecting and tracing mosquitoes.Conclusion: The method was less time-consuming, more sensitive and safer. This marking method will facilitate post-bloodmeal studies of mosquitoes and other blood-sucking insects.