WorldWideScience

Sample records for isotope-separator-on-line isol method

  1. The isotope separator on-line at the INS-SF cyclotron

    International Nuclear Information System (INIS)

    Yonehara, H.; Kawakami, H.; Tanaka, J.; Omata, K.; Shida, Y.

    1981-02-01

    The Isotope Separator On-Line at the SF Cyclotron has been improved. Some details of improvements are described on the target-ion source, rapid extraction with aluminized tape, tape transport system and data aquisition. The performance of the improved SF-ISOL is discussed. (author)

  2. Method for separating krypton isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1980-01-01

    Methods and apparatus for separating krypton isotopes utilizing low temperature selective infrared excitation of 85krypton difluoride in an isotopic compound mixture. Multiphoton ir excitation and uv excitation techniques are used, as well as cryogenic matrix isolation and inert buffer gas isolation techniques

  3. The Daresbury On-Line Isotope Separator (DOLIS)

    International Nuclear Information System (INIS)

    Grant, I.S.; Eastham, D.A.; Groves, J.; Tolfree, D.W.L.; Walker, P.M.; Green, V.R.; Rikovska, J.; Stone, N.J.; Hamilton, W.D.

    1987-01-01

    The isotope separator DOLIS, which is on-line to the Daresbury Laboratory's 20-MV tandem accelerator, is used to measure nuclear moments and decay schemes. Separated beams may be collected on a tape and transported to a counting station, implanted directly into a host lattice at on-line temperatures down to less than 10 mK, or allowed to interact with a collinear laser beam. The present status of DOLIS and its ancillary equipment is described

  4. The Daresbury on-line isotope separator (DOLIS)

    International Nuclear Information System (INIS)

    Grant, I.S.; Eastham, D.A.; Groves, J.; Tolfree, D.W.L.; Walker, P.M.; Green, V.R.; Rikovska, J.; Stone, N.J.; Hamilton, W.D.

    1987-01-01

    The isotope separator DOLIS, which is on-line to the Daresbury Laboratory's 20-MV tandem accelerator, is used to measure nuclear moments and decay schemes. Separated beams may be collected on a tape and transported to a counting station, implanted directly into a host lattice at on-line temperatures down to less than 10 mK, or allowed to interact with a collinear laser beam. The present status of DOLIS and its ancillary equipment is described. (orig.)

  5. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  6. UWIS isotope separator

    Energy Technology Data Exchange (ETDEWEB)

    Wojtasiewicz, A. [Warsaw Univ., Inst. of Experimental Physics, Nuclear Physics Div., Warsaw (Poland)

    1997-12-31

    Since 1995 the University of Warsaw Isotope Separator group has participated in the ISOL/IGISOL project at the Heavy Ion Cyclotron. This project consists in installation of an isotope separator (on line with cyclotron heavy ion beam) with a hot plasma ion source (ISOL system) and/or with an ion guide source (IGISOL system). In the report the short description of the present status of the project is presented. 2 figs, 10 refs.

  7. A new infiltration method for coating highly permeable matrices with compound materials for high-power isotope-separator-on-line production target applications

    International Nuclear Information System (INIS)

    Kawai, Y.; Bilheux, Jean-Christophe; Stracener, Daniel W; Alton, Gerald D

    2005-01-01

    A new infiltration coating method has been conceived for uniform and controlled thickness deposition of target materials onto highly permeable, complex-structure matrices to form short-diffusion-length isotope-separator-on-line (ISOL) production targets for radioactive ion beam research applications. In this report, the infiltration technique is described in detail and the universal character of the technique illustrated in the form of SEMs of several metal-carbide, metal-oxide and metal-sulfide targets for potential use at present or future radioactive ion beam research facilities

  8. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  9. Ion source development for the on-line isotope separator at GSI

    International Nuclear Information System (INIS)

    Kirchner, R.; Burkard, K.; Hueller, W.; Klepper, O.

    1991-08-01

    The progress in the understanding of ion sources for isotope separation on-line and the feasibility of bunched beams of relatively refractory elements is reported. The ultra-high temperature FEBIAD-H ion source, facilitating the mounting of catchers and window compared to the earlier F-version, enables bunched beams of the elements with adsorption enthalpies up to almost 6 eV, e.g. of Be, Al, Ca, Cr, Fe, Co, Ni, Sr, Pd, Ba, Yb, and Au. This way also chemical selectivity for these elements may be achieved, at least to some extent, for isotopes with halflives > or approx.1 minute, including especially the difficult separation of alkaline-earth isotopes from isobaric alkalines. These studies reveal, however, also a principal difficulty in the on-line separation of refractory elements, namely their tendency, increasing with ΔH a , to re-diffuse after release from the catcher into the bulk of the hot source enclosure. (orig.)

  10. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  11. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  12. On line isotopic separator test benches at GANIL

    International Nuclear Information System (INIS)

    Anne, R.; Bru, B.; Joubert, A.; Leroy, R.; Obert, J.; Putaux, J.C.; Liang, C.F.; Paris, P.; Orr, N.; Steckmeyer, J.C.

    1993-01-01

    A first version of isotopic separator on line test bench has been built in order to test the feasibility of the production of radioactive species from 96 MeV/u of 20 Ne impinging a thick target of MgO. This test bench was equipped with a very compact ECR ion source (Nanogan) entirely made from permanent magnets and operating at 10 Ghz. 18 Ne 2,4+ ; 19N e 1,2,3,4+ and 23,24 Ne 1+ has been produced and ionized. A new more performing separator (SIRa) allowing the use of different types of ion sources will be completed by the end of 1993. (author) 4 refs., 4 figs., 1 tab

  13. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  14. Method and apparatus for separating isotopes

    International Nuclear Information System (INIS)

    Harris, S.E.

    1976-01-01

    Isotope separation is achieved between species A and B having an absorption resonance separated by an isotopic shift by selectively exciting a portion of species A using a tunable photon source of narrow emission line with and subsequently causing collisions with an optically excited third species to selectively ionize the excited portion of species A. When ionized, species A is easily separated by any technique, using its ionized condition to distinguish it from species B. 18 claims, 3 drawing figures

  15. Laser separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1981-01-01

    Method and apparatus for separating uranium isotopes are claimed. The method comprises the steps of irradiating a uranyl source material at a wavelength selective to a desired isotope and at an effective temperature for isotope spectral line splitting below about 77 deg.K., further irradiating the source material within the fluorescent lifetime of the source material to selectively photochemically reduce the excited isotopic species, and chemically separating the reduced isotope species from the remaining uranyl salt compound

  16. Method and device for isotope separation

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1976-01-01

    The method works with a converted Q machine. The plasma containing the isotopes to be separated is crossed by a magnetic field running in the direction of the plasma column. More energy is transfered to the chosen isotope by oscillating magnetic and/or electric fields or by sound waves by using the specific resonance frequency for the selected isotope. The isotopes thus heated to different extents can be separated according to various methods given in the patent claims. (GG) [de

  17. Low energy methods of molecular laser isotope separation

    International Nuclear Information System (INIS)

    Makarov, G N

    2015-01-01

    Of the many proposals to date for laser-assisted isotope separation methods, isotope-selective infrared (IR) multiphoton dissociation (MPD) of molecules has been the most fully developed. This concept served as the basis for the development and operation of the carbon isotope separation facility in Kaliningrad, Russia. The extension of this method to heavy elements, including uranium, is hindered by, among other factors, the high power consumption and the lack of high-efficiency high-power laser systems. In this connection, research and development covering low energy methods for the laser separation of isotopes (including those of heavy atoms) is currently in high demand. This paper reviews approaches to the realization of IR-laser-induced isotope-selective processes, some of which are potentially the basis on which low-energy methods for molecular laser isotope separation can be developed. The basic physics and chemistry, application potential, and strengths and weaknesses of these approaches are discussed. Potentially promising alternatives to the title methods are examined. (reviews of topical problems)

  18. Characteristics of a gas-jet transport system for an on-line isotope separator

    International Nuclear Information System (INIS)

    Kawade, K.; Yamamoto, H.; Amano, H.; Hanada, M.; Katoh, T.; Okano, K.; Kawase, Y.; Fujiwara, I.

    1982-01-01

    Basic characteristics of a gas-jet transport system for an on-line isotope separator have been investigated using a 252 Cf source and a 235 U fission source. The transport efficiency of fission products through a capillary has been measured to be about 60% for the 235 U fission source. The sweep-out time of fission products through a target chamber and the transit time through a capillary have been measured for He, N 2 and CO 2 gases at several pressures. The measured sweep-out times have been almost equal to the exchange over time of the gas. The transit times have been found to be reasonably predicted by calculations. The transport system has been incorporated into the KUR-ISOL and is used for the study of short-lived nuclei. (orig.)

  19. Method for separating isotopes

    International Nuclear Information System (INIS)

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  20. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  1. Method of isotope separation by chemi-ionization

    International Nuclear Information System (INIS)

    Wexler, S.; Young, C.E.

    1977-01-01

    A method is disclosed for separating isotopes in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. cThis method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes. 10 claims, 1 figure

  2. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  3. Isotope separations using chromatographic methods

    International Nuclear Information System (INIS)

    Leseticky, L.

    1985-01-01

    A survey is given of chromatographic separations of compounds only differing in isotope composition. Isotope effects on physical properties which allow chromatographic separation (vapour tension, adsorption heat, partition coefficient) are very small, with the exception of the simplest molecules. Therefore, separation factors only assume the value of several per cent. From this ensues the necessity of using columns which are specially and very carefully prepared and have a separation efficiency of the order of 10 4 theoretical plates. Briefly discussed is liquid chromatography on ion exchangers which with a varied degree of success was used for separating simple inorganic compounds or ions. Ion exchange chromatography of amino acids labelled with tritium, and chromatography of tritium labelled steroids also provided only a certain degree of separation. A detailed analysis is presented of gas chromatography separation of various deuterium and tritium labelled low-molecular compounds, to which a number of studies has been devoted in the literature. Very promising is the method of complexation gas chromatography based on the reversible formation of a complex of the ligand (the compound being separated) and the compound of the (transition) metal as the steady-state phase. (author)

  4. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  5. Isotopic nuclear reactor with on-line separation

    International Nuclear Information System (INIS)

    Liviu, Popa-Simil

    2007-01-01

    In the new reactor-waste cycle design the nuclear reactor gets features of the living beings - resembling the plants/vegetation -. The separation of waste starts inside the fuel by using the fission reaction to separate the fission products from the fuel. The fuel, which is preferred to be highly isotopic enriched, is fabricated in beads smaller than the fission product range, immersed in a gentle flowing liquid drain. If this liquid is Lead Bismuth (LBE) the fission products will be lighter, while in Sodium-Potassium (NaK) will be heavier, except for gases. This drain liquid will collect both the fission products and the collision damage, drawing them slow to give time to short lives disintegration chains to take place inside the shielded nuclear reactor area outside the reactor core in a separation unit. While the drain liquid with the fission products is outside the reactor core few choices are available: - To solidify the drain liquid freezing all elements inside and transport the metal in cryogenic conditions to a remote separation unit, or to apply a separation partitioning process online stabilizing and packing the fission products only, or a combination of these two. The radioactivity of this drain liquid is smaller than that of the actual used fuel because it represents the accumulation of a very short period (about 1 month or less) and had enough time to cool down all the short lives. The separation unit on-line with the nuclear reactor is composed of a density separation unit, followed by a phase interface concentration unit which moves out of the LBE the fission products as lighter impurities, and an electrochemical separation unit for the fission products. Further, chemical separation, stabilization processes are applied and the fission products are delivered partitioned on groups of chemical compatible products. Finally the specific waste is about 1 Kg/Gw*day, to which the stabilization products have to be added which increases this mass by 10 times

  6. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  7. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  8. Isotope separation in plasma by ion-cyclotron resonance method

    International Nuclear Information System (INIS)

    Dubinov, A.E.; Kornilova, I.Yu.; Selemir, V.D.

    2001-01-01

    Contemporary state of investigation on isotope separation in plasma using selective ion-cyclotron resonance (ICR) heating is considered. The main attention is paid to necessary conditions of heating selectivity, plasma creation methods in isotope ICR-separation facilities, selection of antenna systems for heating, and principles of more-heated component selection. Experimental results obtained at different isotope mixtures separation are presented [ru

  9. Method of isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, R K

    1975-05-22

    Isotopes of a gaseous compound can be separated by multi-infrared photoabsorption which follows a selective dissociation of the excited molecules by single photon absorption of photons of visible or UV radiation. The process involves three steps. Firstly, the molecules to be separated are irradiated with a high-energy IR laser, whereby the molecules of the compound containing the lighter isotopes are preferably excited. They are then irradiated by a second laser with UV or visible light whose frequency of radiation brings the excited molecules into a form in which they can be separated from the non-excited molecules. The third step is the reformation of the substances according to known methods. A power density of at least 10/sup 4/ watt/cm/sup 2/ per torr gas pressure with an irradiation time of 10/sup -10/ to 5 x 10/sup -5/ seconds in the presence of a second gas with at least 5 times higher partial pressure is necessary for the IR radiation. The method may be used for UF/sub 6/ for which an example is given here.

  10. Isothermal and non-isothermal conditions of isotope separation by chemical exchange method

    International Nuclear Information System (INIS)

    Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.

    1992-01-01

    The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)

  11. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  12. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  13. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  14. Method for isotope separation by photodeflection

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states

  15. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Feldman, B. J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  16. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  17. The study of multicomponent separation of Xe isotope by centrifugal method

    International Nuclear Information System (INIS)

    Jinyan Wu; Fu Zhuge

    1996-01-01

    The element Xe has nine isotopes in nature, the separation performance of each component mutually affects the others, so the binary separation theory can't be employed to study the multicomponent separation. Especially, when the molecular wight of a certain component is in the middle of its isotope components, the effect of the others on this component must be considered. In this paper, first, the multicomponent separation of Xe isotopes in a gas centrifuge is studied, with the consideration of the effect of the concentration on the diffusion coefficient and average molecular weight. The multicomponent diffusion equations are solved by the finite difference method. Second, the enrichment of Xe isotopes in a cascade is studied. On the basis of the study of a gas centrifuge, the simplified separation equations of a gas centrifuge for cascade calculation are obtained. Furthermore, the complete equations of the cascade separation are established according to the conservation of mass of each component and solved by a numerical method. The study of this paper can be extended for other isotope separation calculations. (author)

  18. Isotope separation system

    International Nuclear Information System (INIS)

    Lehmann, J.-C.

    1975-01-01

    A description is given of an isotope separation device comprising a system for converting into gaseous form a first and second isotope to be separated, a monochromatic excitation light source to excite the gaseous molecules of these two isotopes in a distinct manner, a first and second receiver to collect selectively the molecules of the first and second distinctly excited isotopes. The frequency FL of the excitation light is selected between a lower limit and a higher limit F2 + 1/2 LD, depending on the frequences F1 and F2 of two absorption lines near this first and second isotope. The difference DF between these two frequencies F1 and F2 is less than the Doppler width LD of each one of these lines and greater than the natural width LN of each of these two lines and also the width of line LR of the excitation light source. The probability that the molecules will be excited by this light depends on the direction of their displacement to a major and different extent for both isotopes. An ionising light source LI is set up to irradiate the seat of interaction between the excitation light and the gaseous molecules with an ionisation light able to ionise the excited molecules without ionising the molecules that are not excited. The receivers are able to collect selectively the ionised molecules. A sufficiently low gas pressure is selected for the distance between the place of interaction and the first receiver to be less than double the free mean travel of the molecules in the gas [fr

  19. Status and future plan of KUR-ISOL for new isotope search

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Akihiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-07-01

    He gas-jet type ISOL (KUR-ISOL: Kyoto University Reactor-Isotope Separator On-Line) was set up in Kyoto University Reactor in 1979. The thema of researches using KUR-ISOL are investigation of new isotope elements, study of nuclear structure of neutron-enrich nucleide in the neighborhood of 150 of mass number, development of unstable nuclide production unit and research of physical properties using unstable nuclide as probe. By KUR-ISOL, four kinds of new isotopes such as {sup 156}Pm, {sup 155}Nd, {sup 154}Pr and {sup 152}Ce and {beta}-decay of {sup 150}La had been identified. {beta}-decay of {sup 150}La as a sample of them was explained in this report. Today, the experiment of {sup 153}Pr, {sup 152}Pr and {sup 149,150}Ce are proceeding. For future plans, new beam line and new target used transuranic elements will be developed. (S.Y.)

  20. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  1. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  2. Ion implantation by isotope separator on line (ISOL) of indium isotopes

    International Nuclear Information System (INIS)

    Hanada, Reimon; Murayama, Mitsuhiro; Saito, Shigeru; Nagata, Shinji; Yamaguchi, Sadaei; Shinozuka, Tsutomu; Fujioka, Manabu.

    1994-01-01

    111 In has been known as the nuclide which is most suitable to perturbed angular correlation (PAC) process, as the life of its intermediate state is long , the half life is proper in view of the measurement and radiation control, and it is easily available as its chloride is on the market. In the PAC, it is necessary to introduce this probe nuclei into samples. The most simple method is diffusion process, but in the materials, of which the solid-solubility of In is low like Fe and Si, the introduction is very difficult, therefore, it is necessary to do ion implantation. The development of this process was tried, and the results are reported. For the experiment, the ISOL in the cyclotron RI center, Tohoku University, was used as the accelerator for the implantation. The experimental method is explained. As the results, in the case of nonradioactive In implantation, the Ruthereford back scattering (RBS) spectra of the Si in which In was implanted, the spectra when the channeling condition was satisfied, and the results of measuring the angle dependence of channeling for In and In-implanted Si are shown. In the case of the ion implantation of radioactive 111 In, the energy spectra of In-implanted Si, the PAC spectra of In-implanted Si samples, and the PAC spectra for pure iron and Fe-Si alloy are shown. The further improvement of the ion sources is necessary. (K.I.)

  3. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  4. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  5. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  6. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  7. Optimizing design parameter for light isotopes separation by distillation method

    International Nuclear Information System (INIS)

    Ahmadi, M.

    1999-01-01

    More than methods are suggested in the world for producing heavy water, where between them chemical isotopic methods, distillation and electro lys are used widely in industrial scale. To select suitable method for heavy water production in Iran, taking into consideration, domestic technology an facilities, combination of hydrogen sulphide-water dual temperature process (Gs) and distillation (D W) may be proposed. Natural water, is firstly enriched up to 15 a% by G S process and then by distillation unit is enriched up to the grade necessary for Candu type reactors (99.8 a%). The aim of present thesis, is to achieve know-how, optimization of design parameters, and executing basic design for water isotopes separation using distillation process in a plant having minimum scale possible. In distillation, vapour phase resulted from liquid phase heating, is evidently composed of the same constituents as liquid phase. In isotopic distillation, the difference in composition of constituents is not considerable. In fact alteration of constituents composition is so small that makes the separation process impossible, however, direct separation and production of pure products without further processing which becomes possible by distillation, makes this process as one of the most important separation processes. Profiting distillation process to produce heavy water is based on difference existing between boiling point of heavy and light water. The trends of boiling points differences (heavy and light water) is adversely dependant with pressure. As the whole system pressure decreases, difference in boiling points increases. On the other hand according to the definition, separation factor is equal to the ratio of pure light water vapour pressure to that of heavy water, or we can say that the trend of whole system pressure decrease results in separation factor increase, which accordingly separation factor equation to pressure variable should be computed firstly. According to the

  8. Energy expenditures of plasma method of isotope separation

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    1986-01-01

    The estimations are performed of specific energy expenditares in isotope separation of binary mixtures in different plasma systems with weak medium ionization (plasma centrifuge, gas discharge system with travelling magnetic field, direct current discharge). Potential advantages of plasma centrifuge over other gas discharge facilities are pointed out. The comparison of specific energy expenditure values in case of using plasma and conventional methods of isotope separation is carried out

  9. A four-detector spectrometer for e--γ PAC on-line with the ISOLDE-CERN isotope separator

    International Nuclear Information System (INIS)

    Marques, J.G.; Correia, J.G.; Melo, A.A.; Silva, M.F. da; Soares, J.C.

    1995-01-01

    A four-detector e - -γ spectrometer has been installed on-line with the ISOLDE isotope separator. The spectrometer consists of two magnetic lenses for detection of conversion electrons, and two BaF 2 scintillators for γ-ray detection. The spectrometer has been equipped with a 20 kV pre-acceleration system which enables detection of conversion electrons down to 2 keV. Implantation and measurement can be performed simultaneously on a large temperature range by heating or cooling the sample holder. The advantages of using the e - -γ PAC technique on-line at ISOLDE are discussed. (orig.)

  10. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  11. Method and apparatus for isotope separation from a gas stream

    International Nuclear Information System (INIS)

    Szoke, A.

    1978-01-01

    A method and apparatus are described for isotope separation and in particular for separating the desired isotope from the gas in which it is contained by irradiating it with a laser. The laser selectively provides kinetic energy to the isotope through inelastic events, monomolecular or bimolecular, in order to cause it to segregate within or fly out of the gas stream in which it is contained

  12. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    International Nuclear Information System (INIS)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-01-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article

  13. Study on decay of 118Xe and 119Xe by means of mass-separator on-line with a synchrocyclotron

    International Nuclear Information System (INIS)

    Berlovich, Eh.E.; Batist, L.Kh.; Blinnikov, Yu.S.

    1976-01-01

    The decay of sup(118, 119)Xe isotopes has been investigated. An experimental device involving a mass-separator operating in line with a synchrocyclotron is briefly outlined. The elements to be investigated were isolated from a proton-irradiated target by the 'on-beam-chemistry' methods and transferred into the mass-separator ion source. The Xe separated ions are transported to detectors in an experimental ha ll. The energies and relative γ ray intensities of 118 Xe → 118 J and of 119 Xe → 119 J decays ar presented. The error of the γ ray energy determination does not exceed 0.6 keV. Obtained are the periods of half-life: for 118 Xe - (3.8+-0.9) min, for 119 Xe - (5.8+-0.3) min. The decay scheme for 119 Xe is made up. The scheme of 119 Xe levels is well inscribed into the general systematics of the J odd isotope levels. On the basis of obtained and known data the spin values are described to the 119 J levels

  14. Isocele I, the Orsay synchrocyclotron on-line separator

    International Nuclear Information System (INIS)

    Caruette, A.; Ferro, A.; Foucher, R.

    1976-01-01

    The main characteristics of the isotope separator Isocele 1 are described. This medium current separator was on line with the Orsay synchrocyclotron (155 MeV p, or 210 MeV 3 He) from March 1974 up to May 1975. Results obtained with different targets (Au, Bi, Er, Pt, Sn, Th) are summarized. They confirm the efficiency of medium current separators of this type [fr

  15. Preliminary review on isotope separation of long life fission products. Application research of laser isotope separation to 135Cs

    International Nuclear Information System (INIS)

    Oshita, Hironori; Ozawa, Masaki; Ishikawa, Makoto; Koyama, Shin'ichi; Akatsuka, Hiroshi

    2007-09-01

    Recently establishment of self consistent nuclear fuel cycle has been required with respect to economical efficiency, safety and reduction of the load to the environment. Especially 135 Cs included in spent fuel of nuclear power plants has extremely long half life (3.0x10 6 y) and its water solubility leads to the anxiety of exudation into ground water for geologic disposal. The conventional methods for isotope separation based on the mass difference of isotope could not gain large separation factors, which leads to the requirement of operational repetition and large equipment. Furthermore many elements of which the masses are near to that of the object isotope are included in spent fuel, which makes it difficult to expect high separation factor by the methods merely based on the mass difference. Recent technology development of laser e.g. dye laser or semi-conductor laser has come to make it possible in principle to excite a specific isotope and separate it from other isotopes making use of its intrinsic physical and chemical properties of the excited state. This laser isotope separation (LIS) technique is believed to be suitable for cesium because of its stable properties on light absorption and emission and many studies have come to be made. This document reviews the principle, application to the separation of 135 Cs and current status of LIS and reports the subjects to be solved and suggestions; especially laser induced chemical reactions expected as a low-cost and simple equipment isotope separation method. The resulting extracted subjects are 1) the specification of the excited states of cesium i.e. extra-nuclear electron configuration, life (or duration) and transition probability, 2) the factors that may effect on the isotope shift of cesium; the mean square radius of the nucleus, electric quadrupole moment and extra nuclear electron wave function at the nucleus, 3) the factors that may cause the disturbance of the selectivity; resonant energy transference

  16. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  17. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  18. Gas isotope separation method using plasma sheet

    International Nuclear Information System (INIS)

    Takayama, K.; Takagi, K.; Fukvi, R.

    1988-03-01

    A high frequency electric field is applied to a plasma sheet with a frequency equal to the cyclotronic frequency of the ions to be separated. Because of resonance the cyclotronic radius of the isotope has increased and the electric charge is eliminated by collision with a separator and the isotope is separated in neutral particles [fr

  19. Method to separate isotopes

    International Nuclear Information System (INIS)

    Coenen, H.; Neuschuetz, D.

    1980-01-01

    An extraction by means of supercritical pure gases (e.g. CD 2 ) or gas mixtures is proposed to separate isotopes, especially H/D, Li-6/Li-7, and U-235/U-238, and water or benzol is used as entrainer. The extraction shall be carried out at pressure rates of about 350 bar above the critical pressure with the temperature being by up to 100 0 C above the critical temperature. A NaCl-solution and the change of the isotopic ratio Cl-35/Cl-37 are investigated for example purpose. (UWI) [de

  20. Design study of fuel circulating system using Pd alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Aizawa, T.; Kasahara, T.; Yamanaka, T.

    1981-01-01

    It is expected that the method of permeating through Pd-alloy membrances is effective for isotope separation and the refining of fuel gas. In this paper, the design study of the Fuel Circulating System (FCS) using Pb-alloy membranes is described. The study is mainly focused on the main vacuum, fuel gas refining, isotope separating, and tritium containment systems. In the fuel gas refining system, impurities are effectively removed by using Pd-alloy membranes. For the isotope separation system, the diffusion method through Pd-alloy membranes was adopted. From the standpoint of the safety and economy, a three-stage tritium containment system was adopted to control tritium release to the environment as low as possible. The principal conclusion drawn from the design study was as follows. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane method is attractive for isotope separation and the refining of fuel gas. For a large amount of tritium inventory, handling and control technologies should be completed by the experimental evaluation and development of the components and materials used for the FCS. A three-stage containment system was adopted to control tritium release to environment as low as possible. Consideration to prevent tritium escape will be necessary for fuel gas refiners and isotope separators. (Kato, T.)

  1. Wide angle isotope separator

    International Nuclear Information System (INIS)

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  2. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1980-01-01

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235 UF 6 from 238 UF 6 . (U.K.)

  3. Isotope separation process

    International Nuclear Information System (INIS)

    Thomas, W.R.L.

    1979-01-01

    The instant invention relates to an improved process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same element in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than non-excited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  4. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1977-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 15 claims, 1 figure

  5. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  6. Progress in ISOL target-ion source systems

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. [Institut Laue Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland)], E-mail: koester@ill.fr; Arndt, O. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Bouquerel, E.; Fedoseyev, V.N. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Franberg, H. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joinet, A. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Centre d' Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, F-31028 Toulouse Cedex 4 (France); Jost, C. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Kerkines, I.S.K. [Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Department of Chemistry, Zografou 157 71, GR (Greece); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Kirchner, R. [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany)

    2008-10-15

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  7. Progress in ISOL target-ion source systems

    International Nuclear Information System (INIS)

    Koester, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V.N.; Franberg, H.; Joinet, A.; Jost, C.; Kerkines, I.S.K.; Kirchner, R.

    2008-01-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  8. On-line separation of refractory hafnium and tantalum isotopes at the ISOCELE separator

    CERN Document Server

    Liang, C F; Obert, J; Paris, P; Putaux, J C

    1981-01-01

    By chemical evaporation technique, neutron deficient hafnium nuclei have been on-line separated at the ISOCELE facility, from the isobar rare-earth elements, in the metal-fluoride HfF/sub 3//sup +/ ion form. Half-lives of /sup 162-165/Hf have been measured. Similarly, tantalum has been selectively separated on the TaF/sub 4//sup +/ form. (4 refs) .

  9. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus

    2008-01-01

    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  10. This picture was taken in 1967 during the first test of the Isotope On-Line Separator (ISOLDE) installation at the 600 MeV CERN Synchro Cyclotron.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    When ISOLDE began operation, it was unique in the world. It used a new technique to overcome the problem of rapidly separating interesting atoms from the rest of the nuclear target. Through a combination of chemical and electromagnetic methods the different isotopes were separated and converted into an ion beam made of just one isotope. On-line production of radioactive nuclei, in this way, offered many new opportunities for physicists as it allowed them to perform previously impossible experiments on short-lived nuclei. ISOLDE has become one of CERN's major installations and it supports a broad scientific programme by providing beams to different experiments. The techniques developed at ISOLDE have opened up a new field of radioactive ion-beam accelerators, both at CERN and worldwide.

  11. Laser isotope separation

    International Nuclear Information System (INIS)

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re and Tc

  12. Method and apparatus for controlled condensation isotope separation

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Lee, J.T. Jr.; Kim, K.C.

    1981-01-01

    The invention provides a method for producing controlled homogeneous condensation of a molecular feed gas containing several isotopes. The feed gas flows at supersonic rates through an expansion nozzle under conditions at which the gas would normally condense. The gas is irradiated with laser radiation of a wavelength that selectively excites those molecules in the feed gas that contain a particular isotope, thus preventing their condensation. Condensate particles may be aerodynamically separated from the flowing gas stream

  13. Doppler and time-travel broadening in ICR plasma isotope separation

    International Nuclear Information System (INIS)

    Karchevskii, A.I.; Potanin, E.P.

    1994-01-01

    Isotopically-selective ion-cyclotron resonance (ICR) heating is one of the most promising plasma isotope separation methods. The separation degree of ICR separation in a plasma depends on the resonance heating selectivity. The selectivity is due to the isotopically-adjacent accelerated ions resonance curve overlapping and therefore, is determined by the width of the resonance curves. In the case of a collisionless plasma in an ideal homogeneous longitudinal magnetic field, the line broadening is mainly determined by Doppler and time-travel effects. These effects differ in nature, and one has some difficulties in distinguishing them when interpreting the resonance curves because both broadenings depend on ion axial velocities. We consider the simplest case: the extrenal heating alternating electric field does not depend on the axial coordinate (the wave number γ = 0). Hence, in this case the Doppler effect does not occur

  14. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    Porter, J.T.

    1980-01-01

    Methods and apparatus are disclosed for separation of uranium isotopes by selective isotopic excitation of photochemically reactive uranyl salt source material at cryogenic temperatures, followed by chemical separation of selectively photochemically reduced U+4 thereby produced from remaining uranyl source material

  15. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1979-01-01

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  16. Proceedings of the 2nd specialist research meeting on the electromagnetic isotope separators and their applications

    International Nuclear Information System (INIS)

    Fujioka, Manabu; Kawase, Yoichi; Okano, Kotoyuki

    1992-07-01

    The EMIS-12 International Conference was held at Sendai in September, 1991 for the first time in Japan. It offered a nice opportunity to appeal a great progress in our country on the related fields and many interesting subjects were discussed. The second research meeting on Electromagnetic Isotope Separators and Their Applications was held at Kumatori on March 18 and 19, 1992, six months after the EMIS-12 Conference. Many interesting results obtained by using ISOLs were reported as in the previous meeting. In the present meeting, the measuring methods and the improved instruments were reported and discussed, which are fundamental for application of isotope separation methods to the interdisciplinary research fields. These valuable contributions to the meeting are involved in this Proceedings. (J.P.N.)

  17. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  18. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  19. Separation of the mercury isotopes by the indirect photochemical method

    International Nuclear Information System (INIS)

    Botter nee Bergheaud, F.; Scaringella nee Desnoyer, M.; Wacongne, M.

    1976-01-01

    A method of photochemical separation of the mercury isotopes by the so-called indirect route in which a gas stream of oxygen and butadiene containing a mixture of mercury isotopes is passed through one or a number of vessels placed in series. The gas stream is irradiated by a lamp containing mercury which is depleted in one or a number of the isotopes and said isotopes are recovered in a trap placed downstream of the vessel or vessels

  20. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1976-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. In one embodiment, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by selective dissociation of said excited molecules by the absorption of a single photon of visible or ultraviolet light. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 11 Claims, 2 Drawing Figures

  1. Isotope separation process

    International Nuclear Information System (INIS)

    1976-01-01

    The invention relates to a process for separating a given material into two or more parts, in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in the said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase UF 6 by infrared photon absorption followed by selective reaction of said excited UF 6 with atomic chlorine, bromine, or iodine to form a product which may be separated by means known in the art

  2. The outline of the processes for lithium isotope separation by ion exchange method

    International Nuclear Information System (INIS)

    Fujine, Sachio; Saito, Keiichiro; Naruse, Yuji; Shiba, Koreyuki; Kosuge, Masao; Itoi, Toshiaki; Kitsukawa, Tomohiko.

    1981-10-01

    A plant of lithium isotope separation by displacement chromatography is preliminary designed. The construction expenses of a 100 kg 7 Li/year plant and the unit cost of separation are estimated on the basis of the data taken from the literature, and the feasibility is studied. Experimental equipment of continuous displacement chromatography is set up and is tested with the stable automatic operation. These results indicate that the ion exchange method is promising for industrial lithium isotope separation. (author)

  3. Installation of an isotope separator in Debrecen

    International Nuclear Information System (INIS)

    Gacsi, Z.; Gulyas, J.; Vitez, A.; Csige, L.; Krasznahorkay, A.

    2005-01-01

    Complete text of publication follows. An isotope separator named OSIRIS was decommissioned in Studsvik, Sweden last July. Researchers there offered this equipment to us for dismantling and moving it over to ATOMKI in Debrecen for installation at the cyclotron lab and save and use it in nuclear physics and other sciences where stable and radioactive isotopes are used extensively for fundamental and applied research. Since the separator was used to separate radioactive isotopes, the ion source with its beam extracting, shaping, and transporting accessories, as well as the lining inside the bending magnet, furthermore the beam diagnostic and shaping elements in the 'switchyard' part of the separator had to stay in Studsvik because of the high radioactive contamination. In order to operate this equipment, first we have to design and manufacture these parts together with a new endstation for the collection and handling of the separated isotopes. Parallel with the installation, we also concentrate on different applications of an isotope separator, including separation of stable isotopes for labelling special compounds used in many branches of sciences, medical care, and industry, and on studying single ion implantation possibilities, as well as on the production of special targets for nuclear physics research. First we want to separate stable isotopes, and then, when we overcome all technical pitfalls, we will consider using this equipment to separate radioactive isotopes as well. Our intention is to have this equipment available to anyone at ATOMKI and elsewhere interested in using its capabilities in their own research fields. Consequently, all comments, suggestion, and ideas are welcome now and continuously, since the design and manufacture of parts can then be oriented by taking into account all the suggestions as much as possible. (author)

  4. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  5. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  6. Isotope separation using molecular gases and molecular lasers

    International Nuclear Information System (INIS)

    Jetter, H.

    1975-01-01

    Isotope separation using molecular gas and molecular lasers offers several advantages over the alternative method which uses dye lasers and atomic vapour. These advantages are the easy handling of the raw material, the big isotopic shift in the IR, the good efficiency of the laser and the chemical extraction of the excited isotopes. In the case of uranium difficulties arise from the great number of superimposed lines in the absorption band of the UF 6 molecule. Several of these absorption bands were measured using laser spectrometers with ultra-high resolution. The conditions for selective excitation were estimated. (orig.) [de

  7. Method and apparatus for separating uranium isotopes

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-01-01

    A uranium compound in the solid phase (uranium borohydride four) is subjected to radiation of a first predetermined frequency that excites the uranium-235 isotope-bearing molecules but not the uranium-238 isotope-bearing molecules. The compound is simultaneously subjected to radiation of a second predetermined frequency which causes the excited uranium-235 isotope-bearing molecules to chemically decompose but which does not affect the uranium-238 isotope-bearing molecules. Sufficient heat is then applied to the irradiated compound in the solid phase to vaporize the non-decomposed uranium-238 isotope-bearing molecules but not the decomposed uranium-235 isotope-bearing molecules, thereby physically separating the uranium-235 isotope-bearing molecules from the uranium-238 isotope-bearing molecules. The uranium compound sample in the solid phase is deposited or grown in an elongated tube supported within a dewar vessel having a clear optical path tail section surrounded by a coolant. Two sources of radiation are focused on the uranium compound sample. A heating element is attached to the elongated tube to vaporize the irradiated compound

  8. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  9. Laser separation of isotopes of hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1980-01-01

    Laser isotope separation technique is explained and various methods based on the technique are discussed in detail. Requirements of any laser isotope separation method to be acceptable for the production of heavy water are mentioned and economic viability of this process for heavy water production is examined. Investigations carried out to use this technique for deuterium separation using methanol, formaldehyde, propynal, 2,2,-dichloro-1-1-1,-trifluoroethane (Freon 123), polyvinyl chloride and fluoroform-d are reviewed. (M.G.B.)

  10. Development of an ion guide coupled to an on-line isotope separation system on Sara. Identification and study of isospin exotic nuclei at Isolde and Sara

    International Nuclear Information System (INIS)

    Bouldjedri, A.

    1992-06-01

    This work is concerned with the study of exotic nuclei located on both sides of the stability-line and known as neutron rich and neutron deficient respectively. For the former, produced by alpha particle-induced fission, an on-line isotope separation with an ion guide (IGISOL) has been developed and submitted to several off-line and on-line optimization tests showing capacity to spectroscopic studies. In the case of neutron deficient nuclei near the magicity Z=82, 182 Tl(3s) has been identified and its decaying modes and those of 183 Tl ground state, studied, using the on-line separator ISOLDE. On the other hand, the β decay of 172,175 Ir produced in 32 S induced reaction is studied using a helium jet system on the SARA accelerator. Existence of isomers is derived from half-lives measurements

  11. Can the waiting-point nucleus 78Ni be studied at an on-line mass-separator?

    Science.gov (United States)

    Wöhr, A.; Andreyev, A.; Bijnens, N.; Breitenbach, J.; Franchoo, S.; Huyse, M.; Kudryavtsev, Y. A.; Piechaczek, A.; Raabe, R. R.; Reusen, I.; Vermeeren, L.; Van Duppen, P.

    1997-02-01

    Short-lived nickel isotopes have been studied using a chemically selective Ion Guide Laser Ion Source (IGLIS) based on resonance ionisation of atoms at the Leuven Isotope Separator On-Line (LISOL) separator. The decay properties of different Ni isotopes have been studied using β-γ-coincidences. Experimental production rates of proton induced fission of 238U are obtained for 69,71Ni. These numbers are in a strong disagreement with Silberg-Tsao calculations.

  12. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  13. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  14. On the problems of separation work unit for the laser isotope separation

    International Nuclear Information System (INIS)

    Wang, Lijun

    2008-01-01

    The concept of separation power or separation work, which is widely used in Uranium isotope separation industry is introduced historically for the weak separating machine and so-called 'ideal cascade'. Therefore, when this concept is applied to a laser isotope separation facility, which is deeply different from a cascade in structure and in mechanism of separation, some confusions may occur. By comparison the costs of SWU of laser isotope separation facility and an ideal cascade we come to a conclusion: the concept of separation work is not applicable for laser isotope separation. In order to compare the economics of laser isotope separation technique with diffusion or centrifugation techniques an equivalent cost of SWU is suggested in this paper. (author)

  15. Development of an Ionization Scheme for Gold using the Selective Laser Ion Source at the On-Line Isotope Separator ISOLDE

    CERN Document Server

    Fedosseev, V; Marsh, B A; CERN. Geneva. AB Department

    2006-01-01

    At the ISOLDE on-line isotope separation facility, the resonance ionization laser ion source (RILIS) can be used to ionize reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionization of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. The number of elements available at RILIS has been extended to 26, with the addition of a new three-step ionization scheme for gold. The optimal ionization scheme was determined during an extensive study of the atomic energy levels and auto-ionizing states of gold, carried out by means of in-source resonance ionization spectroscopy. Details of the ionization scheme and a summary of the spectroscopy study are presented.

  16. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    Science.gov (United States)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  17. Laser isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re, and Tc. 9 claims, 1 drawing figure

  18. Isotope separation by photoselective dissociative electron

    International Nuclear Information System (INIS)

    Stevens, C.G.

    1978-01-01

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule is described. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, 235 UF 6 is separated from a UF 6 mixture by selective excitation followed by dissociative electron capture into 235 UF 5 - and F

  19. Molecular laser isotope separation programme at BARC

    International Nuclear Information System (INIS)

    Sarkar, Sisir K.; Parthasarathy, Venkatachari

    2007-09-01

    Little over thirty years ago, BARC ventured into a new frontier of scientific research: Molecular Laser Isotope Separation (MLIS) programme based on the interaction of lasers with molecules. The initial project was a scheme to produce enriched uranium. The idea was to use the intense, monochromatic light of lasers to break the chemical bonds of only those molecules containing the fissionable isotope uranium-235. At present the programme is evolving around separation of low and middle mass isotopes, namely sulphur 34/33/32, oxygen 17/18, carbon 13/12, hydrogen T/D/H to be followed by an advanced engineering programme designed to lead to a demonstration plant. The latest results have come very close to the design parameters specified for a full-scale separation of carbon isotopes. All these expertise provide an infra structure for future front line R and D activities in the general area of Laser Photochemical Technology which would include i) LIS of other useful elements ii) Material processing and iii) Fuel reprocessing/ waste management (author)

  20. Efficiency of an on-line isotope separator system employing cooled and NaCl-loaded He-jet methods

    International Nuclear Information System (INIS)

    Aeystoe, J.; Rantala, V.; Valli, K.; Hillebrand, S.; Kortelahti, M.; Eskola, K.; Raunemaa, T.

    1976-01-01

    A pure helium-jet at liquid nitrogen temperature coupled to a Nielsen type ion source, and a NaCl-loaded helium-jet coupled to a hollow-cathode ion source have been investigated as means to connect a cyclotron target chamber on-line to a mass separator. Technical details and performances of some critical parts of the system are described. Total separation efficiencies measured under various experimental conditions for several nuclides vary between 0.01 and 1.0%. (Auth.)

  1. Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    International Nuclear Information System (INIS)

    Apatin, V M; Klimin, S A; Laptev, V B; Lokhman, V N; Ogurok, D D; Pigul'skii, S V; Ryabov, E A

    2008-01-01

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO 2 laser to resonance with 14 NH 3 molecules [the 9R(30) laser line] or with 15 NH 3 molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the 15 NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N 2 , O 2 , Ar) and the ammonia pressure were obtained. In the limit of low NH 3 pressures (0.5-2 Torr), the dissociation selectivity α(15/14) for 15 N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach. (laser isotope separation)

  2. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  3. Performance of the multiple target He/PbI sub 2 aerosol jet system for mass separation of neutron-deficient actinide isotopes

    CERN Document Server

    Ichikawa, S; Asai, M; Haba, H; Sakama, M; Kojima, Y; Shibata, M; Nagame, Y; Oura, Y; Kawade, K

    2002-01-01

    A multiple target He/PbI sub 2 aerosol jet system coupled with a thermal ion source was installed in the isotope separator on line (JAERI-ISOL) at the JAERI tandem accelerator facility. The neutron-deficient americium and curium isotopes produced in the sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 U( sup 6 Li, xn) and sup 2 sup 3 sup 7 Np( sup 6 Li, xn) reactions were successfully mass-separated and the overall efficiency including the ionization of Am atoms was evaluated to be 0.3-0.4%. The identification of a new isotope sup 2 sup 3 sup 7 Cm with the present system is reported.

  4. A study of some neutron-rich isotopes of lanthanum, cerium and praseodymium by means of fast chemical on-line separation technique SISAK

    International Nuclear Information System (INIS)

    Skarnemark, G.

    1977-01-01

    The fast on-line chemical separation technique SISAK has been utilized to study the decay properties of neutron-rich isotopes of La, Ce and Pr. The results include partial decay schemes and γ-ray intensity data for 14 min 143 La, 42 s 144 La, 25 s 145 La, 9 s 146 La, 3 min 145 Ce, 14 min 146 Ce, 56 s 147 Ce, 50 s 148 Ce, 12 min 147 Pr, 2 min 148 Pr, 3 min 149 Pr and 6 s 150 Pr. Half-lives and γ-ray energies are reported for the previously unknown nuclides 147 La (Tsub(1/2) = 2.2 s), 148 La (Tsub(1/2) approximately 1 s), 149 Ce (Tsub(1/2) = 5.7 s) and 150 Ce (Tsub(1/2) = 4.1 s). The nuclides were formed in thermal neutron-induced fission of 235 U. The fission products were transferred to the SISAK system via a gas jet recoil transportation (GJRT) system. The combination of the GJRT system with SISAK is discussed, as well as the chemical separation systems used for the isolation of La, Ce and Pr. The appendices I - IX contain previously published material which is included in the thesis. (Auth.)

  5. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  6. Laser photochemical separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Fowler, M.C.

    1979-01-01

    A method of separating isotopes of hydrogen utilizing isotopically selective photodissociation of organic acid is disclosed. Specifically acetic or formic acid containing compounds of deuterated nd hydrogenated acid is irradiated by radiation having a wavelength in the infrared spectrum between 9.2 to 10.8 microns to produce deuterium hydroxide and deuterium hydride respectively. Maintaining the acid at an elevated temperature significantly improves the yield of isotope separation

  7. Advances in laser isotope separation

    International Nuclear Information System (INIS)

    Herman, I.P.; Bernhardt, A.F.

    1988-01-01

    The physical and chemical concepts required to understand laser isotope separation are presented and discussed. The numerous successful demonstrations of separating isotopes using lasers are reviewed to 1983. Emphasis is placed on the separation of 235-U from 238-U by multi-step selective ioniation of uranium atomic vapor, and on the separation of D and H and of T from D, by pulsed infrared laser multiple-photon dissociation of fluoroform and chloroform, respectively, because they are among the most successful and important examples of laser isotope separation to date. 161 refs.; 7 figs

  8. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  9. Innovative lasers for uranium isotope separation

    International Nuclear Information System (INIS)

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed

  10. On-line mass separator of superheavy atoms

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T 1/2 ≥ 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/ΔM ∼ 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected α-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams

  11. On-Line Mass Separator of Superheavy Atoms

    CERN Document Server

    Oganessian, Yu T

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T_{1/2}\\ge 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/\\Delta M\\sim 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected alpha-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams.

  12. Isotope separation process

    International Nuclear Information System (INIS)

    Wexler, Sol; Young, C.E.

    1976-01-01

    Description is given of method for separating a specific isotope from a mixture of isotopes of an actinide element present as MF 6 , wherein M is the actinide element. It comprises: preparing a feed gas mixture of MF 6 in a propellant gas; passing the feed gas mixture under pressure through an expansion nozzle while heating the mixture to about 600 0 C; releasing the heated gas mixture from the nozzle into an exhaust chamber having a reduced pressure, whereby a gas jet of MF 6 molecules, MF 6 molecular clusters and propellant gas molecules is formed, the MF 6 molecules having a translational energy of about 3 eV; converting the MF 6 molecules to MF 6 ions by passing the jet through a cross jet of electron donor atoms so that an electron transfer takes place between the MF 6 - molecules and the electron donor atoms whereby the jet is now quasi-neutral, containing negative MF 6 - ions and positive donor ions; passing the quasi-neutral jet through a radiofrequency mass filter tuned to separate the MF 6 ions containing the specific isotope from the MF 6 - ions of the other isotopes and neutralizing and collecting the MF 6 molecules of the specific isotope [fr

  13. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  14. Method for separation and enrichment of isotopes

    International Nuclear Information System (INIS)

    Kakihana, H.; Miyamatsu, T.

    1977-01-01

    Boron or uranium isotopes can be chemically separated and enriched with high speed and with high separating efficiency by using weakly basic anion exchange fibers having a diameter of not more than 100 μ, an aspect ratio of at least 5 and an exchange capacity of at least 2 meq/g-dry fiber, which are packed in a column at a specific volume of 2.0 to 20.0 ml/g-dry fiber

  15. New aspects of uranium isotope separation

    International Nuclear Information System (INIS)

    Leonhardt, W.; Mueller, G.

    1979-01-01

    The need of 235 U enrichment capacity is discussed on the basis of the requirements for nuclear power in the next 10 ... 20 years. In this connection, the performance of gas diffusion, of the gas centrifuge and of the separation nozzle method are compared with each other, and an evaluation of the optical methods of isotope separation is given. (author)

  16. Chemical methods for Sm-Nd separation and its application in isotopic geological dating

    International Nuclear Information System (INIS)

    Guo Qifeng.

    1990-01-01

    Three chemical methods for Sm-Nd separation are mainly desribed: low chromatography of butamone-ammonium thiocyanate for hight concentration Sm and Nd separation, P 240 column chromatography for medium concentration Sm-Nd separation, and pressure ion exchange for low concentration Sm-Nd. The first Sm-Nd synchrone obtained in China with Sm-Nd methods is introduced and Sm-Nd isotopic geological dating in Early Archaean rocks in eastern Hebei has been determined

  17. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1976-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically-identical but isotopically-different molecules by either photon-induced pure revibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically-reactive agent to form a chemical compound containing primarily the atoms of the isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically-identical but isotopically-different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope. The laser configuration used to generate the photon beam is fully described

  18. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  19. Characteristic analysis of laser isotope separation process by two-step photodissociation method

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Kiyose, Ryohei

    1981-01-01

    A large number of laser isotope separation experiments have been performed actively in many countries. In this paper, the selective two-step photodissociation method is chosen and simultaneous nonlinear differential equations that express the separation process are solved directly by using computer. Predicted separation factors are investigated in relation to the incident pulse energy and the concentration of desired molecules. Furthermore, the concept of separative work is used to evaluate the results of separation for this method. It is shown from an example of numerical calculation that a very large separation factor can be obtained if the concentration of desired molecules is lowered and two laser pulses to be closely synchronized are not always required in operation for the photodissociation of molecules. (author)

  20. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    Science.gov (United States)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  1. High atomic weight isotope separator

    International Nuclear Information System (INIS)

    Book, D.L.

    1978-01-01

    A continuously operating device is described which separates one isotopic species of a given element from a mixture. The given element is vaporized and formed into a neutral beam containing the isotopes desired to be separated. The plasma is accelerated through a laser beam which is formed by two separate lasers which operate in the continuous wave mode in which the beams are as nearly as possible in the same beam path. The two laser output beams excite and ionize the isotope of interest while leaving the remaining atoms unaffected. The ionized isotopes are then separated from the beam by an electrostatic deflection technique and the unaffected atoms continue on in their path and are directed to a recovery device

  2. Laser alteration of accommodation coefficient for isotope separation

    International Nuclear Information System (INIS)

    Keck, J.C.

    1976-01-01

    This patent describes a method and an apparatus for separating isotope types by inducing an isotopically selective vibrational excitation of molecules containing at least one atom of the element type whose isotopes are to be separated. Vibrational excitation is induced in the molecules by finely tuned, narrow bandwidth laser radiation applied to a gaseous flow of the molecules. Isotopic separation of the molecules is achieved from the enhanced difference in diffusion rates for the molecules due to an alteration of the accommodation coefficients in the excited molecules. 40 claims, 4 figures

  3. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  4. Experimental substantiation of separation techniques of lead and uranium microamounts using isotopic dilution method as control method

    International Nuclear Information System (INIS)

    Agapova, A.A.; Shcherbinina, N.K.

    1983-01-01

    Methods,ensuring at low levels of contamination a high degree of lead and uranium microamount separation from solutions of geological samples, have been selected and subjected to the detailed testing. The method of isotope dilution, , combining high accuracy and sensitivity of determinations, is used as the main control methods, is used as the main control method. Using the method, processe es of uranium extpaction are traced, special attention is paid to the detailed description of lead extraction at all the stages of the methods selected. Opera ations of ion exchange for lead and uranium in microcolumns with the Bio-Rad r sin are considered, as well as operations of lead electrolytic separation. The chemical procedures suggested permit to solve one of the main methodical tasks f sample preparation, containing microgram amounts of lead and uranium, for high h-prcision measurement of their isotope composition using mass-spectrometric method

  5. Laser pumped lasers for isotope separation

    International Nuclear Information System (INIS)

    Fry, S.M.

    1976-01-01

    A study of the isotope separation laser requirements reveals that high pressure polyatomic molecular gas laser pumped lasers can attain the necessary characteristics including tunability, energy output, pulse width, and repetition rate. The results of a search, made for molecules meeting the appropriate requirements for one of several pump schemes utilizing a CO 2 laser and with output in the 12 μm or 16μm wavelength range, are presented. Several methods of pumping are reviewed and two novel pump schemes are presented. A laser pumped laser device design is given, and operation of this device and associated diagnostic equipment is confirmed by repeating experiments in OCS and NH 3 . The results of OCS laser experiments show that an improvement in pump rate and output per unit length is obtained with the device, using a wedged transverse pumping scheme. A new multi-line laser system in NH 3 pumped by a TEA CO 2 laser is reported. More than forty transitions spanning the wavelength range of 9.2 to 13.8 μm are observed and identified. A strong output at 12.08 μm is one of the closest lines yet found to the required laser isotope separation wavelength. Far infrared emission near 65 μm is observed and is responsible for populating levels which lase in pure ammonia near 12.3 μm. Buffer gas (e.g., N 2 or He) pressures of approximately 40--800 torr cause energy transfer by collision-induced rotationaltransitions from the pumped antisymmetric to the lasing symmetric levels in the nu 2 = 1 band of ammonia. Most of the observed lines are aP(J,K) transitions which originate from the nu 2 /sup s/ band. Measurements of the pressure dependence of the laser output shows that some lines lase at pressures greater than one atmosphere. Transient behavior of the 12.08 μm line is calculated from a simplified analytic model and these calculations are compared to the experimental results

  6. Isotope separation by ion waves

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  7. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  8. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  9. Stable isotope separation; Separations physicochimiques d'isotopes stables realisations et etudes de petites productions

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Molinari, Ph; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    which cooling water circulates. Studies are going forward to increase the separation factor of the cascade by using an auxiliary gas. Isotopic Exchange: A series of experiments has been performed to determine the isotopic separation factor between a lithium amalgam and an organic solvent containing a lithium salt. The various parameters which may enter into this exchange were studied: the influence of the type of solvent (the two solvents used were dimethylformamide and tetrahydrofurane), of the temperature, of the concentration and of the nature of the associated halogen. Solutions of Li metal and liquid NH{sub 3} were studied also. A number of tests were carried out to see whether there was a difference between the isotopic compositions of the Li present in the two liquid layers obtained by the dissolution of Li metal in ammonia. No difference was observed between the Li isotopic ratios in the two phases. This was also true in the case of a layer of of Li in liquid NH{sub 3} and a layer of Li I in a similar solvent. Electromigration: The method of counter current electro Migration in fused salts is a powerful isotopic enrichment technique. It can be used successfully to separate the isotopes of elements with strongly metallic character. In the case of alkalis, small quantities of isotopically pure {sup 7}Li have been obtained, while the enrichment factors obtained for potassium are of the order of 10. With regard to the alkaline earths, it has been possible to produce small quantities of calcium enriched 5 times in {sup 46}Ca. However considerable technological difficulties rise up in the way of production on a semi-industrial scale. (authors) [French] Nous avons effectue Ia separation de deuterium pur, a partir de melanges gazeux d'hydrogene et de deuterium, par chromatographie de deplacement de bande sur colonnes de palladium supporte. Les meilleures performances ont ete obtenues par des colonnes de Pd sur fritte d'alumine {alpha}. Avec une colonne de ce type, de

  10. Application of ion exchange to isotope separation. 2. Isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Makoto; Fujii, Yasuhiko; Aida, Masao; Nomura, Masao; Aoyama, Taku

    1985-10-01

    Research work on the uranium isotope separation by ion exchange chromatography done by the ahthors was reviewed and summarized in the present paper. Specifically described are the determination of separation coefficients of uranium isotopes in various chemical systems involving uranium ions and complexes. The chemical systems are classifield into three main categories; (1) uranyl, U (VI), complex formation system, (2) uranous, U (IV), complex formation system and (3) U (IV) - U (VI) redox system. The redox system showed the largest separation coefficient of approx. 7 x 10/sup -4/, while the uranyl and uranous complex systems showed the separation coefficients of -- 2 x 10/sup -4/ and approx. 6 x 10/sup -5/, respectively.

  11. Isotope separation process

    International Nuclear Information System (INIS)

    Cabicar, J.; Stamberg, K.; Katzer, J.

    1983-01-01

    A process for separating isotopes by the method of controlled distribution is claimed. A first phase is either a solution of isotopic components and a ligand (from 10 - 6 M to a saturated solution), or a gaseous mixture of isotopic components, or a gaseous mixture of isotopic components and an inert gas. The isotopes are in the starting mixture in molar ratio from 1:10 5 to 1:10 - 5 . The second phase is a solid sorbent such as styrene-divinylbenzene ion exchangers, or bio-sorbents on the basis of mycelium of lower fungi and sorbents on the basis of cellulose, or an extraction agent such as tributyl phosphate and trioctyl amine, if need be, kept by a carrier such as teflon, silica gel and cellulose. The two-phase system exhibits non-linear equilibrium isotherm for sorption and/or desorption or for extraction and/or re-extraction. After bringing both phases into contact the rate of transport of isotopic components from one phase into another is not equal. Retardation of isotopic exchange takes place by complexation of isotopes with ligands such as cabonate, sulphate, citrate, chloride and ethylenediamine tetraacetate ions, or by using sorbents and extraction agents with chelating functional groups such as carboxyl and hyroxyl groups, groups on the basis of phosphorus, nitrogen and sulphur and/or by operating in darkness, or in the light having wave length between 2.5x10 2 and 10 9 nm. The contact time is between 10 - 2 and 10 6 s, temperature between 10 2 and 10 3 K, the number of stirrer revolutions between 10 - 2 and 10 4 revolutions per s, flow rate at column arrangement between 10 - 6 and 10 - 1 m/s and the size of particles of sorbent between 10 - 6 and 10 - 2 m

  12. Laser isotope and isomer separations: History and trends

    International Nuclear Information System (INIS)

    Letok'ov, V.S.

    1990-01-01

    Paper will review history and principles of laser isotope and nuclear isomer separation: laser multistep photoionization of isotopic and isomeric atoms, laser IR-UV two-step photodissociation of molecules, laser IR multiphoton photodissociation of polyatomic molecules. The comparison and areas of applications of these methods will be considered. Paper will discuss a present state of art of technology of these methods in practical scale in various countries. In conclusion the trends of research in this field including applications of laser-separated isotopes and isomers will be considered

  13. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  14. Extraction separation of lithium isotopes with crown-ethers

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Demin, S.V.; Levkin, A.V.; Zhilov, V.I.; Nikol'skij, S.F.; Knyazev, D.A.

    1990-01-01

    By the method of extraction chromatography lithium isotope separation coefficients are measured during chemical isotope exchange between lithium aquocomplex and its complex in chloroform with crown-ethers: benzo-15-crown-5, 15crown-5, dicyclohexano-18-crown-6 and dibenzo-18-crown-6. Lithium perchlorate and trichloroacetate are the salts extracted. Values of 6 Li/ 7 Li isotope separation are 1.0032-1.020

  15. Simplified simulation of multicomponent isotope separation by gas centrifuge

    International Nuclear Information System (INIS)

    Guo Zhixiong; Ying Chuntong

    1995-01-01

    The expressions of diffusion equation for multicomponent isotope separation by gas centrifuge are derived by utilizing the simplified diffusion transport vector. A method of radial averaging which was restricted to a binary mixture is extended to multicomponent isotope mixtures by using an iterative scheme. A numerical analysis of tetradic UF 6 or SF 6 gas isotope separation by centrifuge is discussed when a special model of velocity distribution is given. The dependence of mutual separation factor for the components on their molecular weights' difference is obtained. Some aspects of the given model of gas fluid are also discussed

  16. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  17. Method of concentrating and separating lithium isotopes by laser

    International Nuclear Information System (INIS)

    Yamashita, Mikio; Kashiwagi, Hiroshi.

    1976-01-01

    Purpose: To eliminate the need for repeating separating operation in many stages and permit concentrated lithium of high purity to be obtained in a short period of time. Constitution: Lithium atom vapor is irradiated by a laser of wavelengths resonant to 6 Li or 7 Li absorption spectra present in the neighborhood of 6,707.84 A or 3,232.61 A (chromatic laser being used for oscillation in the neighborhood of 6,707.84 A and ultraviolet laser used for oscillation in the neighborhood of 6,707.84 A) for selectively exciting 6 Li or 7 Li alone. Then, ionization is brought about by using other types of lasers (ultraviolet Ar ion laser being used as the former wavelength laser and visible Ar ion laser as the latter wavelength laser), and only the ionized isotopes are passed through a mass filter and collected by an ion collector, thereby effecting separation of the ionized isotopes from the non-ionized neutral isotopes and their concentration. (Aizawa, K.)

  18. Isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.; Rabinowitz, P.

    1979-01-01

    A method of separating the isotopes of an element is described, which comprises the steps of (i) subjecting molecules of a gaseous compound of the element simultaneously to two infrared radiations of different wavelengths, the first radiation having a wavelength which corresponds to an absorption band of the compound, which in turn corresponds to a mode of molecular motion in which there is participation by atoms of the element, and the second radiation having a power density greater than 10 6 watts per cm 2 , thereby exciting molecules of the compound in an isotopically selective manner, this step being conducted in such manner that the excited molecules either receive a level of energy sufficient to cause them to undergo conversion by unimolecular decomposition or receive a level of energy sufficient to cause them to undergo conversion by reaction with molecules of another gas present for that purpose; and (ii) separating and recovering converted molecules from unconverted molecules. (author)

  19. On-line stable isotope measurements during plant and soil gas exchange

    International Nuclear Information System (INIS)

    Yakir, D.

    2001-01-01

    Recent techniques for on-line stable isotope measurements during plant and soil exchange of CO 2 and/or water vapor are briefly reviewed. For CO 2 , these techniques provide means for on-line measurements of isotopic discrimination during CO 2 exchange by leaves in the laboratory and in the field, of isotopic discrimination during soil respiration and during soil-atmosphere CO 2 exchange, and of isotopic discrimination in O 2 during plant respiration. For water vapor, these techniques provide means to measure oxygen isotopic composition of water vapor during leaf transpiration and for the analysis of sub microliter condensed water vapor samples. Most of these techniques involve on-line sampling of CO 2 and water vapor from a dynamic, intact soil or plant system. In the laboratory, these systems also allow on-line isotopic analysis by continuous-flow isotope ratio mass spectrometry. The information obtained with these on-line techniques is becoming increasingly valuable, and often critical, for ecophysiologial research and in the study of biosphere-atmosphere interactions. (author)

  20. Stable isotopes - separation and application

    International Nuclear Information System (INIS)

    Lockhart, I.M.

    1980-01-01

    In this review, methods used for the separation of stable isotopes ( 12 C, 13 C, 14 N, 15 N, 16 O, 17 O, 18 O, 34 S) will be described. The synthesis of labelled compounds, techniques for detection and assay, and areas of application will also be discussed. Particular attention will be paid to the isotopes of carbon, nitrogen, and oxygen; to date, sulphur isotopes have only assumed a minor role. The field of deuterium chemistry is too extensive for adequate treatment; it will therefore be essentially excluded. (author)

  1. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    Ehrfeld, W.; Ehrfeld, U.

    1977-01-01

    In the nuclear fuel cycle, uranium enrichment is not a principal problem of technological feasibility. Several processes exist for producing LWR fuel and the enrichment method can be selected in consideration of economical, environmental, and political aspects. To date, the gaseous diffusion process constitutes the major part of enrichment capacity. This process has been well demonstrated for over 30 years and, as a matter of fact, no major technological and economical progress is to be expected in the future. Because of their comparatively high development potential, the centrifuge and the separation nozzle method may become increasingly favorable in economics. The development of the centrifuge process which is superior by its low specific energy consumption aims at technological improvements. In the separation nozzle process which offers the advantage of a comparatively simple technology a further reduction of the specific energy consumption is to be expected because of the thermodynamically favorable separation mechanism of this process. Laser isotope separation methods are still on the laboratory scale, although large financial funds have been spent. (orig.) [de

  2. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    Science.gov (United States)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  3. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    Directory of Open Access Journals (Sweden)

    YANG Kun

    2015-01-01

    Full Text Available An economic criterion called as yearly net profit of single separating unit (YNPSSU was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization. Therefore, the structure optimization could increase the economy of the stable isotope separation effectively.

  4. Bibliographical study on photochemical separation of uranium isotopes

    International Nuclear Information System (INIS)

    Bougon, Roland

    1975-01-01

    The objective of this report is to propose an overview of knowledge and current works on isotopic separation of uranium by means of selective excitation where this excitation is obtained by a light source with a wave length corresponding to a selective or preferential absorption by a molecule or by the atom itself of one of the isotopes. After a brief overview of principles and requirements of isotopic separation by selective excitation, the author reviews compounds which can be used for this process. These compounds are mainly considered in terms of spectroscopy, and the study focuses on the most volatile among them, the uranium hexafluoride, its spectra, and possible processes for extraction. Some much less volatile uranium compounds are also mentioned with, when available, their spectroscopic properties. The uranium vapour excitation process is described, and some orientations for further researches are proposed [fr

  5. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    International Nuclear Information System (INIS)

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  6. Separation of lithium isotopes on ion exchangers; Separation des isotopes du lithium sur echangeurs d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Menes, F; Saito, E; Roth, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A survey of the literature shows that little information has been published on the separation of lithium isotopes with ion exchange resins. We have undertaken a series of elutions using the ion-exchange resins 'Dowex 50 x 12' and IRC 50, and various eluting solutions. Formulae derived from the treatment of Mayer and Tompkins permit the calculation of the separation factor per theoretical plate. For the solutions tried out in our experiments the separation factors lie in the interval 1.001 to 1.002. These values are quite low in comparison to the factor 1.022 found by Taylor and Urey for ion exchange with zeolites. (author) [French] Nous avons trouve relativement peu de donnees dans la litterature scientifique sur la separation des isotopes de lithium par les resines echangeuses d'ions. Nous avons effectue un certain nombre d'essais sur Dowex 50 X 12 et IRC 50 utilisant divers eluants. Des formules derivees de celles de Mayer et Tompkins permettent le calcul du coefficient de separation par plateau theorique. Pour les eluants etudies, ces facteurs de separation se trouvent entre 1,001 et 1,002. Ces valeurs sont faibles en comparaison du facteur 1,022 trouve par Taylor et Urey pour les zeolithes. (auteur)

  7. Process for separating U isotopes by infrared excitation

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, Andrew.

    1976-01-01

    This invention concerns a process for separating a substance into at least two parts in which the isotopic abundances of a given element differ from those of the isotopes of the substance prior to separation. Specifically, the invention concerns a process for the selective excitation of the isotopes of a gaseous phase UF 6 by absorption of infra-red photons, then by selective reaction of UF 6 excited with atomics chlorine, bromine or iodine, forming a product that may be separated by a standard method. The preference criteria of the atomic chlorine, bromine and iodine are related to the thermal dilution problem [fr

  8. Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange

    International Nuclear Information System (INIS)

    Knochel, A.; Eggers, I.; Klatte, B.; Wilken, R. D.

    1985-01-01

    A process for enriching and separating heavy hydrogen isotopes having a heavy hydrogen cation (deuterium and/or tritium) from substance streams containing them, wherein the respectively present hydrogen isotopes are exchanged in chemical equilibria. A protic, acid solution containing deuterium and/or tritium is brought into contact with a value material from the group of open-chained polyethers or aminopolyethers, macro-monocyclic or macro-polycyclic polyethers, macro-monocyclic or macro-polycyclic amino polyethers, and mixtures of these values, in their free or proton salt form to form a reaction product of the heavy hydrogen cation with the value or value salt and bring about enrichment of deuterium and/or tritium in the reaction product. The reaction product containing the value or value salt is separated from the solution. The separated reaction product is treated to release the hydrogen isotope(s) to be enriched in the form of deuterium oxide (HDO) and/or tritium oxide (HTO) by regenerating the value or its salt, respectively. The regenerated value is returned for reuse

  9. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    International Nuclear Information System (INIS)

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q 2 ) must be separated from an inert gas such as He, Ar and N 2 . Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q 2 from N 2 . Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q 2 pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies

  10. Isotope separation using tunable lasers

    International Nuclear Information System (INIS)

    Snavely, B.B.

    1975-01-01

    Various processes for laser isotope separation based upon the use of the spectroscopic isotope effect in atomic and molecular vapors are discussed. Emphasis is placed upon processes which are suitable for uranium enrichment. A demonstration process for the separation of uranium isotopes using selective photoionization is described. (U.S.)

  11. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1993-01-01

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.)

  12. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  13. High mass isotope separation process and arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1978-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically identical but isotopically different molecules by either photon-induced pure rovibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically reactive agent to form a chemical compound containing primarily the atoms of isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically identical but isotopically different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope

  14. Process for isotope separation

    International Nuclear Information System (INIS)

    Emile, B.F.M.

    1983-11-01

    A process is claimed for isotopic separation applied to isotopes of elements that can be placed in at least a physicochemical form in which the isotopic atoms or the molecules containing these atoms can be easily displaced and for which there are selective radiations preferentially absorbed by the isotopes of a certain type or by the molecules containing them, said absorption substantially increasing the probability of ionization of said atoms or molecules relative to the atoms or molecules that did not absorb the radiation. The process consists of placing the isotopic mixture in such a form, subjecting it in a separation zone to selective radiations and to an electrical field that produces migration of positive ions toward the negative electrodes and negative ions toward the positive electrodes, and withdrawing from certain such zones the fractions thus enriched in certain isotopes

  15. Radioactive ion beam production by the ISOL method for SPIRAL

    International Nuclear Information System (INIS)

    Landre-Pellemoine, Frederique

    2001-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Lignes) of which the start up will begin in September 2001 at GANIL (Grand Accelerateur National d'Ions Lourds) in Caen. This thesis primarily concerns the development of radioactive ion production systems (target/ion source) by the thorough study of each production stage of the ISOL (Isotopic Separation On Line) method: target and/or projectile fragmentation production, diffusion out of target material, effusion into the ion source and finally the ionization of the radioactive atoms. A bibliographical research and thermal simulations allowed us to optimize materials and the shape of the production and diffusion targets. A first target was optimized and made reliable for the radioactive noble gases production (argon, neon...). A second target dedicated to the radioactive helium production was entirely designed and realised (from the specifications to the 'off line' and 'on line' tests). Finally, a third target source system was defined for singly-charged radioactive alkaline production. The intensities of secondary beams planned for SPIRAL are presented here. A detailed study of the diffusion effusion efficiency for these various targets showed that the use of a fine microstructure carbon (grain size of 1 μm) improved the diffusion and showed the importance of thickness of the lamella for the short lived isotope effusion. (author) [fr

  16. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  17. Isotope separation by standing waves

    International Nuclear Information System (INIS)

    Altshuler, S.

    1984-01-01

    The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, the beam having in either case a desired isotope and at least one other. The particle beam is directed so as to impinge on the standing electromagnetic wave, which may be a light wave. The particles, that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the standing electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted. (author)

  18. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  19. Isotope separation by photodissociation of Van der Wall's molecules

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex is described. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam

  20. Lithium isotope separation on an ion exchange resin having azacrown ether as an anchor group

    International Nuclear Information System (INIS)

    Kim, D.W.; Jeong, Y.K.; Lee, J.K.; Hong, Ch.P.; Kim, Ch.S.; Jeon, Y.Sh.

    1997-01-01

    As study on the separation of lithium isotopes was carried out with an ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane (N 3 O 3 ) as an anchor group. The lighter isotope, 6 Li concentrated in the resin phase, while the heavier isotope, 7 Li is enriched in the fluid phase. Upon column chromatography [0.6 cm (I. D.) x 20 cm (height) using 1.0M ammonium chloride solution as an eluent, single separation factor, α, 1.068 ( 6 Li/ 7 Li) r esin/( 6 Li/ 7 Li) s olution was obtained by the GLUECKAUF method from the elution curve and isotope ratios. (author)

  1. Separation and preparation of "6"2Ni isotope

    International Nuclear Information System (INIS)

    Ren Xiuyan; Mi Yajing; Zeng Ziqiang; Li Gongliang; Tu Rui

    2014-01-01

    Micro nuclear battery is the perfect power of space craft equipment. "6"3Ni is the core operation material of the "6"3Ni battery. It can produce radioisotope "6"3Ni while high abundance "6"2Ni is irradiated in the reactor. In order to meet the requirements of the abundance and the purity, research of the separation for "6"2Ni isotope was developed. The magnetic field and beam transmission status were simulated. The improvement designs of the ion source and the collector pocket were carried out. The process flow of high abundance "6"2Ni using electromagnetic separation method was established. The experiment of "6"2Ni isotope was developed by using electromagnetism isotope separator. The results show that the enrichment of "6"2Ni isotope is more than 90%. (authors)

  2. Radiation gradient isotope separator

    International Nuclear Information System (INIS)

    Hughes, J.L.

    1980-01-01

    A system is described for transporting, separating and storing charged particles, charged antiparticles and fully or partially ionized isotopes of any element comprising a laser beam generator, laser beam intensity profiler, a laser beam variable intensity attenuator, and means for injecting charged particles, charged antiparticles and ionized isotopes into the beam and extracting them from the system as required. The invention is particularly useful for channelling electrons and ions used for fuel pellet compression in inertial fusion systems, for separating the isotopes of elements and for the confinement of charged antiparticles and particle/antiparticle plasmas

  3. Molecular modeling study of lithium isotopic separation by crown-ethers in ethanol

    International Nuclear Information System (INIS)

    Dehez, F.

    2002-01-01

    The isotopic separation of lithium ion isotopes is studied at the CEA in Pierrelatte using a liquid chromatography technique. Exchange systems are composed by crown-ethers grafted on silica (12C4, 15C5, B15C5, DB15C5, 18C6, B18C6). Lithium is introduced as a salt melted in ethanol. This work concerns the theoretical study of lithium isotopic exchange reactions with those systems. After a brief presentation of isotope separation techniques and isotopic effects (Chap.I), we describe the methods of theoretical chemistry used in this work (Chap. II). In chapter III, we test AM1 and PM3 semi-empirical methods for the treatment of Li + /crown-ether species. Then, we calculate isotopic separation factors via ab initio and semi-empirical calculations for the exchange reactions in vacuum. The different crown-ethers are considered with and without graftings arms. Studies of exchange reactions in ethanol are presented in chapter IV. First, each species of the reaction are solvated by a few ethanol molecules. Isotopic separation factors calculated show a large effect of the solvent on the exchange reaction. The effect of the grafting arm has been investigated using hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics for species with the 12C4. Trajectories have been generated successively with 7 Li and 6 Li. Atomic velocity autocorrelation functions have allowed the access to vibrational frequencies necessary to calculate isotopic separation factors. The last chapter is devoted to methodological developments made during this Ph.D. We propose an approach to treat long range electrostatic interactions in hybrid QM/MM method, relying on a lattice summation technique. (author) [fr

  4. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  5. MINLP solution for an optimal isotope separation system

    International Nuclear Information System (INIS)

    Boisset-Baticle, L.; Latge, C.; Joulia, X.

    1994-01-01

    This paper deals with designing of cryogenic distillation systems for the separation of hydrogen isotopes in a thermonuclear fusion process. The design must minimize the tritium inventory in the distillation columns and satisfy the separation requirements. This induces the optimization of both the structure and the operating conditions of the columns. Such a problem is solved by use of a Mixed-Integer NonLinear Programming (MINLP) tool coupled to a process simulator. The MINLP procedure is based on the iterative and alternative treatment of two subproblems: a NLP problem which is solved by a reduced-gradient method, and a MILP problem, solved with a Branch and Bound method coupled to a simplexe. The formulation of the problem and the choice of an appropriate superstructure are here detailed, and results are finally presented, concerning the optimal design of a specific isotope separation system. (author)

  6. Analysis and separation of boron isotopes; Analyse et separation des isotopes du bore

    Energy Technology Data Exchange (ETDEWEB)

    Perie, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    The nuclear applications of boron-10 justify the study of a method of measurement of its isotopic abundance as well as of very small traces of boron in different materials. A systematic study of thermionic emission of BO{sub 2}Na{sub 2}{sup +} has been carried out. In the presence of a slight excess of alkalis, the thermionic emission is considerably reduced. On the other hand, the addition of a mixture of sodium hydroxide-glycerol (or mannitol) to borax permits to obtain an intense and stable beam. These results have permitted to establish an operative method for the analysis of traces of boron by isotopic dilution. In other respects, the needs of boron-10 in nuclear industry Justify the study of procedures of separation of isotopes of boron. A considerable isotopic effect has been exhibited in the chemical exchange reaction between methyl borate and borate salt in solution. In the case of exchange between methyl borate and sodium borate, the elementary separation factor {alpha} is: {alpha}=(({sup 11}B/{sup 10}B)vap.)/(({sup 11}B/{sup 10}B)liq.)=1.03{sub 3}. The high value of this elementary effect has been multiplied in a distillation column in which the problem of regeneration of the reactive has been resolved. An alternative procedure replacing the alkali borate by a borate of volatile base, for example diethylamine, has also been studied ({alpha}=1,02{sub 5} in medium hydro-methanolic with 2,2 per cent water). (author) [French] Les applications nucleaires du bore 10 justifient l'etude d'une methode de mesure de son abondance isotopique dans divers materiaux ainsi que le dosage de tres faibles traces de bore. Une etude systematique de l'emission thermoionique de BO{sub 2} Na{sub 2}{sup +} a ete effectuee. En presence d'un leger exces d'alcalins, l'emission thermoionique est considerablement reduite. Par contre l'addition au borax d'un melange soude-glycerol (ou mannitol) permet d'obtenir un faisceau stable et intense. Ces resultats ont permis d'etablir un mode

  7. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  8. Radioactive isotope and isomer separation with using light induced drift effect

    International Nuclear Information System (INIS)

    Hradecny, C.; Slovak, J.; Tethal, T.; Ermolaev, I.M.; Shalagin, A.M.

    1991-01-01

    The isotope separation with using light induced drift (LID) is discussed. The basic theoretical characteristics of the method are deduced: separation simultaneously with an arbitrary high enrichment and without significant losses; separation productivity up to 100 μg/h. These characteristics are sufficient and very convenient for separation of expensive radioactive isotopes and isomers which are applied in medicine and science. The first experimental separation of the radioactive isotopes ( 22,24 Na) by using the LID effect is reported. 13 refs.; 5 figs

  9. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  10. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  11. Studies on separation of lithium isotopes by solvent extraction: Pt.1

    International Nuclear Information System (INIS)

    Chen Yaohuan; Yan Jinying; Wu Fubing

    1987-01-01

    The separation effects of lithium isotopes on the extraction with Sudan I(1-phenylazo-2-naphthol)-neutral ligand synergetic extraction systems are reported in this paper. Different separation effects are observed when different kinds of neutral ligands are used. Among them, the separation coefficient (α) of Sudan I-TOPO-xylene/LiCl-LiOH is found to be 1.009 ± 0.001. The heavy isotope 7 Li is enriched in the organic phase. The contributions of different structural chelating agents, synergetic agents and diluents to the separation effect are discussed. It is shown that the chelating agent played an important role in the separation effect, and the synergetic agent also exhibited obvious effect, while the shift of diluent didn't affect the separation coefficient significantly. The rates of extraction and isotope exchange equilibrium are high and these systems are shown to be diffusion-controlled ones

  12. Separation of argon isotopes by porous membrane method, (2)

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Fujine, Sachio; Saito, Keiichiro; Ouchi, Misao; Naruse, Yuji

    1979-08-01

    Separation characteristics of an engineering-scale cascade equipment, which is composed of five stages using Al 2 O 3 barriers, were examined under different operating conditions. This report describes the results of the separation experiment of argon isotopes by the square cascade operated under total reflux. The results are as follows: (1) Mean pore diameter and tortuosity of the barriers were estimated to be 400A and 13-15, respectively. (2) Flow mechanism through the barriers was proved to be ideal Knudsen flow by measurement of the permeability. (3) The cascade was equilibriated in 30-40 minutes, depending on stage gas inventory. (4) The effect of an operating pressure on the separation factor could be estimated by Knudsen's and Present-deBethune's theories. (5) The stage separation factor could be estimated by the conventional theoretical equations by introducing a correction factor as a function of Reynolds number of the permeating flow through the barriers. (6) An experimental equation to estimate the flow effect on the separation factor was obtained considering velocity and physical properties of the gas in the vicinity of the barrier surface. (author)

  13. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  14. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation; La separation isotopique par chromatographie ionique

    Energy Technology Data Exchange (ETDEWEB)

    Albert, M G; Barre, Y; Neige, R

    1994-12-31

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.). 5 refs.

  15. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  16. Process for isotope separation

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.; Gebauhr, W.

    1980-01-01

    Isotope separation in UF 6 gas takes place on the principle of selective excitation by laser irradiation and separation by chemical conversion with a partner in a reaction. Atomic H, N or O or the CH 3 or CHO radicals are suitable partners in the reaction. The recombination takes place by catalytic acceleration on leaving the reaction area. (DG) [de

  17. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    Science.gov (United States)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  18. Parameter study on Japanese proposal of ITER hydrogen isotope separation system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Enoeda, Mikio; Tanaka, Shigeru; Ohokawa, Yoshinao; Ohara, Atsushi; Nagakura, Masaaki; Naito, Taisei; Nagashima, Kazuhiro.

    1991-01-01

    As part of Japanese design contribution in the ITER activity, conceptual design of an entire ITER tritium system and their safety analysis have been carried out through the three-year period since 1988. The tritium system includes the following subsystems; - Fuelling (gas puffing and pellet injection) subsystem, - Torus vacuum pumping subsystem, - Plasma exhaust gas purification subsystem, - Hydrogen isotope separation subsystem, - NBI gas processing subsystem, - Blanket tritium recovery subsystem, - Tritiated water processing subsystem, - Tritium safety subsystem. Hydrogen isotope separation system is a key subsystem in the ITER tritium system because it is connected to all above subsystems. This report describes an analytical study on the Japanese concept of hydrogen isotope separation system. (author)

  19. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    Science.gov (United States)

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  20. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    Dave, S.M.

    1980-01-01

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  1. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, A.

    1977-01-01

    In a method for the separation of isotopes of uranium in UF 6 , the UF 6 is subjected to ir radiation at a predetermined wavelength or set of wavelengths for less than 10 -3 sec in such a manner that at least 0.1% of the 235 UF 6 molecules absorb an energy of more than 2000 cm -1 . The excited UF 6 is then reacted with a gaseous reagent, F 2 , Cl 2 , or Br 2 , to produce a product which is then recovered by means known in the art

  2. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  3. [Baseflow separation methods in hydrological process research: a review].

    Science.gov (United States)

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  4. Nuclear proliferation using laser isotope separation - Verification options

    International Nuclear Information System (INIS)

    Erickson, Stanley A.

    2001-01-01

    either uranium or plutonium is discussed, as is the diversion of a system built for low enriched uranium production to weapons grade HEU production, either by reuse or by the addition of re-enrichment of fuel. All of these are feasible options, and the cost and requirements of each are not greatly different, so that the choice of the level of disclosure by a NNWS would be a political one, rather than technical or economic. One attractive pathway for an NNWS to proliferate would be the development of LIS technology for kilogram-scale production of purified isotopes useful commercially, such as Li6. This allows for the development of the components of the technology using open interaction within the scientific community. Use of the developed technology to separate radioactive isotopes of various elements in milligram quantities would provide for the development of technology for the handling of radioactive materials. This would provide the technology necessary, such as materials able to withstand the corrosive effects of spent fuel and for developing procedures for loading and unloading the housings and for cleaning and maintenance, and other necessary techniques dealing with highly radioactive materials. In this manner the two developmental tasks, radioactive material handling methods, and production of the requisite lasers with adequate line width, stability and power, can be decoupled, and done in separate places, or even in separate facilities. They could be combined only in the covert facility. As noted elsewhere, deconcentrating the scientific or technical tasks that are precursors to the construction of an undeclared facility allows the NNWS to take maximum advantage of scientific interchange and to minimize the requirements for covert activity, including the number of people involved, the size of the facility, and, most importantly, the length of time for the critical and vulnerable stage of development from start of the undeclared activities to the production of

  5. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron S n or two-neutron S 2n separation energy of neutron-rich isotopes. Relationships between S n (S 2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. S n, S 2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between S n, S 2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  6. Studies on separation of lithium isotopes by solvent extraction: Pt. 2

    International Nuclear Information System (INIS)

    Chen Yaohuan; Yan Jinying; Li Yongkun

    1987-01-01

    The effect of the struture of chelating agent and synergetic agent on the extraction separation of lithium isotopes by Sudan I-neutral ligand synergetic extraction systems were discussed in this paper. In order to obtain higher isotopic effect, the chelating agent must possess weaker acidity (pK a > 11), stronger intramolecular hydrogen bonding and a greater tendency to form a six-membered chelating ring. In the synergetic agent, there must be a functional group possessing strong coordination ability without steric hindrance. The separation effect (α) increased with the increase in the basicity of the coordinating group. The increase of the number of chelating rings in the extractable complex was of benefit to the enhancement of α. Further discussions are also made on the enrichment direction of extraction systems and the prospects of different systems to be used for isotope separation

  7. Separation of nitrogen isotopes by laser light

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Y; Noguchi, Y; Yamanaka, C [Osaka Univ., Suita (Japan). Faculty of Engineering

    1976-06-01

    The separation experiment on nitrogen isotopes by laser light was made. First, the nitrogen isotopes of /sup 14/N and /sup 15/N in NH/sub 3/ molecules were separated by CO/sub 2/ laser and UV light. The separation factor and the enrichment factor were calculated. It was shown that their pressure dependence was in good agreement with the measured values. The separation factor of about 2% was obtained with UV light of 10/sup 6/W/cm/sup 2/.

  8. Effect of complexing reagents on the ionization constant of boric acid and its relation to isotopic exchange separation factor

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1991-01-01

    The effect of change in concentration of complexing reagents having two or more hydroxyl groups, viz., ethylene glycol, propylene glycol, dextrose and mannitol on the ionization constant of boric acid has been studied by pH-metric titration method. The effect of increase in ionization constant of boric acid on isotopic exchange separation factor for the separation of isotopes of boron by ion exchange chromatography has been studied by the batch method. (author). 9 refs

  9. A virtual component method in numerical computation of cascades for isotope separation

    International Nuclear Information System (INIS)

    Zeng Shi; Cheng Lu

    2014-01-01

    The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)

  10. Uranium isotope separation in the solid state. Final report for period ending September 30, 1978

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1978-09-01

    The final results of an investigation on the isotope separation of uranium in the solid state are presented in this report. The feasibility of separating uranium isotopes using the proposed system based on uranium borohydride (borodeuteride) in a low temperature mixed crystal has been determined. The first section of the report summarizes the background material relating to this work which includes: a calculation of isotope shifts (borodeuteride), details on the two-step, two-photon spectroscopic isotope separation technique, and a brief overview of the method and equipment used for separating uranium isotopes in the solid state. The second section concerns the experimental details of the present work performed in the laboratory. Representative spectroscopic data obtained in this investigation are presented and discussed in the third section. Finally, the report is concluded with recommendations for further investigations on the uranium borohydride (borodeuteride) system for isotope separation

  11. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  12. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  13. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  14. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  15. Isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The mechanisms producing isotopic contamination in the electromagnetic separation of isotopes are studied with the aid of the Separator of Saclay and an electrostatic analyzer in cascade. After a separate investigation the result of which is that no contamination comes from the spreading of initial energies of ions, two principal mechanisms are emphasized; scattering and instability of the regime of the sources. The characters of each type of contamination arising from both mechanisms are described in some detail. An unique scheme of isotopic contamination is then derived from the partial ones. This scheme is successfully verified in several experimental separations. The applications concern principally the performances of magnetic cascades and more complex apparatus. It is found that the isotopic purities that such machines can deliver are extremely high. (author) [French] On a etudie, a l'aide du separateur de Saclay et d'un analyseur electrostatique en cascade, les mecanismes par lesquels est produite la contamination isotopique dans la separation electromagnetique des isotopes. A la suite d'une deuxieme etude, qui a mene a la conclusion que la contamination ne provient pas d'une dispersion des energies initiales des ions, on propose deux mecanismes comme etant les plus importants; la diffusion et l'instabilite du regime des sources. On decrit en quelques details la nature de la contamination provenant de deux types de mecanisme. On deduit de ces deux mecanismes un seul schema qui a ete ensuite verifie par plusieurs separations experimentales. Les applications interessent surtout les performances des cascades magnetiques et les appareillages plus complexes. On trouve que les puretes isotopiques que peuvent fournir de tels appareils sont tres elevees. (auteur)

  16. Comparison of the Histopaque-1119 method with the Plasmagel method for separation of blood leukocytes for cytomegalovirus isolation.

    Science.gov (United States)

    Slifkin, M; Cumbie, R

    1992-10-01

    Histopaque-1119 (Sigma Chemical Co., St. Louis, Mo.) and Plasmagel (Cellular Products, Inc., Buffalo, N.Y.) were compared as density gradient separation reagents for the separation of polymorphonuclear leukocytes and mononuclear cells from blood from the isolation of cytomegalovirus (CMV). Of 200 peripheral blood specimens examined, CMV was recovered from 51 by both methods. The time of detection of immunofluorescent sites or a cytopathic effect associated with CMV was similar by each method. The Histopaque-1119 method was less time-consuming than the Plasmagel method since it did not require a precentrifugation step for the settling of erythrocytes. The use of Histopaque-1119 will permit an effective alternative single-step method for the separation of blood leukocytes for the isolation of CMV.

  17. Pulsed CO laser for isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  18. Properties of Fe, Ni and Zn isotopes near the drip-lines

    International Nuclear Information System (INIS)

    Tarasov, V.N.; Tarasaov, D.V.; Gridnev, K.A.; Gridnev, D.K.; Kartavenko, V.G.; Greiner, W.

    2008-01-01

    The position of the neutron and proton drip-lines as well as properties of the isotopes Fe, Ni and Zn with neutron excess and neutron deficit are studied within the Hartree–Fock approach with the Skyrme interaction (Ska, SkM*, Sly4). The pairing is taken into account on the basis of the BCS approach with the pairing constant G = (19.5/A)[1 ± 0.51(N-Z)/A]. Our calculations predict that for Ni isotopes around N = 62 there appears a sudden increase of the deformation parameter up to β = 0.4. The zone with such big deformation, where Ni isotopes are stable against one neutron emission stretches up to N = 78. The magic numbers effects for the isotopes 48 Ni, 56 Ni, 78 Ni, 110 Ni are discussed. The universality of the reasons standing behind the enhancement of stability of the isotopes 40 O and 110 Ni which are beyond the drip-line is demonstrated. Calculated values of the two-neutron separation energy, and proton and neutron root mean square radii for the chain of Ni isotopes show a good agreement with existing Hartree–Fock–Bogoliubov calculations of these values. (author)

  19. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    Science.gov (United States)

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  20. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  1. Basic separative power of multi-component isotopes separation in a gas centrifuge

    International Nuclear Information System (INIS)

    Jiang, Hongmin; Lei, Zengguang; Zhuge, Fu

    2008-01-01

    On condition that the overall separation factor per unit exists in centrifuge for multi-component isotopes separation, the relations between separative power of each component and molecular weight have been investigated in the paper while the value function and the separative power of binary-component separation are adopted. The separative power of each component is proportional to the square of the molecular weight difference between its molecular weight and the average molecular weight of other remnant components. In addition, these relations are independent on the number of the components and feed concentrations. The basic separative power and related expressions, suggested in the paper, can be used for estimating the separative power of each component and analyzing the separation characteristics. The most valuable application of the basic separative power is to evaluate the separative capacity of centrifuge for multi-component isotopes. (author)

  2. Separation of uranium and plutonium isotopes for measurement by multi collector inductively coupled plasma mass spectroscopy

    International Nuclear Information System (INIS)

    Martinelli, R.E.; Hamilton, T.F.; Kehl, S.R.; Williams, R.W.

    2009-01-01

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with 233 U and 242 Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA R column coupled to a UTEVA R column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of 234 U/ 235 U, 238 U/ 235 U, 236 U/ 235 U, and 240 Pu/ 239 Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment. (author)

  3. New processes for uranium isotope separation

    International Nuclear Information System (INIS)

    Vanstrum, P.R.; Levin, S.A.

    1977-01-01

    combinations of decreased costs compared with gaseous diffusion or gas centrifuge plant costs and the year the first new process isotope separation plant comes on stream

  4. A simple cleanup method for the isolation of nitrate from natural water samples for O isotopes analysis

    International Nuclear Information System (INIS)

    Haberhauer, G.; Blochberger, K.

    1999-09-01

    The analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. O-isotope nitrate analysis require sample free of other oxygen-containing compounds. More than 100 % of non-NO 3 - oxygen relative to NO 3 - oxygen can still be found in forest soil water samples after cleanup if improper cleanup strategies, e.g., adsorption onto activated carbon, are used. Such non-NO 3 - oxygen compounds will bias O-isotropic data. Therefore, an efficient cleanup method was developed to isolate nitrate from natural water samples. In a multistep cleanup procedure using adsorption onto water-insoluble poly(vinylpyrrolidone), removal of almost all other oxygen-containing compounds, such as fulvic acids, and isolation of nitrate was achieved. The method supplied samples free of non-NO 3 - oxygen which can be directly combusted to CO 2 for subsequent O-isotope analysis. (author)

  5. Review of the ISOL Method

    CERN Document Server

    Lindroos, M

    2004-01-01

    The ISOL technique was invented in Copenhagen over 50 years ago and eventually migrated to CERN where a suitable proton drive beam was available at the Syncho-Cyclotron. The quick spread of the technique from CERN to many other laboratories has resulted in a large user community, which has assured the continued development of the method, physics in the front-line of fundamental research and the application of the method to many applied sciences. The technique is today established as one of the main techniques for on-line isotope production of high intensity and high quality beams. The thick targets used allows the production of unmatched high intensity radioactive beams. The fact that the ions are produced at rest makes it ideally suitable for low energy experiments and for post acceleration using well established accelerator techniques. The many different versions of the technique will be discussed and the many facilities spread all over the world will be reviewed. The major developments at the existing faci...

  6. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  7. Isotopic meteoric line for Colombia

    International Nuclear Information System (INIS)

    Rodriguez N, Cesar O

    2004-01-01

    Isotope analyses from representative rainfall samples taken from different areas in Colombia were processed to yield the meteoric line. Stable isotope composition in precipitation reflects the effects of temperature, altitude and of the continental site, being affected by different sources of atmospheric humidity over the Colombian territory. There is a seasonal variation in isotopic composition of precipitation with grater σ deviation during the rainy season and lower values in the dry season. In coastal areas the variation is smaller and is more pronounced than at continental stations. Correlation between altitude and isotope content led to equations, which indicate, on a regional level, a change in isotopic composition with altitude, of about 0.5 σ units per 200 m, for O 18 and 4 σ units per 200 m for H 2 . Such equations may be used to identify the original altitude of precipitation water, in hydrological surface and groundwater studies. Meteoric line and the concepts derived from the resulting equations presented in this paper may be applied to the interpretation of isotope analysis in future hydrological studies, particularly in areas without available data

  8. Separation of uranium isotopes by accelerated isotope exchange reactions

    International Nuclear Information System (INIS)

    Seko, M.; Miyake, T.; Inada, K.; Ochi, K.; Sakamoto, T.

    1977-01-01

    A novel catalyst for isotope exchange reaction between uranium(IV) and uranium(VI) compounds enables acceleration of the reaction rate as much as 3000 times to make industrial separation of uranium isotopes economically possible

  9. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  10. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  11. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Science.gov (United States)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship

  12. First measurements on the core and edge isotope composition using the JET isotope separator neutral particle analyser

    International Nuclear Information System (INIS)

    Bettella, D; Murari, A; Stamp, M; Testa, D

    2003-01-01

    Direct measurements of tokamak plasmas isotope composition are in general quite difficult and have therefore been very seldom performed. On the other hand, the importance of this measurement is going to increase, as future experiments will be progressively focused on plasmas approaching reactor conditions. In this paper, we report for the first time encouraging experimental evidence supporting a new method to determine the radial profile of the density ratio n H /(n H + n D ), based on neutral particle analyser (NPA) measurements. The measurements have been performed in JET with the ISotope SEParator (ISEP), a NPA device specifically developed to measure the energy spectra of the three hydrogen isotopes with very high accuracy and low cross-talk. The data presented here have been collected in two different experimental conditions. In the first case, the density ratio has been kept constant during the discharge. The isotope ratio derived from the ISEP has been compared with the results of visible spectroscopy at the edge and with the isotope composition derived from an Alfven eigenmodes active diagnostic (AEAD) system at about half the minor radius for the discharges reported in this paper. A preliminary evaluation of the additional heating effects on the measurements has also been carried out. In the second set of experiments, the isotope composition of deuterium plasmas has been abruptly changed with suitable short blips of hydrogen, in order to assess the capability of the method to study the transport of the hydrogen isotope species. Future developments of the methodology and its applications to the evaluation of hydrogen transport coefficients are also briefly discussed. The results obtained so far motivate further development of the technique, which constitutes one of the few candidate diagnostic approaches viable for ITER

  13. Safeguards implications of laser isotope separation

    International Nuclear Information System (INIS)

    Moriarty, T.F.; Taylor, K.

    1993-10-01

    The purpose of this report is to describe and emphasise the safeguards and relevant features of atomic vapour laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS), and to consider the issues that must be addressed before a safeguards approach at a commercial AVLIS or MLIS facility can be implemented. (Author)

  14. Status and prospects of isotope separation industry

    International Nuclear Information System (INIS)

    Safutin, V.D.; Verbin, Yu.V.; Tolstoj, V.V.

    2000-01-01

    The stages of the separation industry in the USSR and Russia are demonstrated. The current status of the separation industry and state of the equipment of the isotope separation plants are noted. The developed program for the modernization of the uranium isotope separation involves the production of perspective gas centrifuges, the improvements in the works of gas centrifuge plants and construction materials [ru

  15. Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform.

    Science.gov (United States)

    O'Hara, Matthew J; Murray, Nathaniel J; Carter, Jennifer C; Morrison, Samuel S

    2018-04-13

    Zirconium-89 ( 89 Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( nat Y), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89 Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5 ) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89 Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89 Zr present in the foils. The anion exchange column method described here is intended to be the first 89 Zr isolation stage in a dual-column purification process. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Uranium isotope separation in the solid state. Progress report, December 1, 1976--June 1, 1977

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-06-01

    Since we were actively able to work on this project, we have been engaged in three separate lines of research. Each of these has been related to laser-induced isotope separation of uranium in the solid state. The three areas are: (a) improved reaction chemistry for both host materials Zr(BH 4 ) 4 and Hf(BH 4 ) 4 and U(BH 4 ) 4 itself; (b) improved spectroscopic techniques in order to obtain sharper spectra; and (c) solid state photochemical investigations to study U(BH 4 ) 4 photodecomposition mechanism and yield as a function of wave length. These are all integral parts of the solid state isotope separation procedure and are discussed in terms of the overall process proposed

  17. Memories of Professor Sugimoto and isotope separator

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro

    2013-01-01

    Usual magnetic isotope-separators select the particles with the same Z/A value which may include different nuclides. Identification of the isotope with the same Z/A value but different Z or A value is an universal requirement for nuclear physics experiments. If one knows, together with the A/Z value, the dE/dx or the range of the isotope in some energy absorber, which are the function of Z 2 /A, its nuclide can be specified. This idea can be realized by arranging proper energy-absorber at the focal point of magnetic analyzer. The author proposes another novel method in which two dipole-magnets are excited with some difference, and an energy absorber corresponding to that energy difference is situated between two magnets. It can also be devised so that the dispersion at the final focal-point depends only on the emission angle of the isotope at production. Professor Sugimoto recognized the significance of this scheme and proposed to employ it in the experiment at BEVATRON. The unbalanced two dipole-magnets method is employed at RIKEN and RCNP, Osaka University. The author's creative idea originated in Sugimoto Laboratory at Osaka University. (author)

  18. Advanced isotope separation

    International Nuclear Information System (INIS)

    1982-01-01

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems

  19. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  20. Method of deuterium isotope separation using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1982-01-01

    Compounds enriched in deuterium may be obtained from ethylene, vinyl chloride, 1,2-dichloroethane, or propylene by laser isotope separation. Normal molecules of these organic compounds are exposed to infrared laser radiation of a suitable wavelength. Substantially all of the deuterium-containing molecules exposed to the laser can be selectively dissociated and the deuterium-containing products separated from the starting material and other reaction products. The deuterium-containing molecules can be burned to form water with an enriched deuterium content, or pyrolized to form hydrogen gas enriched in deuterium

  1. Multiple-isotope separation in gas centrifuge

    International Nuclear Information System (INIS)

    Wood, Houston G.; Mason, T.C.; Soubbaramayer

    1996-01-01

    In previous works, the Onsager's pancake equation was used to provide solution to the internal counter-current flow field, which is necessary to calculate solutions to the isotope transport equation. The diffusion coefficient was assumed to be constant which is a good approximation for gases with large molecular weights, and small differences in the molecular weights of the various isotopes. A new optimization strategy was presented for determining the operating parameters of a gas centrifuge to be used for multiple-component isotope separation. Scoop drag, linear wall temperature gradient, the feed rate ant the cut have been chosen as operating parameters for the optimization. The investigation was restricted to a single centrifuge, and the problem of cascading for multiple-isotope separation was not addressed. The model describing the flow and separation phenomena in centrifuge includes a set of equations describing the fluid dynamics of the counter-current flow and the diffusion equations written for each isotope of the mixture. In this paper, an optimization algorithm is described and applied to an example for the re enrichment of spent reactor uranium

  2. Measurement of liquid mixing characteristics in large-sized ion exchange column for isotope separation by stepwise response method

    International Nuclear Information System (INIS)

    Fujine, Sachio; Saito, Keiichiro; Iwamoto, Kazumi; Itoi, Toshiaki.

    1981-07-01

    Liquid mixing in a large-sized ion exchange column for isotope separation was measured by the step-wise response method, using NaCl solution as tracer. A 50 cm diameter column was packed with an ion exchange resin of 200 μm in mean diameter. Experiments were carried out for several types of distributor and collector, which were attached to each end of the column. The smallest mixing was observed for the perforated plate type of the collector, coupled with a minimum stagnant volume above the ion exchange resin bed. The 50 cm diameter column exhibited the better characteristics of liquid mixing than the 2 cm diameter column for which the good performance of lithium isotope separation had already been confirmed. These results indicate that a large increment of throughput is attainable by the scale-up of column diameter with the same performance of isotope separation as for the 2 cm diameter column. (author)

  3. Production of high-purity isotopes by electromagnetic separation; Production electromagnetique d'isotope tres purs

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Improvement in isotopic purity of nuclides prepared by electromagnetic separation is searched into the principle of cascades of monochromators. The principal drawback of which is to allow the separation of only one isotope at a time. The electromagnetic separator of Saclay is equipped with an electrostatic post-analyzer, which is described. Significant results are obtained, concerning isotopic enhancements of uranium-235 and mercury-204. A schema of isotopic contagion is then proposed, the basis of it is the scattering of the primary ions in the residual atmosphere of the separator chamber. The most frequent type of collisions being accompanied by neutralisation of the ions, the schema explains the efficiency of the second stage. As a matter of conclusion, some particularities concerning the routine work at a high enhancement, small output machine, are given. (author) [French] L'accroissement de la purete isotopique des especes nucleaires preparees par separation electromagnetique est recherche dans l'emploi du principe des cascades de monochromateurs, moyennant la servitude de ne collecter qu'un isotope a la fois. Le separateur electromagnetique de Saclay est equipe dans ce but d'un post-analyseur electrostatique, qui est decrit. Des resultats significatifs sont donnes, portant sur les enrichissements obtenus dans les separations d'uranium-235 et de mercure-204. Un schema de contagion isotopique est propose. Il est fonde sur la diffusion a petit angle accompagnant la neutralisation des faisceaux primaires par collision avec le gaz residuel. Ce schema permet d'expliquer l'efficacite de l'etage electrostatique. En matiere de conclusion, la methode d'exploitation d'une machine a faible debit et a haut enrichissement est donnee. (auteur)

  4. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Gil, C.; Louvet, P.

    1986-10-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  5. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  6. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  7. Optimization of the isotope separation in columns

    International Nuclear Information System (INIS)

    Kaminskij, V.A.; Vetsko, V.M.; Tevzadze, G.A.; Devdariani, O.A.; Sulaberidze, G.A.

    1982-01-01

    The general method for the multi-parameter optimization of cascade plants of packed columns is proposed. As an optimization effectiveness function a netcost of the isotopic product is selected. The net cost is comprehensively characterizing the sum total of capital costs for manufacturing the products as well as determining the choice of the most effective directions for capital investments and rational limits of improvement of the products quality. The method is based on main representations of the cascade theory, such as the ideal flow profile and form efficiency as well as mathematical model of the packed column specifying the bonds between its geometric and operating parameters. As a result, the isotopic products cost function could be bound with such parameters as the equilibrium stage height, ultimate packing capacity, its element dimensions, column diameter. It is concluded that the suggested approach to the optimization of isotope separation processes is rather a general one. It permits to solve a number of special problems, such as estimation of advisability of using heat-pump circuits and determining the rational automation level. Besides, by means of the method suggested one can optimize the process conditions with regard to temperature and pressure

  8. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  9. A novel procedure for Rubidium separation and its isotope measurements on geological samples by MC-ICP-MS

    Science.gov (United States)

    Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.

    2017-12-01

    A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.

  10. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  11. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  12. Separation of boron isotopes by ion exchange chromatography: studies with Duolite-162, a type-II resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Balasubramanian, R.; Mathur, P.K.

    1994-01-01

    The selection of resin plays an important role in the process of separation of boron isotopes by ion exchange chromatography. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride exchange, (ii) hydroxyl - borate exchange, (iii) isotopic exchange separation factor by batch method and (iv) effect of concentration of boric acid on isotopic exchange separation factor to test the suitability of the above resin for this process are discussed in this report. (author)

  13. Isotopic methods or immuno diagnosis: The Radioimmunoassay and immunoradiometric assay

    International Nuclear Information System (INIS)

    Caso, R.

    1997-01-01

    This work offers an explanation about the more used isotopic techniques for immuno diagnosis: the radioimmunoassay (RIA) and immunoradiometric assay (IRMA). It describes the basic principles of these assays, the antigen-antibody reaction, the radioiodination methods with I-125 for antigens and antibodies, the purification and characterization of labelled compounds. On the order hand they present work gives a review of the methods for separate the bound and free fractions. At the end it offers the principles of the quality control of immunoassay and the future lines of research in the field of RIA and IRMA

  14. Separation of calcium isotopes with cryptand complexes

    International Nuclear Information System (INIS)

    Heumann, K.G.; Schiefer, H.P.

    1981-01-01

    The calcium isotope separation in the liquid-liquid extraction system H 2 O/CHCl 3 is investigated using and cryptands for complex formation as well as without complexing agent. An extraction procedure is used which allows the transfer of larger amounts of calcium in the H 2 O phase. Without complexing agent in the extraction system, enrichment of the lighter calcium isotopes is already evident in the CHCl 3 phase which is just the same as when using cryptand. In the case of cryptand as a complexing agent, the isotope separation is higher. The separation factor is calculated to be a = 1 + epsilon = 1.011 for 40 Ca/ 48 Ca without complexing agent or with cryptand and a = 1.015 in the system with cryptand. For 40 Ca/ 44 Ca the epsilon-value is smaller by nearly a factor of two. These separation factors are the highest which are determined in chemical systems for calcium isotopes. (orig.)

  15. Chemical Investigations of ISOL target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive Ion Beams (RIB) are of significant interest in a number of applications. ISOL (Isotope Separation On Line) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to COx and NOx on Al2O3 and SiO2. These materials are potential construction materials for the above mentioned areas. Off-line and on-line tests have been performed using a gas thermo-chromatography set-up with radioactive tracers. The experiments were performed at the PROTRAC facility at Paul Scherrer Institute in Villigen, Switzerland.

  16. A double isotope dilution method for assaying of polycyclic aromatic hydrocarbons in cigarette smoke condensate

    International Nuclear Information System (INIS)

    Bechtold, W.E.; Chen, B.T.

    1988-01-01

    This report describes a double isotope dilution method for analysis of the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluor-anthene, pyrene, and benzo[a]pyrene in cigarette smoke particulates. The first isotope dilution used deuterated analogues of the first three PAH as internal standards. The second isotope dilution, for benzo[a]pyrene, used the tritiated analogue as an internal standard. The PAH were isolated from extracts of cigarette smoke particulates using a two-step procedure based on selective extraction from aqueous dimethyl sulfoxide (DMSO) followed by chromatography on silica gel extraction columns. After isolation, aliquots of the samples were analyzed for phenanthrene, pyrene, and fluoranthene by gas chromatography with mass spectrometric detection (GC/MS). Separate aliquots of the samples were analyzed for benzo[a]pyrene by high pressure liquid chromatography with fluorescence detection followed by liquid scintillation spectrometry. PAH levels from cigarette smoke condensates collected from different exposure modes were compared; no exposure-related differences were found. (author)

  17. Properties of Fe, Ni and Zn isotope chains near the drip-line

    International Nuclear Information System (INIS)

    Tarasov, V.N.; Tarasov, D.V.; Kuprikov, V.I.; Gridnev, K.A.; Gridnev, D.K.; Gridnev, K.A.; Gridnev, D.K.; Kartavenko, V.G.; Greiner, W.; Kartavenko, V.G.

    2007-01-01

    The location of proton and neutron drip-lines and the characteristics of the neutron-deficient and the neutron-rich isotopes Fe, Ni and Zn on the basis of Hartree-Fock method with Skyrme forces (Ska, SkM * , Sly4) taking into account deformation was investigated. The calculations predict a big jump of deformation parameter up to β ∼ 0.4 for Ni isotopes in the neighborhood of N ∼ 62. The manifestation of magic numbers for isotopes 48 Ni, 56 Ni, 78 Ni and also for the stable isotope in the respect to neutron emission 110 Ni which is situated beyond the neutron drip-line is discussed

  18. The momentum-loss achromat - a new method for the isotopical separation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Geissel, H.; Muenzenberg, G.; Dufour, J.P.; Hanelt, E.

    1987-03-01

    The application of the slowing-down process of relativistic heavy ions in a layer of matter in ion-optical devices is theoretically investigated. The modifications of the phase space of the ion beam due to the dissipative forces and the straggling phenomena are discussed. Methods are developed to study the properties of the momentum-loss achromat, an isotope separator consisting of an achromatic magnetic system with an energy degrader located in the intermediate dispersive focal plane. This device separates projectile fragments with respect to A and Z up to uranium over a wide energy range with an efficiency in the order of 50% and with separation times of several hundred nanoseconds. (orig.)

  19. An advanced ISOL facility based on ATLAS

    CERN Document Server

    Nolen, J A; Pardo, R C; Savard, G; Rehm, K E; Schiffer, J P; Henning, W F; Jiang, C L; Ahmad, L; Back, B B; Kaye, R A; Petra, M; Portillo, M; Greene, J; Clifft, B E; Specht, J R; Janssens, R V F; Siemssen, R H; Gómez, I; Reed, C B; Hassanein, A M

    1999-01-01

    The Argonne concept for an accelerator complex for efficiently producing high-quality radioactive beams from an ion source energy up to 6-15 MeV/u is described. The Isotope-Separator-On-Line (ISOL) method is used. A high-power $9 driver accelerator produces radionuclides in a target that is closely coupled to an ion source and mass separator. By using a driver accelerator which can deliver a variety of beams and energies the radionuclide production mechanisms $9 can be chosen to optimize yields for the species of interest. To effectively utilize the high beam power of the driver two-step target /ion source geometries are proposed: (1) Neutron production with intermediate energy deuterons on $9 a primary target to produce neutron- rich fission products in a secondary /sup 238/U target, and (2) Fragmentation of neutron-rich heavy ion beams such as /sup 18/O in a target/catcher geometry. Heavy ion beams with total energies in $9 the 1-10 GeV range are also available for radionuclide production via high-energy sp...

  20. Separation of hydrogen isotopes via single column pressure swing adsorption

    International Nuclear Information System (INIS)

    Wong, Y.W.; Hill, F.B.

    1981-01-01

    Separation of hydrogen isotopes based on kinetic isotope effects was studied. The mixture separated was hydrogen containing a trace of tritium as HT and the hydride was vanadium monohydride. The separation was achieved using the single-column pressure swing process. Stage separation factors are larger and product cuts smaller than for a two-column pressure swing process operated in the same monohydride phase

  1. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  2. The Cryo-Thermochromatographic Separator (CTS) A new rapid separation and alpha-detection system for on-line chemical studies of highly volatile osmium and hassium (Z=108) tetroxides

    CERN Document Server

    Kirbach, U W; Gregorich, K E; Lee, D M; Ninov, V; Omtvedt, J P; Patin, J B; Seward, N K; Strellis, D A; Sudowe, R; Türler, A; Wilk, P A; Zielinski, P M; Hoffman, D C; Nitsche, H

    2002-01-01

    The Cryo-Thermochromatographic Separator (CTS) was designed and constructed for rapid, continuous on-line separation and simultaneous detection of highly volatile compounds of short-lived alpha-decaying isotopes of osmium and hassium (Hs, Z=108). A flowing carrier gas containing the volatile species is passed through a channel formed by two facing rows of 32 alpha-particle detectors, cooled to form a temperature gradient extending from 247 K at the channel entrance down to 176 K at the exit. The volatile species adsorb onto the SiO sub 2 -coated detector surfaces at a characteristic deposition temperature and are identified by their observed alpha-decay energies. The CTS was tested on-line with OsO sub 4 prepared from sup 1 sup 6 sup 9 sup - sup 1 sup 7 sup 3 Os isotopes produced in sup 1 sup 1 sup 8 sup , sup 1 sup 2 sup 0 Sn( sup 5 sup 6 Fe, 3,4,5n) reactions. An adsorption enthalpy for OsO sub 4 of -40.2+-1.5 kJ/mol on SiO sub 2 was deduced by comparing the measured deposition distribution with Monte Carlo...

  3. Rapid separation method for {sup 237}Np and Pu isotopes in large soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sherrod L., E-mail: sherrod.maxwell@srs.go [Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808 (United States); Culligan, Brian K.; Noyes, Gary W. [Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808 (United States)

    2011-07-15

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  4. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Itagaki, Takaharu; Kosuge, Masao; Fukuda, Junji; Fujii, Yasuhiko.

    1992-01-01

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm 3 ). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  5. On separation of heavy isotopes by means of selective ICRH

    International Nuclear Information System (INIS)

    Kotelnikov, I.A.; Kuzmin, S.G.; Volosov, V.I.

    1998-01-01

    The authors present a theoretical study of the isotope separation by means of isotopically selective ion cyclotron resonance plasma heating (ICRH). The special attention is devoted to the separation of gadolinium isotopes. The ions are supposed to pass through the device shown on Fig. 1 where they are heated by the full-turn-loop antenna that excites RF field with azimuthal number m = 0. They calculate the distribution function of ions in a plasma stream at the orifice of the device. A satisfactory separation is achieved for the following values of parameters. The length of heating zone ell = 200 cm, initial temperature of plasma stream T parallel = 5 eV, T perpendicular = 60 eV, the plasma radius a = 10 cm, plasma density n = 10 12 cm -3 , external magnetic field B = 30 kGs. The energy of resonance ions W = 100 divided-by 200 eV. The latter value is achieved if a current in the antenna loops is equal to 60A with full number of loops N = 150. With the specified parameters, the current in the plasma stream is equal to 15 divided-by 20A. Then the production rate equals to 100 kg of Gd 157 per year. Energy of Gd's ions after pass through the heating zone vs. their axial velocity

  6. Target materials for exotic ISOL beams

    CERN Document Server

    Gottberg, A

    2016-01-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices t...

  7. Thermal diffusion and separation of isotopes; Diffusion thermique et separation d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Andre

    1944-03-30

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  8. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Method for separating gaseous mixtures of matter

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.

    1979-01-01

    Molecules to be separated from a mixture of matter of a chemical component are excited in a manner known per se by narrow-band light sources, and a chemical reaction partner for reacting with these molecules is admixed while supplied with energy by electromagnetic radiation or heating, and as additionally required for making chemical reactions possible. A method is described for separating gaseous mixtures of matter by exciting the molecules to be separated with laser radiation and causing the excited species to react chemically with a reaction partner. It may be necessary to supply additional energy to the reaction partner to make the chemical reaction possible. The method is applicable to the separation of hydrogen isotopes by the bromination of normal methanol in a mixture normal methanol and deuterated methanol; of uranium isotope by the reactions of UF 6 with SF 4 , SiCl 4 , HCl, or SO 2 ; and of boron isotopes by the reaction of BH 3 with NH 3

  10. The on-line mass separator SIRIUS at the Strasbourg Reactor

    International Nuclear Information System (INIS)

    Zirnheld, J.P.; Schutz, L.

    1979-01-01

    The SIRIUS facility was developed to isolate short-lived neutron-rich nuclides far from the line of β stability. The installation, which consists of a helium-jet fission-product transport system, an ion source, an accelerator and a deviation magnet, is described. The main characteristics of the whole system can be summarized as: (1) the fission-product transmission to the ion source is about 90%: (2) the mass resolving power is of the order of 500: (3) the total transit time between production and detection is less than 1s : (4) the overall efficiency of the system is on the average better than 5x10 -5 . The nuclei available for nuclear spectroscopic studies have been examined. With a neutron flux of 5x10 11 /cm 2 .s and 730 mg for the uranium target, about 50 neutron-rich rare-earth isotopes (many of which had previously been unavailable) are available with sufficient activities for nuclear spectroscopic studies. (Auth.)

  11. A Preliminary Study for Safety Shutter design to Protect Streaming of Residual Radiation Passing through Beamline in Pre-Separator Room of ISOL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Kim, Do Hyun; Kim, Song Hyun; Shin, Chang Ho; Nam, Shin Woo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    RAON is a heavy ion accelerator under construction by the Institute for Basic Science (IBS) in Korea. As one part of the RAON accelerator, ISOL is a facility to generate and separate rare isotopes for various experiments. In ISOL facility, isotopes generated from the reaction between 70 MeV proton beam and UC{sub 2} target are transferred to pre-separator room. Almost all isotopes accumulated in slit of pre-separator except specific isobars, which are set for experiments. Residual radiations are generated from accumulated isotopes because these isotopes are unstable. Streaming of residual radiation by the beamline is weak point for radiation shielding design. In this study, safety shutter was designed. Residual radiation generated from accumulated isotopes at slit of pre-separator was estimated using following conditions: (1) the isotopes generated by proton-target reactions are accumulated at slit with 10 % accumulation rate; (2) it was assumed that the radioactive isotopes are uniformly distributed in the cylindrical slit which have 1 cm height and 15 diameter. To design optimized safety shutter, following steps were performed: (1) thickness and diameter of the bulk shield material were evaluated to optimize safety shutter material; (2) additional shielding structure was proposed using dose contribution of each additional shielding wall.

  12. Comparison of the Histopaque-1119 method with the Plasmagel method for separation of blood leukocytes for cytomegalovirus isolation.

    OpenAIRE

    Slifkin, M; Cumbie, R

    1992-01-01

    Histopaque-1119 (Sigma Chemical Co., St. Louis, Mo.) and Plasmagel (Cellular Products, Inc., Buffalo, N.Y.) were compared as density gradient separation reagents for the separation of polymorphonuclear leukocytes and mononuclear cells from blood from the isolation of cytomegalovirus (CMV). Of 200 peripheral blood specimens examined, CMV was recovered from 51 by both methods. The time of detection of immunofluorescent sites or a cytopathic effect associated with CMV was similar by each method....

  13. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  14. Separation unit for uranium isotopes etc

    International Nuclear Information System (INIS)

    1975-01-01

    The task of the invention - improving the efficiency of a uranium isotope separation unit with a rotor as separation chamber by improving its flow characteristics - is solved by a central-axial gas conduction system with radial branches which leads the media into the separation chambers or out of these. (UWI) [de

  15. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  16. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  17. Modelling of multifrequency IRMPD for laser isotope separation

    Indian Academy of Sciences (India)

    Unknown

    This model was exploited in analysing our MPD results ... separation method for 235U, the fissile isotope of uranium needed to fuel light water ... for analysis. The radio-GC consisted of a commercial GC (Shimadzu GC-R1A) equipped with thermal conductivity detector (TCD) and an indigenously built proportional counter.

  18. Laser assisted jet nozzle isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process for separating fluent particles having different masses comprises the steps of: driving a fluent mixture of such particles around a curved passage toward a septum oriented to divide the mixture thereby accelerating such particles to impart a centrifugal force thereto; inducing type selective heating of a selected particle type in said mixture prior to termination of such acceleration; receiving the fraction of the mixture flowing past an outer surface of said septum in a first output conduit; and receiving the fraction of the mixture flowing past an inner surface of said septum in a second output conduit. The description of the process for isotope separation refers also to the use of infrared laser radiation to produce isotopically selective excitation of the U-235 isotope in UF 6 . (author)

  19. The present state of laser isotope separation of uranium

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Nemoto, Koshichi.

    1994-01-01

    As the methods of uranium enrichment, gas diffusion method and centrifugal separation method in which power consumption is less and the cost is low have been carried out. On the other hand, as the future technology, the research and development of laser isotope separation technology have been carried out. There are the atomic laser separation process in which the laser beam of visible light is irradiated to atomic state uranium and the molecular laser separation process in which far infrared laser beam is irradiated to uranium hexafluoride molecules. The atomic process is divided into three steps, that is, the processes of uranium evaporation, the reaction of uranium with laser beam and the recovery of enriched uranium. The principle of the laser separation is explained. The state of development of laser equipment and separation equipment is reported. The principle and the present state of development of the molecular separation process which consists of the cooling of UF 6 gas, the generation of high power 16 μm laser pulses and the collection of the reaction product are explained. The present state of both processes in foreign countries is reported. (K.I.)

  20. Determination of the separation factor of uranium isotopes by gaseous diffusion; Determination des facteurs de separation des isotopes de l'uranium par diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, O; Counas, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A 12-stage pilot separation cascade with a low output has been constructed to measure the separation factor of uranium isotopes by gaseous diffusion. The report describes some of the separation results obtained, and also provides information on the time necessary for equilibrium to be established and on the influence of various perturbations on the pressure profile in the cascade. (author) [French] Une cascade pilote de 12 etages de separation a faible debit a ete construite pour mesurer le facteur de separation des isotopes de l'uranium par diffusion gazeuse. Le rapport decrit certains des resultats de separation obtenus et fournit egalement des donnees sur les temps de mise en equilibre et l'influence de diverses perturbations sur le profil des pressions dans la cascade. (auteur)

  1. The influence of column temperature on the hydrogen isotopes separation performance of FDC

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qin Cheng; Yang Wan; Huang Guoqiang; Huang Zhiyong

    2014-01-01

    Frontal displacement chromatography (FDC) is a promising method for hydrogen isotopes separation with obvious advantages such as simple operation process, low tritium retention in system and easy to scale up, etc. We designed and constructed a FDC device using Pd-Al 2 O 3 as separation material in previous study, and the feasibility of FDC for hydrogen isotopes separation was confirmed. On the basis of the results, a series of experiments at different column temperatures were carried out to investigate the temperature influence to the separation performance, with the composition of (5 ± 0.1)% H 2 -(5 ± 0.1)% D 2 -(90 ± 0.1)% Ar of feed gas. Experiments were carried out at the temperature of 303K, 273K, 263K, 253K, 213K, at the gas flow rate of 15 mL (NTP)/min. The results indicated that lower temperature, higher enrichment factor while the feed gas composition and the gas flow rate are definite; lower temperature, shorter 'separation transition state', and then better separation efficiency. The deuterium enrichment factor became 65 from l.5 while the temperature decreased to 273K from 303K. It also showed that the deuterium recovery ratio and the deuterium abundance of product gas increases with the temperature decrease except for the case of 303K. At the temperature of 273K and below, the deuterium recovery ratio were all higher than 42%, deuterium abundance of product were all larger than 98%, and the maximum of deuterium abundance at 213K was 99.8%. (authors)

  2. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  3. Procedure and device for separating isotopes of high mass

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1977-01-01

    The invention refers to isotope separation and to selectively photon-induced energy transfer from an isotope molecule containing the isotope to be separated as well as to a chemical reaction with a reactive agent in order to produce a chemical compound containing atoms of the desired isotope. For example, in the most preferable form of the invention, gaseous UF 6 is contained in a mixture of U 235 F 6 and U 238 F 6 molecules in a reaction chamber. A chemically reactive substance, which for U 235 separation may be gaseous HCl according to the invention, is also introduced into the reaction chamber. (HK) [de

  4. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Selective heating and separation of isotopes in a metallic plasma

    International Nuclear Information System (INIS)

    Moffa, P.; Cheshire, D.; Flanders, B.; Myer, R.; Robinette, W.; Thompson, J.; Young, S.

    1983-01-01

    Several types of metallic plasmas have been produced at the Plasma Separation Process facility of TRW. Selective heating and separation of specific isotopes in these plasmas have been achieved. In this presentation the authors concentrate on the modeling of the selective heating and separation of the isotope Ni 58 . Two models are currently used to describe the excitation process. In both, the electromagnetic fields in the plasma produced by the ICRH antenna are calculated self-consistently using a kinetic description of the warm plasma dielectric. In the Process Model Code, both the production of the plasma and the heating are calculated using a Monte Carlo approach. Only the excitation process is treated in the second simplified model. Test particles that sample an initial parallel velocity distribution are launched into the heating region and the equations of motion including collisional damping are calculated. For both models, the perpendicular energy for a number of particles with different initial conditions and representing the different isotopes is calculated. This information is then input into a code that models the performance of our isotope separation collector. The motion of the ions of each isotope through the electrically biased collector is followed. An accounting of where each particle is deposited is kept and hence the isotope separation performance of the collector is predicted

  6. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    A method of separating deuterium, i.e., heavy hydrogen, from certain naturally occurring sources using tuned infrared lasers to selectively decompose specified classes of organic molecules (i.e., RX) into enriched molecular products containing deuterium atoms is described. The deuterium containing molecules are easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. The undecomposed molecules and the other reaction products which are depleted of their deuterium containing species can be catalytically treated, preferably using normal water, to restore the natural abundance of deuterium and such restored molecules can then be recycled

  7. Separation of magnetic field lines

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2012-01-01

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor σ, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e 2σ , and the ratio of the longer distance to the initial radius increases as e σ . Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/ω pe , which is about 10 cm in the solar corona, and reconnection must be triggered if σ becomes sufficiently large. The radius of the sun, R ⊙ =7×10 10 cm is about e 23 times larger, so when σ≳23, two lines separated by c/ω pe at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, σ, are derived, and the importance of exponentiation is discussed.

  8. Overview of the KoRIA Facility for Rare Isotope Beams

    International Nuclear Information System (INIS)

    Hong, S.W.; Bak, S.I.; Chai, J.S.; Ahn, J.K.; Blumenfeld, Y.; Cheon, B.-G.; Choi, C.I.; Cheoun, M.-K.; Cho, D.; Cho, Y.S.; Choi, B.H.; Choi, E.M.; And others

    2013-01-01

    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 pμA and proton beams up to 600 MeV, 660 μA. Overall features of the KoRIA facility are presented with a focus on the accelerator design. (author)

  9. Laser isotope separation using selective inhibition and encouragement of dimer formation

    International Nuclear Information System (INIS)

    Kivel, B.

    1979-01-01

    Method and apparatus for inhibiting dimer formation of molecules of a selected isotope type in a cooled flow of gas to enhance the effectiveness of mass difference isotope separation techniques are described. Molecules in the flow containing atoms of the selected isotope type are selectively excited by infrared radiation in order to inhibit the formation of dimers and larger clusters of such molecules, while the molecules not containing atoms of the selected, excited type are encouraged to form dimers and higher order aggregates by the cooling of the gaseous flow. The molecules with the excited isotope will predominate in monomers and will constitute the enriched product stream, while the aggregated group comprising molecules having the unexcited isotope will predominate in dimers and larger clusters of molecules, forming the tails stream. The difference in diffusion coefficientts between particles of the excited and unexcited isotopes is enhanced by the greater mass differences resulting from aggregation of unexcited particles into dimers and larger clusters. Prior art separation techniques which exploit differences in isotopic diffusion rates will consequently exhibit enhanced enrichment per stage by the utilization of the present invention

  10. Use of an isotope separator at the INEL

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1977-01-01

    An electromagnetic isotope separator with a retardation lens as a collector was used to prepare highly enriched samples of Nd-143, -144, -145, -146, -148, -150, Sm-147, -149; Eu-151, -152, -153, -154. The 50 μg to 75 μg samples, deposited on 1 mil nickel foil or 0.5 mil vanadium foil, are part of a sample set to be irradiated in EBR-II as part of an integral-capture cross-section measurement program at the INEL. The isotope separator and the apparatus used for the sample preparation are described

  11. Nanoporous materials for hydrogen storage and H2/D2 isotope separation

    International Nuclear Information System (INIS)

    Oh, Hyunchul

    2014-01-01

    This thesis presents a study of hydrogen adsorption properties at RT with noble metal doped porous materials and an efficient separation of hydrogen isotopes with nanoporous materials. Most analysis is performed via thermal desorption spectra (TDS) and Sieverts-type apparatus. The result and discussion is presented in two parts; Chapter 4 focuses on metal doped nanoporous materials for hydrogen storage. Cryogenic hydrogen storage by physisorption on porous materials has the advantage of high reversibility and fast refuelling times with low heat evolution at modest pressures. At room temperature, however, the physisorption mechanism is not abEle to achieve enough capacity for practical application due to the weak van der Waals interaction, i.e., low isosteric heats for hydrogen sorption. Recently, the ''spillover'' effect has been proposed by R. Yang et al. to enhance the room temperature hydrogen storage capacity. However, the mechanism of this storage enhancement by decoration of noble metal particles inside high surface area supports is not yet fully understood and still under debate. In this chapter, noble metal (Pt / Pd) doped nanoporous materials (i.e. porous carbon, COFs) have been investigated for room temperature hydrogen storage. Their textural properties and hydrogen storage capacity are characterized by various analytic techniques (e.g. SEM, HRTEM, XRD, BET, ICP-OES, Thermal desorption spectra, Sievert's apparatus and Raman spectroscopy). Firstly, Pt-doped and un-doped templated carbons possessing almost identical textural properties were successfully synthesized via a single step wet impregnation method. This enables the study of Pt catalytic activities and hydrogen adsorption kinetics on porous carbons at ambient temperature by TDS after H 2 /D 2 gas exposure and PCT measurement, respectively. While the H 2 adsorption kinetics in the microporous structure is enhanced by Pt catalytic activities (spillover), only a small enhancement of the hydrogen

  12. Comparative study of aerial transmission lines and underground isolated on gas

    International Nuclear Information System (INIS)

    Quesada Jimenez, Marco Esteban

    2012-01-01

    A comparison was made of aerial power lines and underground isolated on gas. Growing electric demand has given way to debate the lines transmission. Multiple discussions have generated about its application, however, the energy must be supplied and this process leads to the search for more efficient methods. The theory has covered the most important design criteria of the airlines and an introduction to the little known transport lines isolated on gas. The process of manufacturing, installation and operation are studied within the scope of the project. Count information is included in the main aspects of calculation relating to power transmission. Besides, the planning of the optimal route nominal calculations, load flow and power losses are focused as well as magnetic field strengths and finally economic analysis. (author) [es

  13. Stable isotope separation in calutrons: Forty years of production and distribution

    International Nuclear Information System (INIS)

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest ( 205 Tl to 46 Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels

  14. Development of On-Line High Performance Liquid Chromatography (HPLC)-Biochemical Detection Methods as Tools in the Identification of Bioactives

    Science.gov (United States)

    Malherbe, Christiaan J.; de Beer, Dalene; Joubert, Elizabeth

    2012-01-01

    Biochemical detection (BCD) methods are commonly used to screen plant extracts for specific biological activities in batch assays. Traditionally, bioactives in the most active extracts were identified through time-consuming bio-assay guided fractionation until single active compounds could be isolated. Not only are isolation procedures often tedious, but they could also lead to artifact formation. On-line coupling of BCD assays to high performance liquid chromatography (HPLC) is gaining ground as a high resolution screening technique to overcome problems associated with pre-isolation by measuring the effects of compounds post-column directly after separation. To date, several on-line HPLC-BCD assays, applied to whole plant extracts and mixtures, have been published. In this review the focus will fall on enzyme-based, receptor-based and antioxidant assays. PMID:22489144

  15. Nitrogen Dynamic Study on Rice Mutant Lines Using 15N Isotope Techniques

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Malaysian Nuclear Agency in collaboration with UPM and MARDI has produced two types of rice mutant lines of MR219, viz. MR219-4 and MR219-9 developed under rice radiation mutagenenesis programme for adaptability to aerobic conditions. Aerobic cultivating is rice cultivation system on well drained soil and using minimal water input. At Malaysian Nuclear Agency, a nitrogen fertilization study in aerobic condition for the rice mutant lines was carried out in the shade house and field. The study is intended to examine and assess the dynamics of nitrogen by rice mutant lines through the different soil water management and nitrogen levels. Direct 15 N isotopic tracer method was used in this study, whereby the 15 N labeled urea fertilizer was utilized as a tracer for nitrogen nutrient uptake by the test crops. This paper is intended to highlight the progress that has been made in the study of the nitrogen dynamics on MR219-4 and MR219-9 rice mutant lines. (author)

  16. Design of the Advanced Rare Isotope Separator ARIS at FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, M., E-mail: hausmann@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, A.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Amthor, A.M. [Dept. of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Avilov, M.; Bandura, L.; Bennett, R.; Bollen, G.; Borden, T. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Burgess, T.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chouhan, S.S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, V.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Pellemoine, F.; Portillo, M.; Ronningen, R.M.; Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Sherrill, B.M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Zeller, A. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States)

    2013-12-15

    The Facility for Rare Isotopes Beams (FRIB) at Michigan State University will use projectile fragmentation and induced in-flight fission of heavy-ion primary beams at energies of 200 MeV/u and higher and at a beam power of 400 kW to generate rare isotope beams for experiments in nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as for societal needs. The Advanced Rare Isotope Separator (ARIS) has been designed as a three-stage fragment separator for the efficient collection and purification of the rare isotope beams of interest. A vertically bending preseparator (first stage) with production target and beam dump is fully integrated into a production target facility hot cell with remote handling. The new separator compresses the accepted momentum width of up to ±5% of the beam by a factor of three in the standard operational mode. Provisions for alternate operational modes for specific cases are included in the design. This preseparator is followed by two, horizontally-bending separator stages (second and third stages) utilizing the magnets from the existing A1900 fragment separator at the National Superconducting Cyclotron Laboratory (NSCL). These stages can alternatively be coupled to a single high-resolution separator stage, resulting in the flexibility to optimize the operation for different experiments, including momentum tagging and in-flight particle identification of rare isotope beams. The design of ARIS will be presented with an emphasis on beam physics characteristics, and anticipated operational modes will be described.

  17. Lasers for the SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  18. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  19. Comparison of Plasmagel with LeucoPREP-Macrodex methods for separation of leukocytes for virus isolation.

    Science.gov (United States)

    Woods, G L; Proffitt, M R

    1987-10-01

    Plasmagel (Cellular Products, Inc., Buffalo, NY), which can separate both polymorphonuclear leukocytes (PMN) and mononuclear cells from other blood components, and LeucoPREP (Becton Dickinson Immunocytometry Systems, Mountain View, CA), which can separate mononuclear cells from other blood components, were used to harvest leukocytes from whole blood for the purpose of virus isolation. Macrodex was combined with the later, in a second step, for recovery of PMN. Of 90 peripheral blood specimens examined, cytomegalovirus was recovered from 10: in six by both methods, in three from Plasmagel prepared cells only, and in one from cells from the LeucoPREP-Macrodex preparation only. Total leukocyte counts, differential counts, and leukocyte viability did not differ significantly for the two methods. Plasmagel provided an efficient, inexpensive means of harvesting leukocytes from whole blood for virus isolation.

  20. Recent progress of in-flight separators and rare isotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshiyuki, E-mail: kubo@ribf.riken.jp

    2016-06-01

    New-generation in-flight separators are being developed worldwide, including the Super-FRS separator at the GSI Facility for Antiproton and Ion Research (FAIR), the ARIS separator at the Michigan State University (MSU) Facility for Rare Isotopes Beams (FRIB), and the BigRIPS separator at the RIKEN RI Beam Factory (RIBF), each of which is aimed at expanding the frontiers of rare isotope (RI) production and advancing experimental studies on exotic nuclei far from stability. Here, the recent progress of in-flight separators is reviewed, focusing on the advanced features of these three representative separators. The RI beam production that we have conducted using the BigRIPS separator at RIKEN RIBF is also outlined.

  1. The future of producing separated stable isotopes at Oak Ridge National Laboratory for accelerator applications

    International Nuclear Information System (INIS)

    Collins, E.D.

    1994-01-01

    Separated stable isotopes, produced in the calutrons at Oak Ridge National Laboratory, are essential target materials for production of numerous radioisotopes in accelerators and reactors. Recently, separated stable isotope production has been curtailed because government appropriations were discontinued and salts revenues decreased. The calutrons were placed in standby and the operating staff reduced to enable support by sales from existing inventories. Appeals were made to industry and government to preserve this national capability. Methods for providing volume-based price reductions were created to attract support from commercial isotope users. In 1994, the Department of Energy's Isotope Production and Distribution Program was restructured and a strategy produced to seek appropriated funding for the future production of rare, nonprofitable isotopes for research uses. This strategy, together with new demands for medical isotopes, will enable future operation of the calutrons. Moreover, production may be enhanced by complementing calutron capabilities with the Plasma Separation Process

  2. Isotopic separation of 13C by selective photodissociation of formaldehyde

    International Nuclear Information System (INIS)

    Mussillon, T.

    1998-01-01

    The aim of this work is to study the feasibility of the 13 C isotopic separation by UV laser spectroscopy. The spectra of H 2 12 CO and H 2 13 CO have been recorded by a Fourier transform spectrometer between 28000 and 34000 cm -1 . From these data has been carried out a systematic study of some lines by laser spectroscopy. The selectivity measurements have been compared with the obtained enrichment factors. Thus has been revealed in a quantitative way, the importance of the isotopic re-mixture phenomena and of the selectivity loss. The best enrichment factor has been measured at 29935,56 cm -1 (band: (2,14,1)). A final percentage of 42,1 % has been obtained in a reproducible way for 13 C. The evolution of the enrichment factor has been characterized for a pressure range between 4,4 and 43 mbar. Above the radical dissociation threshold, it has not be possible to show a positive effect of NO on the enrichment factor. This negative result has been explained by a detailed kinetic study of the radical reactions (available literature). This experimental study has been completed by a bibliographic synthesis for understanding the formaldehyde photochemistry. All the processes able to influence the performance of this isotopic separation process have been gathered in this work in an exhaustive way. The radical dissociation threshold of H 2 13 CO have been calculated from molecular constants of the literature and from known thermodynamic data for H 2 12 CO. (O.M.)

  3. A Monte Carlo simulation of neon isotope separation in a DC discharge through a narrow capillary

    International Nuclear Information System (INIS)

    Niroshi Akatsuka; Masaaki Suzuki

    1999-01-01

    A numerical simulation was undertaken on the neon isotope separation in a DC arc discharge through a narrow capillary. The mass transport phenomenon of neutral particles as well as ions was treated by the direct simulation Monte Carlo (DSMC) method. The numerical results qualitatively agreed with existing experimental ones concerning not only the isotope separation phenomena, but also the pressure difference between the region of the anode and that of the cathode [ru

  4. Dependence of chlorine isotope separation in ion exchange chromatography on the nature and concentration of the eluent

    International Nuclear Information System (INIS)

    Heumann, K.G.; Baier, K.

    1980-01-01

    In a heterogeneous electrolyte system of a strongly basic anion exchanger and solutions of NaBF 4 or NaClO 4 we established the influence of the nature and concentration of the eluent in chromatographic experiments on chlorine isotope separation. Results show that when the elctrolyte concentration is increased the degree of isotope separation decreases. With NaBF 4 the separation factor is greater than with NaClO 4 under conditions which are otherwise the same. For electrolyte solutions containing ClO 4 -, NO 3 - and BF 4 - there is a linear relation between the separation factor of the chlorine isotopes and the logarithm of the heat of anion hydration of the elution electrolyte. (orig.)

  5. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  6. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  7. Thermally-controlled centrifuge for isotopic separation

    International Nuclear Information System (INIS)

    Cenedese, A.; Cunsolo, D.

    1976-01-01

    Among the various methods proposed to obtain lighter component enrichment in the isotopic separation of uranium, ultracentrifugation is becoming more and more interesting today, as this process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-dynamic features are investigated in the present study. In particular, the field inside the centrifuge has been subdivided into three axial zones: an internal central zone, characterized by an essentially axial flow; two external zones, near the two caps of the centrifuge; two intermediate zones, of a length of the order of the radius. For the analytical solution the linearized Navier-Stokes equations have been considered. The central zone flow is solved by separating the independent variables; the corresponding eigenvalue problem has been solved numerically. A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has been calculated. An integral method for the superimposition of the above mentioned eigensolutions is proposed in order to satisfy the conditions at the tops for thermally-controlled centrifuges. (author)

  8. Deflection of atomic beams with isotope separation by optical resonance radiation using stimulated emission and the ac stark effect

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Liao, P.F.H.

    1977-01-01

    Improved atomic beam deflection and improved isotope separation, even in vapors, is proposed by substituting the A.C. Stark effect for the baseband chirp of the pushing beam in the prior proposal by I. Nebenzahl et al., Applied Physics Letters, Vol. 25, page 327 (September 1974). The efficiency inherent in re-using the photons as in the Nebenzahl et al proposal is retained; but the external frequency chirpers are avoided. The entire process is performed by two pulses of monochromatic coherent light, thereby avoiding the complication of amplifying frequency-modulated light pulses. The A.C. Stark effect is provided by the second beam of coherent monochromatic light, which is sufficiently intense to chirp the energy levels of the atoms or isotopes of the atomic beam or vapor. Although, in general, the A.C. Stark effect will alter the isotope shift somewhat, it is not eliminated. In fact, the appropriate choice of frequencies of the pushing and chirping beams may even relax the requirements with respect to the isotope absorption line shift for effective separation. That is, it may make the isotope absorption lines more easily resolvable

  9. Atomic and molecular isotope separation

    International Nuclear Information System (INIS)

    Melamed, N.T.

    1979-01-01

    A method for differentially exciting a selected isotopic species in a mixture of isotopic species is described characterized in that almost the entire isotopic mixture is placed in an excited gaseous state; and a preselected isotopic species is then selectively de-excited through stimulated emission

  10. Lithium isotope separation factors of some two-phase equilibrium systems

    International Nuclear Information System (INIS)

    Palko, A.A.; Drury, J.S.; Begun, G.M.

    1976-01-01

    Isotope separation factors of seventeen two-phase equilibrium systems for lithium isotope enrichment have been determined. In all cases, lithium amalgam was used as one of the lithium-containing phases and was equilibrated with an aqueous or organic phase containing a lithium compound. In all systems examined, isotopic exchange was found to be extremely rapid, and 6 Li was concentrated in the amalgam phase. The isotopic separation factor for the LiOH(aqueous) vs Li(amalgam) system has been studied as a function of temperature from -2 to 80 degreeC. The values obtained have been compared with the ''electrolysis'' and exchange separation factors given in the literature. The two-phase systems, LiCl(ethylenediamine) vs Li(amalgam) and LiCl(propylenediamine) vs Li(amalgam), have been studied, and the isotopic separation factors have been determined as functions of the temperature. The factors for the two systems have been found to be substantially the same (within limits of the errors involved) over the temperature range studied (0 to 100 degreeC) as those for the aqueous system. The isotopic separation factors for the seventeen systems have been tabulated, and correlations have been drawn that show the salt and solvent effects upon the values obtained

  11. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  12. Isotopic separation of nitrogen 15. Influence of the gaseous phase composition

    International Nuclear Information System (INIS)

    Lacoste, Germain; Routie, Rene; Mahenc, Jean

    1977-01-01

    A study has been made on the gas phase composition effect on the isotopic separation of nitrogen 15 for the two HNO 3 -NO and N 2 O 3 -NO systems. It was shown that the changes in composition of the gas phases could account for the increase in the overall separation; most accuracy, measurements of isotopic concentration along the separation column and of total enrichment exhibit how important are the reactions of oxydo-reduction between the two phases in such process [fr

  13. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  14. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    Beattie, W.; Freund, S.; Holland, R.; Maier, W.

    1980-01-01

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  15. Determination of thorium and uranium isotopes in the mining lixiviation liquor samples

    International Nuclear Information System (INIS)

    Reis Júnior, Aluísio de Souza; Monteiro, Roberto Pellacani Guedes

    2017-01-01

    The alpha spectrometric analysis refers to determination of thorium and uranium isotopes in the mining lixiviation liquor samples. The analytical procedure involves sample preparation steps for rare earth elements, thorium and uranium separation using selective etching with hydrofluoric acid and further radiochemical separation of these using TRU chromatographic resins (Eichrom Industries Inc. USA) besides electroplating of the isolated radionuclides. An isotopic tracer is used to determine the overall chemical yield and to ensure traceability to a national standard. The results are compared to results obtained for the same samples by Becquerel laboratory. We improved the method looking for reproducibility and isotopes isolation as required by alpha spectrometry and the method showing effective in analysis of mining liquor. (author)

  16. Determination of thorium and uranium isotopes in the mining lixiviation liquor samples

    Energy Technology Data Exchange (ETDEWEB)

    Reis Júnior, Aluísio de Souza; Monteiro, Roberto Pellacani Guedes, E-mail: reisas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The alpha spectrometric analysis refers to determination of thorium and uranium isotopes in the mining lixiviation liquor samples. The analytical procedure involves sample preparation steps for rare earth elements, thorium and uranium separation using selective etching with hydrofluoric acid and further radiochemical separation of these using TRU chromatographic resins (Eichrom Industries Inc. USA) besides electroplating of the isolated radionuclides. An isotopic tracer is used to determine the overall chemical yield and to ensure traceability to a national standard. The results are compared to results obtained for the same samples by Becquerel laboratory. We improved the method looking for reproducibility and isotopes isolation as required by alpha spectrometry and the method showing effective in analysis of mining liquor. (author)

  17. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  18. Mass and heat transfer on B7 ordered packing in hydrogen isotope separation by distillation

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Pop, Floarea; Titescu, Gheorghe; Stefanescu, Ioan; Trancota, Dan; Peculea, Marius

    2002-01-01

    This work presents theoretical and experimental data referring to mass and heat transfer on B7 ordered packing in deuterium isotope separation by distillation. The first part is devoted to the study of mass transfer in hydrogen isotopic distillation while the second one treats the mass and heat transfer in water isotopic distillation. A stationary mathematical model for the mass and heat transfer was developed based on multitubular column model with wet wall. This model allowed the calculation starting from theoretical data of the ordered packing efficiency, expressed by the transfer unit height, TUH. Also, from theoretical data the mass and heat transfer coefficients were determined. A test of the mathematical model was performed with the experimental data obtained from two laboratory installations for hydrogen isotope separation by distillation. From the first installation, experimental data concerning the B7 ordered packing efficiency were obtained for the deuterium separation by cryogenic distillation at the - 250 deg C level. With the second one data referring to the mass and heat transfer on the same packing were obtained for the deuterium separation by water distillation under vacuum at the 60 deg C level. The values of TUH, mass and heat transfer coefficients as theoretically evaluate and experimentally checked are in agreement with the respective values obtained in separation processes in chemical industry. This is the fact which endorses utilization of the model of multitubular column with wet wall for describing the transfer processes in distillation columns equipped with B7 ordered packing

  19. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  20. Separation and sampling technique of light element isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    Kato, Shunsaku; Oi, Kenta; Takagi, Norio; Hirotsu, Takafumi; Kano, Hirofumi; Sonoda, Akinari; Makita, Yoji

    2000-01-01

    Lithium and boron isotope separation technique were studied. Granulation of lithium isotope separation agent was carried out by cure covering in solution. Separation of lithium isotope was stepped up by ammonium carbonate used as elusion agent. Styrene and ester resin derived three kinds of agents such as 2-amino-1, 3-propanediol (1, 3-PD), 2-amino-2-methyl-1, 3-propanediol (Me-1,3-PD) and tris(2-hydroxyethyl)amine (Tris) were used as absorbent.The ester resin with Tris showed larger amount of adsorption (1.4 mmol/g) than other resins. However, all resins with agent indicated more large adsorption volume of boron than the objective value (0.5 mmol/g). Large isotope shift was shown by the unsymmetrical vibration mode of lithium ion on the basis of quantum chemical calculation of isotope effect on dehydration of hydrated lithium ion. (S.Y.)

  1. Search for unknown isotopes using the TIARA-ISOL and the JAERI-ISOL

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Masato [Nagoya Univ. (Japan). School of Engineering

    1997-07-01

    The new neutron-deficient isotopes {sup 127}Pr and {sup 125}Pr, and the new neutron-rich isotopes {sup 166}Tb, {sup 165}Gd and {sup 161}Sm were identified using the TIARA-ISOL with {sup 36}Ar + {sup 92,94}Mo reactions, and the gas-jet coupled JAERI-ISOL with a proton-induced fission of {sup 238}U, respectively. The element-selective oxidation technique was used to reduce large contamination from isobars and molecular ions with production cross sections about one or two orders of magnitude as large as those of the new isotopes. The good signal-to-noise ratios achieved in the present measurements were essential to observe and identify weak X/{gamma} rays from the new isotopes. (author)

  2. Uranium-isotope enrichment: application bounds of the separative power and separation work concepts

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1981-05-01

    The aim of this paper is a critical re-examination of the concepts of separative power, separation work and value function in order to understand if their extension to the new enrichment processes such as Laser Isotope Separation is possible.

  3. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  4. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  5. Numerical simulation of bellows effect on flow and separation of uranium isotopes in a supercritical gas centrifuge

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Godisov, O.N.

    2000-01-01

    Numerical solving of the Navier-Stokes and convection-diffusion equations by the finite difference technique has been applied to study the influence of bellows on the flow and separation of uranium isotopes in a single supercritical gas centrifuge. Dependence of the separative power of a gas centrifuge on geometric parameters and position of a bellows on a rotor wall as well as the effect of scoop drag and feed flow on isotope separation in a gas centrifuge with a bellows have been obtained in computing experiments. It was demonstrated that increase of the separative power with increase of the gas centrifuge length is less considerable than predicted by the Dirac's law

  6. The application of the signal flow graph method to charged-particle optics - the formula derivation of a three-sector isotope separator

    International Nuclear Information System (INIS)

    Lu Hongyou; Zhao Zhiyong; Sun Quinren

    1987-01-01

    A brief introduction of the Signal Flow Graph (SFG) method is given. The application of it to charged-particle optics (CPO) is described. The method has the advantages of simplicity, visualisation and computerisation. An example of the application of SFG is given for the design of a three-sector electromagnetic isotope separator. (orig.)

  7. The separation nozzle method for enrichment of the light uranium isotope

    International Nuclear Information System (INIS)

    Becker, E.W.

    1982-05-01

    The history of the development of the separation nozzle method for enrichment of the light uranium isotope is described as a contribution to a memorandum published by Deutsche Forschungsgemeinschaft. The work was triggered off by an effect which had been observed in fundamental studies on gas kinetics. Development up to the technical maturity covered a period of more than 25 years. The implementation of the project at the Karlsruhe Nuclear Research Center provided an adequate financial and technical framework, the employment of senior staff without limitations in time being of major importance for the continuity of work. The links established between the Institute and the University and the resulting opportunity of having doctoral theses written, on the other hand, gave rise to a permanent flow of young, highly qualified scientists and engineers. Thus the Institut's requirements for junior staff could be satisfied in an optimum way. Although the Center offered a variety of possibilities of internal technical cooperation, important developments were performed jointly with industrial firms experienced in related fields. By this, not only a steady flow of know-how had been accumulated but also the large-scale applicability was ensured at a later date of results jointly obtained. (orig.) [de

  8. Method and device for the enrichment of isotopes

    International Nuclear Information System (INIS)

    Stehle, H.

    1976-01-01

    A variation of a method for isotope enrichment by laser radiation is proposed which improves the selectivity and with it the economy of the method by eliminating undesired reactions caused by thermal activation. The method according to the invention is applied discontinuously in three steps: The isotope mixture and the reacting agents are fed to a vessel, a laser beam is passed through, and the contents are emptied into a vacuum tank while expanding adiabatically. The time steps are controlled. The method is explained using the example of separating an isotope mixture of UF 6 . (UWI) [de

  9. Separation of molecular hydrogen isotope mixtures on zeolite NaX-3M

    International Nuclear Information System (INIS)

    Polevoj, A.S.; Yudin, I.P.

    1984-01-01

    The transfer unito height (TUH) have been determined at separation of the H 2 -D 2 mixture using zeolite NaX-3M depending on temperature and linear gas flow rate in the column. Experimentally the TUH value has been determined by the method of stepped variation of the concentration of one of the separated components at the entrance into the column and measurement of the substance front wash-out at the outlet. The results of determining TUH in the column of 10 mm diameter filled by the zeolite immobile layer with granules of 2-3 mm size show that with increasing the temperature from 77 K to 87.3 K TUH decreases while at constant temperature it increases with the growth of linear gas flow rate. The mentioned above circumstances testify to the essential contribution to the TUH value of the hydrogen diffusion process in the sorbent grain. The given TUH absolute values indicate the high rate of interphase isotope exchange at separation of the H 2 -D 2 mixture using NaX-3M zeolite

  10. Concentration control in an isotope separation plant; Regulation des concentrations dans une usine de separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Concentration control is examined for the case of a gaseous diffusion plant for uranium isotope separation. The effects of various typical perturbations are described and adequate systems of corrective actions are determined according to selected criteria. (author) [French] On considere une installation de separation des isotopes de l'uranium par diffusion gazeuse. On etudie les effets sur les concentrations isotopiques de diverses perturbations type donnees a l'avance et on determine le systeme d'actions correctives qui permet de reduire ces effets d'apres un critere d'efficacite donne. (auteur)

  11. Nuclear yield determinations using isotope-separator-on-line arrangements

    International Nuclear Information System (INIS)

    Rudstam, G.

    1975-01-01

    The delay between the formation of a nuclear reaction product and its collection in front of measuring equipment in ISOL arrangements using integrated target-ion source systems has been analyzed. It is shown that a typical delay function takes the form const x (1-esup(-γt))esup(-μt) with γ >> μ. The results can be used for decay corrections in nuclear yield determinations. (Auth.)

  12. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  13. Possible application of laser isotope separation

    International Nuclear Information System (INIS)

    Delionback, L.M.

    1975-05-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials. (Author)

  14. Proposal for implanting a magnetic stable isotope separator

    International Nuclear Information System (INIS)

    Lemos, O.F.

    1988-07-01

    The implantation of an electromagnetic isotope separator able to separate elements of mass from 20 to 250 a.m.u., with an enrichment factor from 10 to 200 times the initial concentration, depending on the elements, is proposed. The most suitable separator type for Brazilian CNEN, considering building installations and minimum conditions for the equipment facilities, the retinue chronogram, the infrastructure, and the personnel training for operation is defined. (M.C.K.) [pt

  15. Spectral isotopic methods of determining nitrogen and carbon in plant specimens with laser volatization

    International Nuclear Information System (INIS)

    Lazeeva, G.S.

    1986-01-01

    Methods have been devised for the local determination of nitrogen and carbon isotope compositions in plant specimens, which provide separate and joint determination. Local laser evaporation has been combined with spectroscopic determination of the isotope compositions in the gas phase. A continuous-wave CO 2 laser is preferable for the local evaporation; the carbon isotope composition may be determined directly on the sum of the evaporation products, whereas nitrogen must first be separated as N 2 . Methods have also been developed for the local determination of total nitrogen and carbon in a sample with isotope dilution on the basis of laser evaporation. In order to eliminate systematic errors in determining total carbon in plant material, an evaporation method free from a rim has been devised. These methods have been used in determining isotope concentration profiles in plant specimens grown in experiments employing labeled nitrogen and carbon

  16. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  17. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  18. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  19. Separation and enrichment of isotopes using laser photochemistry - fundamentals and prospectives

    International Nuclear Information System (INIS)

    Guesten, H.

    1978-01-01

    Basic knowledge is summed up on isotope separation by laser photochemistry. The principal prerequisites are explained of the application of atomic and molecular spectroscopy for this purpose. Practical examples are given of isotope separation of uranium, nitrogen, chlorine, carbon, sulfur, and molybdenum showing the application of two basic techniques, i.e., of gradual atom photoionization or gradual molecule photodissociation and of selective photochemical reactions. (L.K.)

  20. Rapid Determination of Plutonium Isotopes in Environmental Samples Using Sequential Injection Extraction Chromatography and Detection by Inductively Coupled Plasma Mass Spectrometry

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2009-01-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed...... by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example......, 100−200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin...

  1. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  2. Validation of a simple isotopic technique for the measurement of global and separated renal function

    International Nuclear Information System (INIS)

    Chachati, A.; Meyers, A.; Rigo, P.; Godon, J.P.

    1986-01-01

    Schlegel and Gates described an isotopic method for the measurement of global and separated glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) based on the determination by scintillation camera of the fraction of the injected dose (99mTc-DTPA-[ 131 I]hippuran) present in the kidneys 1-3 min after its administration. This method requires counting of the injected dose and attenuation correction, but no blood or urine sampling. We validated this technique by the simultaneous infusion of inulin and para-amino hippuric acid (PAH) in patients with various levels of renal function (anuric to normal). To better define individual renal function we studied 9 kidneys in patients either nephrectomized or with a nephrostomy enabling separated function measurement. A good correlation between inulin, PAH clearance, and isotopic GFR-ERPF measurement for both global and separate renal function was observed

  3. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    Science.gov (United States)

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Separation of isotopes by cyclical processes

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Weaver, K.

    1976-01-01

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope

  5. Influence of throttling of the heavy fraction on the uranium isotope separation in the separation nozzle

    International Nuclear Information System (INIS)

    Bley, P.; Ehrfeld, W.; Heiden, U.

    1978-04-01

    In a separation nozzle cascade for enrichment of U-235 the cut of the separation elements is adjusted by throttling the heavy fraction. This control process influences directly the flow properties in the nozzle and may noticeably change its separation characteristics. This paper deals with an experimental investigation of the throttling effect on the separation and control characteristics of the separation nozzle operated with a H 2 /UF 6 mixture. In consideration of the extremely small characteristic dimensions of commercial separation nozzle elements the influence of manufacturing tolerances on the characteristics of the throttled nozzle was analysed in detail. It appears, that the elementary effect of isotope separation increases by throttling of the heavy fraction up to 5% without changing the optimum operating conditions. This increase of the elementary effect is not only obtained for separation nozzles with zero tolerances but also for separation nozzles having finite tolerances of the skimmer position. Tolerances of the nozzle width, however, become increasingly detrimental, when the heavy fraction is throttled. Regarding the control characteristics of the separation nozzle it was found out, that the UF 6 -cut of the throttled nozzle reacts more sensitively to alterations of the operating pressures and less sensitively to alterations of the UF 6 -concentration of the process gas mixture. (orig.) [de

  6. Proceedings of the Conference on Isotopic and Molecular Processes

    International Nuclear Information System (INIS)

    Pamula, A.

    1999-01-01

    The proceedings of the Conference on Isotopic and Molecular Processes held on September 23 - 25, 1999 in Cluj - Napoca, Romania contains 8 plenary lectures, 12 oral presentations and 34 posters on isotopic processes (Section A) and 12 oral presentations plus 61 posters on molecular processes (Section B). The main topics treated in plenary lectures were isotope production, separation and enrichment as well as stable isotope applications. Also in this section studies on isotope effects in different fields are reported. In the section A, besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Also environmental studies by means of stable isotope and radon monitoring are described. In the section B several communications are treating the applications of radiation effects and different nuclear methods in medicine

  7. Scaling of rotation and isotope separation in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.

    1987-01-01

    Scaling is described of rotation, plasma column size and separation in a vacuum-arc centrifuge. The vacuum-arc centrifuge is a magnetized, fulled ionized, quasineutral column of plasma. The source of plasma is a vacuum-arc discharge between a negatively biased cathode and a grounded mesh anode. Rigid-body rotation, induced by the J x B force, causes radial, centrifugal separation of isotopes in the plasma column. Salient features of a fluid model that provides an understanding of rotation and the concomitant isotope separation in the vacuum-arc centrifuge are described. Scaling of rotation and plasma column size is found be consistent with the model. Measurements of isotope separation, also found to agree with the predictions of the model, are presented. Results of a parametric analysis of isotope separation in such a vacuum-arc centrifuge, using the fluid model and the observed scaling laws, are described. An analysis of the energy cost of separation of the vacuum-arc centrifuge shows that it typically requires only 70 keV/separated atom. (orig.)

  8. THz spectroscopy of the 29 cm{sup -1} oxygen vibrational line in natural silicon and isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Kurt; Dressel, Martin [1. Physikalisches Inst., Univ. Stuttgart (Germany); Gorshunov, Boris; Zhukova, E.S. [1. Physikalisches Inst., Univ. Stuttgart (Germany); A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Moscow Inst. Physics and Technology (Russian Federation); Korolev, P.S. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Lomonosov Moscow State Univ. (Russian Federation); Kalinsuhkin, V.P. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Abrosimov, N.V. [Leibniz Inst. Kristallzuechtung, Berlin (Germany); Sennikov, P.G. [Inst. Chem. High-Purity Substances, Nizhny Novgorod (Russian Federation); Pohl, H.J. [PTB, Braunschweig (Germany); Zakel, S. [VITCON-Projektconsult, Jena (Germany)

    2012-07-01

    Looking for a possible host-isotope effect on the low-energy two-dimensional motion of interstitial oxygen in silicon we have measured the resonance parameters of the lowest transition of the 30 cm{sup -1} band of the Si-O-Si complex in natural Si and in isotopically enriched {sup 28}Si at temperatures between 5 K and 22 K by means of coherent-source terahertz spectroscopy. At 5.5 K we obtain for the resonance maxima 29.24 {+-} 0.003 cm{sup -1} and 29.22 {+-} 0.003 cm{sup -1} and for the line widths 0.09 {+-} 0.01 cm{sup -1} and 0.11 {+-} 0.01 cm{sup -1} for {sup 28}Si and {sup nat}Si, respectively. Both lines can be fitted by single Lorentzians, so, no obvious isotopic structure or asymmetry of the line in {sup nat}Si due to the Si neighbors in the Si-O-Si complex is detected. We therefore conclude that down-shift and broadening of the {sup nat}Si-resonance is not due to the Si isotopes in the isolated Si-O-Si complex but to an average effect of the isotopically inhomogeneous lattice.

  9. A on-line method for the determination of lead and lead isotope ratios in fresh and saline waters by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Halicz, Ludwik; Lam, J.W.H.; McLaren, J.W.

    1994-01-01

    A previously reported on-line ICP-MS method for the determination of lead and other trace elements in seawater has been re-examined to determine its suitability for the determination of lead isotope ratios ( 206 Pb/ 207 Pb and 207 Pb/ 208 Pb) in fresh and saline natural waters. A detection limit of 0.9 ng/1 for total lead (for a 5 ml sample) was achieved. Precision of isotope ratio data was 0.2-0.3% RSD at a Pb concentration of 1 μg/l, and was still better than 2% at concentrations of only 10-40 ng/1 in seawater certified reference materials (CRMs). For all three natural water CRMs examined, measured precision was very close to the limit predicted by counting statistics. (Author)

  10. An evaluation of a single-step extraction chromatography separation method for Sm-Nd isotope analysis of micro-samples of silicate rocks by high-sensitivity thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Li Chaofeng; Li Xianhua; Li Qiuli; Guo Jinghui; Li Xianghui; Liu Tao

    2011-01-01

    Graphical abstract: Distribution curve of all eluting fractions for a BCR-2 (1-2-3.5-7 mg) on LN column using HCl and HF as eluting reagent. Highlights: → This analytical protocol affords a simple and rapid analysis for Sm and Nd isotope in minor rock samples. → The single-step separation method exhibits satisfactory separation effect for complex silicate samples. → Corrected 143 Nd/ 144 Nd data show excellent accuracy even if the 140 Ce 16 O + / 144 Nd 16 O + ratio reached to 0.03. - Abstract: A single-step separation scheme is presented for Sm-Nd radiogenic isotope system on very small samples (1-3 mg) of silicate rock. This method is based on Eichrom LN Spec chromatographic material and affords a straightforward separation of Sm-Nd from complex matrix with good purity and satisfactory blank levels, suitable for thermal ionization mass spectrometry (TIMS). This technique, characterized by high efficiency (single-step Sm-Nd separation) and high sensitivity (TIMS on NdO + ion beam), is able to process rapidly (3-4 h), with low procedure blanks ( 143 Nd/ 144 Nd ratios and Sm-Nd concentrations are presented for eleven international silicate rock reference materials, spanning a wide range of Sm-Nd contents and bulk compositions. The analytical results show a good agreement with recommended values within ±0.004% for the 143 Nd/ 144 Nd isotopic ratio and ±2% for Sm-Nd quantification at the 95% confidence level. It is noted that the uncertainty of this method is about 3 times larger than typical precision achievable with two-stage full separation followed by state-of-the-art conventional TIMS using Nd + ion beams which require much larger amounts of Nd. Hence, our single-step separation followed by NdO + ion beam technique is preferred to the analysis for microsamples.

  11. Isotopic separation by centrifugation. Rotating plasma

    International Nuclear Information System (INIS)

    Perello, M.; Vigon, M. A.

    1972-01-01

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs

  12. Methods for removing radioactive isotopes from contaminated streams

    International Nuclear Information System (INIS)

    Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.

    1979-01-01

    Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream

  13. The Institute for Cryogenics and Isotope Separation - History, Present and Prospective

    International Nuclear Information System (INIS)

    Stefanescu, Ioan

    1998-01-01

    The foundation of plant 'G' at Rm. Valcea on March 1, 1970 has opened a technological prospect within the Romania Program of Nuclear Energy Development and led to formation of a school of experts under supervision of professor Marius Peculea, the Secretary general of Romanian Academy. The fruitful scientific activity of the plant's staff in approaching advanced technologies of heavy water separation resulted in numerous valuable technical solutions, patents and know-hows of national interest as well as a great number of scientific works which today constitutes a useful information basis for all the personnel engaged in the organization and growth of industrial production of heavy water. The research work continued by approaching new methods of hydrogen isotope separation, by initiation of selective physical adsorption of gases in porous materials, in the high vacuum techniques as well as in the technologies of low and very low temperatures. Following this scientific progress and based on the results of scientific research and technological developments, in 1996 the National Institute of Research-Development for Cryogenics and Isotopic Technologies, ICSI, at Rm. Valcea was founded. Research - development activity of ICSI is undertaken within the frames of several research programs at the science-technology interface. A special attention was paid to developing cryogenics, technologies and equipment specific for tritium and deuterium separation as well as the production and turning to account the gases and gas mixtures for industrial or laboratory applications. In ICSI two facilities of national interest operate, one in a stage of maintenance - the heavy water pilot and the other in current operation - the experimental pilot for tritium and deuterium separation. The outstanding target of ICSI is to become an internationally competitive institute in the field of cryogenic equipment and technologies specific to isotope separation, boosting the technological transfer to

  14. The 2-nd Conference on Isotopic and Molecular Processes. Abstracts

    International Nuclear Information System (INIS)

    Bogdan, Mircea

    2001-01-01

    The proceedings of the 2-nd Conference on Isotopic and Molecular Processes held on September 27 - 29, 2001 in Cluj - Napoca, Romania, contains contributions presented as: 11 plenary lectures, 24 oral presentations and 103 posters in two sections, namely, isotopic processes and molecular processes. The main topics treated in this conference were isotope production, separation and enrichment as well as stable isotope applications. Also, studies on isotope effects in different fields are reported. Besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Environmental studies by means of stable isotope and radon monitoring are described. Applications of radiation effects and different nuclear methods in medicine are also addressed

  15. Multicomponent isotopic separation and recirculation analysis

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1976-01-01

    A digital computer program for design of multicomponent distillation columns has been developed based on an exact method of solution of the governing equations. Although this computer program was developed for enrichment of the spent fuels from presently conceived tokamak-type fusion power reactors by cryogenic distillation, the program can be used for the design of any multicomponent distillation column, provided, of course, the necessary thermodynamic and phase equilibrium data are available. To prove the versatility of the computer program, parametric investigations to study the effect of design and operating variables on the composition of the product streams was carried out for the case of separating hydrogen isotopes. The computer program is very efficient; hence, a number of parametric investigations can be carried out with limited resources. The program does, however, require a fairly large computer storage space

  16. Charge exchange effect on laser isotope separation of atomic uranium

    International Nuclear Information System (INIS)

    Niki, Hideaki; Izawa, Yasukazu; Otani, Hiroyasu; Yamanaka, Chiyoe

    1982-01-01

    Uranium isotope separating experiment was performed using the two-step photoionization technique with dye laser and nitrogen laser by heating uranium metal with electron beam and producing atomic beam using generated vapour. The experimental results are described after explaining the two-step photoionization by laser, experimental apparatus, the selection of exciting wavelength and others. Enrichment factor depends largely on the spectrum purity of dye laser which is the exciting source. A large enrichment factor of 48.3 times was obtained for spectrum width 0.03A. To put the uranium isotope separation with laser into practice, the increase of uranium atomic density is considered to be necessary for improving the yield. Experimental investigation was first carried out on the charge exchange effect that seems most likely to affect the decrease of enrichment factor, and the charge exchange cross-section was determined. The charge exchange cross-section depends on the relative kinetic energy between ions and atoms. The experimental result showed that the cross-section was about 5 x 10 -13 cm 2 at 1 eV and 10 -13 cm 2 at 90 eV. These values are roughly ten times as great as those calculated in Lawrence Livermore Laboratory, and it is expected that they become the greatest factor for giving the upper limit of uranium atomic density in a process of practical application. (Wakatsuki, Y.)

  17. Laser spectroscopy of neutron deficient gold and platinum isotopes

    International Nuclear Information System (INIS)

    Savard, G.

    1988-03-01

    A new method for on-line laser spectroscopy of radioactive atoms based on the resonant ionization spectroscopy of laser-desorbed radioactive samples has been devised. An experimental setup has been installed on-line at the ISOCELE mass separator in Orsay (France) and experiments have been performed on the region of transitional nuclei around Z=79. Isotopic shift measurements on four new isotopes 194 Au, 196 Au, 198 Au, 199 Au have been performed on gold and results on the neutron deficient isotopes down to 186 Au have been obtained confirming the nuclear ground-state shape transition from oblate to prolate between 187 Au and 186 Au. The first isotopic shift measurements on radioactive platinum isotopes have been obtained on 186 Pt, 188 Pt, 189 Pt. Indications of a shape transition have been observed between 186 Pt and 188 Pt. The extracted experimental changes in mean square charge radii δ 2 > A,A' along isotopic chains are compared to self-consistent Hartree-Fock plus BCS calculations

  18. Sb(III) and Sb(V) separation and analytical speciation by a continuous tandem on-line separation device in connection with inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menendez Garcia, A. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Perez Rodriguez, M.C. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Sanchez Uria, J.F. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Sanz-Medel, A. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.

    1995-09-01

    A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL{sup -1} and for Sb(V) 8 ng.mL{sup -1}. Precisions observed are in the range {+-} 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples. (orig.)

  19. Structural isotopic effect of the α/β-phase transition in the vanadium hydride and its influence on the equilibrium coefficient of separation of hydrogen isotopes in the gas-solid system

    International Nuclear Information System (INIS)

    Magomedbekov, Eh.P.; Bochkarev, A.V.

    1999-01-01

    Equilibrium coefficient of hydrogen isotope separation (α H-D ) in the system of vanadium hydride VH n (solid, n ∼ 0.7)-H 2 (g) is measured by the counterbalancing method in a circulation facility and by the method of laser desorption at 298, 373, and 437 K. It is shown that the combination of highly anharmonic potential in the lattice octahedral sites and in significant difference in the energy of hydrogen atom coordination for tetra- and octahedral sites is the reason for unusual behaviour of the hydrogen isotope separation coefficient and the difference in crystal structures of vanadium hydride and deuteride [ru

  20. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  1. LACAN Code for global simulation of SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Quaegebeur, J.P.; Goldstein, S.

    1991-01-01

    Functions used for the definition of a SILVA separator require quite a lot of dimensional and operating parameters. Sizing a laser isotope separation plant needs the determination of these parameters for optimization. In the LACAN simulation code, each elementary physical process is described by simplified models. An example is given for a uranium isotope separation plant whose separation power is optimized with 6 parameters [fr

  2. Electromagnetic separator for light and middle isotope elements

    International Nuclear Information System (INIS)

    Bernas, R.

    1952-01-01

    We describe a separator of isotope with a 60 deg magnetic sector that permits, thanks to a process of neutralization of the space charge, to use efficiently intense ion beams. The ion source for solid is essentially constituted by a discharge of hot cathode in a magnetic field and provides an ion beam focused of more than 10 mA. The result of the first separations (Zn, Sb, Hg) indicates that the isotopes of various elements can be obtained in quantities varying from 10 to 100 mg/24 hours. (author) [fr

  3. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  4. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-02-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters.

  5. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    International Nuclear Information System (INIS)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-01-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters. (author)

  6. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    Le Hong Khiem; Phan Viet Cuong; Fadi Ibrahim

    2011-01-01

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235 U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  7. Uranium isotope separation from 1941 to the present

    International Nuclear Information System (INIS)

    Maier-Komor, Peter

    2010-01-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239 Pu was included into the atomic bomb program. 235 U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  8. Uranium isotope separation from 1941 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Komor, Peter, E-mail: Peter@Maier-Komor.d [Retired from Physik-Department E12, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2010-02-11

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of {sup 239}Pu was included into the atomic bomb program. {sup 235}U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  9. Uranium isotope separation from 1941 to the present

    Science.gov (United States)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  10. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  11. Combined electrolysis catalytic exchange (CECE) process for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Butler, J.P.

    1978-01-01

    Hydrogen isotopes can be separated efficiently by a process which combines an electrolysis cell with a trickle bed column packed with a hydrophobic platinum catalyst. The column effects isotopic exchange between countercurrent streams of electrolytic hydrogen and liquid water while the electrolysis cell contributes to isotope separation by virtue of the kinetic isotope effect inherent in the hydrogen evolution reaction. The main features of the CECE process for heavy water production are presented as well as a discussion of the inherent positive synergistic effects, and other advantages and disadvantages of the process. Several potential applications of the process in the nuclear power industry are discussed. 3 figures, 2 tables

  12. Experimental investigation of H2/D2 isotope separation by cryo-adsorption in metal-organic frameworks

    International Nuclear Information System (INIS)

    Teufel, Julia Sonja

    2012-01-01

    Light-gas isotopes differ in their adsorption behavior under cryogenic conditions in nanoporous materials due to their difference in zero-point energy. However, the applicability of these cryo-effects for the separation of isotope mixtures is still lacking an experimental proof. The current work describes the first experimentally obtained H 2 /D 2 selectivity values of nanoporous materials measured by applying isotope mixtures in low-temperature thermal desorption spectroscopy (TDS). The dissertation contains the following key points: 1) A proof of the experimental method, i.e. it is shown that TDS leads to reasonable selectivity values. 2) A series of small-pore MFU-4 derivatives (MOFs) is shown to separate isotope mixtures by quantum sieving, i.e. by the difference in the adsorption kinetics. The influence of the pore size on the selectivity is studied systematically for this series. 3) Two MOFs with pores much larger than the kinetic diameter of H 2 do not exhibit kinetic quantum sieving. However, if the MOFs are exposed to an isotope mixture, deuterium adsorbs preferentially at the adsorption sites with high heats of adsorption. According to the experimental results, these strong adsorption sites can be every selective for deuterium. On the basis of the experimentally obtained selectivity values, technical implementations for H 2 /D 2 light-gas isotope separation by cryo-adsorption are described.

  13. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    Schneider, A.

    1987-02-01

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl 2 -EuCl 3 . The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U 4+ - U 6 and U 3+ - Y 4+ systems. The separation of the ionic species was done by precipitation of the Eu 2+ ions or by extraction of the Eu 3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  14. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    Science.gov (United States)

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  15. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    Science.gov (United States)

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-03

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  17. Isotope separation of 22Na and 24Na with using light induced drift effect

    International Nuclear Information System (INIS)

    Hradecny, C.; Tethal, T.; Ermolaev, I.M.; Zemlyanoj, S.G.; Zuzaan, P.

    1993-01-01

    The LIDIS (Light Drift Isotope Separation) separator without a gas flow is discussed. It is shown, that atomization degree of the separated isotopes limited real separation coefficient. The better buffer gas purification allowed to increase the experimental separation factor of 22 Na and 24 Na isotopes up to 25. The new experimental set up allow to increase the separation efficiency up to 50%. 12 refs.; 5 figs

  18. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  19. Flow dynamics in distillation columns packed with Dixon rings as used in isotope separation

    International Nuclear Information System (INIS)

    Gilath, C.; Cohen, H.; Wolf, D.

    1977-01-01

    Packed distillation columns are common in isotope separation. The pressure drop serves as an indication for the hydrodynamic state of the column. Models were formulated for flow and pressure drop dynamics in packed distillation columns. These models were confirmed on columns packed with Dixon rings and operated with water for separation of oxygen isotopes. Liquid holdup displacement is very important in isotope separation practice. Experiments proved that distillation columns packed with Dixon rings exhibit a behaviour close to plug flow. (author)

  20. Nuclear orientation of on-line separated isotopes

    International Nuclear Information System (INIS)

    Vanneste, L.; Vandeplassche, D.; Walle, E. van; Geenen, J.; Nuytten, C.; Marshak, H.

    1981-01-01

    The purpose of nuclear orientation in the study of nuclei far from stability is explained. Various methods of nuclear orientation are compared. The Leuven setup and its initial performance are described. (orig.)

  1. On-line separation of Pu(III) and Am(III) using extraction and ion chromatography

    International Nuclear Information System (INIS)

    Jernstroem, J.; Lehto, J.; Betti, M.

    2007-01-01

    An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry. (author)

  2. Thermal diffusion and separation of isotopes

    International Nuclear Information System (INIS)

    Fournier, Andre

    1944-01-01

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  3. Tritium Isotope Separation Using Adsorption-Distillation Column

    International Nuclear Information System (INIS)

    Fukada, Satoshi

    2005-01-01

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, α H-T equi . The adsorption action improved not only HETP but also α H-T equi . Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors

  4. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J

    2003-01-01

    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  5. Separation of iodine-131 from water using isotopic exchange with iodine-starch compound

    International Nuclear Information System (INIS)

    Ignatov, V.P.; Kolomejtseva, I.V.

    1990-01-01

    Conditions of iodine isotopic exchange with iodine-starch compound (ISC) were studied with the aim of compound utilizatoin for radioactive iodine separation from solution. It is shown that in pH range from 2 to 7 the degree of iodine extraction and coefficient of its distribution practically do not depend on pH, at pH>7 ISC destruction (decolorizing) starts and iodine extraction decreases. Rapid method of iodine separation from solution is suggested. The method can be used in radiochemical techniques. The degree of extraction equals 80 %, a higher degree of extraction can not be achieved owing to ISC formation peculiarities

  6. Zirconium isotope separation process

    International Nuclear Information System (INIS)

    Peterson, S.H.; Lahoda, E.J.

    1988-01-01

    A process is described for reducing the amount of zirconium 91 isotope in zirconium comprising: forming a first solution of (a) a first solvent, (b) a scavenger, and (c) a zirconium compound which is soluble in the first solvent and reacts with the scavenger when exposed to light of a wavelength of 220 to 600 nm; irradiating the first solution with light at the wavelength for a time sufficient to photoreact a disproportionate amount of the zirconium compound containing the zirconium 91 isotope with the scavenger to form a reaction product in the first solution; contacting the first solution, while effecting the irradiation, with a second solvent which is immiscible with the first solvent, which the second solvent is a preferential solvent for the reaction product relative to the first solvent, such that at least a portion of the reaction product is transferred to the second solvent to form a second solution; and separating the second solution from the first solution after the contacting

  7. Neutron separation energies of Zr isotopes

    International Nuclear Information System (INIS)

    Gomes, L.C.; Dietzsch, O.

    1976-01-01

    Q values are reported for (d,t) reactions on all the stable isotopes of zirconium. The neutron separation energies of 94 Zr and 96 Zr differ greatly (by 27.5 and 22.1 keV, respectively) from the values in the 1971 Atomic Mass Evaluation. These results combined with those from other authors seem to indicate that the 1971 values for the masses of 93 Zr and 95 Zr are in error. (orig.) [de

  8. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  9. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  10. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  11. Aspects regarding at 13C isotope separation column control using Petri nets system

    International Nuclear Information System (INIS)

    Boca, M L; Ciortea, M E

    2015-01-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13 C Isotope Separation column using Petri nets. The major problem with 13 C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13 C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times. (paper)

  12. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    In the separation nozzle process, uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 -mixture. Due to the large excess in hydrogen the high ration of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low and a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future systems involving mechanical jet deflection were developed. However, promising results were also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Center of Karlsruhe. Since 1970 the German company STEAG has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil

  13. Isotope separation in crossed-jet systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, R.J.; Anderson, J.B.

    1978-11-01

    The separation of isotopes in crossed-jet systems was investigated with Monte Carlo calculations of the separation effects for jets of Ne/Ar and /sup 235/UF/sub 6///sup 238/UF/sub 6/ mixtures entering a hydrogen stream. For the ideal condition of uniform stream velocities at zero temperature, the separation factor ..cap alpha.. was found to be 16.0 for Ne/Ar and 1.17 for /sup 235/UF/sub 6///sup 238/UF/sub 6/. For less ideal but more practical conditions, Monte Carlo calculations of the complete crossed-jet systems gave separation factors as high as 3.3 for Ne/Ar and ..cap alpha.. = 1.046 - 1.078 for /sup 235/UF/sub 6///sup 238/UF/sub 6/.

  14. Evaluation of different continuous cell lines in the isolation of mumps virus by the shell vial method from clinical samples

    Science.gov (United States)

    Reina, J; Ballesteros, F; Mari, M; Munar, M

    2001-01-01

    Aims—To compare prospectively the efficacy of the Vero, LLC-MK2, MDCK, Hep-2, and MRC-5 cell lines in the isolation of the mumps virus from clinical samples by means of the shell vial method. Methods—During an epidemic outbreak of parotiditis 48 clinical samples (saliva swabs and CSF) were studied. Two vials of the Vero, LLC-MK2, MDCK, MRC-5, and Hep-2 cell lines were inoculated with 0.2 ml of the samples by the shell vial assay. The vials were incubated at 36°C for two and five days. The vials were then fixed with acetone at -20°C for 10 minutes and stained by a monoclonal antibody against mumps virus by means of an indirect immunofluorescence assay. Results—The mumps virus was isolated from 36 samples. The Vero and LLC-MK2 cell lines showed a 100% isolation capacity, MDCK showed 77.7%, MRC-5 showed 44.4%, and Hep-2 showed 22.2%. The Vero and LLC-MK2 lines were significantly different to the other cell lines (p 5 infectious foci) were 94.4% for Vero, 97.2% for LLC-MK2, 5.5% for MDCK, 5.5% for Hep-2, and 0% for MRC-5. Conclusions—The Vero and LLC-MK2 cell lines are equally efficient at two and five days incubation for the isolation of the mumps virus from clinical samples, and the use of the shell vial method considerably shortens the time of aetiological diagnosis with higher specificity. Key Words: mumps virus • Vero cell line • LLC-MK2 cell line • MDCK cell line • Hep-2 cell line • MRC-5 cell lineisolation • shell vial PMID:11729211

  15. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    A method is described for separating and enriching deuterium containing molecules comprising the steps of: providing a source of organic molecules containing a normal abundance of deuterium atoms, the organic molecules having a structural formula RX, in which R is an organic radical selected from ethyl, isopropyl, t-butyl and 3-cyclopentenyl, and in which X is selected from F, Cl, Br and OH, and wherein R represents 3-cyclopentenyl, X may additionally represent H; exposing the molecules to the radiation of at least one pulsed infrared laser source which has been specifically tuned and focussed to selectively decompose RX molecules containing deuterium to form an enriched olefin specie containing deuterium, and HX; and separating the deuterium enriched olefin specie from the undecomposed deuterium depleted RX molecules and HX. (author)

  16. Determination of the separation factor of uranium isotopes by gaseous diffusion

    International Nuclear Information System (INIS)

    Bilous, O.; Counas, G.

    1958-01-01

    A 12-stage pilot separation cascade with a low output has been constructed to measure the separation factor of uranium isotopes by gaseous diffusion. The report describes some of the separation results obtained, and also provides information on the time necessary for equilibrium to be established and on the influence of various perturbations on the pressure profile in the cascade. (author) [fr

  17. The 11th International ICIT Conference Progress in Cryogenics and Isotopes Separation. Proceedings

    International Nuclear Information System (INIS)

    Stefanescu, Ioan

    2005-01-01

    The proceedings of the 11th International ICIT Conference Progress in Cryogenics and Isotopes Separation held in Caciulata, Romania on 12-14 October 2005 contain plenary lectures (6 papers) and 6 sections addressing the following subject matters: Section 1. Stable Isotopes Physics. Technologies and Applications (5 papers); Section 2. Science and Materials Engineering (11 papers); Section 3. Nuclear Power (21 papers); Section 4. Hydrogen and Fuel Cells (7 papers); Section 5. Environmental Protection. Industrial Risk (10 papers); Section 6. Laboratory Analysis Methods (10 papers). Twenty two papers are available in abstract form only and full text entered the corresponding records

  18. A determination of elementary separation factors of isotopes 235U and 238U in the ionic exchange process and of eluents in the water-glycerine system

    International Nuclear Information System (INIS)

    Murgulescu, S.E.

    1977-01-01

    In the experiments focused on uranium isotope separation by ion and chemical exchange, the water-glycerine system was employed. The principle of the method consists in shifting a uranium band along an ion-exchange resin column by means of an eluent. The isotope effect of reactions determining the band heading into the column where complex bands between the metal ion and the ligand form and break up under the resin influence, is determined by the difference in affinity between the two isotopes as against the eluent. The isotope effect in question determines a unit deviation of the equilibrium constant for the classical isotope exchange reaction. Starting from the experimental results obtained, it was concluded that the ion and chemical exchange between the IV and VI valence forms of uranium can be applied to isotope separation in terms of the separation unit. As against the methods that have been applied at present (gaseous scattering, hydro-extracting and the nozzle method), for which every new stage corresponds to a separation elementary factor, several separation elementary factors can be cumulated into a single stage in a chemical and ion exchange unit, by the optimization of the shifting band and length. (author)

  19. Method and equipment of separation of gaseous and vaporous materials, particularly isotopes, with separation nozzles

    International Nuclear Information System (INIS)

    Becker, E.W.; Eisenbeiss, G.; Ehrfeld, W.

    1975-01-01

    The invention improves on the already known separation nozzle method by the two following steps: 1) The partial flows produced within the cascade with various shares of additional gas are introduced into the separating nozzle systems in such a manner that with regard to the additional gas, a molar fraction gradient is created which is in the opposite direction to the gradient created by the separation process. 2) The partial flows produced within the cascade with various compositions of the mixture of substances to be separated are introduced into the separating nozzle systems in such a manner that regarding the substances to be separated, a molar fraction gradient is created which is in the same direction as the molar fraction gradient formed by the separation process. Both measures can be separately applied or in combination with one another; flowsheets of the invented cascade circuits and separating nozzle systems are given. (GG/LH) [de

  20. 31 CFR 50.14 - Separate line item.

    Science.gov (United States)

    2010-07-01

    ....14 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.14 Separate line item. An insurer is deemed to be in compliance with the requirement of providing disclosure on a “separate line item in the policy...

  1. ITER hydrogen isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1990-01-01

    This paper presents integrated hydrogen Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar with the only major difference being the requirement for an additional large water distillation column for ALSB water detritiation. The extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600 g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180 g, which is less than the ITER single-failure release limit of 200 g. Further design optimization and isolation of components is expected to reduce the inventory further. (orig.)

  2. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  3. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  4. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  5. Separation of 15N by isotopic exchange in NO, NO2-HNO3 system under pressure

    International Nuclear Information System (INIS)

    Axente, D.; Baldea, A.; Teaca, C.; Horga, R.; Abrudean, M.

    1998-01-01

    One of the most used method for production of 15 N with 99% at. concentration is the isotopic exchange between gaseous nitrogen oxides and HNO 3 solution 10M: ( 15 NO, 15 NO 2 ) g + H 14 NO 3,l = ( 14 NO, 14 NO 2 ) g + H 15 NO 3,l . The isotopic exchange is characterized by an elemental separation factor α=1.055 at 25 deg. C and atmospheric pressure. Recently, kinetics data pointed to the linear dependence of the exchange rate 15 N/ 14 N(R) on the nitrogen oxide pressure with a rate law R = k[HNO 3 ] 2 · [N 2 O 3 ]. In this work, the influence of the nitrogen oxide pressure on the 15 N separation efficiency was determined by the use of a laboratory equipment with a separation column pack of Helipack type, with dimensions 1.8 mm x 1.8 mm x 0.2 mm. The increase of nitrogen oxide pressure led to a better isotopic transfer between the two counter-flow phases in the column pack. The HETP (Height Equivalent to a Theoretical Plate) determined for a 3.14 ml ·cm -2 · min -1 load is equal to that obtained at atmospheric pressure for a two times lower load. The operation of the equipment for isotopic separation of 15 N at 1.8 atm instead of atmospheric pressure allows doubling the HNO 3 10 M load of the column and consequently, doubling the production rate. A better performance of the separation process at higher pressure is essential for the industrial production of 15 N isotope which is used for the production of uranium nitride in FBR type reactors. (authors)

  6. Isotopic separation by centrifugation. Rotating plasma; Separacion Isotopic por Centrifugacion Plasma Rotante

    Energy Technology Data Exchange (ETDEWEB)

    Perello, M; Vigon, M A

    1972-07-01

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs.

  7. Investigation into periodic process of hydrogen isotope separation by counterflow method in the hydrogen-palladium system

    International Nuclear Information System (INIS)

    Andreev, B.M.; Selivanenko, I.L.; Vedeneev, A.I.; Golubkov, A.N.; Tenyaev, B.N.

    1999-01-01

    The key diagram and results of the investigation into working conditions of the pilot plant for hydrogen isotope separation embodying the concept of continuous counterflow separation in the hydrogen-palladium system are shown. The counterflow of phases in the plant is attained under the motion of palladium solid hydride phase relative to stationary blocks of flow rotation. The column separator is defined as section type one. The plant performs in periodic regime with accumulating vessels for light and heavy components of the separated mixture. Maximum concentration of the separated tritium ranged up to ∼ 96 % in the experiments of the deuterium-tritium separation. Minimum concentration of the residual tritium in the mixture ranged up to ∼ 0.1 %. The plant provides to reprocessing 4.5 moles of the gas a day [ru

  8. Improved method for Hf separation from silicate rocks for isotopic analysis using Ln-spec resin column

    International Nuclear Information System (INIS)

    Shinjo, Ryuichi; Ginoza, Yuko; Meshesha, Daniel

    2010-01-01

    An improved chemical separation method for Hf isotope ratio measurement using both the thermal ionization mass spectrometer (TIMS) and the multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) is presented in this paper. In the first column (2.5-ml Eichrom Ln-spec resin), Hf cut was collected with 2M HCl-0.2M HF after washing the major elements, HREE, Ti, Nb, and Zr. For further Hf purification, the second column (1-ml Ln-spec resin) chemistry was conducted in a manner similar to that of the first column. The first column is designed for treatment with a 0.5-g silicate rock sample for TIMS analysis. Thus, because the Hf amount required for MC-ICP-MS analysis is much lesser than that required for TIMS analysis, the column chemistry for MC-ICP-MS analysis can be scaled down, depending on the amount of digested sample. Although there is a need to improve the TIMS technique, the TIMS Hf data obtained for geological reference rocks and Ethiopian flood basalts after the application of the proposed separation methods are consistent, within analytical error, with the previously reported data obtained using the MC-ICP-MS. The advantages of the proposed method include a reduction in the amount of reagents used (hence, a consequent reduction in the blank contribution), reduction in the time required, and a simplified preparation requiring a fewer number of acids. (author)

  9. Optimized anion exchange column isolation of zirconium-89 ( 89 Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.; Morrison, Samuel S.

    2018-04-01

    Zirconium-89 (89Zr), produced by the (p,n) reaction from naturally monoisotopic yttrium (natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution that is high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>105) and has been shown to separate Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the performance of the method was evaluated using cyclotron bombarded Y foil targets. The separation method was shown to achieve >95% recovery of the 89Zr present in the foils. The 89Zr eluent, however, was in a chemical matrix not immediately conducive to labeling onto proteins. The main intent of this study was to develop a tandem column 89Zr purification process, wherein the anion exchange column method described here is the first separation in a dual-column purification process.

  10. Mass measurements on radioactive isotopes using the ISOLTRAP spectrometer

    CERN Document Server

    Dilling, J; Kluge, H J; Kohl, A; Lamour, E; Marx, G; Schwarz, S C; Bollen, G; Kellerbauer, A G; Moore, R B; Henry, S

    2000-01-01

    ISOLTRAP is a Penning trap mass spectrometer installed at the on line isotope separator ISOLDE at CERN. Direct measurements of the masses of short lived radio isotopes are performed using the existing triple trap system. This consists of three electromagnetic traps in tandem: a Paul trap to accumulate and bunch the 60 keV dc beam, a Penning trap for cooling and isobar separation, and a precision Penning trap for the determination of the masses by cyclotron resonance. Measurements of masses of unknown mercury isotopes and in the vicinity of doubly magic /sup 208/Pb are presented, all with an accuracy of delta m/m approximately=1*10/sup -7/. Developments to replace the Paul trap by a radiofrequency quadrupole ion guide system to increase the collection efficiency are presently under way and the status is presented. (10 refs).

  11. Novel wave/ion beam interaction approach to isotope separation

    International Nuclear Information System (INIS)

    Post, R.F.; Lowder, R.S.; Schwager, L.A.; Barr, W.L.; Warner, B.E.

    1993-02-01

    Numerical simulations and experimental studies have been made related to the possibility of employing an externally imposed electrostatic potential wave to separate isotopes. This wave/ion interaction is a sensitive function of the wave/ion difference velocity and for the appropriate wave amplitude and wave speed, a lighter faster isotope will be reflected by the wave to a higher energy while leaving heavier, slower isotopes virtually undisturbed in energy -- allowing subsequent ion separation by simple energy discrimination. In these experiments, a set of some 200 individual, electrodes, which surrounded a microamp beam of neon ions, was used to generate the wave. Measurements of the wave amplitudes needed for ion reflection and measurements of the final energies of those reflected ions are consistent with values expected from simple kinetic arguments and with the more detailed results of numeric simulations

  12. The 12th International ICIT Conference Progress in Cryogenics and Isotopes Separation. Proceedings

    International Nuclear Information System (INIS)

    Stefanescu, Ioan

    2006-01-01

    The proceedings of the 12th International ICIT Conference Progress in Cryogenics and Isotopes Separation held in Caciulata, Romania on 25-27 October 2006 contain plenary lectures (11 papers) and 7 sections addressing the following subject matters: Section 1. Stable Isotopes Physics. Technologies and Applications (6 papers); Section 2. Cryogenics Technologies and Equipment (6 papers); Section 3. Science and Materials Engineering (18 papers); Section 4. Nuclear Power (17 papers); Section 5. Hydrogen and Fuel Cells (14 papers); Section 6. Environmental Protection. Industrial Risk (14 papers); Section 7. Laboratory Analysis Methods (13 papers). A number of 40 papers are available in abstract form only and accordingly full text entered the corresponding records

  13. EBIS/T charge breeding for intense rare isotope beams at MSU

    CERN Document Server

    Schwarz, S; Marrs, R E; Kittimanapun, K; Lapierre, A; Mendez, A J; Ames, F; Beene, J R; Lindroos, M; Ahle, L E; Stracener, D W; Kester, O; Wenander, F; Lopez-Urrutia, J R Crespo; Dilling, J; Bollen, G

    2010-01-01

    Experiments with reaccelerated beams are an essential component of the science program of existing and future rare isotope beam facilities. NSCL is currently constructing ReA3, a reaccelerator for rare isotopes that have been produced by projectile fragmentation and in-flight fission and that have been thermalized in a gas stopper. The resulting low-energy beam will be brought to an Electron Beam Ion Source/Trap (EBIS/T) in order to obtain highly charged ions at an energy of 12 keV/u. This charge breeder is followed by a compact linear accelerator with a maximum beam energy of 3MeV/u for U-238 and higher energies for lighter isotopes. Next-generation rare isotope beam facilities like the Facility for Rare Isotope Beams FRIB, but also existing Isotope Separator On-line (ISOL) facilities are expected to provide rare-isotope beam rates in the order of 10(11) particles per second for reacceleration. At present the most promising scheme to efficiently start the reacceleration of these intense beams is the use of a...

  14. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  15. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  16. UNISOR on-line nuclear orientation facility (UNISOR/NOF)

    International Nuclear Information System (INIS)

    Girit, I.C.; Alton, G.D.; Bingham, C.R.; Carter, H.K.; Simpson, M.L.; Cole, J.D.; Croft, W.L.; Hamilton, J.H.; Jones, E.F.; Gore, P.M.; Kormicki, J.; Xie, H.; Kern, B.D.; Krane, K.S.; Xu, Y.S.; Mantica, P.F. Jr.; Zimmermann, B.E.; Nettles, W.G.; Zganjar, E.F.; Kortelahti, M.O.; Newbolt, W.B.

    1988-01-01

    The UNISOR on-line nuclear orientation facility (UNISOR/NOF) consists of a 3 He- 4 He dilution refrigerator on line to the isotope separator. Nuclei are implanted directly into a target foil which is soldered to the bottom accessed cold finger of the refrigerator. A 1.5 T superconducting magnet polarizes the ferromagnetic target foils and determines the axis of symmetry. Up to eight gamma detectors can be positioned around the refrigerator, each 9 cm from the target. A unique feature of this system is that the k=4 term in the directional distribution function can be directly and unambigously deduced so that a single solution for the mixing ratio can be found. The first on-line experiment at this facility reported here was a study of the decay of the 191 Hg and 193 Hg isotopes. (orig.)

  17. Radioactive beams produced by the ISOL method: development for laser ionization and for surface ionization; Faisceaux exotiques par methode ISOL: developpements pour l'ionisation par laser et l'ionisation de surface

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Faouzi

    2004-10-01

    The works were carried out in the framework of the research program PARRNe (production of radioactive neutron-rich nuclei). This program aims to determine optimal conditions to produce intense beams of neutron-rich isotopes. This thesis treats multiple technical aspects related to the production of separate radioactive isotopes in line (ISOL). It deals mainly with the development of the target-source unit which is the key element for projects such as SPIRAL-2 or EURISOL.The first part presents the various methods using fission as production mode and compares them: fission induced by thermal neutrons, induced by fast neutrons and photofission. The experiment carried out at CERN validated the interest of the photofission as a promising production mode of radioactive ions. That is why the institute of nuclear physics of Orsay decided to build a linear electron accelerator at the Tandem d'Orsay (ALTO).The second part of this thesis deals with the development of uranium targets. The X-rays diffraction and Scanning Electron Microscopy have been used as analysis techniques. They allowed to determine the chemical and structural characteristics of uranium carbide targets as function of various heating temperatures. After the production, the process of ionization has been studied. Two types of ion source have been worked out: the first one is a surface ion source and the second one is a source based on resonant ionization by laser. These two types of sources will be used for the ALTO project. (author)

  18. Tandem on-line continuous separations for atomic spectroscopic indirect analysis: iodide determination by ICP-AES

    International Nuclear Information System (INIS)

    Garcia, A.M.; Sanchez Uria, J.E.; Sanz-Medel, A.; Quintero Ortega, M.C.; Bautista, J.C.

    1992-01-01

    A sensitive and selective indirect determination of iodide by inductively coupled plasma emission spectrometry (ICP-AES) based on the principle of tandem on-line continuous separations as an alternative means of introducing samples into plasmas is proposed. Iodide is continuously extracted as an ion-pair into xylene by mixing the sample with Hg(II) and dipyridil solutions. The organic phase (containing the analyte in [Hg(Dipy) 2 ]I 2 form) is on-line continuously mixed with NaBH 4 (in DMF) and acetic acid solutions. Mercury vapour continuously generated from this organic phase is separated in a classical U-type gas-liquid separation device. The system has been optimized for the continuous extraction of KI, for the direct generation of cold mercury vapour from xylene and for the final ICP-AES determination of mercury. The optimised method has been applied to the determination of iodide (detection limit 20 ng/ml of iodide) in table salt and in synthetic samples. Very good agreement between found and certified results was observed. The usefulness and convenience of such alternative sample chemical pretreatment/presentation to the ICP is thus demonstrated for indirect determinations to be carried out by atomic spectroscopy methods. (authors)

  19. Present and prospective situation in laser isotope separation: will the free electron laser be needed

    International Nuclear Information System (INIS)

    Rigny, P.

    1984-09-01

    The need for enriched isotopes, as it appears to day will be recalled for the foreseeable future, this need, in quantitative terms, will be confined to isotopes for nuclear energy. The interest of laser isotope separation will finally depend on our ability to fulfil a number of requirements as to the laser output light characteristics. These will be recalled for the most common laser processes (molecular photodissociation and atomic photoionisation). At this point a comparison with expectations from the FEL can already be attempted. Less common laser isotope separation schemes can gain interest from the possibilities opened by the FEL, especially by access to new wavelengths ranges. Some schemes implying UV or VUV photons will be discussed, as well as some possibilities involving IR photons. Attention will be paid to the problems that arise when considering scaled-up isotope separation installations. A large scale process results in more constraints on the laser parameters. Estimation of FEL capacity in this respect will be attempted

  20. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method

    Science.gov (United States)

    Yao, Jiachi; Xiang, Yang; Qian, Sichong; Li, Shengyang; Wu, Shaowei

    2017-11-01

    In order to separate and identify the combustion noise and the piston slap noise of a diesel engine, a noise source separation and identification method that combines a binaural sound localization method and blind source separation method is proposed. During a diesel engine noise and vibration test, because a diesel engine has many complex noise sources, a lead covering method was carried out on a diesel engine to isolate other interference noise from the No. 1-5 cylinders. Only the No. 6 cylinder parts were left bare. Two microphones that simulated the human ears were utilized to measure the radiated noise signals 1 m away from the diesel engine. First, a binaural sound localization method was adopted to separate the noise sources that are in different places. Then, for noise sources that are in the same place, a blind source separation method is utilized to further separate and identify the noise sources. Finally, a coherence function method, continuous wavelet time-frequency analysis method, and prior knowledge of the diesel engine are combined to further identify the separation results. The results show that the proposed method can effectively separate and identify the combustion noise and the piston slap noise of a diesel engine. The frequency of the combustion noise and the piston slap noise are respectively concentrated at 4350 Hz and 1988 Hz. Compared with the blind source separation method, the proposed method has superior separation and identification effects, and the separation results have fewer interference components from other noise.

  1. INS gas-filled recoil isotope separator

    International Nuclear Information System (INIS)

    Miyatake, M.; Nomura, T.; Kawakami, H.

    1986-09-01

    The characteristics and performance of a small sized gas-filled recoil isotope separator recently made at INS are described. The total efficiency and the ΔBρ/Bρ values have been measured using low velocity 16 O, 40 Ar and 68 As ions and found to be 10 and 5 %, respectively. The Z-dependence of the mean charge is discussed. (author)

  2. Nuclear decay data measurements at the INEL ISOL facility

    International Nuclear Information System (INIS)

    Greenwood, R.C.; Helmer, R.G.; Putnam, M.H.; Struttmann, D.A.; Watts, K.D.

    1991-01-01

    In recent years, the use of the mass separation technique coupled on-line to a source of fission product nuclides has provided a wealth of new information on the nuclear decay properties of such nuclides. In addition to their relevance in basic studies of nuclear properties of neutron-rich nuclei, the fission product nuclides as a group, because of their intimate link with energy production in fission reactors, occupy a unique position in the field of applied nuclear decay data. Further, in addition to their critical role in nuclear reactor technology (decay heat source term, environmental concerns, etc.), such data have important applications in astrophysical calculations involving the rapid neutron capture process (r-process) of elemental synthesis in stellar environments. The scope of the nuclear decay data measurements being undertaken using the Idaho National Engineering Laboratory's (INEL) isotope separation on-line (ISOL) facility is focused on a systematic study of the gross nuclear decay properties of short-lived fission product isotopes, i.e., ground-state half-lives, beta-decay energies and beta-decay feeding (or beta-strength) distributions. In this paper, the authors discuss the results of new measurements of beta-decay energies and feeding distributions

  3. Isotope separation by rotating plasmas

    International Nuclear Information System (INIS)

    Nicoli, C.

    1982-02-01

    A steady-state model of a fully ionized plasma column in a concentric cylindrical electrodes structures is proposed to study the plasma separation properties of its singly ionized ionic species, composed of two isotopes of the element. In this model (a one-fluid model) rotation is imparted to the plasma column through the J (vector) x B (vector) interaction. Radial pressure balance is mainly between the radial component of the J (vector) x B (vector) force and the pressure gradient plus centrifugal force and the azimutal component of the J (vector) x B (vector) force is balanced purely by viscous force. A pressure tensor 31 describes the viscoys effect and the heat balance provides an equation for temperature. A uranium gas with is two main isotopes (U 235 and U 238 ) was used for the ionic component of the plasma. The computing code to solve the resulting, system of equations in tems of density, temperature, and velocity as functions of the radial independent variable was set up to yield solutions satisfying null velocity conditions on both boundaries (inner and outer electrodes). (M.A.F.) [pt

  4. Method to separate deuterium isotopes using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    The separation of deuterium by the dissociation of ethylene vinyl chloride, 1,2-dichloro-ethanes or propylene with the help of intensive, matched infrared lasers enables a relatively good yield if operated on a large scale, e.g. in refineries with large through-put. The deuterium from the laser photolysis of ethylene and vinyl chloride is found in the acetylene formed, which has to be separated off and processed. When using dichloroehtane, the deuterium is found in the vinal chloride formed. The methods are briefly described. (UWI) [de

  5. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  6. Decay of new mass-separated neutron-deficient La and Ce isotopes

    International Nuclear Information System (INIS)

    Genevey, J.; Gizon, A.; Idrissi, N.; Weiss, B.; Beraud, R.; Charvet, A.; Duffait, R.; Emsallem, A.; Meyer, M.; Ollivier, T.; Redon, N.

    1987-01-01

    By use of a He jet system coupled to a Bernas-Nier ion-source, several new mass-separated A = 122 - 127 isotopes reached in heavy ion fusion reactions at SARA have been identified and studied. From experimental decay properties of La isotopes, systematics of low-lying energy levels have been extended for even-even and odd-A barium. New informations on Ce decay schemes are briefly reported

  7. Lithium isotopic separation: preliminary studies; Separacao isotopica de litio: estudos preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Sandra Helena Goulart de

    1998-07-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  8. Hydrogen isotope separation experience at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, M.W.

    1993-01-01

    Savannah River Site (SRS) is a sole producer of tritium for US Weapons Program. SRS has built Facilities, developed the tritium handling processes, and operated safely for the last forty years. Tritium is extracted from the irradiated reactor target, purified, mixed with deuterium, and loaded to the booster gas bottle in the weapon system for limited lifetime. Tritium is recovered from the retired bottle and recycled. Newly produced tritium is branded into the recycled tritium. One of the key process is the hydrogen isotope separation that tritium is separated from deuterium and protium. Several processes have been used for the hydrogen isotope separation at SRS: Thermal Diffusion Column (TD), Batch Cryogenic Still (CS), and Batch Chromatography called Fractional Sorption (FS). TD and CS requires straight vertical columns. The overall system separation factor depends on the length of the column. These are three story building high and difficult to put in glove box. FS is a batch process and slow operation. An improved continuous chromatographic process called Thermal Cycling Absorption Process (TCAP) has been developed. It is small enough to be about to put in a glove box yet high capacity comparable to CS. The SRS tritium purification processes can be directly applicable to the Fusion Fuel Cycle System of the fusion reactor

  9. Controlled power supply for isotopes separator; Alimentations regulees pour separateur d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lavaitte, A; Pottier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1953-07-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [French] Cet equipement est destine a equiper le separateur d'isotopes qui fait l'objet du rapport C.E.A. n 138. Il comprend: - une alimentation regulee en tension. - une alimentation regulee en courant. Le spectre de fluctuations de ces ensembles est different dans les deux cas. (auteurs)

  10. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  11. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  12. Chromatographic separation process with pellicular ion exchange resins that can be used for ion or isotope separation and resins used in this process

    International Nuclear Information System (INIS)

    Carles, M.; Neige, R.; Niemann, C.; Michel, A.; Bert, M.; Bodrero, S.; Guyot, A.

    1989-01-01

    For separation of uranium, boron or nitrogen isotopes, an isotopic exchange is carried out betwen an isotope fixed on an ion exchange resin and another isotope of the same element in the liquid phase contacting the resin. Pellicular resins are used comprising composite particulates with an inert polymeric core and a surface layer with ion exchange groups [fr

  13. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  14. Validation of the method for determination of plutonium isotopes in urine samples and its application in a nuclear facility at Otwock

    Directory of Open Access Journals (Sweden)

    Rzemek Katarzyna

    2015-03-01

    Full Text Available The studies aimed at determining low activities of alpha radioactive elements are widely recognized as essential for the human health, because of their high radiotoxicity in case of internal contamination. Some groups of workers of nuclear facility at Otwock are potentially exposed to contamination with plutonium isotopes. For this reason, the method for determination of plutonium isotopes has been introduced and validated in Radiation Protection Measurements Laboratory (LPD of the National Centre for Nuclear Research (NCBJ. In this method the plutonium is isolated from a sample by coprecipitation with phosphates and separated on a AG 1-X2 Resin. After electrodeposition, the sample is measured by alpha spectrometry. Validation was performed in order to assess parameters such as: selectivity, accuracy (trueness and precision and linearity of the method. The results of plutonium determination in urine samples of persons potentially exposed to internal contamination are presented in this work.

  15. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  16. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Science.gov (United States)

    Remec, Igor; Gabriel, Tony A.; Wendel, Mark W.; Conner, David L.; Burgess, Thomas W.; Ronningen, Reginald M.; Blideanu, Valentin; Bollen, Georg; Boles, Jason L.; Reyes, Susana; Ahle, Larry E.; Stein, Werner

    2006-06-01

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power—400 kW—will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions—and produce rare isotopes—in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u 3He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the 3He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  17. Separation of hydrogen isotopes for tritium waste removal

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1975-01-01

    A distillation cascade for separating hydrogen isotopes was simulated by means of a multicomponent, multistage computer code. A hypothetical test mixture containing equal atomic fractions of protium, deuterium and tritium, equilibrated to high temperature molecular concentrations was used as feed. The results show that a two-column cascade can be used to separate the protium from the tritium. Deuterium appears both in the protium and the tritium product streams. (auth)

  18. Rule of thumb for binary isotope separations in a gas centrifuge

    International Nuclear Information System (INIS)

    Berger, M.H.

    1985-12-01

    A very simple hypothetical model of the binary isotope separation process in a countercurrent Gas Centrifuge is proposed. Like the usual Cohen-Onsager separation theory it involves the internal fluid dynamics, but unlike the usual isotopic separation theory it completely obviates the usual flow integrals for Cohen's E. Thereby allowing an immediate estimate of the flow efficiency of a given design, which can and sometimes should be checked later by the usual analyses. To shed some light on our idea, two simple derivations for assumed idealized hydrodynamics are given, but a rigorous proof remains an open question. Then our hypothesis is tested against a battery of about 10 new ''exact'' formulas for E based upon analytical solutions to several variants of Onsager's pancake equation and found to be ''reasonably'' accurate and surprisingly robust. Finally, some limitations of our rule are explored

  19. ISOL science is soaring. SCK-CEN promotes intensive cooperation

    International Nuclear Information System (INIS)

    2015-01-01

    The unique properties of the particle accelerator that will be linked to the future MYRRHA reactor, make it possible to develop a new-generation ISOL facility (Isotope Separation On-Line) in parallel. ISOL at MYRRHA will use up to 5 per cent of the proton beam in MYRRHA for the production of radioactive ion beams which are 100 times more intense than what is possible in current European installations. Besides the technological development, it is also important to make scientists enthusiastic about using this in the future. The Belgian Nuclear Research Centre is the driving force behind the Belgian EURISOL Consortium, an organisation whose mission is to support ISOL science in Belgium. At the same time, it will give an impulse to the development of ISOL at MYRRHA.

  20. Process and component for isotope separation

    International Nuclear Information System (INIS)

    Girodin, M.G.H.

    1974-01-01

    The description is given of a component for isotope separation by static centrifugation, the characteristic of which is that the gas, of single chemical composition, in other words without a diluting gas mixture, passes into a sonic collar then into a symmetrical supersonic diffuser where it acquires a uniform and rectilinear velocity above or very much above the speed of sound before going into its curved trajectory [fr

  1. On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  2. On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques.

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B; Meijer, Harro A J; Brand, Willi A; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ(2)H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ(2)H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  3. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  4. Total β-decay energies and masses of tin, antimony and tellurium isotopes in the vicinity of 50132Sn82

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Rudstam, G.

    1977-01-01

    Experimental β-decay energies for short-lived isotopes of tin, antimony and tellurium are presented. Mass-separated sources were produced at the on-line isotope separator OSIRIS. By applying β-γ coincidence methods, total β-decay energies have been determined for the following nuclides: 127-131 Sn, 128 130 131 134 Sb and 134 135 Te. The atomic mass excess has been derived for these nuclei, and comparisons are made with mass formula predictions. (Auth.)

  5. Proposed configuration for ITER hydrogen isotope separation system (ISS)

    International Nuclear Information System (INIS)

    Lazar, A.; Brad, S.; Sofalca, N.; Vijulie, M.; Cristescu, I.; Doer, L; Wurster, W.

    2008-01-01

    Full text: The isotope separation system utilizes cryogenic distillation and catalytic reaction for isotope exchange to separate elemental hydrogen isotope gas mixtures. The ISS shall separate hydrogen isotope mixtures from two sources to produce up to five different products. These are: protium, effluent for discharge to the atmosphere, deuterium for fuelling, deuterium for NB injector (NBI) source gas, 50 % and 90% T fuelling streams. The concept of equipment 3D layout for the ISS main components were developed using the Part Design, Assembly Design, Piping Design, Equipment Arrangement and Plant Layout application from CATIA V5. The 3D conceptual layouts for ISS system were created having as reference the DDD -32-B report, the drawings 0028.0001.2D. 0100. R 'Process Flow Diagram'; 0029.0001.2D. 0200.R 'Process Instrumentation Diagram -1' (in the cold box); 0030.0001.2D. 0100. R 'Process Instrumentation Diagram -2' (in the hard shell confinement) and imputes from TLK team. The main components designed for ISS are: ISS cold box system (CB) with cryogenic distillation columns (CD) and recovery heat exchangers (HX), ISS hard shell containment (HSC) system with metals bellow pumps (MB) and chemical equilibrators (RC), valve box system, instrumentation box system, vacuum system and hydrogen expansion vessels. Work related to these topics belongs to the contract FU06-CT-2006-00508 (EFDA 06-1511) from the EFDA Technology Workprogramm 2006 and was done in collaboration with FZK Association team during the period January 2007 - September 2008. (authors)

  6. The Use of Isotope Techniques to Separate of Hydrography Components. Case Study: Ankara-Guvenc Basin

    International Nuclear Information System (INIS)

    Tekeli, Y.I.; Sorman, A.U.; Sayin, M.

    2002-01-01

    In this research, a stable environmental isotope study was carried out from analysis of water samples collected from rainfall, runoff (total discharge), springs (subsurface flows), and wells (ground waters)in Ankara-Guevenc basin having a drainage area of about 16.125 km 2 between 1996-2000. The aim of the study was to investigate the rainfall-runoff relationship for the basin. Recorded total ten discharge hydrographs are separated to their components using stable isotopes (Oxygen-18, Deuterium) contents. Among these samples, unit hydrographs from two one-peak storm hydrographs were derived using both isotope and graphical methods, and the derived unit hydrographs values including peaks were compared. Peak values of 10 and 20 minutes unit hydrographs of the basin derived by using isotope method (Q p = 1322 1/s and Q p = 1327 l/s) are compared with those of graphical method (Q p = 1656 1/s, and Q p = 1250 1/s) using Barnes semi-log approach. It was found out that, the contribution of subsurface flow which is component of total discharge hydrograph and originating from various sub layers are important in the total flow of basin using isotope method of approach

  7. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  8. ITER isotope separation system

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Sherman, R.H.; Anderson, J.L.

    1990-09-01

    This document presents the results of a study that examined the technical operating and economic viability of an alternative Isotope Separation System (ISS) design based on the distributed design concept. In the distributed design, the ISS is broken up into local independently operable subsystems matched to local processing requirements. The distributed design accepts the same feeds and produces essentially the same products as the reference design. The distributed design consists of two separate, independent subsystems. The first, called ISS-H, receives only protium-dominated streams and waste water from tritium extraction. It has two cryogenic distillation columns and can produce a 50 percent D, 50 percent T product since it lacks D/T separation capability. A final 80 percent T 2 concentration product can be obtained by blending the 50 percent T 2 stream from ISS-H with the more than 99 percent T 2 stream from the second subsystem, ISS-D. The second subsystem receives only deuterium-dominated feeds, which also contain some protium. ISS-D is as complex as the reference design, but smaller. Although each subsystem has some advantages, such as only two cryogenic distillation columns in ISS-H and better than 99 percent steady state T 2 product in ISS-D, the combined subsystems do not offer any real advantage compared to the reference IISS. The entire distributed ISS design has been simulated using Ontario Hydro's FLOSHEET steady state process simulator. Dynamic analysis has not been done for the distributed design. (10 refs., 3 figs., 8 tabs.)

  9. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Unknown

    Control strategies for laser separation of carbon isotopes. V PARTHASARATHY*, A K ... The emerging market for medical applications of C-13 is projected to be in the range of hundreds of ..... thermal effects during irradiation. In the absence of ...

  10. Innovative lasers for uranium isotope separation. [Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Brake, M.L.; Gilgenbach, R.M.

    1991-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first two years of their project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. During the second year these experiments have been diagnosed. Highlights of some of the second year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated. A CW (0--500 W) signal heats and vaporizes the copper chloride to provide the atomic copper vapor. A pulsed (5 kW, 0.5--5kHz) signal is added to the incoming CW signal via a hybrid mixer to excite the copper states to the laser levels. An enhancement of the visible radiation has been observed during the pulsed pardon of the signal. Electrical probe measurements have been implemented on the system to verify the results of the electromagnetic model formulated last year. Laser gain measurements have been initiated with the use of a commercial copper vapor laser. Measurements of the spatial profile of the emission are also currently being made. The authors plan to increase the amount of pulsed microwave power to the system by implementing a high power magnetron. A laser cavity will be designed and added to this system.

  11. Simulation and optimization of stable isotope 18O separation by water vacuum distillation

    International Nuclear Information System (INIS)

    Chen Yuyan; Qin Chuanjiang; Xiao Bin; Xu Jing'an

    2012-01-01

    In the research, a stable isotope 18 O separation column was set up by water vacuum distillation with 20 m packing height and 0.1 m diameter of the column. The self-developed special packing named PAC- 18 O was packed inside the column. Firstly, a model was created by using the Aspen Plus software, and then the simulation results were validated by test results. Secondly, a group of simulation results were created by Aspen Plus, and the optimal operation conditions were gotten by using the artificial neural network (ANN) and Statistica software. Considering comprehensive factors drawn from column pressure and from withdrawing velocity, conclusions were reached on the study of the impact on the abundance of the isotope 18 O. The final results show that the abundance of the isotope 18 O increases as column pressure dropping and withdrawing velocity decreasing. Besides, the optimal column pressure and the incidence formula between the abundance of the isotope 18 O and withdrawing velocity were gotten. The conclusion is that the method of simulation and optimization can be applied to 18 O industrial design and will be popular in traditional distillation process to realize optimization design. (authors)

  12. Isotopic separation in a rotating neon plasma

    International Nuclear Information System (INIS)

    Cairns, J.B.S.

    1976-01-01

    The background to the use of rotating plasma as element and isotope separators is briefly reviewed. The principles of the process are outlined. The rotation in a plasma centrifuge is produced by passing a radial current across an axial magnetic field. The different mass spheres, if under the influence of azimuthal forces, may be separated by crossing the field. Details are given of the Vortex II experiment in which 22 Ne is separated from neon in a fully ionized rotating plasma. It was demonstrated that 22 Ne enrichments of approximately 15% could be achieved with the possibility of higher values when the design and operation of the plasma centrifuge have been optimised. (U.K.)

  13. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States)]. E-mail: remeci@ornl.gov; Gabriel, Tony A. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Wendel, Mark W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Conner, David L. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Burgess, Thomas W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Ronningen, Reginald M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Blideanu, Valentin [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Boles, Jason L. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Reyes, Susana [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power-400 kW-will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions-and produce rare isotopes-in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u {sup 3}He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the {sup 3}He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  14. The influence of collisions with noble gases on spectral lines of hydrogen isotopes

    International Nuclear Information System (INIS)

    Hermans, P.

    1982-01-01

    In this thesis measurements on the collisional broadening of the depolarized Rayleigh line and the broadening and shift of the rotational Raman lines (radiative transitions 0→2, 1→3 and 2→4) are presented. The experiments were carried out as a function of temperature from 23 K to 311 K for three systems, viz. H 2 -He, H 2 -Ne and H 2 -Ar. Also results of close coupled calculations on the broadening and shift are presented as a function of temperature for the four spectral lines mentioned. The calculations were performed for two systems, viz H 2 -He and H 2 -Ne. For the system H 2 -He two interaction potentials were used as a starting point, and a comparison between these potentials was made. Now that it is possible to do computations on effects related to the non-spherical interaction of the pure hydrogen isotopes, the availability of experimental data is of great importance. Many experiments on these effects have been performed over the last two decades, but their results are scattered throughout the literature. Therefore, in the last chapter of this thesis the experimental results for the pure hydrogen isotopes and in mixtures with noble gases are compiled to serve as comparing material for the calculations. The presentation is such that a direct comparison with calculations is facilitated. (Auth.)

  15. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    Directory of Open Access Journals (Sweden)

    M. Brass

    2010-12-01

    Full Text Available We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.

  16. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  17. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  18. Environmental Development Plan for advanced isotope separation

    International Nuclear Information System (INIS)

    1979-05-01

    This EDP identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety aspects of the Advanced Isotope Separation (AIS) program. Current AIS processes include the molecular and atomic vapor laser processes and the plasma process. This document covers the technology program, environmental concerns and requirements, and environmental strategy

  19. Experimental results to determine the separation performance of the packages used in cryogenic distillation isotopes

    International Nuclear Information System (INIS)

    Bornea, A.M.; Stefanescu, I.; Zamfirache, M.; Balteanu, O.; Preda, A.

    2007-01-01

    The cryogenic distillation of the hydrogen isotopes represents the back-end separation process most efficient and usually used in detritiation technologies. In our institute there were made many researches in the field of hydrogen isotopes separation. The first results were obtained based on an experimental installation - Pilot Plant for heavy water production - and in present days using a Detritiation Pilot Plant. In our Institute, was manufactured and patented a lot of hydrophilic package for isotopic distillation of water and hydrogen and also catalysts used for isotopic exchange waterhydrogen. This items was continuously developed in order to increase the isotopic separation efficiency. The goal of this paper is to determine by experimental work the performance of the package manufactured in our institute used in the cryogenic distillation process. To describe the separation performances was developed a mathematical model for the cryogenic distillation of the hydrogen isotopes. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions corresponding to various values for the refrigeration power in the column condenser. From the bottom and the top of the distillation column there were extracted samples in order to determine the isotopic composition. Processing the experimental data obtained from these tests using the Fenske relation, we obtained the separation efficiency function of the power inside the column boiler, operating pressure and also pressure drop along the package. This efficiency is describe by the number of theoretical plates per meter (NTT/m) or by equivalent height of one theoretical plate (IETT). (orig.)

  20. Experimental results to determine the separation performance of the packages used in cryogenic distillation isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bornea, A.M.; Stefanescu, I.; Zamfirache, M.; Balteanu, O.; Preda, A.

    2007-07-01

    The cryogenic distillation of the hydrogen isotopes represents the back-end separation process most efficient and usually used in detritiation technologies. In our institute there were made many researches in the field of hydrogen isotopes separation. The first results were obtained based on an experimental installation - Pilot Plant for heavy water production - and in present days using a Detritiation Pilot Plant. In our Institute, was manufactured and patented a lot of hydrophilic package for isotopic distillation of water and hydrogen and also catalysts used for isotopic exchange waterhydrogen. This items was continuously developed in order to increase the isotopic separation efficiency. The goal of this paper is to determine by experimental work the performance of the package manufactured in our institute used in the cryogenic distillation process. To describe the separation performances was developed a mathematical model for the cryogenic distillation of the hydrogen isotopes. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions corresponding to various values for the refrigeration power in the column condenser. From the bottom and the top of the distillation column there were extracted samples in order to determine the isotopic composition. Processing the experimental data obtained from these tests using the Fenske relation, we obtained the separation efficiency function of the power inside the column boiler, operating pressure and also pressure drop along the package. This efficiency is describe by the number of theoretical plates per meter (NTT/m) or by equivalent height of one theoretical plate (IETT). (orig.)

  1. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  2. Modified molecular sieves: stationary phase for the gas chromatographic separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.; Iyer, R.M.

    1993-01-01

    Gas chromatographic separation of hydrogen isotopes on different molecular sieves at liquid nitrogen temperature has been investigated. Normal molecular sieves 5A, 13X and AW500 are not satisfactory for the purpose both in the partially dehydrated as well as totally dehydrated state. Molecular sieve 4A in partially dehydrated state separated H 2 and D 2 while H 2 and HD are not well resolved. Iron exchanged or coated molecular sieves 4A, 5A, 13X and AW500 in the partially dehydrated state separated the isotopic mixtures H 2 , HD, D 2 and H 2 , HT, T 2 . The resolution varied depending on the amount of iron content and the residual moisture in the molecular sieves. Good separations were obtained on 15% Fe coated molecular sieve 5A and 5% Fe coated molecular sieve 4A. (author). 18 refs., 6 figs., 3 tabs

  3. Distrinution and properties of nuclides in fission by means of on-line isotope separation

    International Nuclear Information System (INIS)

    Nir-El, Y.

    1977-07-01

    This work determines the independent yield distribution fo the alkali elements' fission products. The results were analyzed by especially developed equations and half-lives were calculated using a computer program which fits a series of exponentials to the activity decay curve by the least squares method. Independent yields were determined by use of calculated correction factors and by normalization against a known independent yield. The three nuclides 147 Ba, 148 Ba, and 149 La were indentified fot the first time in this work and their half-lives were determined Comparison with calculated values, within the framework of beta decay theory, gave in all cases agreement better than an order of magnitude. Extrapolation of the experimental curve and prediction of values which have not yet been measured are now possible. Independent yield distributions of rubidium and cesium include values for 99 Rb, 147 Cs and 148 Cs determined for the first time. The last two isotopes were identified fot the first time in the present work. A model was developed to interpretthe heavy wing phenomenon based on statistical considerations and onbasic properties of prompt neutron emission in fission. The width parameter of the independent yield distribution calculated according to the propsed model is in very good agreement with the width parameter of a Gaussian fitted to the measured distribution. (B.G.)

  4. Study of the isotopic contamination with the Grenoble isotope separator

    International Nuclear Information System (INIS)

    Boge, Marc

    1970-01-01

    To know the limits of enrichment of the Grenoble electromagnetic isotope separator, we have studied the scattering of ions on the residual gas, and the chromatism. With Neodymium (Nd + ≅ 500 μA, NdO + ≅ 120 μA, Nd 2+ ≅ 70 μA) the second magnet has been used to analyse the ions which passed through the first stage slit. Therefore, we have measured the scattering with and without charge exchange of Nd + and the dissociation of NdO + . The chromatism has been studied by means of an electrostatic analyser, as a third stage. The limits of enrichment are obtained for Argon, Uranium and Neodymium. (author) [fr

  5. Development laser light facility for uranium isotope separation

    International Nuclear Information System (INIS)

    Dickinson, G.J.

    1992-01-01

    A laser light facility has been built and successfully commissioned as part of a programme to explore the economic potential of Laser Isotope Separation of Uranium. The laser systems are comprised of tunable dye lasers pumped by copper vapour lasers. The requirements for optical beam stability, alignment of lasers in chains, and protection of optical coatings have made challenging demands on the engineering design and operation of the facility. (Author)

  6. Aerodynamic effects in isotope separation by gaseous diffusion

    International Nuclear Information System (INIS)

    Bert, L.A.; Prosperetti, A.; Fiocchi, R.

    1978-01-01

    The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the separation efficiency. The predictions of the model are found to compare very favourably with experiment. In the limit of small suction velocities, results obtained by other investigators for diffusion in a turbulent steam are recovered. (author)

  7. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  8. An innovative method for extracting isotopic information from low-resolution gamma spectra

    International Nuclear Information System (INIS)

    Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.

    1998-01-01

    A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, 137 Cs, and 133 Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied

  9. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  10. Simulation of startup period of hydrogen isotope separation distillation column

    International Nuclear Information System (INIS)

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, Eh.P.

    2003-01-01

    Kinetic procedure for the mathematical simulation of start-up regime of rectification columns for molecular hydrogen isotope separation was developed. Nonstationary state (start-up period) of separating column for rectification of multi-component mixture was calculated. Full information on equilibrium and kinetic physicochemical properties of components in separating mixtures was used for the calculations. Profile of concentration of components by height of column in task moment of time was calculated by means of differential equilibriums of nonstationary mass transfer. Calculated results of nonstationary state of column by the 2 m height, 30 mm diameter during separation of the mixture: 5 % protium, 70 % deuterium, 25 % tritium were illustrated [ru

  11. Recent developments of target and ion sources to produce ISOL beams

    CERN Document Server

    Stora, Thierry

    2013-01-01

    In this review on target and ion sources for ISOL (Isotope Separation OnLine) beams, important develop- ments from the past five years are highlighted. While at precedent EMIS conferences, a particular focus was given to a single topics, for instance specifically on ion sources or on chemical purification tech- niques, here each of the important elements present in an ISOL production unit is discussed. Fast diffus- ing nanomaterials, uranium-based targets, high power targets for next generation facilities, purification by selective adsorption, new ion sources are all part of this review. For each of these selected topics, the reported results lead to significant gains in intensity, purity, or quality of the delivered beam, or in the production of new isotope beams. Often the outcome resulted from the combination of original ideas with state-of-the-art investigations; this was carried out using very different scientific disciplines, lead- ing to understanding of the underlying chemical or physical mechanisms a...

  12. Electromagnetic separator for light and middle isotope elements; Separateur electromagnetique pour les isotopes d'elements legers et moyens

    Energy Technology Data Exchange (ETDEWEB)

    Bernas, R [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    We describe a separator of isotope with a 60 deg magnetic sector that permits, thanks to a process of neutralization of the space charge, to use efficiently intense ion beams. The ion source for solid is essentially constituted by a discharge of hot cathode in a magnetic field and provides an ion beam focused of more than 10 mA. The result of the first separations (Zn, Sb, Hg) indicates that the isotopes of various elements can be obtained in quantities varying from 10 to 100 mg/24 hours. (author) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. La source d'ions pour solide est essentiellement constituee par une decharge a cathode chaude dans un champ magnetique et fournit un faisceau d'ion focalises de plus de 10 mA. Le resultat des premieres separations (Zn, Sb, Hg) indique que les isotopes de divers elements peuvent etre obtenus en quantites variant de 10 a 100 mg/24 heures. (auteur)

  13. On-line nuclear orientation

    International Nuclear Information System (INIS)

    Krane, K.S.

    1990-01-01

    This grant has as its overall goal the pursuit of on-line nuclear orientation experiments for the purpose of eliciting details of nuclear structure from the decays of neutron-deficient nuclei, such as those produced by the Holifield Heavy-Ion Research Facility at Oak Ridge and extracted by the UNISOR Isotope Separator. This paper discusses: refrigerator development; the decay of 184 Au; the decay of 191 Hg to 191 Au; the decay of 189 Pt to 189 Ir; the decays of 109,111 Pd; the decay of 172 Er; and solid angle corrections

  14. Electrochemical separation and isotopic determination of thallium at the nanogram level by surface ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Arden, J.W.

    1983-01-01

    A rapid low-blank procedure is described for the co-separation of thallium and lead by sequential cathodic and anodic electrodeposition from natural samples, especially complex natural silicates, for subsequent mass spectrometry. A micro anion-exchange procedure is also described for the separation of thallium and lead. Ion currents of 10 - 10 A can be obtained from 1 ng of thallium. The isotopic composition of 1 ng of thallium can be measured on a Faraday detector with a precision of 0.05-0.1%. The total procedural blank is 3 pg. By using stable isotope dilution, 0.2 ng of thallium can be measured with a precision of 0.6% with only a 2% blank correction. This allows the accurate determination of thallium in natural samples down to concentration levels of about 50 pg g - 1 . The detection limit is 50 fg. This procedure has been applied to meteorites and terrestrial rocks. The stable isotope dilution technique is suitable for geochemical, environmental and toxicological studies requiring a highly sensitive, accurate and precise method for the determination of thallium. (Auth.)

  15. Apparatus for isotopic separation using a high-frequency wave and coherent radiation

    International Nuclear Information System (INIS)

    Mourier, G.

    1983-11-01

    The purpose of the present invention is an apparatus for industrial separation of isotopes, using a high-frequency electromagnetic field and coherent radiation such as that from a laser. Separation of isotopes by isotopically selective ionization, followed by entrainment of the ions by means of a magnetic field, is known. The selective ionization operation can be carried out in two consecutive stages: excitation of the chosen isotope, from the ground energy state to a specified excited level, near ionization; the energy required for this first stage can be supplied by means of a laser, the laser radiation being characterized for high power and well-defined frequency; this stage offers the advantage of being easily made isotopically selective; then ionization of the excited atoms by means of supplying relatively weak energy which should be insufficient to ionize the nonexcited ions; this second stage can also be carried out by means of a laser

  16. On-line SPE-UHPLC method using fused core columns for extraction and separation of nine illegal dyes in chilli-containing spices.

    Science.gov (United States)

    Khalikova, Maria A; Satínský, Dalibor; Smidrkalová, Tereza; Solich, Petr

    2014-12-01

    The presented work describes the development of a simple, fast and effective on-line SPE-UHPLC-UV/vis method using fused core particle columns for extraction, separation and quantitative analysis of the nine illegal dyes, most frequently found in chilli-containing spices. The red dyes Sudan I-IV, Sudan Red 7B, Sudan Red G, Sudan Orange G, Para Red, and Methyl Red were separated and analyzed in less than 9 min without labor-consuming pretreatment procedure. The chromatographic separation was performed on Ascentis Express RP-Amide column with gradient elution using mixture of acetonitrile and water, as a mobile phase at a flow rate of 1.0 mL min(-1) and 55°C of temperature. As SPE sorbent for cleanup and pre-concentration of illegal dyes short guard fused core column Ascentis Express F5 was used. The applicability of proposed method was proven for three different chilli-containing commercial samples. Recoveries for all compounds were between 90% and 108% and relative standard deviation ranged from 1% to 4% for within- and from 2% to 6% for between-day. Limits of detection showed lower values than required by European Union regulations and were in the range of 3.3-10.3 µg L(-1) for standard solutions, 5.6-235.6 µg kg(-1) for chilli-containing spices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Over all separation factors for stable isotopes by gas centrifuge

    International Nuclear Information System (INIS)

    Chuntong Ying; Nie Yuguang; Zeng Shi; Shang Xiuyong; Wood, Houston G.

    1999-01-01

    The separation factor for the elements with molar wight differences, γ 0 , is an important characteristic parameter for separation of varied isotopes. Besides the dependence on construction parameters of the gas centrifuge it depends on many variables. Some of them are operation conditions, such as feeding flow rate F, pressure at wall p w , temperature T 0 and distribution temperature on the wall and others. Separation factor γ 0 depends on physical properties, such as molar weight M, viscosity μ, product of ρD, where ρ is density of working media and D is its diffusion coefficient. It was taken four examples: UF 6 , WF 6 , OsO 4 and Xe [ru

  18. Detection of vegetation LUE based on chlorophyll fluorescence separation algorithm from Fraunhofer line

    Science.gov (United States)

    Liu, Liangyun; Zhang, Bing

    2009-09-01

    Photosynthetic efficiency is very important, and not yet generally assessable by remote sensing. Much research has proved the possibility of the separation of solar-induced chlorophyll fluorescence (ChlF) from the reflected hyperspectral data. As the 'probe' of plant photosynthesis, it is possible to detect photosynthetic light use efficiency (LUE) by the separated solar-induced ChlF. A diurnal experiment was carried out on winter wheat on Apr. 18, 2008, and the canopy radiance spectra and leaf LUE data were measured synchronously. The solar-induced chlorophyll fluorescence signals at 760nm and 688nm were separated from the reflected radiance spectral based on Fraunhofer lines in two oxygen absorption bands. The result showed that LUE was negatively correlated to the separated chlorophyll signals. The statistical models for LUE based on the solar-induced chlorophyll fluorescence values at 688 nm and 760 nm bands had correlation coefficients (R2) of 0.64 and 0.78, respectively. In addition, photochemical reflectance index (PRI) was also linked to LUE, and a statistical model for LUE based on PRI has a correlation coefficient (R2) of 0.66. The presented method provides a novel solution for monitoring LUE from remote sensing data.

  19. Innovative method for ultra-sensitive measurement of krypton isotopes

    International Nuclear Information System (INIS)

    Lavielle, B.; Gilabert, E.; Thomas, B.; Rebeix, R.; Canchel, G.; Moulin, C.; Topin, S.; Pointurier, F.

    2015-01-01

    Kr 81 (T 1/2 = 2.29*10 5 y), that is produced in the atmosphere by cosmic rays and Kr 85 (T 1/2 = 10.77 y), that is produced in the fission of nuclear fuels, are considered as the right chronometer elements for the dating of underground waters, polar ice, of for tracking civil and military nuclear activities. The use of Kr 81 and Kr 85 implies the development of extracting lines and detection devices with so high accuracy that only a few thousands of krypton atoms can be detected. The approach developed aims at detecting Kr 81 and Kr 85 in 1 liter of air and 20 liters of water. 3 steps are necessary. The first step consists in separating and purifying the krypton. The extraction of gases from water is made by helium bubbling. Chemically active gases like N 2 , CO 2 , CH 4 and O 2 are eliminated by chemical traps while Ar si separated by cryogenics. The second step involves a double focus mass spectrometer designed to perform an important enrichment in Kr 81 and Kr 85 . The last step is the high-accuracy measurement of krypton isotopes performed with the new tool named FAKIR (Facility for Analyzing Krypton Isotopic Ratios) that is based on UV laser ionization and on the mass-discrimination of the ions through their time of flight

  20. Calculation of isotopic profile during band displacement on ion exchange resins

    International Nuclear Information System (INIS)

    Sonwalkar, A.S.; Puranik, V.D.; D'Souza, A.B.

    1981-01-01

    A method has been developed to calculate the isotopic profile during band displacement on ion exchange resins using computer simulation. Persoz had utilized this technique earlier for calculating the isotopic profile during band displacement as well as frontal analysis. The present report deals with a simplification of the method used by Persoz by reducing the number of variables and making certain approximations where the separation factor is not far from unity. Calculations were made for the typical case of boron isotope separation. The results obtained by the modified method were found to be in very good agreement with those obtained by using an exact equation, at the same time requiring conside--rably less computer time. (author)

  1. Isotope separation by selective dissociation of trifluoromethane with an infrared laser

    International Nuclear Information System (INIS)

    Hartford, A.J.

    1982-01-01

    A process for obtaining compounds enriched in a desired isotope of an element selected from hydrogen and carbon comprises exposing subatmospheric pressure gaseous trifluoromethane containing said desired isotope and one or more other isotopes of the same element to infrared laser radiation of a predetermined frequency, which selectively dissociates trifluoromethane molecules containing said desired isotope and separating the resulting dissociation product enriched in said desired isotope from the remainder of the gas. The term 'trifluoromethane' (TFM) refers to a mixture of CF 3 H and CF 3 D, the latter constituting about 0.015 percent of the total. TFM is irradiated with a CO 2 laser at an appropriate infrared wavelength

  2. Methods of uranium isotpic separation by chemical exchange chromatography

    International Nuclear Information System (INIS)

    Pena V, L.A.; Valle M, L.

    1985-01-01

    Chemical exchange chromatography as applied to isotope separation has undergone a constant development during the last few years. The results so far indicate that this method could eventually become commercially useful. This work presents a critical review of the experimental methods presently under study by principal research groups, and which have not get been compared. (Author)

  3. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  4. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  5. Report of the Energy Research Advisory Board study group on advanced isotope separation

    International Nuclear Information System (INIS)

    1980-11-01

    The Panel reviewed Advanced Isotope Separation (AIS) technology and Advanced Gas Centrifuge (AGC) programs in the context of potential needs and costs for uranium enrichment. The benefit of a successful AIS or AGC program would be a substantial reduction in enrichment costs below those of current centrifuge plants or below the power cost alone for gaseous diffusion plants. This report attempts to provide firm guidance for the next 2 to 3 years, at which time a further evaluation should guide decisions in regard to enrichment supply and development choices. On the basis of our perception of the long-term economic benefits of a successful AIS development, we support the continued pursuit of this option. In the interim, major requirements for enrichment must be satisfied. We assume that DOE will develop a firm funding plan for gaseous diffusion operations and power contracting to assure that the necessary supply of power will be available to meet the separative work commitments of the US enrichment enterprise. We recommend that the AIS program office further identify the key technical uncertainties of the various programs, thereby establishing the basis for near-term R and D leading to a decision whether and when to proceed with full-scale development. We believe that a stronger atomic vapor laser isotope separation (AVLIS) program would result from a consolidation of the Lawrence Livermore National Laboratory (LLNL) and Jersey Nuclear Avco Isotopes (JNAI) teams, leading to a more competitive AVLIS process. Hence, we recommend that DOE attempt to negotiate with JNAI to form a single, integrated, government-funded AVLIS program with appropriate elements of LLNL, JNAI and UCC-ND. We further recommend that JNAI be designated as lead laboratory in this program. We recommend that the DOE: continue with the first 2.2 million SWU increment of the gas centrifuge program, and continue the Advanced Gas Centrifuge development program, with high priority

  6. Interim report on modeling studies of two-photon isotope separation

    International Nuclear Information System (INIS)

    Hwang, W.C.; Badcock, C.C.; Kamada, R.F.

    1975-01-01

    The two-photon or two-step dissociation method of laser induced isotope enrichment is being modeled for the HBrNO photochemical system. In the model, H 79 Br is selectively excited by resonance IR laser radiation and then dissociated by uv radiation. Selectively dissociated Br atoms are scavenged to form isotopically enriched BrNO and Br 2 . This model includes all kinetic and absorption processes found to be significant and the time-varying concentrations of any species involved in a significant process. Among these processes are vibrational energy transfer reactions (including isotopic exchange) involving HBr v = 0 - 3, rotational and translational (velocity) relaxation processes, dissociation of HBr in the v = 0 - 3 levels, and secondary chemical reactions of the dissociation products. The absorption and kinetic processes that are most important to 79 Br enrichment have been identified and the study of the effects on enrichment upon variation of external parameters (such as reactant pressure, ir or uv source intensity, and temperature) is in progress. Some preliminary results are: (1) intensity of the ir source is usually more important than the uv intensity; (2) chemical reactions are the dominant kinetic processes at lower pressures while energy transfer reactions dominate at higher pressures; (3) kinetic processes usually have greater effect on the absolute amount of enriched products; (4) isotopic abundance of 79 Br in the products can range from 0.55 to 0.80 for the conditions used in the model

  7. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  8. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  9. Reaction of common bean lines and aggressiveness of Sclerotinia sclerotiorum isolates.

    Science.gov (United States)

    Silva, P H; Santos, J B; Lima, I A; Lara, L A C; Alves, F C

    2014-11-07

    The aims of this study were to evaluate the reaction of common bean lines to white mold, the aggressiveness of different Sclerotinia sclerotiorum isolates from various common bean production areas in Brazil, and comparison of the diallel and GGE (genotype main effect plus genotype-by-environment interaction) biplot analysis procedures via study of the line-by-isolate interaction. Eleven common bean (Phaseolus vulgaris) lines derived from 3 backcross populations were used. Field experiments were performed in the experimental area of the Departamento de Biologia of the Universidade Federal de Lavras, Lavras, MG, Brazil, in the 2011 and 2012 dry crop season and 2011 winter crop season through a randomized block design with 3 replications. This study was also set up in a greenhouse. Inoculations were performed 28 days after sowing by means of the straw test method. The reaction of the bean lines to white mold was assessed according to a diagrammatic scale from 1 (plant without symptoms) to 9 (dead plant). Estimations of general reaction capacity (lines) and general aggressiveness capacity (isolates) indicated different horizontal levels of resistance in the lines and levels of aggressiveness in the isolates. Therefore, it was possible to select more resistant lines and foresee those crosses that are the most promising for increasing the level of resistance. It was also possible to identify the most aggressive isolates that were more efficient in distinguishing the lines. Both diallel and GGE biplot analyses were useful in identifying the genotypic values of lines and isolates.

  10. Numerical modelling and experimental investigation into zinc isotope separation by laser

    International Nuclear Information System (INIS)

    Bokhan, P.A.; Zakrevskij, D.Eh.; Stepanov, A.Yu.; Fateev, N.V.; Buchanov, V.V.

    2000-01-01

    Experimental research and theoretical modelling of the 66 Zn isotope separation were conducted. Excitation was done through the two-photon process 4s 1 S 0 → 4p 3 P 1 → 6s 3 S 1 on the counter-propagating beams with the small tuning out from the intermediate state. The separation takes place as a result of photochemical reaction by selectively excitation zinc isotope with the CO 2 molecule, which rate is higher by a factors of 3 - 5, than for the unexcited atoms. The experimental investigation into excitation was conducted at the varying parameters of power density and concentration of zinc atoms. The optimum values were found in the process of the investigation. The theoretical basis of possibility for the use of crossed polarization of radiation was carried out [ru

  11. Early evaluation of hydrogen isotopes separation by V4Cr4Ti-based sorbents at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, Timur, E-mail: tima@physics.kz [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan); Shestakov, Vladimir; Chikhray, Yevgen; Kenzhina, Inesh; Askerbekov, Saulet [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Gordienko, Yuriy; Ponkratov, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan)

    2016-12-15

    This paper presents the results of experiments on hydrogen isotopes sorption with V4Cr4Ti vanadium alloys from a mixture of hydrogen isotopes. The studies were carried out at temperatures of 353 K, 393 K, 423 K; and pressures of 10{sup 3}–10{sup 4} Pa in gas mixture of hydrogen isotopes. The α-phase domain of V-H (D) system was studied, where the concentration of hydrogen isotopes atoms should not exceed 0.015H (D) atoms per metal atom. The separation parameters were derived for several saturation conditions accordingly to registered time dependences of hydrogen isotopes partial pressure drop. The conclusion was made about the prospects of using vanadium alloys in hydrogen isotopes separation and purification systems.

  12. Method for separating the isotopes of a chemical element

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1977-01-01

    A beam of positive or negative primary ions of at least one compound of a chemical element is accelerated in order to pass through collision boxes placed in series. As a result of inelastic collisions of the ions with the molecules of a neutral target gas within each collision box, a given percentage of primary ions is dissociated into at least two fragments, one of which is a secondary ion in the form of at least two isotopic species. The collision boxes are brought to a potential V 2 so as to trap preferentially one isotopic species which is condensed within each box. 15 claims, 4 figures

  13. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991 - September 14, 1995

    International Nuclear Information System (INIS)

    Guss, W.

    1996-01-01

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as 13 C, 17 O, 18 O, and 203 Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes (≤ 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of 26 Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation

  14. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    Science.gov (United States)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (-210 to 0 ‰ for δ D and -27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass

  15. Economic study of an installation for uranium isotope separation by gaseous diffusion; Etude economique d'une installation de separation des isotopes de l'uranium par diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This report describes the major problems which arise in the choice of characteristics required in a gaseous diffusion installation for the separation of uranium isotopes. This choice depends largely on economic evaluations, and also on considerations of simplicity. The choice of working pressures and of the characteristics of the membrane are described, as are the possible alternatives regarding the structure of the stages and the problems of control. (author) [French] Ce rapport decrit les problemes majeurs qui se posent dans le choix des caracteristiques d'une installation de diffusion gazeuse destinee a la separation des isotopes de l'uranium. Ce choix depend en grande partie d'evaluations economiques et repose egalement sur des considerations de simplicite. On decrit ainsi le choix des pressions d'operation, celui des caracteristiques de la barriere, les alternatives possibles concernant la structure des etages et les problemes de regulation. (auteur)

  16. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    Science.gov (United States)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  17. Spotting Separator Points at Line Terminals in Compressed Document Images for Text-line Segmentation

    OpenAIRE

    R, Amarnath; Nagabhushan, P.

    2017-01-01

    Line separators are used to segregate text-lines from one another in document image analysis. Finding the separator points at every line terminal in a document image would enable text-line segmentation. In particular, identifying the separators in handwritten text could be a thrilling exercise. Obviously it would be challenging to perform this in the compressed version of a document image and that is the proposed objective in this research. Such an effort would prevent the computational burde...

  18. Method for strontium isolation from high-mineralized water

    International Nuclear Information System (INIS)

    Evzhanov, Kh.; Andriyasova, G.M.

    1983-01-01

    A method to isolate strontium from high-mineralized waters containing sodium, magnesium, calcium and strontium chlorides, which differ from the prototype method in a considerable decrease in energy consumption with the preservation of a high degree of Sr, Mg and Ca isolation selectivity, has been suggested. According to the method suggested mineralized waters are treated with alkali (NaOH) in the amount of 95-97% of stoichiometry by magnesium, then after separation of magnesium hydroxide precipitate mother liquor is treated with sodium carbonate in the amount of 50-60% of stoichiometry by calcium. After separation of calcium carbonate precipitate mother liquor is treated with NaOH in the amount of 130-135% of stoichiometry by calcium. After separation of calcium hydroxide precipitate from mother liquor by means of sodium carbonate introduction strontium carbonate is isolated. The degree of strontium extraction in the form of SrCO 3 constitutes 90.5% of its content in the initial solution. The method presented can be used for strontium separation from natural and waste waters

  19. Isotope analysis by emission spectroscopy; Analyse isotopique par spectroscopie d'emission

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Gerstenkorn, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Blaise, J [Centre National de la Recherche Scientifique (CNRS), Lab. Aime Cotton, 92 - Meudon-Bellevue (France)

    1959-07-01

    Quantitative analysis of isotope mixtures by emission spectroscopy is resulting from the phenomenon called 'isotope shift', say from the fact that spectral lines produced by a mixture of isotopes of a same element are complex. Every spectral line is, indeed, resulting from several lines respectively corresponding to each isotope. Then isotopic components are near one to others, and their separation is effected by means of Fabry-Perot calibration standard: the apparatus allowing to measure abundances is the Fabry-Perot photo-electric spectrometer, designed in 1948 by MM. JACQUINOT and DUFOUR. This method has been used to make abundance determination in the case of helium, lithium, lead and uranium. In the case of lithium, the utilised analysis line depends on the composition of examined isotopic mixture. For mixtures containing 7 to 93 pour cent of one of isotopes of lithium, this line is the lithium blue line: {lambda} = 4603 angstrom. In other cases the red line {lambda} = 6707 angstrom is preferable, though it allows to do easily nothing but relative determinations. Helium shows no particular difficulty and the analysis line selected was {lambda} = 6678 angstrom. For lead the line {lambda} = 5201 angstrom gives the possibility to determine the isotope abundance for the four isotopes of lead notwithstanding the presence of hyperfine structure of {sup 207}Pb. For uranium, line {lambda} 5027 angstrom is used, and this method allows to determine the composition of isotope mixtures, the content of which in {sup 235}U may shorten to 0,1 per cent. Relative precision is about 2 per cent for contents in {sup 235}U over 1 per cent. For lower contents, this line {lambda} = 5027 angstrom will allow relative measures when using previously dosed mixtures. (author) [French] L'analyse quantitative des melanges isotopiques par spectroscopie d'emission doit son existence au phenomene appele 'deplacement isotopique', c'est-a-dire au fait que les raies spectrales emises par un

  20. Procedure for 40K isotope separation from beam of potassium atoms using optical orientation of atoms and radio-frequency excitation of target isotope

    International Nuclear Information System (INIS)

    Nikitin, A.I.; Velichko, A.M.; Vnukov, A.V.; Mal'tsev, K.K.; Nabiev, Sh.Sh.

    1999-01-01

    The procedure for potassium isotope separation, which is liable to reduce of the prise of the product as compared with the up-to-date prise of the 40 K isotope obtained by means of electromagnetic procedure for isotope separation, is proposed. The scheme assumes the increasing flow of the wanted isotope at the sacrifice of the increasing intensity of atomic beam and the increase of the selectivity of need isotope atoms at the sacrifice of the the reduction in the square of collector profile. The objective is achieved that provide of polarized state of the potassium atoms is produced by optic orientation with circular-polarized light [ru

  1. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  2. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  3. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  4. An advanced ISOL facility based on ATLAS

    International Nuclear Information System (INIS)

    Nolen, J. A.

    1999-01-01

    The Argonne concept for an accelerator complex for efficiently producing high-quality radioactive beams from ion source energy up to 6-15 MeV/u is described. The Isotope-Separator-On-Line (ISOL) method is used. A high-power driver accelerator produces radionuclides in a target that is closely coupled to an ion source and mass separator. By using a driver accelerator which can deliver a variety of beams and energies the radionuclide production mechanisms can be chosen to optimize yields for the species of interest. To effectively utilize the high beam power of the driver two-step target/ion source geometries are proposed (1) Neutron production with intermediate energy deuterons on a primary target to produce neutron-rich fission products in a secondary 238 U target, and (2) Fragmentation of neutron-rich heavy ion rich fission products in a secondary beams such as 18 O in a target/catcher geometry. Heavy ion beams with total energies in the 1-10 GcV range are also available for radionuclide production via high-energy spallation reactions. At the present time R and D is in progress to develop superconducting resonator structures for a driver linac to cover the energy range up to 100 MeV per nucleon for heavy ions and 200 MeV for protons. The post accelerator scheme is based on using existing ISOL-type 1+ ion source technology followed by CW Radio Frequency Quadruple (RFQ) accelerators and superconducting linacs including the present ATLAS accelerator. A full-scale prototype of the first-stage RFQ has been successfully tested with RF at full design voltage and tests with ion beams are in progress. A benchmark beam, 132 Sn at 7 MeV/u, requires two stripping stages, one a gas stripper at very low velocity after the first RFQ section, and one a foil stripper at higher velocity after a superconducting-linac injector

  5. Study of the isotopic exchange associated with ionic exchange for the radiochemical separation of 233-Th

    International Nuclear Information System (INIS)

    Sepulveda Munita, C.J.A.

    1983-01-01

    The isotopic ion exchange procedure is applied in order to establish an analytical method for the determination of thorium by means of the 233 Th activity, when the presence of interfering elements does not allow a direct non-destructive activation analysis. The separation is based on the retention of 233 Th by a thorium saturated resin, due to the isotopic exchange effect, and subsequent elution of the interfering radioisotopes with a solution of thorium in diluted hydrochloric acid. The interfering elements were those which either present a great affinity for the resin or emit gamma rays with energies close to that of 233 Th (86.6 KeV), when a NaI(Tl) detector is used to obtain the gama-ray spectra of the irradiated samples. The equilibrium time for the thorium isotopic ion exchange and the distribution coefficients for the interfering elements were determined by using Bio-Rad AG 50W resins (100-200 mesh), with 4% to 8% of divinylbenzene. The best separation conditions were established in terms of the thorium and hydrochloric acid concentrations in the solution, the resin cross-linking degree, and the solution flow through the resin. The analytical method was applied to the determination of thorium in samples of ammonium diuranate as well in standard rock samples from the United States Geological Survey. The sensitivity, precision and accuracy of the method are also discussed. (Author) [pt

  6. The separation and determination of fatty acids by isotopic dilution and radiogas-liquid chromatography

    International Nuclear Information System (INIS)

    Beardsley, D.A.

    1981-01-01

    A number of static phases have been evaluated for the GLC separation of fatty acids. Of those investigated, only AT 1200 was capable of resolving the isomeric forms of the acids. A radiogas-liquid chromatographic method incorporating isotopic dilution analysis has been developed for the determination of n-butyric acid. The proposed method has been applied to the determination of the acid in hydrolysed butter fat and milk chocolate extracts. (author)

  7. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  8. Light induced drift: a possible mechanism of separation of isotopes by laser excitation

    International Nuclear Information System (INIS)

    Biswas, D.J.; Nilaya, J.P.; Venkatramani, N.

    2003-02-01

    A comprehensive review of the literature on the effect of light induced drift and its exploitation in the separation of isotopes, both in atomic and molecular forms, is presented. An experimental scheme based on this effect to separate S 33 , with a natural abundance of ∼0.76%, from SF 6 has also been worked out. (author)

  9. Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    Science.gov (United States)

    Hunt, Alison C.; Cook, David L.; Lichtenberg, Tim; Reger, Philip M.; Ek, Mattias; Golabek, Gregor J.; Schönbächler, Maria

    2018-01-01

    The short-lived 182Hf-182W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ε182W values obtained for the IAB iron meteorites range from -3.61 ± 0.10 to -2.73 ± 0.09. Correlating εiPt with ε182W data yields a pre-neutron capture ε182W of -2.90 ± 0.06. This corresponds to a metal-silicate separation age of 6.0 ± 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ± 0.1 Ma after CAIs with a radius of greater than 60 km.

  10. Development of an EBIS charge breeder for the Rare Isotope Science Project

    Science.gov (United States)

    Son, Hyock-Jun; Park, Young-Ho; Kondrashev, Sergey; Kim, Jongwon; Lee, Bong Ju; Chung, Moses

    2017-10-01

    In Korea, a heavy ion accelerator facility called RAON is being designed to produce various rare isotopes for the Rare Isotope Science Project (RISP) (Jeong, 2016) [1], (Moon, 2014) [2]. This facility is designed to use both In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) techniques in order to produce a wide variety of RI beams for nuclear physics experiments. An Electron Beam Ion Source (EBIS) will be used for charge breeding of Rare Isotope (RI) beams in the ISOL system. The charge-to-mass ratio (q/A) of the RI beams after charge breeding is ≥1/4. The highly charged RI beams will be accelerated by a linac post-accelerator and delivered to a low energy (∼18 MeV/u) experimental hall or the IF system. The RAON EBIS will use a 3 A electron gun and a 6 T superconducting solenoid for high capacity, high efficiency, and short breeding time. In front of the charge breeder, an RFQ cooler-buncher will be used to deliver a bunched beam with small emittance to the EBIS charge breeder. The main design of the RAON EBIS has been carried out on the basis of several beam analyses and technical reviews. In this paper, current progress of the development of the RAON EBIS charge breeder will be presented.

  11. Development of on line automatic separation device for apple and sleeve

    Science.gov (United States)

    Xin, Dengke; Ning, Duo; Wang, Kangle; Han, Yuhang

    2018-04-01

    Based on STM32F407 single chip microcomputer as control core, automatic separation device of fruit sleeve is designed. This design consists of hardware and software. In hardware, it includes mechanical tooth separator and three degree of freedom manipulator, as well as industrial control computer, image data acquisition card, end effector and other structures. The software system is based on Visual C++ development environment, to achieve localization and recognition of fruit sleeve with the technology of image processing and machine vision, drive manipulator of foam net sets of capture, transfer, the designated position task. Test shows: The automatic separation device of the fruit sleeve has the advantages of quick response speed and high separation success rate, and can realize separation of the apple and plastic foam sleeve, and lays the foundation for further studying and realizing the application of the enterprise production line.

  12. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the ...

  13. Precise measurements of mass of Rb isotopes with A=91-97

    International Nuclear Information System (INIS)

    Alkhazov, G.D.; Belyaev, B.N.; Domkin, V.D.; Korobulin, Yu.G.; Lukashevich, V.V.; Mukhin, V.S.; AN SSSR, Leningrad

    1989-01-01

    A new scheme of the experiment on measuring the short-living nuclide atom masses, based on applying the isobar doublet method for mass scale gauging, is proposed. Results of measuring masses of Rb isotope atom with A=91-97, performed using a prism mass-spectrometer on line with the LiYaF mass-separator and synchrocyclotron with 30-80 keV error are presented

  14. Investigation of the particle selectivity of a traveling potential wave; neon isotope separation with the Solitron process. Final report

    International Nuclear Information System (INIS)

    Lowder, R.S.

    1994-01-01

    The specific goal of this three year effort was to investigate this novel isotope separation process itself: to determine whether isotopes could indeed be separated and, if so, with what limitations--space charge effects, instabilities, and, in particular, with what throughput limitations. Termed the Solitron process, the concept is based on the strong isotopic variation in wave/ion interaction for a potential wave passing through an ion beam when the wave speed is near the ion speed. The ion's charge-to-mass ratio determines not only which ions are picked up by the wave but also the final energy of those ions that are picked up (accelerated to a higher energy); thus, this method can be used for isotope separation. Much progress was made regarding separation and throughput, concluding that separation works well in conjunction with electrostatic focusing used to obtain enough throughput (enough beam current) to make a practical device. The next step would likely be a production device, although development of an appropriate metal ion source would be useful. Funding is an issue; development cost estimates run around two million dollars for a market only several times that cost. Although there is much concern about the future supply of isotopes such as could be produced by the Solitron process, as well as costs, at present the supply from Oak Ridge and Russian sources is adequate for US needs. Should demand grow, these LDRD studies would strongly support proposals for further development of this Solitron process and help assure its likely success. For example, a point design for a magnesium mission was formulated to obtain a consistent set of design numbers that would optimize performance without pushing any constraints seen in these studies. A similar design could be formulated for other missions (magnesium was just a convenient target)

  15. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E. [Los Alamos National Laboratory, NM (United States)

    2016-08-01

    Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes α-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of α-emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide {sup 230}Pa is formed via the {sup 232}Th(p, 3n) nuclear reaction and partially decays to {sup 230}U, an α emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for {sup 230}Pa and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination.

  16. Development of the high temperature ion-source for the Grenoble electromagnetic isotope separator

    International Nuclear Information System (INIS)

    Bouriant, M.

    1968-01-01

    The production of high purity stable or radioactive isotopes (≥ 99.99 per cent) using electromagnetic separation require for equipment having a high resolving power. Besides, and in order to collect rare or short half-life isotopes, the efficiency of the ion-source must be high (η > 5 to 10 per cent). With this in view, the source built operates at high temperatures (2500-3000 C) and makes use of ionisation by electronic bombardment or of thermo-ionisation. A summary is given in the first part of this work on the essential characteristics of the isotope separator ion Sources; a diagram of the principle of the source built is then given together with its characteristics. In the second part are given the values of the resolving power and of the efficiency of the Grenoble isotope separator fitted with such a source. The resolving power measured at 10 per cent of the peak height is of the order of 200. At the first magnetic stage the efficiency is between 1 and 26 per cent for a range of elements evaporating between 200 and 3000 C. Thus equipped, the separator has for example given, at the first stage, 10 mg of 180 Hf at (99.69 ± 0.1) per cent corresponding to an enrichment coefficient of 580; recently 2 mg of 150 Nd at (99.996 ± 0.002) per cent corresponding to an enrichment coefficient of 4.2 x 10 5 has been obtained at the second stage. (author) [fr

  17. Deuterium isotope separation

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    Deuterium-containing molecules are separated and enriched by exposing commercially available ethylene, vinyl chloride, 1,2-dichloroethane or propylene to the radiation of tuned infrared lasers to selectively decompose these compounds into enriched molecular products containing deuterium atoms. The deuterium containing molecules can be easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. (author)

  18. On effeciency of isotopes application in industry

    International Nuclear Information System (INIS)

    Yankovskij, L.

    1979-01-01

    The final results of the long term work in the field of research, projecting and pilot production are: the technology; methods and instruments of the isotope technique and their applications in the peoples economy, especially in industry. Effectiveness of isotope technique and especially its economic effectiveness depends on the scale of application of these techniques (instrument, method, technology) in different branches of the peoples economy. Comparing expenses on istope and radiation researches with total economic effectiveness of the isotope techniques application in some countries, the total economic effectiveness of the isotope researches has been determined. The main content of the paper is the analysis of structure and dynamics of the efficiency factor for the isotope technique application in separate countries for long period of time. Determination of the total economic efficiency of the whole branch of researches, conducted according to the methodology developed by the author, on the example of isotope research in some countries, permits to make a conclusion about the state and development tendencies of these researches in the international scale and can be a good base for making decisions in the field of the scientific policy of countries [ru

  19. Analysis of results from delay studies of isol-systems

    International Nuclear Information System (INIS)

    Rudstam, G.

    1980-01-01

    The delay between production and measurement is an important effect in ISOL-experiments aiming at the determination of nuclear reaction yields. The present report discusses methods to correct for decay losses caused by the delay in the target - ion source system of the isotope separator. (author)

  20. Review on heavy water separation at pilot scale

    International Nuclear Information System (INIS)

    Wuryanto; Soeroto Ronodirdjo.

    1976-01-01

    The isotope exchange system ammonia-water and hydrogen sulfide water dual temperature are studied. Comparison of the two methods with water electrolysis, water distillation, hydrogen distillation and catalytic water hydrogen exchange are discussed. Water distillation is a simple method. Electrolysis of water has the highest separation factor. The isotope exchange hydrogen sulfide water dual temperature will be done in accord with the report on the operation of a dual temperature single stage for deuterium concentration written by M.L.Eidinoff and C.F. Hiskey. (authors)