WorldWideScience

Sample records for isotope reactor target

  1. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  2. Reactor calculations in aid of isotope production at SAFARI-1

    International Nuclear Information System (INIS)

    Ball, G.

    2003-01-01

    Varying levels of reactor physics support is given to the isotope production industry. As the pressures on both the safety limits and economical production of reactor produced isotopes mount, reactor physics calculational support is playing an ever increasing role. Detailed modelling of the reactor, irradiation rigs and target material enables isotope production in reactors to be maximised with respect to yields and quality. NECSA's methodology in this field is described and some examples are given. (author)

  3. Techniques for preparing isotopic targets

    International Nuclear Information System (INIS)

    Xu Guoji; Guan Shouren; Luo Xinghua; Sun Shuhua

    1987-12-01

    The techniques of making isotopic targets for nuclear physics experiments are introduced. Vacuum evaporation, electroplating, centrifugal precipitation, rolling and focused heavy-ion beam sputtering used to prepare various isotopic targets at IAE are described. Reduction-distillation with active metals and electrolytic reduction for converting isotope oxides to metals are mentioned. The stripping processes of producing self-supporting isotopic targets are summarized. The store methods of metallic targets are given

  4. Target reactor development problems

    International Nuclear Information System (INIS)

    Lathrop, K.D.; Vigil, J.C.

    1977-01-01

    Target-blanket design studies are discussed for an accelerator-breeder concept employing a linear accelerator in conjunction with a modified conventional power reactor to produce both fissile fuel and power. The following problems in target and blanket system design are discussed: radiation damage, heat removal, neutronic design, and economics

  5. A proposed standard on medical isotope production in fission reactors

    International Nuclear Information System (INIS)

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-01-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  6. High Flux Isotope Reactor technical specifications

    International Nuclear Information System (INIS)

    1985-11-01

    This report gives technical specifications for the High Flux Isotope Reactor (HFIR) on the following: safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; and administrative controls

  7. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  8. The reactor and the production of isotopes

    International Nuclear Information System (INIS)

    Hevesy, G. de

    1962-01-01

    The construction of the cyclotron immensely advanced the availability of radioactive tracers, a few of which even today can be produced only with the aid of this device. But even this great advance was overshadowed by the fabulous production of isotopes by the reactors. Isotopes of almost any element and of almost unlimited activity became available. It now became possible to apply H 3 - discovered already in the 'thirties by Rutherford and Oliphant - and C 14 , and these were used in thousands of investigations

  9. High Flux Isotope Reactor power upgrade status

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  10. A conversion development program to LEU targets for medical isotope production in the MAPLE Facilities

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2000-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). The molybdenum extraction process from the HEU targets provided predictable, consistent yields for our high-volume molybdenum production process. A reliable supply of HEU for the NRU research reactor targets has enabled MDS Nordion to develop a secure chain of medical isotope supply for the international nuclear medicine community. Each link of the isotope supply chain, from isotope production to patient application, has been established on a proven method of HEU target irradiation and processing. To ensure a continued reliable and timely supply of medical isotopes, the design of the MAPLE facilities was based on our established process - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a program to convert the MAPLE facilities to LEU targets. An initial feasibility study was initiated to identify the technical issues to convert the MAPLE targets from HEU to LEU. This paper will present the results of the feasibility study. It will also describe future challenges and opportunities in converting the MAPLE facilities to LEU targets for large scale, commercial medical isotope production. (author)

  11. Preparation of isotopically enriched mercury sulphide targets

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J.; Friebel, H.U.; Frischke, D.; Grossman, R.; Maier, H.J. [Dept. fuer Physik, Univ. Muenchen (LMU) (Germany); Maier-Leibnitz-Lab. (MLL), Garching (Germany)

    2007-07-01

    The primary difficulty in performing nuclear reactions on mercury is to obtain a suitable target. The primary difficulty in performing nuclear reactions on mercury is to obtain a suitable target. The utilization of amalgam targets has been reported in early publications. These targets, however, were lacking homogeneity and in-beam stability. A thorough investigation of literature shows, that HgS, because of its comparatively high chemical and mechanical stability, is one of the more adequate Hg compounds for accelerator target applications. In this presentation we describe the production of HgS targets consisting of an enriched Hg isotope and S of natural isotopic abundance, starting up from HgO. Following the outline given in [3], in this special case HgS can be prepared by dissolving HgO in diluted HNO{sub 3} and subsequent precipitation of the black HgS modification with gaseous H{sub 2}S. Last step of the target production procedure is evaporation-condensation of HgS in vacuum. In the present case, HgS layers of 500 {mu}g/cm{sup 2} on a backing carbon foil of 26 {mu}g/cm{sup 2} with a protective carbon layer of about 20 {mu}g/cm{sup 2} thickness on top of the HgS layer were produced. (orig.)

  12. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  13. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2003-01-01

    The availability of isotope grade, Highly Enriched Uranium (HEU), from the United States for use in the manufacture of targets for molybdenum-99 production in AECL's NRU research reactor has been a key factor to enable MDS Nordion to develop a reliable, secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets is a proven and established method that has reliably produced medical isotopes for several decades. The HEU process provides predictable, consistent yields for our high-volume, molybdenum-99 production. Other medical isotopes such as I-131 and Xe-133, which play an important role in nuclear medicine applications, are also produced from irradiated HEU targets as a by-product of the molybdenum-99 process. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the commissioning of two MAPLE reactors and an associated isotope processing facility (the New Processing Facility). The new MAPLE facilities, which will be dedicated exclusively to medical isotope production, will provide an essential contribution to a secure, robust global healthcare system. Design and construction of these facilities has been based on a life cycle management philosophy for the isotope production process. This includes target irradiation, isotope extraction and waste management. The MAPLE reactors will operate with Low Enriched Uranium (LEU) fuel, a significant contribution to the objectives of the RERTR program. The design of the isotope production process in the MAPLE facilities is based on an established process - extraction of isotopes from HEU target material. This is a proven technology that has been demonstrated over more than three decades of operation. However, in support of the RERTR program and in compliance with U.S. legislation, MDS Nordion has undertaken a LEU Target Development and Conversion Program for the MAPLE facilities. This paper will provide an

  14. The effective management of medical isotope production in research reactors

    International Nuclear Information System (INIS)

    Drummond, D.T.

    1993-01-01

    During the 50-yr history of the use of radioisotopes for medical applications, research reactors have played a pivotal role in the production of many if not most of the key products. The marriage between research reactors and production operations is subject to significant challenges on two fronts. The medical applications of the radioisotope products impose some unique constraints and requirements on the production process. In addition, the mandates and priorities of a research reactor are not always congruent with the demands of a production environment. This paper briefly reviews the historical development of medical isotope production, identifies the unique challenges facing this endeavor, and discusses the management of the relationship between the isotope producer and the research reactor operator. Finally, the key elements of a successful relationship are identified

  15. Economic targets for small PWR reactor designs

    International Nuclear Information System (INIS)

    Board, J.

    1991-01-01

    Small reactors are likely to be less economic than large reactors, but the lower financial exposure with small reactors may be attractive to utilities contemplating a restart to a nuclear programme. New nuclear plant can be economic, but success will depend more on how the plant are built, rather than what type or size is built. A target for new plant for operation early in the next century should be a generation cost of 3p to 3.5 p/kWh. This corresponds to an overnight capital cost of Pound 1000/kWh to Pound 1100/kWh. (author)

  16. The PALLAS research and isotope reactor project status

    International Nuclear Information System (INIS)

    Van Der Schaaf, B.; De Jong, P.

    2010-01-01

    In the European Union the first generation research reactors is nearing their end of life condition. Several committees recommend a comprehensive set of reactors in the EU, amongst them the replacement for the HFR research and isotope reactor in Petten: PALLAS. The business case for PALLAS supports a future for a research and isotope reactor in Petten as a perfect fit for the future EU set of test reactors. The tender for PALLAS started in 2007, following the EU rules for tendering complex objects with the competitive dialogue. This procedure involved an extensive consultation phase between individual tendering companies and NRG, resulting in definitive specifications in summer 2008. The evaluation of offers, including conceptual designs, took place in summer 2009. At present NRG is still active in the acquisition of the funding for the project. The licensing path has been started in autumn 2009 with a initiation note on the environmental impact assessment, EIA. The public hearings held in the lead to the advice from the national EIA committee for the approach of the assessment. The PALLAS project team in Petten will guide the design and build processes. It is also responsible for the licensing of the building and operation of PALLAS. The team also manages the design and construction for the infrastructure, such as cooling devices, including remnant heat utilization, and utility provisions. A particular responsibility for the team is the design and construction of experimental and isotope capsules, based on launch customer requirements. (author)

  17. Reactor production of 252Cf and transcurium isotopes

    International Nuclear Information System (INIS)

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, 252 Cf, 253 Es, and 255 Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of 254g Es from 252 Cf will be discussed. 14 refs., 5 tabs

  18. Isotopically tailored lead target with reduced polonium and bismuth radio-waste

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Lunev, V.P.; Blokhin, A.I.

    2002-01-01

    Residual activity of a lead target after 1 year irradiation with a high power, 0.8 GeV*30 mA, proton beam is studied. It is concluded that the main radiotoxicity of irradiated lead is connected with bismuth isotope, Bi-207, which is produced in natural lead, mix of several stable isotopes, via (p,2n) reaction with Pb-208 nuclei. It is proposed to use, as a target material, lead enriched with another stable isotope, Pb-206, in order to reduce producing Bi-207 and Po-210. Estimation of charges for obtaining large quantities of lead-206 is also given. Accumulation of hazardous radionuclides, Bi-207, Bi-208, and Po-210, in natural lead to be used as a coolant in future fast reactors and accelerator driven reactors is predicted. In accelerator driven systems a large portion of Bi-207 can be produced via Pb-208(p,2n)Bi-207 reaction in a target of natural lead (Pb-208/Pb-207/Pb-206/Pb-204=52.35/22.08/24.14/1.42 %). A new isotopically tailored coolant-converter for ADS consisting of lead isotope, Pb-206, is proposed. By using this material, it is possible to reduce essentially the production of the most radio-toxic isotopes of Bi and Po and to avoid disposing the large amounts of lead. To provide the future fast reactors and accelerator driven systems with low-activation coolant - converter, the new technology of obtaining the large amounts of natural lead enriched with lead isotope, Pb-206, should be developed. (authors)

  19. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  20. Availability of enriched isotopic material for accelerator targets

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    The electromagnetic isotope enrichment facility at ORNL provides a broad spectrum of highly enriched stable isotopes to the worldwide scientific community. The continued timely availability of these materials is of vital importance in many areas of basic research and, in particular, as source material for the fabrication of accelerator targets. A brief description of the facility and its capabilities and limitations is presented

  1. Hydrogen isotopes transport parameters in fusion reactor materials

    International Nuclear Information System (INIS)

    Serra, E.; Ogorodnikova, O.V.

    1998-01-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.)

  2. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  3. Isotopic characterization of targets for nuclear measurements at CBNM

    International Nuclear Information System (INIS)

    Bievre, P. de

    1985-01-01

    Nuclear measurements for which ''nuclear'' targets are prepared are almost always isotope-specific i.e. they are normally related to a particular nuclide in the target. The amount of this nuclide must be accurately assessed. There are essentially two ways to determine the number of atoms of this particular nuclide. (1) By determination of the amount of element, to which the nuclide belongs, on the target via classsical means; weighing substraction of impurities, calculation of element amount using known of the chemical compound in which the element is incorporated and, finally, measurement of the isotopic composition in order to determine the fraction of the nuclide concerned in the element. An alternative way may be to perform an elemental assay on the target followed by determination of the isotopic composition. (2) Another approach is isotope dilution mass spectrometry where a change in the isotopic composition of the ''target'' is induced by adding a known number of atoms (called ''spike'') of the element with a quite different composition. Measurement of the resulting change in isotopic composition yields directly the number of atoms of the nuclide under investigation. The method is highly selective, accurate and isotope-specific. (orig.)

  4. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2002-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). A reliable supply of HEU metal from the United States used in the manufacture of targets for the NRU research reactor has been a key factor to enable MDS Nordion to develop a secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets provides predictable, consistent yields for our high-volume molybdenum production process. Each link of the isotope supply chain, from isotope production to ultimate use by the physician, has been established using this proven and established method of HEU target irradiation and processing to extract molybdenum-99. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the construction of two MAPLE reactors and a New Processing Facility. The design of the MAPLE facilities was based on an established process developed by Atomic Energy of Canada Ltd. (AECL) - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a three phase LEU Target Development and Conversion Program for the MAPLE facilities. Phase 1, the Initial Feasibility Study, which identified the technical issues to convert the MAPLE reactor targets from HEU to LEU for large scale commercial production was reported on at the RERTR- 2000 conference. The second phase of the LEU Target Development and Conversion Program was developed with extensive consultation and involvement of experts knowledgeable in target development, process system design, enriched uranium conversion chemistry and commercial scale reactor operations and molybdenum production. This paper will provide an overview of the Phase 2 Conversion Development Program, report on progress to date, and further

  5. Isotopes accumulation in the thermal column of TRIGA reactor

    International Nuclear Information System (INIS)

    Iorgulis, C.; Diaconu, D.; Gugiu, D.; Csaba, R.

    2013-01-01

    The correlation of impurity observed in the virgin graphite and radionuclide content and activities measured in the irradiated graphite needs to know the irradiated history. This is a challenging process if impurity content and irradiation conditions are not accurately known. This is the case of the irradiated graphite in the thermal column of Institute for Nuclear Research Pitesti (INR)14 MW TRIGA reactor. To overcome incomplete impurity content and the unknown position in the column of the measured irradiated graphite available for characterisation and comparison, a set of preliminary simulations were performed. Following Eu 152 /Eu 154 ration they allowed the estimation of an impurity content and irradiation conditions leading to measured activities. Based on these data the radio-isotope accumulation in different positions in the thermal column was predicted. Modelling performed by INR used advanced prediction packages (e.g. WIMS, MCNP ORIGEN-S from Scale 5) to assess the isotopic content of MTR graphite types with irradiation history specific for a TRIGA research reactor. Some certain calculations points from the column were selected in order to model the burnup and isotopes productions using ORIGEN from SCALE code system. (authors)

  6. An update on the LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Eng, B.Sc; Eng, P.

    2002-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada, has been extracted from reactor targets employing highly enriched uranium (HEU). A reliable supply of HEU metal from the United States used in the manufacture of targets for the NRU research reactor has been a key factor to enable MDS Nordion to develop a secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets provides predictable, consistent yields for our high-volume molybdenum production process. Each link of the isotope supply chain, from isotope production to ultimate use by the physician, has been established using this proven and established method of HEU target irradiation and processing to extract molybdenum-99. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the construction of two MAPLE reactors and a New Processing Facility. The design of the MAPLE facilities was based on an established process developed by Atomic Energy of Canada Ltd. (AECL)-extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a three phase LEU Target Development and Conversion Program for the MAPLE facilities. Phase 1, the Initial Feasibility Study, which identified the technical issues to convert the MAPLE reactor targets from HEU to LEU for large scale commercial production was reported on at the RERTR-2000 conference. The second phase of the LEU Target Development and Conversion Program was developed with extensive consultation and involvement of experts knowledgeable in target development, process system design, enriched uranium conversion chemistry and commercial scale reactor operations and molybdenum production. This paper will provide an overview of the Phase 2 Conversion Development Program, report on progress to date, and further

  7. Preparation of calcium-separated isotope targets using small samples

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1975-01-01

    Targets are routinely evaporated using a few milligram quantities of separated isotopes of calcium with reducing agents. The source to target distance is 3.0 cm with the substrate, if necessary, as thin as 15 μg/cm 2 carbon or 100 μg/cm 2 of gold. A tantalum closed boat, heat shield, and special collimator system are used

  8. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    Science.gov (United States)

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Lessons learned form high-flux isotope reactor restart efforts

    International Nuclear Information System (INIS)

    Dahl, T.L.

    1989-01-01

    When the high-flux isotope reactor's (HFIR's) pressure vessel irradiation surveillance specimens were examined in December 1986, unexpected embrittlement was found. The resulting investigation disclosed widespread deficiencies in quality assurance and management practices. On March 24, 1987, the US Department of Energy (DOE) mandated a shutdown of all five Oak Ridge National Laboratory (ORNL) research reactors. Since the beginning of 1987, 18 different formal review groups have evaluated the management and operations of the HFIR. The root cause of the identified deficiencies in the HFIR program was defined as a lack of rigor in management practices and complacency built on twenty years of trouble-free operation. A number of lessons can be learned from the HFIR experience. Particular insight can be gained by comparing the HFIR organization prior to the shutdown with the organization that exists today. Key elements in such a comparison include staffing, funding, discipline, and formality in operations, maintenance, and management

  10. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  11. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  12. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  13. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  14. Evolution of the hafnium isotopic composition in the RBMK reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2002-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) program from the package SCALE 4.4A and the HELIOS code system were used for calculations. It has been obtained that the overall neutron absorption rates in hafnium for the sensors located in the 2.4 % and 2.6 % enrichment uranium-erbium nuclear fuel assemblies are by 16 % and 19 % lower than in the 2.0 % enrichment uranium nuclear fuel assemblies. The overall neutron absorption rate in hafnium decreases 2.70-2.75 times due to the sensor burnup to 5800 MW d. The sensitivity of the Hf sensors to the thermal neutron flux increases twice due to the nuclear fuel assembly burnup to 3000 MW d. The corrective factors ξ d (I) at the different integral current I of the sensors and ξ td (E) at the different burnup E of the nuclear fuel assemblies were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by comparing signals of the fresh sensor and the sensor with the integral current I and by processing repeated calibration results of Hf sensors in RBMK-1500 reactors. The relative relationship coefficients K T (T FA ) were found for all RBMK-1500 nuclear fuel types. (author)

  15. Isotope materials availability and services for target production at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Dahl, T.L.; Ottinger, C.L.; Aaron, W.S.; Adair, H.L.

    1987-01-01

    Materials available through the Isotope Distribution Program include separated stable isotopes, byproduct radioisotopes, and research quantities of source and special nuclear materials. Isotope products are routinely available in the forms listed in the product description section of the Isotopes Products and Services Catalog distributed by the Oak Ridge National Laboratory (ORNL). Different forms can be provided in some cases, usually at additional cost. Routinely available services include cyclotron target irradiations, fabrication of special physical forms, source encapsulation, ion implantation, and special purifications. Materials and services that are not offered as part of the routine distribution program may be made available from commercial sources in the United States. Specific forms of isotopic research materials include thin films and foils for use as accelerator targets, metal or other compounds in the form of bars or wires, and metal foils. Methods of fabrication include evaporation, sputtering, rolling, electrolytic deposition, pressing, sintering, and casting. High-purity metal forms of plutonium, americium, and curium are prepared by vacuum reduction/distillation. Both fissionable and nonfissionable neutron dosimeters are prepared for determining the neutron energy spectra, flux, and fluence at various locations within a reactor. Details on what materials are available and how the materials and related services can be obtained from ORNL are described. (orig.)

  16. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  17. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  18. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  19. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  20. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  1. Isotopic nuclear reactor with on-line separation

    International Nuclear Information System (INIS)

    Liviu, Popa-Simil

    2007-01-01

    In the new reactor-waste cycle design the nuclear reactor gets features of the living beings - resembling the plants/vegetation -. The separation of waste starts inside the fuel by using the fission reaction to separate the fission products from the fuel. The fuel, which is preferred to be highly isotopic enriched, is fabricated in beads smaller than the fission product range, immersed in a gentle flowing liquid drain. If this liquid is Lead Bismuth (LBE) the fission products will be lighter, while in Sodium-Potassium (NaK) will be heavier, except for gases. This drain liquid will collect both the fission products and the collision damage, drawing them slow to give time to short lives disintegration chains to take place inside the shielded nuclear reactor area outside the reactor core in a separation unit. While the drain liquid with the fission products is outside the reactor core few choices are available: - To solidify the drain liquid freezing all elements inside and transport the metal in cryogenic conditions to a remote separation unit, or to apply a separation partitioning process online stabilizing and packing the fission products only, or a combination of these two. The radioactivity of this drain liquid is smaller than that of the actual used fuel because it represents the accumulation of a very short period (about 1 month or less) and had enough time to cool down all the short lives. The separation unit on-line with the nuclear reactor is composed of a density separation unit, followed by a phase interface concentration unit which moves out of the LBE the fission products as lighter impurities, and an electrochemical separation unit for the fission products. Further, chemical separation, stabilization processes are applied and the fission products are delivered partitioned on groups of chemical compatible products. Finally the specific waste is about 1 Kg/Gw*day, to which the stabilization products have to be added which increases this mass by 10 times

  2. Extraction of gadolinium from high flux isotope reactor control plates

    International Nuclear Information System (INIS)

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced 153 Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for 153 Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the 153 Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (≥60% enriched in 152 Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of 153 Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed

  3. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  4. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  5. Simultaneous nuclear data target accuracy study for innovative fast reactors

    International Nuclear Information System (INIS)

    Aliberti, G.; Palmiotti, G.; Salvatores, M.

    2007-01-01

    The present paper summarizes the major outcomes of a study conducted within a Nuclear Energy Agency Working Party on Evaluation Cooperation (NEA WPEC) initiative aiming to investigate data needs for future innovative nuclear systems, to quantify them and to propose a strategy to meet them. Within the NEA WPEC Subgroup 26 an uncertainty assessment has been carried out using covariance data recently processed by joint efforts of several US and European Labs. In general, the uncertainty analysis shows that for the wide selection of fast reactor concepts considered, the present integral parameters uncertainties resulting from the assumed uncertainties on nuclear data are probably acceptable in the early phases of design feasibility studies. However, in the successive phase of preliminary conceptual designs and in later design phases of selected reactor and fuel cycle concepts, there will be the need for improved data and methods, in order to reduce margins, both for economic and safety reasons. It is then important to define as soon as possible priority issues, i.e. which are the nuclear data (isotope, reaction type, energy range) that need improvement, in order to quantify target accuracies and to select a strategy to meet the requirements needed (e.g. by some selected new differential measurements and by the use of integral experiments). In this context one should account for the wide range of high accuracy integral experiments already performed and available in national or, better, international data basis, in order to indicate new integral experiments that will be needed to account for new requirements due to innovative design features, and to provide the necessary full integral data base to be used for validation of the design simulation tools.

  6. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    Science.gov (United States)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite

  7. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  8. Preparation of homogeneous isotopic targets with rotating substrate

    International Nuclear Information System (INIS)

    Xu, G.J.; Zhao, Z.G.

    1993-01-01

    Isotopically enriched accelerator targets were prepared using the evaporation-condensation method from a resistance heating crucible. For high collection efficiency and good homogeneity the substrate was rotated at a vertical distance of 1.3 to 2.5 cm from the evaporation source. Measured collection efficiencies were 13 to 51 μg cm -2 mg -1 and homogeneity tests showed values close to the theoretically calculated ones for a point source. Targets, selfsupporting or on backings, could be fabricated with this method for elements and some compounds with evaporation temperatures up to 2300 K. (orig.)

  9. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Pudelek, R. E.; Gilbert, W. C.

    2002-02-26

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste

  10. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Roche, M

    1981-03-01

    The decision to bring a fair sized (3MW) research reactor to Venezuela, made in 1954 by a single, ambitious and prestige seeking individual working with a dictatorial government, is a clear case of cargo cult, an implicit desire to import industralized countries' science and technology by purchasing key in hand their expensive machine. The reactor has never ceased to experience difficulties since then, not so much of a physical or mechanical, but rather of a human nature and due to the almost grotesque distance between the machine's potentialities and the quantity and quality of personnel available. Demand and motivation have been scarce, because fossil and hydro energy have been so far plentiful. Military motivation was in theory absent. Perspectives have apparently improved, not that a scientific community has been trained and an infrastructure exists. Radioactive isotopes have been widely used in Venezuela, beginning in 1953, for medical practice and biological research. At present about 2.5 million bolivars worth of radioisotopes are imported annually, mostly from the US and to a lesser extent, from UK. Steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the century as the time when nuclear energy will begin to enter the picture, and since a period of at least ten years is needed between the decision to build an atomic power plant and the time it goes into operation. Choice of technique has not been made, but an active, although still small, uranium prospecting program has been initiated. It seems as if, by the end of the century, either nuclear energy will have to supplement other sources, or standard of living of Venezuelans - at least that relative minority who can afford to live well - will drop. 2 figures, 2 tables.

  11. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Boll, Rose Ann; Garland, Marc A.; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (∼40 g or ∼8 Ci; ∼80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  12. Isotopic alloying to tailor helium production rates in mixed spectrum reactors

    International Nuclear Information System (INIS)

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1985-01-01

    The purposes of this work are to increase the understanding of mechanisms by which helium affects microstructure and properties, to aid in the development of materials for fusion reactors, and to obtain data from fission reactors in regimes of direct interest for fusion reactor applications. Isotopic alloying is examined as a means of manipulating the ratio of helium transmutations to atom displacements in mixed spectrum reactors. The application explored is based on artificially altering the relative abundances of the stable isotopes of nickel to systematically vary the fraction of 58 Ni in nickel bearing alloys. The method of calculating helium production rates is described. Results of example calculations for proposed experiments in the High Flux Isotope Reactor are discussed

  13. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply

    International Nuclear Information System (INIS)

    Zubiarrain, A.

    2011-01-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  14. Canadian Neutron Source (CNS): a research reactor solution for medical isotopes and neutrons for science

    International Nuclear Information System (INIS)

    Chapman, D.

    2009-01-01

    This presentation describes a dual purpose research facility at the University of Saskatchewan for Canada for the production of medical isotopes and neutrons for scientific research. The proposed research reactor is intended to supply most of Canada's medical isotope requirements and provide a neutron source for Canada's research community. Scientific research would include materials research, biomedical research and imaging.

  15. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Cable, J.W. Chakoumakos, B.C.; Dai, P.

    1995-01-01

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  16. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  17. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  18. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  19. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  20. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  1. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  2. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  3. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  4. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  5. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  6. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  7. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  8. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  9. External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  10. Research reactor core conversion programmes, Department of Research and Isotopes, International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1985-01-01

    In order to put the problem of core conversion into perspective, statistical information on research reactors on a global scale is presented (from IAEA Research reactor Data Base). This paper describes the research reactor core conversion program of the Department of Research and Isotopes. Technical committee Meetings were held on the subject of research reactor core conversion since 1978, and results of these meetings are published in TECDOC-233, TECDOC-324, TECDOC-304. Additional publications are being prepared, several missions of experts have visited countries to discuss and help to plan core conversion programs; training courses and seminars were organised; IAEA has supported attendance of participants from developing countries to RERTR Meetings

  11. Considerations in the design of a high power medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, Russell M.; Nordyke, William H.; Brown, Roy

    2002-01-01

    For the low enriched aqueous homogeneous reactor to be economic in the production of medical isotopes, such as Mo-99 and Sr-89, the power level should be of the order of 100 kWth. This is double the earlier designs and this paper discusses the design changes which must be considered to meet this goal. The topics considered are: 1. Heat removal from the reactor solution; 2. Recombination of radiolytic gases; 3. Adequate radiation shielding; 4. Stability of reactor power with fluctuating reactivity; 5. Adequate cooling of the reflector; 6. Independent shutdown mechanisms; 7. Required volume of the reactor; 8. Economic implementation. (author)

  12. Optimization of neutron flux distribution in Isotope Production Reactor

    International Nuclear Information System (INIS)

    Valladares, G.L.

    1988-01-01

    In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely the Vmod / Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO 2 ) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author) [pt

  13. Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation

    International Nuclear Information System (INIS)

    Audouin, L.; Tassan-Got, L.; Bernas, M.; Rejmund, F.; Stephan, C.; Taieb, J.; Boudard, A.; Fernandez, B.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Benlliure, J.; Casajeros, E.; Pereira, J.; Czajkowski, S.

    2001-01-01

    The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)

  14. Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L.; Tassan-Got, L.; Bernas, M.; Rejmund, F.; Stephan, C.; Taieb, J. [Paris-11 Univ., 91- Orsay (France). Inst. de Physique Nucleaire; Enqvist, T.; Armbruster, P.; Ricciardi, M.V.; Schmidt, K.H. [GSI, Planckstrasse 1, Darmstadt (Germany); Boudard, A.; Fernandez, B.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91 - Gif sur Yvette (France); Benlliure, J.; Casajeros, E.; Pereira, J. [University of Santiago de Compostella (Spain); Czajkowski, S. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, CNRS-IN2P3, 33 - Gradignan (France)

    2001-07-01

    The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)

  15. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  16. Laser-fusion targets for reactors

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Thiessen, A.R.

    1987-01-01

    This patent describes a target having a centrally located substantially spherically configured quantity of solid fuel for implosion by a pulse of laser energy and having no material therein with a Z of over about 13. The improvement consists of: means in spaced apart and non-contiguous relationship surrounding the fuel for at least providing an atmosphere about the fuel for ensuring electron transport around the fuel and enhancing subsequent implosion symmetry of the fuel, the fuel being configured as a hollow shell; the means consisting of at least one outer layer of substantially solid atmosphere forming material having a Z of 1-13. The atmosphere forms material comprising a shell positioned about the fuel defining a space therebetween, the space being filled with He, the fuel and the shell of atmosphere forming material being each composed of DT, the layer of atmosphere forming material being impacted and at least partially exploded by at least one separate and distinct laser prepulse to produce the atmosphere about the fuel prior to implosion of the fuel by the pulse of laser energy

  17. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  18. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  19. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  20. Determination of the theoretical feasibility for the transmutation of europium isotopes from high flux isotope reactor control cylinders

    International Nuclear Information System (INIS)

    Elam, K.R.; Reich, W.J.

    1995-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is a 100 MWth light-water research reactor designed and built in the 1960s primarily for the production of transuranic isotopes. The HFIR is equipped with two concentric cylindrical blade assemblies, known as control cylinders, that are used to control reactor power. These control cylinders, which become highly radioactive from neutron exposure, are periodically replaced as part of the normal operation of the reactor. The highly radioactive region of the control cylinders is composed of europium oxide in an aluminum matrix. The spent HFIR control cylinders have historically been emplaced in the ORNL Waste Area Grouping (WAG) 6. The control cylinders pose a potential radiological hazard due to the long lived radiotoxic europium isotopes 152 Eu, 154 Eu, and 155 Eu. In a 1991 health evaluation of WAG 6 (ERD 1991) it was shown that these cylinders were a major component of the total radioactivity in WAG 6 and posed a potential exposure hazard to the public in some of the postulated assessment scenarios. These health evaluations, though preliminary and conservative in nature, illustrate the incentive to investigate methods for permanent destruction of the europium radionuclides. When the cost of removing the control cylinders from WAG 6, performing chemical separations and irradiating the material in HFIR are factored in, the option of leaving the control cylinders in place for decay must be considered. Other options, such as construction of an engineered barrier around the disposal silos to reduce the chance of migration, should also be analyzed

  1. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  2. High Flux Isotope Reactor quarterly report, July--September 1975

    International Nuclear Information System (INIS)

    McCord, R.V.; Corbett, B.L.

    1975-01-01

    The replacement of the permanent beryllium reflector was completed this quarter. The reactor was shut down for 87 days for this maintenance operation. Erosion of the sealing surface at the stainless steel adaptor flange on the HB-1 beam tube facility was confirmed. A soft metallic O-ring was used to effect a seal when this facility was reassembled. A comprehensive inspection of the normally inaccessible parts of the reactor pressure vessel was made. No abnormalities were found

  3. Minor actinides incineration by loading moderated targets in fast reactor

    International Nuclear Information System (INIS)

    Wu Hongchun; Sato, Daisuke; Takeda, Toshikazu

    2000-01-01

    The effect of hydrogen concentration and loaded mass of minor actinides (MAs) in the target on the core performance and MAs transmutation rate was analyzed in this paper. An optimum core was proposed which has 96 MAs target assemblies of which MAs fuel pins per assembly is 38 with the composition ratio U/MA/Zr/H of 1/4/10/50. This optimized core offers good core performance and can transmute MAs very effectively, the transmutation rate was about 67% (939 kg) and the incinerate (transmute by fission) rate was about 35% (489 kg) through 3 years of reactor operation. It is about 2-3 times larger than current transmutation method that MAs are loaded homogeneously in the PWR and fast reactor core. (author)

  4. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  5. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors

    International Nuclear Information System (INIS)

    Hernandez N, H.; Francois L, J.L.

    2005-01-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  6. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr

  7. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    International Nuclear Information System (INIS)

    Roche, M.

    1981-01-01

    A brief history of nuclear affairs in Venezuela, since the decision to bring a research reactor (3MW) to Venezuela (1954) to current situation, is presented. Since the establishment of the National Council for Nuclear Affairs (CONAN) and then of the National Council for the Development of Nuclear Industry (CONADIN), steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the Century as the time when nuclear energy will have to supplement other sources

  8. Fast reactor development strategy targets study in China

    International Nuclear Information System (INIS)

    Xu Mi

    2008-01-01

    China is a big developing Country who needs a huge energy resources and a rapid growing rate. Considering energy resources limited and environment issues it is sure that the nuclear energy will be becoming one of the main energy resources. The Government has decided to develop the nuclear power capacity to 40 GW in 2020. It is envisaged that it will reach to 240 GW in 2050. It is stimulate us to consider conscientiously the development of the fast breeder reactor's and related closed nuclear fuel cycle by the limitation of Uranium resources and uncertainties of international Uranium market. Followings are the proposed strategic targets of fast reactor development in China. (1) To realize the operation of commercial fast breeder reactors with an unit size of 800-900 MWe and one site-multi reactors in 2030. (2) To develop the nuclear power capacity to 240 GW in 2050. (3) To replace step by step the fossil fuel utilization in large scale by nuclear energy beyond 2050. (authors)

  9. Heavy water isotopic rectification in the ''ORPHEE'' reactor. SACLAY studies Centre

    International Nuclear Information System (INIS)

    Lejeune, P.; Breant, P.

    1993-01-01

    ORPHEE reactor supplies neutron beams, which are got back in a heavy water reflector. The neutron beams intensity depends on the reflector quality which is determined by the isotopic content of the heavy water. The deuterium submitted to core irradiation changes in radioactive tritium which must be eliminated largely for reasons of safety. The column must keep the heavy water isotopic content of the reflector to a value higher than 99.8% by eliminating light water by fractional distillation or rectification. This column is also used for the tritium elimination of heavy water. 13 figs

  10. Antibodies and isotopes, a chemical approach to tumour targeting

    International Nuclear Information System (INIS)

    Vaughan, A.T.M.; Yankuba, S.C.S.; Anderson, P.

    1986-01-01

    In this study, scandium-47 and yttrium-90 have been used as representatives of potential cytotoxic labels. Both isotopes have a high yield of energetic beta particles and half-lives of the same order as indium-111. In addition they are both members of Group III and so may be used as a base for chemical comparisons in the future with radiotoxic isotopes from other chemical groups

  11. Status of High Flux Isotope Reactor (HFIR) post-restart safety analysis and documentation upgrades

    International Nuclear Information System (INIS)

    Cook, D.H.; Radcliff, T.D.; Rothrock, R.B.; Schreiber, R.E.

    1990-01-01

    The High Flux Isotope Reactor (HFIR), an experimental reactor located at the Oak Ridge National Laboratory (ORNL) and operated for the US Department of Energy by Martin Marietta Energy Systems, was shut down in November, 1986 after the discovery of unexpected neutron embrittlement of the reactor vessel. The reactor was restarted in April, 1989, following an extensive review by DOE and ORNL of the HFIR design, safety, operation, maintenance and management, and the implementation of several upgrades to HFIR safety-related hardware, analyses, documents and procedures. This included establishing new operating conditions to provide added margin against pressure vessel failure, as well as the addition, or upgrading, of specific safety-related hardware. This paper summarizes the status of some of the follow-on (post-restart) activities which are currently in progress, and which will result in a comprehensive set of safety analyses and documentation for the HFIR, comparable with current practice in commercial nuclear power plants. 8 refs

  12. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sinev, V. V., E-mail: vsinev@pcbai10.inr.ruhep.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  13. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  14. The development of a small inherently safe homogeneous reactor for the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2013-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. New interest has been found in the use of liquid fueled nuclear reactors to produce these isotopes due to the ease of fuel processing and ability to efficiently use LEU as the fuel source. A version of this reactor is being developed at the Royal Military College of Canada to act as a successor to the SLOWPOKE-2 platform. The thermal hydraulic and transient characteristics of a 20 kWt version are being studied to verify inherent safety abilities. (author)

  15. Application of mass-predictions to isotope-abundances in breeder-reactor cores

    CERN Document Server

    Kirchner, G

    1981-01-01

    The decay-heat and isotope composition of breeder reactor-cores is calculated at normal shut-down, and a core disintegration event. Using the ORIGEN-code, the influence of the most neutron-rich fission-yield nuclei is studied. Their abundances depend on the assumption about the nuclear data (mass and half-lives). The total decay-heat is not changed from any technical viewpoint. (15 refs).

  16. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  17. Seismic, high wind, tornado, and probabilistic risk assessment of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Hashimoto, P.S.; Dizon, J.O.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR). Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed

  18. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs

  19. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    International Nuclear Information System (INIS)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez; Universidade Federal de Pernambuco

    2017-01-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly "9"9Mo. Compare to multipurpose research reactors, an AHR dedicated for "9"9Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  20. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  1. Mixing rules for and effects of other hydrogen isotopes and of isotopic swamping on tritium recovery and loss to biosphere from fusion reactors

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Efficient recovery of bred and unburnt tritium from fusion reactors, and control of its migration within reactors and of its escape into the biosphere are essential for self-sufficient fuel cycles and for public, plant personnel, and environmental protection. Tritium in fusion reactors will be mixed with unburnt deuterium and protium introduced by (n,p) reactions and diffusion into coolant loops from steam cycles. Rational design for tritium recovery and escape prevention must acknowledge this fact. Consequences of isotopic admixture are explored, mixing rules for projected fusion reactor dilute-solution conditions are developed, and a rule of thumb regarding their effects on tritium recovery methods is formulated

  2. Management of safety and risk at the HFIR [High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Glovier, H.A.

    1990-01-01

    This paper discusses the management of safety and risk at the High-Flux Isotope Reactor (HFIR), a category A research reactor at Oak Ridge National Laboratory (ORNL). The HFIR went critical in 1966 and operated at its designed 100 MW for 20 yr until it was shut down on November 14, 1986. It operated at a >90% availability and without significant event during this period. The result was a complacent management program lacking rigor. This complacency came to an end with the Chernobyl accident, which led to the appointment of an internal committee to assess the safety of ORNL reactor operations. This committee found that HFIR pressure vessel material specimens removed several years earlier had not been analyzed. This issue led to a general review of management practices that were found lacking in quality assurance, safety documentation, training process, and emergency planning, among others. Management accountability was lacking, as shown by design basis and safety analyses that were not up to data and by the fact that reactor operators whose requalification examinations had not been graded were allowed to continue operating the reactor over a long period of time. Between shutdown in 1986 and restart in April 1989, significant management changes and initiatives were made in the area of risk and safety management of ORNL reactors. These are presented briefly in this paper

  3. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  4. Release of hydrogen isotopes from carbon based fusion reactor materials

    International Nuclear Information System (INIS)

    Vainonen-Ahlgren, E.

    2000-01-01

    The purpose of this study is to understand the annealing behavior of hydrogen isotopes in carbon based materials. Also, the density of the material and structural changes after thermal treatment and ion irradiation are examined. The study of hydrogen diffusion in diamondlike carbon films revealed an activation energy of 2.0 eV, while the deuterium diffusion, due to better measuring sensitivity, is found to be concentration dependent with the effective diffusion coefficient becoming smaller with decreasing deuterium concentration. To explain the experimentally observed profiles, a model according to which atomic deuterium diffuses and deuterium in clusters is immobile is developed. The concentration of immobile D was assumed to be an analytical function of the total D concentration. To describe the annealing behavior of D incorporated in diamondlike carbon films during the deposition process, a model taking into account diffusion of free D and thermal detrapping and trapping of D was developed. The difference in the analysis explains the disagreement of activation energy (1.5 ± 0.2 eV) with the value of 2,9± 0.1 eV obtained for D implanted samples earlier. The same model was applied to describe the experimental profiles in Si doped diamondlike carbon films. Si affects the retention of D in diamondlike carbon films. The amount of D depends on Si content in the co-deposited but not implanted samples. Besides, Si incorporation into carbon coating decreases to some extent the graphitization of the films and leads to formation of a structure which is stable under thermal treatment and ion irradiation. Hydrogen migration in the hydrogen and methane co-deposited films was also studied. In samples produced in methane atmosphere and annealed at different temperatures, the hydrogen concentration level decreases in the bulk, with more pronounced release at the surface region. In the case of coatings deposited by a methane ion beam, the H level also decreases with increasing

  5. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  6. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N. [National Research Centre Kurchatov Institute (Russian Federation); Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu., E-mail: yuri.titarenko@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  7. The development of fast tantalum foil targets for short-lived isotopes

    CERN Document Server

    Bennett, J R J; Drumm, P V; Ravn, H L

    2003-01-01

    The development of fast tantalum foil targets for short-lived isotopes was discussed. It was found that the effusion was faster but the diffusion out of the foils was a limiting factor. The performance of the targets at ISOLDE with beams of **1**1Li, **1**2Be and **1**4Be was also analyzed. (Edited abstract) 13 Refs.

  8. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  9. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities

  10. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  11. Data book of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1994-03-01

    In the framework of the activity of the working group on Evaluation of Nuclide Generation and Depletion in the Japanese Nuclear Data Committee, we summarized the assay data of the isotopic composition of LWR spent fuels in order to verify the accuracy of the burnup calculation codes. The report contains the data collected from the 13 light water reactors (LWRs) including the 9 LWRs (5 PWRs and 4 BWRs) in Europe and USA, the 4 LWRs (2 PWRs and 2 BWRs) in Japan. The collected data were sorted into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples. (author)

  12. ANITA (Advanced Network for Isotope and TArget laboratories) - The urgent need for a European target preparation network

    Science.gov (United States)

    Schumann, Dorothea; Sibbens, Goedele; Stolarz, Anna; Eberhardt, Klaus; Lommel, Bettina; Stodel, Christelle

    2018-05-01

    A wide number of research fields in the nuclear sector requires high-quality and well-characterized samples and targets. Currently, only a few laboratories own or have access to the equipment allowing fulfilling such demands. Coordination of activities and sharing resources is therefore mandatory to meet the increasing needs. This very urgent issue has now been addressed by six European target laboratories with an initiative called ANITA (Advanced Network for Isotope and TArget laboratories). The global aim of ANITA is to establish an overarching research infrastructure service for isotope and target production and develop a tight cooperation between the target laboratories in Europe in order to transfer the knowledge and improve the production techniques of well-characterized samples and targets. Moreover, the interaction of the target producers with the users shall be encouraged and intensified to deliver tailor-made targets best-suited to the envisaged experiments. For the realization of this ambitious goal, efforts within the European Commission and strong support by the target-using communities will be necessary. In particular, an appropriate funding instrument has to be found and applied, enabling ANITA to develop from an initiative employed by the interested parties to a real coordination platform.

  13. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  14. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    Chang, Shih-Jung.

    1995-01-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  15. Use of LEU in the aqueous homogeneous medical isotope production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R.M. [Babock & Wilcox, Lynchburg, VA (United States)

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.

  16. Use of LEU in the aqueous homogeneous medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, R.M.

    1997-01-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution

  17. Balancing the risks: the NRU reactor and the isotope crisis in Canada

    International Nuclear Information System (INIS)

    Morrison, B.; Meneley, D.

    2008-01-01

    The extended shutdown of the NRU reactor at Chalk River at the end of 2007 caused a critical shortage of medical radioisotopes in Canada and the world, led to a unique meeting of Canada's Parliament to pass emergency legislation, and cost the President of the Canadian Nuclear Safety Commission her job. This paper, based on the public record, reviews these events from the perspective of the balance of risk between the safety of the NRU reactor and the impact of a shortage of isotopes. This leads to important questions about the mandate, independence and flexibility of the nuclear regulator, relations between the regulator, the government, and the licensee, and the government's overall management of risks. We argue that the government approaches individual risks in isolation and needs a mechanism to deal with multiple risks. (author)

  18. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  19. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼10 4 less), that is, a rate effect

  20. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Davis, D.W.; Parnell, J.

    1991-01-01

    Some of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the re-solidified, graphitic bituminous organics at Oklo thus enhanced radionuclide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lanthanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pre-treated nuclear waste warrants further investigation. (author)

  1. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    Chang, Shib-Jung.

    1995-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degree F

  2. Estimated long lived isotope activities in ET-RR-1 reactor structural materials for decommissioning study

    International Nuclear Information System (INIS)

    Ashoub, N.; Saleh, H.

    1995-01-01

    The first Egyptian research reactor, ET-RR-1 is tank type with light water as a moderator, coolant and reflector. Its nominal power is 2MWt and the average thermal neutron flux is 10 13 n/cm 2 sec -1 . Its criticality was on the fall of 1961. The reactor went through several modifications and updating and is still utilized for experimental research. A plan for decommissioning of ET-RR-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences of decommissioning. This paper presents a conservative calculation to estimate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are presented in significant quantities in the reactor structural materials are aluminum, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from 60 Co and 55 Fe which are presented in aluminium as trace elements and in large quantities in other construction materials. (author)

  3. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J

    2003-01-01

    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  4. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed

  5. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  6. Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method

    International Nuclear Information System (INIS)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2007-01-01

    For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

  7. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  8. Distillation of hydrogen isotopes for polarized HD targets

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, T., E-mail: takeshi@rcnp.osaka-u.ac.jp [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Bouchigny, S. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); CEA LIST, BP6-92265 Fontenay-aux-Roses, CEDEX (France); Didelez, J.-P. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Fukuda, K. [Kansai University of Nursing and Health Sciences, Shizuki Awaji 656-2131 (Japan); Kohri, H.; Kunimatsu, T.; Morisaki, C.; Ono, S. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Rouille, G. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); Tanaka, M. [Kobe Tokiwa University, Ohtani-cho 2-6-2, Nagata, Kobe 653-0838 (Japan); Ueda, K.; Uraki, M.; Utsuro, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Wang, S.Y. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan (China); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan)

    2012-02-01

    We have developed a new cryogenic distillation system to purify Hydrogen-Deuteride (HD) gas for polarized HD targets in LEPS experiments at SPring-8. A small amount of ortho-H{sub 2} ({approx}0.01%) in the HD gas plays an important role in efficiently polarizing the HD target. Since there are 1-5% impurities of H{sub 2} and D{sub 2} in commercially available HD gases, it is necessary to purify the HD gas up to {approx}99.99%. The distillation system is equipped with a cryogenic distillation unit filled with many small stainless steel cells called 'Heli-pack'. The distillation unit consists of a condenser part, a rectification part, and a reboiler part. The unit is kept at the temperature of 17-21 K. The Heli-pack has a large surface area that makes a good contact between gases and liquids. An amount of 5.2 mol of commercial HD gas is fed into the distillation unit. Three trials were carried out to purify the HD gas by changing temperatures (17.5 K and 20.5 K) and gas extraction speeds (1.3 ml/min and 5.2 ml/min). The extracted gas was analyzed using a gas analyzer system combining a quadrupole mass spectrometer with a gas chromatograph. One mol of HD gas with a purity better than 99.99% has been successfully obtained for the first time. The effective NTP (Number of Theoretical Plates), which is an indication of the distillation performances, is obtained to be 37.2{+-}0.6. This value is in good agreement with a designed value of 37.9. The HD target is expected to be efficiently polarized under a well-controlled condition by adding an optimal amount of ortho-H{sub 2} to the purified HD gas.

  9. Total quality management for addressing suspect parts at the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Hendrix, K.A.; Tulay, M.P.

    1993-01-01

    Martin Marietta Energy System (MMES) Research Reactors Division (RRD), operator of the High Flux Isotope Reactor (HFIR) recently embarked on an aggressive Program to address the issue of suspect Parts and to enhance their procurement process. Through the application of TQM process improvement, RRD has already achieved improved efficiency in specifying, procuring, and accepting replacement items for its largest research reactor. These process improvements have significantly decreased the risk of installing suspect parts in the HFIR safety systems. To date, a systematic plan has been implemented, which includes the following elements: Process assessment and procedure review; Procedural enhancements; On-site training and technology transfer; Enhanced receiving inspections; Performance supplier evaluations and source verifications integrated processes for utilizing commercial grade products in nuclear safety-related applications. This paper will describe the above elements, how a partnership between MMES and Gilbert/Commonwealth facilitated the execution of the plan, and how process enhancements were applied. We will also present measures for improved efficiency and productivity, that MMES intends to continually address with Quality Action Teams

  10. Contributions of each isotope in structural material on radiation damage in a hybrid reactor

    International Nuclear Information System (INIS)

    Günay, Mehtap

    2016-01-01

    In this study, the fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. In this study, salt-heavy metal mixtures consisting of 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UO_2, 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% NpO_2, and 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UCO were used as fluids. In this study, the effect on the radiation damage of spent fuel-grade (SFG)-PuO_2, UO_2, NpO_2 and UCO contents was investigated in the structural material of a designed fusion–fission hybrid reactor system. In the designed hybrid reactor system were investigated the effect on the radiation damage of the selected fluid according to each isotopes of structural material in the structural material for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library

  11. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  12. Medical isotope production: A new research initiative for the Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Coats, R.L.; Parma, E.J.

    1993-01-01

    An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of 99 Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater 99 Mo production ensuring adequate capacity for future years

  13. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  14. Probabilistic fracture mechanics analysis for the life extension estimate of the high flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A new method of fracture probability calculation is presented in this paper. The fracture probability as a result of the hydrostatic pressure test (hydrotest) is used to determine the life of the vessel. The hydrotest is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the safe reactor operation time from the time of the satisfactory hydrostatic test. The life extension calculation provides the following information on the remaining life of the reactor as a function of the NDT increase: (1) the life of the vessel is determined by the probability of vessel fracture as a result of hydrotest at several hydrotest pressures and vessel embrittlement conditions, (2) the hydrotest time interval vs the NDT increase rate, and (3) the hydrotest pressure vs the NDT increase rate. It is understood that the use of a complete range of uncertainties of the NDT increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degrees F

  15. Cost targets for at-reactor spent fuel rod consolidation

    International Nuclear Information System (INIS)

    Macnabb, W.V.

    1985-01-01

    The high-level nuclear waste management system in the US currently envisions the disposal of spent fuel rods that have been removed from their assemblies and reconfigured into closely packed arrays. The process of fuel rod removal and packaging, referred to as rod consolidation, can occur either at reactors or at an integrated packaging facility, monitored retrievable storage (MRS). Rod consolidation at reactors results in cost savings down stream of reactors by reducing needs for additional storage, reducing the number of shipments, and reducing (eliminating, in the extreme) the amount of fuel handling and consolidation at the MRS. These savings accrue to the nuclear waste fund. Although private industry is expected to pay for at-reactor activities, including rod consolidation, it is of interest to estimate cost savings to the waste system if all fuel were consolidated at reactors. If there are savings, the US Department of Energy (DOE) may find it advantageous to pay for at-reactor rod consolidation from the nuclear waste fund. This paper assesses and compares the costs of rod consolidation at reactors and at the MRS in order to determine at what levels the former could be cost competitive with the latter

  16. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  17. Modelling of infrared multiphoton absorption and dissociation for design of reactors for isotope separation by lasers

    International Nuclear Information System (INIS)

    Takeuchi, Kazuo; Nakane, Ryohei; Inoue, Cihiro

    1981-01-01

    A series of experiments were performed on infrared laser beam absorption (multiphoton absorption) and subsequent dissociation (multiphoton dissociation) of CF 3 Cl to propose models for the design of reactors for isotope separation by lasers. A parallel beam geometry was utilized in batch irradiation experiments to make direct compilation of lumped-parameter data possible. Multiphoton absorption is found to be expressed by a power-law extension of the law of Lambert and by an addition of a new term for buffer gas effect to the law of Beer. For reaction analysis, a method to evaluate the effect of incomplete mixing on apparent reaction rates is first presented. Secondly, multiphoton dissociation of Cf 3 Cl is found to occur in pseudo-first order fashion and the specific reaction rates for different beam fluence are shown to be correlated to the absorbed energy. (author)

  18. Design and use of the ORNL HFIR [High Flux Isotope Reactor] pneumatic tube irradiation systems

    International Nuclear Information System (INIS)

    Dyer, F.F.; Emery, J.F.; Robinson, L.; Teasley, N.A.

    1987-01-01

    A second pneumatic tube that was recently installed in the High Flux Isotope Reactor for neutron activation analysis is described. Although not yet tested, the system is expected to have a thermal neutron flux of about 1.5 x 10 14 cm -2 s -1 . A delayed neutron counter is an integral part of the pneumatic tube, and all of the hardware is present to enable automated use of the counter. The system is operated with a Gould programmable controller that is programmed with an IBM personal computer. Automation of any mode of operation, including the delayed neutron counter, will only require a nominal amount of software development. Except for the lack of a hot cell, the irradiation facility has all of the advantageous features of an older pneumatic tube that has been in operation for 17 years. The design of the system and some applications and methods of operation are described

  19. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  20. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  1. Accumulation of the radionuclides in a target irradiated in the reactor of tajoura nuclear research center

    International Nuclear Information System (INIS)

    Abdunnobi, A.R.; Arebi, B.

    1998-01-01

    One of the main stages of radionuclides production in reactor is the distinguishing of a regime on target irradiation in order to acquire the sufficient activity and the purity of radioisotope required. The authors have derived formula for calculating radionuclidic accumulation on a target irradiated in the reactor operating 10 hours per day, 4 days a week during 4 weeks. The results of I-131 and other radionuclide accumulation are illustrated by a tellurium target irradiation in the reactor operating continuously or with interruptions

  2. Study of isotopic exchange reactors (1961); Etude des reacteurs d'echange isotopique (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Grandcollot, P; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    A study is made of the general case of the theory of first-order isotopic chemical exchange between a gaseous and a liquid phase in a reactor, starting from fundamental reaction kinetics data, and without making any limiting hypothesis concerning the value of the separation factor. The cases of counter-current reactors and of co-current reactors are considered successively. The general deuterium conservation equation requires the definition of the quotient of the reactor; the performances of this reactor are characterised by its overall efficiency. The idea of the ratio is introduced because it represents a convenient intermediary in the calculations. The search for an additive value for reactors in series leads logically to the defining of an exchange capacity, and a total efficiency, or number of theoretical reactors. This method of expressing the performances of a reactor is more general than the efficiency due to Murphee which only has a physical significance in the particular case of homogeneous liquid reactors. The relationships between these various quantities are established, and the representation due to Mc Cabe and Thiele is generalized. The reactor performances are linked to the first - order reaction kinetics by the transfer number. The relationships are given for a certain number of concrete cases. Finally the application of these calculations is given, together with the approximations necessary in the case where, because of the presence of several components in each phase, the exchange reaction no longer obeys a single kinetic law. (authors) [French] On examine dans le cas general la theorie d'un reacteur quelconque pour l'echange chimique isotopique du premier ordre entre une phase gazeuse et une phase liquide, a partir des donnees fondamentales sur la cinetique de la reaction, sans faire aucune hypothese limitative sur le cas des reacteurs a contre ourant, puis celui des reacteurs a co-courant. L'equation generale de conservation du deuterium

  3. Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review

    International Nuclear Information System (INIS)

    Wulff, W.

    1990-01-01

    A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs

  4. Production of transplutonium elements in the high flux isotope reactor (HFIR)

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Corbett, B.L.; King, L.J.; McGuire, S.C.; Sims, T.M.

    1980-01-01

    The techniques described have been demonstrated to be adequate to predict the contents of transplutonium element production targets which have been irradiated in the HFIR. The deviations, at least for isotopes of mass 253 or less, are generally within the usual analytical uncertainties, or else are for isiotopes which are of little overall import to the program. Work is especially needed to get a better picture of the production of 250 Cm, 254 Es, 255 Es, and ultimately 257 Fm, since researchers are frequently stating their interest in obtaining larger quantities of these rare and difficult-to-produce nuclides

  5. Final report on production of Pu-238 in commercial power reactors: target fabrication, postirradiation examination, and plutonium and neptunium recovery

    International Nuclear Information System (INIS)

    Pobereskin, M.; Langendorfer, W.; Lowry, L.; Farmelo, D.; Scotti, V.; Kruger, O.

    1975-01-01

    Considerable interest has been generated in more extensive applications of radioisotope thermoelectric generator (RTG) systems. This raises questions concerning the availability of 238 Pu to supply an expanding demand. The development of much of this demand will depend upon a considerable reduction in cost of 238 Pu. Two neptunia--zirconia--fuel target rods, containing four sections each of different NpO 2 concentrations, were irradiated in the Connecticut Yankee Reactor for approximately one year. Following irradiation both target rods were subjected to nondestructive examination. One rod was chosen for destructive testing and analysis. Post-irradiation chemical analyses included total Pu and Np, ppM 236 Pu/ 238 Pu, and Pu isotopic abundance. The results of these analyses and of electron microprobe analysis which provided the relative Pu concentration across the pellet diameters are tabulated. It was concluded that the feasibility of all operations involved in the production of 238 Pu by irradiation of 237 NpO 2 targets in commercial nuclear power reactors was demonstrated and that the demonstration should be extended to a pilot-scale leading to installation of a full production capacity. (U.S.)

  6. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  8. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    Science.gov (United States)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  9. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E. [Obninsk Institute of Nuclear Power Engineering, Obninsk (Russian Federation)

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  10. Experimental observation and investigation of reactor Cs-137 isotope deactivation in biological cells

    International Nuclear Information System (INIS)

    Vysotskii, V.I.; Tashyrev, A.B.; Kornilova, A.A.

    2007-01-01

    Complete text of publication follows. The problem of natural accelerated deactivation of radioactive waste (including deactivation in environmental) is studied. In the work the process of direct controlled deactivation of water mixture of selected different longlived radioactive isotopes in growing microbiological cultures has been studied. The process was connected with transmutation of long-lived active nuclei to non-radioactive isotopes during growth and metabolism of special microbiological MCT ('microbial catalyst-transmutator'). The MCT is the special granules that include: concentrated biomass of metabolically active microorganisms, sources of carbon and energy, phosphorus, nitrogen, etc., and gluing substances that keep all components in the form of granules stable in water solutions for a long period of time at any external conditions. The base of the MCT is microbe syntrophin associations of thousands different microorganism kinds that are in the state of complete symbiosis. These microorganisms appertain to different physiological groups that represent practically the whole variety of the microbe metabolism and relevantly all kinds of microbe accumulation mechanisms. The state of complete symbiosis of the syntrophin associations results on the possibility of maximal adaptation of the microorganisms' association to any external conditions change. The mechanism of nuclear transmutation in growing biological system is described in details in the book. The research has been carried out on the basis of the same distilled water that contained different long-lived reactor isotopes (e.g., Eu 154 , Eu 155 , Cs 137 , Am 241 ). In our experiments 8 identical closed glass flasks with 10 ml of the same active water in each were used. The 'microbial catalyst-transmutator' was placed in 7 glass flasks. In six different flasks different pure K, Ca, Mg, Na, Fe and P salts as single admixture were added to the active water. These chemical elements are vitally necessary

  11. Probability of fracture and life extension estimate of the high-flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RT NDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10 -4 . The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained

  12. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  13. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  14. Identification of Thioredoxin Target Disulfides Using Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2014-01-01

    Thioredoxins (Trx) are small redox proteins that reduce disulfide bonds in various target proteins and maintain cellular thiol redox control. Here, a thiol-specific labeling and affinity enrichment approach for identification and relative quantification of Trx target disulfides in complex protein...... reduction is determined by LC-MS/MS-based quantification of tryptic peptides labeled with "light" (12C) and "heavy" (13C) ICAT reagents. The methodology can be adapted to monitor the effect of different reductants or oxidants on the redox status of thiol/disulfide proteomes in biological systems....... extracts is described. The procedure utilizes the isotope-coded affinity tag (ICAT) reagents containing a thiol reactive iodoacetamide group and a biotin affinity tag to target peptides containing reduced cysteine residues. The identification of substrates for Trx and the extent of target disulfide...

  15. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    International Nuclear Information System (INIS)

    Bays, Samuel; Medvedev, Pavel; Pope, Michael; Ferrer, Rodolfo; Forget, Benoit; Asgari, Mehdi

    2009-01-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  16. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  17. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  18. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D. . E-mail-yb2@ornl.gov

    1998-01-01

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP 1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA 2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  19. Seismic analysis of fuel and target assemblies at a production reactor

    International Nuclear Information System (INIS)

    Braverman, J.I.; Wang, Y.K.

    1991-01-01

    This paper describes the unique modeling and analysis considerations used to assess the seismic adequacy of the fuel and target assemblies in a production reactor at Savannah River Site. This confirmatory analysis was necessary to provide assurance that the reactor can operate safely during a seismic event and be brought to a safe shutdown condition. The plant which was originally designed in the 1950's required to be assessed to more current seismic criteria. The design of the reactor internals and the magnitude of the structural responses enabled the use of a linear elastic dynamic analysis. A seismic analysis was performed using a finite element model consisting of the fuel and target assemblies, reactor tank, and a portion of the concrete structure supporting the reactor tank. The effects of submergence of the fuel and target assemblies in the water contained within the reactor tank can have a significant effect on their seismic response. Thus, the model included hydrodynamic fluid coupling effects between the assemblies and the reactor tank. Fluid coupling mass terms were based on formulations for solid bodies immersed in incompressible and frictionless fluids. The potential effects of gap conditions were also assessed in this evaluation. 5 refs., 6 figs., 1 tab

  20. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  1. The influence Of On Power Target Loading At RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Kusno; Pardi

    2001-01-01

    One of utilization purposes of the RSG-GAS reactor is to produce radioisotope. The target insertion or withdrawal on the irradiation position D-6 and E-7 in the core can be done manually, during reactor operation or shut down condition. The problem arises when the loading is under operation mode, because of flow and reactivity change the reactivity. The behavior of operation parameter changes due to target handling will be investigated in this paper. The behavior will be applied as a guidance of the operating group in handling the irradiation target

  2. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  3. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  4. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  5. Scientific upgrades at the high flux isotope reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Selby, D.L.; Garrett, D.L.; Lucas, A.T.; Reeves, M.E.

    2001-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the high flux isotope reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: 1) larger beam tubes, 2) a new monochromator drum for the HB-1 beam line, 3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, 4) new instruments for the HB-2 beamline, 5) a new monochromator drum for the HB-3 beam line, 6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, 7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, 8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, 9) a number of new instruments for the cold beams including two new SANS instruments, and 10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule. (orig.)

  6. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply; Problemas en la produccion en reactores nucleares de isotopos con fines medicos y la crisis mundial de suministro de molibdeno ({sup 9}9Mo)

    Energy Technology Data Exchange (ETDEWEB)

    Zubiarrain, A.

    2011-07-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  7. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  8. Inelastic scattering of Ni and Zn isotopes off a proton target

    Energy Technology Data Exchange (ETDEWEB)

    Cortes Sua, Martha Liliana

    2016-07-18

    Inelastic proton scattering of {sup 70,72,74}Ni and {sup 76,78,80}Zn was performed at the RIBF facility of the RIKEN Nishina Center, Japan, as part of the first SEASTAR campaign. Radioactive isotopes were produced by the in-flight fission of a beam of {sup 238}U ions incident on a 3 mm thick Beryllium target. After production, neutron-rich radioactive isotopes were selected and identified on an event-by-event basis using the BigRIPS separator. Selected isotopes of interest were focused onto the liquid hydrogen target of the MINOS device and γ-rays from inelastic (p,p{sup '}) reactions were detected with the DALI2 array, consisting of 186 NaI crystals. Outgoing beam-like particles were identified using the ZeroDegree spectrometer. γ-rays produced in the reaction were Doppler corrected and the first 2{sup +} and 4{sup +} states in all the isotopes were identified. Detailed data analysis was performed including the implementation of algorithms that discriminate events where more than one particle was present. Using detailed Geant4 simulations, exclusive cross-sections for inelastic proton scattering were obtained. Deformation lengths were deduced from the experimental cross-sections using the coupled-channel calculation code ECIS-97. The deformations lengths of {sup 72,74}Ni and {sup 76,80}Zn were found to be fairly constant at a value of 0.8(2) fm, suggesting similar vibrational amplitudes, while the isomeric presence in the secondary beams of {sup 70}Ni and {sup 78}Zn allowed only lower limits for those two isotopes. By combining the deformation lengths with the known B(E2;0{sup +}{sub gs}→2{sup +}{sub 1}) values, the neutron-to-proton matrix element ratios, M{sub n}/M{sub p}, were obtained. A clear indication of the closed proton shell in the {sup 72,74}Ni could be observed, as M{sub n}/M{sub p}>N/Z, indicating an increased contribution of the neutrons to the vibrational amplitude. For the case of {sup 76,80}Zn, M{sub n}/M{sub p}

  9. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers.

  10. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  11. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  12. Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C., E-mail: junior.rebello@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)

  13. Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations

    International Nuclear Information System (INIS)

    Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C.

    2013-01-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)

  14. Massive mercury target for thallium isotope production on the beam of high energy protons

    International Nuclear Information System (INIS)

    Novgorodov, A.F.; Kolachkovski, A.; Nguen Kong Chang.

    1980-01-01

    The yields of thallium radioisotopes in a massive mercury target irradiated with 660 MeV protons have been determined. The constancy of isotopic composition of radiothallium along the whole length (40 cm) of the target has been found. The yields of 200 Tl, 201 Tl and 202 Tl amount to 22.9+-2.8; 3.42+-0.45 and 0.459+-0.61 mCu/mkA h, respectively. It has been shown that the extraction of radioisotopes of thallium and some other elements from large amounts of mercury as well as their subsequent concentration may be carried out fully and relatavely fast when using dilute solutions of acetic acid

  15. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  16. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    Science.gov (United States)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture

  17. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  18. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Bryant, Rebecca; Kszos, Lynn A.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  19. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Osipov, I. E. [Power Efficiency Centre, Inter RAO UES (Russian Federation)

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  20. Incineration of actinide targets in a pressurized water reactor spin project

    International Nuclear Information System (INIS)

    Puill, A.; Bergeron, J.

    1993-01-01

    The ability of Pressurized Water Reactors (PWR) with uranium fuel to limit the inventory growth of minor actinides (237 neptunium, and americium) produced by the French nuclear powerplants is studied. Targets containing an actinide oxide mixed to an inert matrix are loaded in some reactors. After being irradiated along with the fuel, the target is specially reprocessed. The remaining actinide and the plutonium which is produced, added to fresh actinide, are recycled in new targets. The radiotoxicity balance, with and without incineration, is examined considering that only the losses coming from the target reprocessing treated as waste. A scenario arbitrarily based on 18 years of operation results in a reduction of the radiotoxicity of the waste by a factor between 10 and 20, depending on the actinide considered. 6 refs., 6 figs., 6 tabs

  1. Production of Cs and Fr isotopes from a high-density UC targets with different grain dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ivanov, V.S.; Mezilev, K.A.; Molkanov, P.L.; Moroz, F.V.; Orlov, S.Yu.; Volkov, Yu.M. [Petersburg Nuclear Physics Institute RAS, Gatchina (Russian Federation); Alyakrinskiy, O.; Barbui, M.; Stroe, L.; Tecchio, L.B.; Tonezzer, M. [Laboratori Nationali di Legnaro, Legnaro (Padova) (Italy); Lhersonneau, G. [GANIL, Caen Cedex 5 (France)

    2009-12-15

    A UC target material of 11.3{+-}0.5 g/cm{sup 3} uranium density with the grain size of 20 and 5{mu}m manufactured in a form of pills by the method of powder metallurgy has been tested on-line within the temperature range of 1800-2100 C. The mass of uranium exposed to the beam was 4-7g. The yields and release rates of Cs and Fr isotopes produced by fission and spallation reactions of {sup 238}U by 1GeV protons have been measured. The yields of Cs and Fr isotopes obtained from the tested target materials have been compared, including yields of very short-lived Fr isotopes with half-lives down to 1ms. Temperature-resistant materials (porous graphite and tantalum foil) have been used for the internal-container construction, which holds the UC target pills inside a tungsten external container heated by the resistant heating. The fastest release and the highest efficiency for short-lived isotopes have been obtained for the targets with the internal container manufactured from the tantalum foil. Results of on-line tests of a big mass target (730g of 5{mu}m grain UC target material) have been discussed. (orig.)

  2. Production of Cs and Fr isotopes from a high-density UC targets with different grain dimensions

    International Nuclear Information System (INIS)

    Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ivanov, V.S.; Mezilev, K.A.; Molkanov, P.L.; Moroz, F.V.; Orlov, S.Yu.; Volkov, Yu.M.; Alyakrinskiy, O.; Barbui, M.; Stroe, L.; Tecchio, L.B.; Tonezzer, M.; Lhersonneau, G.

    2009-01-01

    A UC target material of 11.3±0.5 g/cm 3 uranium density with the grain size of 20 and 5μm manufactured in a form of pills by the method of powder metallurgy has been tested on-line within the temperature range of 1800-2100 C. The mass of uranium exposed to the beam was 4-7g. The yields and release rates of Cs and Fr isotopes produced by fission and spallation reactions of 238 U by 1GeV protons have been measured. The yields of Cs and Fr isotopes obtained from the tested target materials have been compared, including yields of very short-lived Fr isotopes with half-lives down to 1ms. Temperature-resistant materials (porous graphite and tantalum foil) have been used for the internal-container construction, which holds the UC target pills inside a tungsten external container heated by the resistant heating. The fastest release and the highest efficiency for short-lived isotopes have been obtained for the targets with the internal container manufactured from the tantalum foil. Results of on-line tests of a big mass target (730g of 5μm grain UC target material) have been discussed. (orig.)

  3. Eurisol-DS Multi-MW target A proposal for improving overall performance in relation to the isotope yield

    CERN Document Server

    Samec, K; Kadi, Yacine; Rocca, Roberto; Kharoua, Cyril

    2008-01-01

    The Eurisol Design Study has been initiated by the European Commission to demonstrate the feasibility of a facility for producing large yields of exotic isotopes. At the core of the projected facility, the neutron source produces spallation neutrons from a proton beam impacting dense liquid metal. The neutrons emitted from the source are used to fission Uranium targets which, in turn, produce high yields of isotopes. This technical report summarises efforts to improve the overall performance of the planned facility, by optimising the neutron source and the disposition of the fission targets.

  4. EURISOL-DS Multi-MW Target. A proposal for improving overall performance in relation to the isotope yield

    CERN Document Server

    Karel Samec, Mats Lindroos, Yacine Kadi,Roberto Rocca, Cyril KharouaAB Dept. ATB

    The Eurisol Design Study has been initiated by the European Commission to demonstratethe feasibility of a facility for producing large yields of exotic isotopes.At the core of the projected facility, the neutron source produces spallation neutrons from aproton beam impacting dense liquid metal. The neutrons emitted from the source are usedto fission Uranium targets which, in turn, produce high yields of isotopes.This technical report summarises efforts to improve the overall performance of the plannedfacility, by optimising the neutron source and the disposition of the fission targets.

  5. SFCOMPO 2.0 - A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    Science.gov (United States)

    Michel-Sendis, Franco; Martinez-González, Jesus; Gauld, Ian

    2017-09-01

    SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF) samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA). The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website.

  6. SFCOMPO 2.0 – A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    Directory of Open Access Journals (Sweden)

    Michel-Sendis Franco

    2017-01-01

    Full Text Available SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA. The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website.

  7. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  8. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  9. Undercovering the hidden links. Nuclear and isotope techniques target nutritional needs

    International Nuclear Information System (INIS)

    Iyengar, Venkatesh

    2001-01-01

    Global nutrition problems raise a host of questions and warrant action by the international community of scientists, nutritionists, physicians and other medical professionals. What steps should be taken to remedy this situation? How can this be accomplished economically? How can progress be monitored? What is the role of technology in the overall monitoring process? The last question, which is most relevant to this article, is of particular importance to the IAEA and its support of nutrition programmes. The IAEA's activities in human nutrition were initiated to apply nuclear and related isotopic techniques for solving problems prevalent in developing countries. Among the numerous applications available, isotopic techniques are uniquely well suited to targeting and tracking progress in food and nutrition development programmes. These are tools that help evaluate nutritional status of individuals and populations, measure nutrient requirements and the uptake and bio-availability of vitamins and minerals. The IAEA's efforts help to: verify the nature of the nutrition problem and the efficacy of specific interventions; implement nutrition intervention programmes by monitoring effectiveness and reducing programme costs; guide in the processing of local foods for optimal nutritional value; serve as early indicators of important long-term health improvements; and strengthen capacity building in developing countries. Among the numerous applications available, isotopic techniques are uniquely well suited to targeting and tracking progress in food and nutrition development programmes. These are tools that help evaluate nutritional status of individuals and populations, measure nutrient requirements and the uptake and bio-availability of vitamins and minerals. The IAEA's efforts help to: verify the nature of the nutrition problem and the efficacy of specific interventions; implement nutrition intervention programmes by monitoring effectiveness and reducing programme costs

  10. Influence of neutron energy on formation of radioisotopes during the irradiation of targets in reactor

    Directory of Open Access Journals (Sweden)

    P. M. Vorona

    2011-09-01

    Full Text Available Method of calculation of nuclear transformations in irradiated targets is realized for selection of optimal conditions for accumulation of radioisotopes in reactor, taking into account contributions of different energy neutrons (thermal, resonance and fast. Wide potentialities of program complex MCNP-4C based on the method of statistical testing (Monte Carlo method were used. Positive in proposed method is that all calculations starting from spectra and fluxes of neutrons in reactor and completing by quantity of accumulating nuclei carry out within the framework of the same methodological approach. It was shown by the example of radioactive 98Mo production in Mo98Mo(n, γ99Mo reaction that for achievement of maximal yield of target radionuclide. it is necessary to irradiate start targets of Molybdenum in hard spectrum with essential contribution of resonance neutrons.

  11. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  12. Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Desheng Cheng

    2016-04-01

    Full Text Available A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead–bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is 60 ± 1 mm, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

  13. Thermal analysis of LEU modified Cintichem target irradiated in TRIGA reactor

    International Nuclear Information System (INIS)

    Catana, A; Toma, C.

    2009-01-01

    Actions conceived during last years at international level for conversion of Molybdenum fabrication process from HEU to LEU targets utilization created opportunities for INR to get access to information and participating to international discussions under IAEA auspices. Concrete steps for developing fission Molybdenum technology were facilitated. Institute of Nuclear Research bringing together a number of conditions like suitable irradiation possibilities, direct communication between reactor and hot cell facility, handling capacity of high radioactive sources, and simultaneously the existence of an expanding internal market, decided to undertake the necessary steps in order to produce fission molybdenum. Over the course of last years of efforts in this direction we developed the steps for fission Molybdenum technology development based on modified Cintichem process in accordance with the Argonne National Laboratory proved methodology. Progress made by INR to heat transfer computations of annular target using is presented. An advanced thermal-hydraulic analysis was performed to estimate the heat removal capability for an enriched uranium (LEU) foil annular target irradiated in TRIGA reactor core. As a result, the present analysis provides an upper limit estimate of the LEU-foil and external target surface temperatures during irradiation in TRIGA 14 MW reactor. (authors)

  14. Hydrogen isotope double differential production cross sections induced by 62.7 MeV neutrons on a lead target

    International Nuclear Information System (INIS)

    Kerveno, M.; Haddad, F.; Eudes, Ph.; Kirchner, T.; Lebrun, C.; Slypen, I.; Meulders, J.P.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Louvel, M.; Lefebvres, F.; Hilaire, S.; Koning, A.J.

    2002-01-01

    Double differential hydrogen isotope production cross sections have been extracted in 62.7 MeV neutron induced reactions on a lead target. The angular distribution was measured at eight angles from 20 deg. to 160 deg. allowing the extraction of angle-differential, energy differential, and total production cross sections. A first set of comparisons with several theoretical calculations is also presented

  15. Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Lestringuez, J.; Yiou, F.

    1975-01-01

    Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons were measured by mass spectrometry. The results are compared with lower energy measurements and discussed in terms of the variation of the cosmic ray L/M ratio in this energy region [fr

  16. Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Lestringuez, J.; Yiou, F.

    1975-01-01

    Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons have been measured by mass spectrometry. The results are compared with lower energy measurements and discussed in terms of the variation of the cosmic ray L/M ratio in the energy region [fr

  17. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    International Nuclear Information System (INIS)

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project's maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes

  18. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    Science.gov (United States)

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  19. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    International Nuclear Information System (INIS)

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci 192 Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape

  20. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2006-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  1. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.W.

    2006-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  2. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  3. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  4. Efficiency of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Sang-In [Sungkyunkwan University, Suwon (Korea, Republic of); Hong, Seung-Woo [Sungkyunkwan University, Suwon (Korea, Republic of); Kadi, Yacine [CERN, Geneva (Switzerland)

    2016-10-15

    An Accelerator-Driven System (ADS) combined with a subcritical Molten Salt Reactor (MSR) is a type of hybrid reactor originally designed to breed uranium from thorium or to incinerate long-lived minor actinides in nuclear wastes. In an MSR, the salt material is used not only as a nuclear fuel but also as a primary coolant. In addition, this material is used as a target for inducing spallation neutrons in most AD-MSR concepts. A high energy proton beam impinges on a heavy metal target to induce spallation reactions and produces neutrons. Accordingly, a reliable proton accelerator is needed to feed the source neutrons. As ADSs have been criticized for requiring high power accelerators, minimization of beam power is an important aspect of ADS design. A primary concern associated with ADS development is stable high-power accelerators. We therefore studied the neutron source efficiencies of an AD-MSR involving chloride fuels by including a Pb-Bi eutectic (LBE) spallation target. The proton source efficiency and the accelerator beam power required have been studied for an AD-MSR. Adoption of an LBE spallation target induces an increase in proton source efficiencies in comparison to the case without a spallation target. Thus the presence of an efficient spallation target is useful in the reduction of the beam power of an accelerator. Almost 33 % of the beam power can be reduced in comparison to the case without the target for NaCl-Th/{sup 233}U fuel, and about 16 % for NaCl-U/TRU fuel. The beam power amplifications increase by 1.5 times for NaCl-Th/{sup 233}U and 1.2 times for NaCl-U/TRU in comparison with the no target AD-MSR.

  5. Databook of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1993-03-01

    In the framework of the activity of the nuclide production evaluation WG in the sigma committee, we summarized the measurement data of the isotopic composition of LWR spent fuels necessary to evaluate the accuracy of the burnup calculation codes. The collected data were arranged to be classified into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples, in order to supply the information necessary to the benchmark calculation. This report describes the data collected from the 13 LWRs including the 9 LWRs (5 PWR and 4 BWR) in Europe and the USA, the 4 LWRs (2 PWR and 2 BWR) in Japan. Finally, the study on the burnup characteristics of the U, Pu isotopes is described. (author)

  6. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  7. The behaviour of radioactive isotopes in liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Watson, W.R.; Gwyther, J.R.

    1979-01-01

    A small scale, all AISI 316 stainless steel, pumped loop has been operated with 134 Cs, 137 Cs and 22 Na in the sodium. The loop has a distillation sampler, oxygen meter, two cold traps and a small subsidiary pumped loop initially containing the isotopes adsorbed on uranium oxide. The distribution of the isotopes within the loop has been determined over the temperature range 100 to 300 0 C with 1 to 2 ppm of oxygen in the sodium and a sodium velocity about half the Reynolds number required for the onset of turbulence in the vertical legs. (author)

  8. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.

    2005-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  9. Homogeneous Slowpoke reactor for the production of radio-isotope: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busetta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2006-09-15

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous react will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB(r). It was found that it is needed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  10. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  11. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  12. Isotope Mixes, Corresponding Nuclear Properties and Reactor Design Implications of Naturally Occurring Lead Sources

    Science.gov (United States)

    2013-06-01

    than LBE 14,3 W/(m*K)) (data at 500 °C) + Slag formation First tests do not show slag formation in Pb + Dust formation Strongly reduced + Corrosion...12] R. S. Cannon, Jr. and A. P. Pierce, “Lead Isotope Guides For Mississippi Valley Lead- Zinc Exploration,” U.S. department of the Interior

  13. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  14. Safety aspects of tritium in ICF reactors with internally-breeding targets

    International Nuclear Information System (INIS)

    Ragheb, M.; Miley, G.H.; University of Illinois, Urbana, IL)

    1985-01-01

    The LOTRIT inertial confinement reactor concept employs a deuterium burning target with a DT spark trigger core. This eliminates the need for tritium breeding in a blanket, and leads to a minimization of the tritium inventory and of the possibility of metal fire hazards if lead is used instead of lithium for first wall protection. The active fuel inventory in the fuel cycle and blanket per MJ of energy produced is only 5 percent of the DT case. The most significant reduction in the total tritium inventory is in the target manufacture and storage areas, and is about 1.8% of the DT case per unit of fusion energy produced. If the goal is to reduce the risk from tritium releases from fusion reactors to below that of fission reactors, it is estimated that the tritium releases must be maintained at 0.13-5.0 Ci/day. Attaining these values will be costly, technologically difficult and will constrain the design options in DTbased systems, but may be within the realm of systems using the LOTRIT concept

  15. ITER TASK T26/28 (1995): Solubility, diffusion and absorption of hydrogen isotopes in potential fusion reactor ceramics

    International Nuclear Information System (INIS)

    Thompson, D.A.; Macauley-Newcombe, R.G.

    1996-04-01

    Ceramic insulators are integral parts of numerous components essential for the heating control and diagnostic measurement of fusion plasmas. For safe and reliable reactor operations it is necessary to be able to predict the resultant tritium inventories and permeation fluxes through these materials. Some materials being considered are Al 2 O 3 (both as single crystal sapphire and polycrystalline alumina) and BeO. This report contains results of ion-implantation, thermal absorption (diffusion loading) and ion-beam analysis experiments performed in 1994 and 1995 for ITER task T26/28. The combination of implantation and thermal absorption capabilities enable us to load samples with hydrogen isotopes under differing conditions. 13 figs., 1 tab., 11 refs

  16. Recycling, inventory and permeation of hydrogen isotopes and helium in the first wall of a thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Gervasini, G.; Reiter, F.

    1989-01-01

    The work was divided into three parts. The first part, which is theoretical, examines the behaviour of hydrogen in metals. After an introduction on the presence of hydrogen isotopes in fusion reactors, the main phenomena connected with hydrogen-metal interaction are summarised: solubility, diffusivity and trapping in material defects. The metal temperature is highlighted as the main parameter in the description of the phenomena. The second part of the work, also theoretical, concerns the interaction between helium and metals. We have tried as much as possible to show analogies and differences in the comparisons of the behaviour of hydrogen. The main types of damage caused by helium in metallic structures, which are the most important consequence of helium-metal interaction, were summarised. The characteristics of helium were treated in greater depth than those of hydrogen, because the latter are very well known. Also, there is a vast literature on the hydrogen-metal interaction. In the third and last part of the work a model was identified which allows the simulation of the evolution of a system formed from a metal in which hydrogen and helium isotopes have been introduced. A system of algebraic-differential equations was used to study the temporal evolution of the concentrations, the recycling, the inventory and the permeation of tritium and helium considering that these atoms diffuse in the metallic lattice and remain trapped in the vacancies created inside the metal by the bombardment of the neutrons from the fusion reactions. For the numerical simulation a series of data intended to represent the situation inside a thermonuclear reactor as precisely as possible were used for the numerical simulation. Analysis of the system was preceded by the analytical resolution of the steady state equations so that they could be compared with the simulation results

  17. Fuel and target programs for the transmutation at Phenix and other reactors

    International Nuclear Information System (INIS)

    Gaillard-Groleas, G.

    2002-01-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  18. Project requirements for reconstruction of the RA reactor ventilation system, Task 2.8. Measurement of radioactive iodine and other isotopes contents in the gas system of the RA reactor, Annex of the task

    International Nuclear Information System (INIS)

    Vujisic, Lj. et al

    1981-01-01

    This report is a supplement to the task 2.8. When planning and constructing the ventilation system, it was found that it is necessary to perform additional experiments during RA reactor operation at 2 MW power level for a longer period. In addition to the helium system, the potential source of radioactive pollutants is the space below the upper water shielding of the reactor. All the experimental and fuel channels are ending in this space. During repair and fuel exchange radioactivity can be released in this space. For that reason this space is important when planing and designing the filtration system for incidental conditions or planned dehermetisation of the reactor. The third point where radioactive isotope identification was done, was the entrance into the chimney during steady state operation and planned dehermetisation of the reactor. The following samples were measured: gas system during reactor operation at 2 MW power; entrance into the chimney during last 48 hours of reactor operation at 2 MW power; sample on the platform under the upper water shield with the opened fuel channel after the reactor shutdown; and simultaneously with the latter, measurement at the entrance to the chimney. This annex contains the list of identified radioactive isotopes, volatile and gaseous as well as concentration of volatile 131 I on the adsorbents [sr

  19. Behavior of antimony isotopes in the primary coolant of WWER-1000-type nuclear reactors in NPP Kozloduy during operation and shutdown

    International Nuclear Information System (INIS)

    Dobrevski, Ivan D.; Zaharieva, Neli N.; Minkova, Katia F.; Gerchev, Nikolay B.

    2009-01-01

    This paper focuses on the behavior of the antimony isotopes 122 Sb and 124 Sb in the coolant of the WWER reactors in the nuclear power plant Kozloduy (Bulgaria) during operation and shutdown. It is concluded that the chemical properties of their actual precursor, the isotope 121 Sb, determine the behavior of 122 Sb and 124 Sb during operation, load fluctuations, and shutdown as well as during the reactor coolant purification process. It is supposed that differences between the reactor bulk and the core fuel cladding surface chemistry as well as the presence of sub-cooled nucleate boiling at the fuel cladding may create conditions under which a local oxidizing environment may come into existence. (orig.)

  20. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  1. Chronology of the beryllium replacement shutdown at the High Flux Isotope Reactor (HFIR), 1983

    International Nuclear Information System (INIS)

    Kohring, M.W.

    1984-04-01

    In addition to the permanent beryllium reflector, several other components were replaced. The outer shroud and lower tracks were replaced. The new control rod access plugs and the upper tracks were installed. Replacement of collimator tubes for HB-1 and -2 are tentatively slated for the next permanent beryllium changeout. Inspection of the reactor vessel, the vessel-to-nozzle welds, core support structure, and vessel internal cladding showed them to be in acceptable condition. The highest, accumulative radiation doses received by Reactor Operations personnel during the shutdown, in mrem, were 665, 606, and 560; the highest for P and E personnel were 520, 505, and 475

  2. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  3. Hydrogen isotopes confinement in the over-dusted layers of fusion reactor candidate materials

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibaeva, I.L.; Shestakov, V.P.; Lisitsyn, V.N.; Tuleushev, Yu.Zh.

    2001-01-01

    In the work the experiments on gas-emission determination from samples of sputtered beryllium, graphite, tungsten, jointly sputtered graphite and tungsten obtained by the magnetron sputtering method at the 'Argamak' facility (National Nuclear Center of the Republic of Kazakhstan), as well as the samples processed on the 'OSPA' plasma accelerator (TRINITI, Russia). The gas-release curves were obtained for indicated samples under different heating velocities within temperature range from 300 up to 1200 K. Gas-release parameters and hydrogen isotopes confinement in these layers were determined. Simulation of hydrogen isotopes gas-emission from samples sputtered layers on the base of obtained experiments with application of simulating programs and TMAP code was carried out

  4. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor

  5. New concepts for the recovery and isotopic separation of tritium in fusion reactors

    International Nuclear Information System (INIS)

    Dombra, A.H.; Holtslander, W.J.; Miller, A.I.; Canadian Fusion Fuels Technology Project, Toronto, Ontario)

    1986-01-01

    New concepts for the recovery of tritium from light water coolant of LiPb blankets, and high-pressure helium coolant of Li-ceramic blankets are introduced. Application of these concepts to fusion reactors is illustrated with conceptual system designs for the anticipated NET blanket requirements. (author)

  6. Separation of carrier-free rhodium isotopes from ruthenium cyclotron targets by the extraction of nitrosylruthenium from hydrochloric acid solution

    International Nuclear Information System (INIS)

    Haasbroek, F.J.; Strelow, F.W.E.; Van der Walt, T.N.

    1981-01-01

    A method is presented for the separation of rhodium isotopes from ruthenium cyclotron targets. After bombardment with deuterons and dissolution of the target material, the ruthenium is converted into a nitrosyl complex by treatment with hydroxylammonium chloride. Aluminium and other elements which have been introduced in the dissolution step, are separated by cation exchange. Ruthenium is then separated by extraction with a mixture of tri-n-butyl phosphate and hexane (4:1), leaving the rhodium in the aqueous phase. No ruthenium is found in the rhodium fraction and the recovery of rhodium is better than 90 per cent [af

  7. Identification of Thioredoxin Disulfide Targets Using a Quantitative Proteomics Approach Based on Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2008-01-01

    Thioredoxin (Trx) is a ubiquitous protein disulfide reductase involved in a wide range of cellular redox processes. A large number of putative target proteins have been identified using proteomics approaches, but insight into target specificity at the molecular level is lacking since the reactivity...... of Trx toward individual disulfides has not been quantified. Here, a novel proteomics procedure is described for quantification of Trx-mediated target disulfide reduction based on thiol-specific differential labeling with the iodoacetamide-based isotope-coded affinity tag (ICAT) reagents. Briefly......, protein extract of embryos from germinated barley seeds was treated +/- Trx, and thiols released from target protein disulfides were irreversibly blocked with iodoacetamide. The remaining cysteine residues in the Trx-treated and the control (-Trx) samples were then chemically reduced and labeled...

  8. Analytical performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.; Roy, M.; Tyagi, A.K.

    2011-01-01

    The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of D 2 O (heavy water) in a simulated water sample. Viability of Refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been demonstrated. Temperature of the samples was precisely controlled to eliminate effect of temperature fluctuation on refractive index measurement. Calibration performance by this technique exhibited reasonable analytical response over a wide range (1-100%) of D 2 O concentration. (author)

  9. The different facilities of the reactor Phenix for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    Coulon, P.; Clerc, R.; Tommasi, J.

    1993-01-01

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (authors). 9 figs

  10. Computed isotopic inventory and dose assessment for SRS fuel and target assemblies

    International Nuclear Information System (INIS)

    Chandler, M.C.; Ketusky, E.T.; Thoman, D.C.

    1995-01-01

    Past studies have identified and evaluated important radionuclide contributors to dose from reprocessed spent fuel sent to waste for Mark 16B and 22 fuel assemblies and for Mark 31 A and 31B target assemblies. Fission-product distributions after a 5- and 15-year decay time were calculated for a ''representative'' set of irradiation conditions (i.e., reactor power, irradiation time, and exposure) for each type of assembly. The numerical calculations were performed using the SHIELD/GLASS system of codes. The sludge and supernate source terms for dose were studied separately with the significant radionuclide contributors for each identified and evaluated. Dose analysis considered both inhalation and ingestion pathways: The inhalation pathway was analyzed for both evaporative and volatile releases. Analysis of evaporative releases utilized release fractions for the individual radionuclides as defined in the ICRP-30 by DOE guidance. A release fraction of unity was assumed for each radionuclide under volatile-type releases, which would encompass internally initiated events (e.g., fires, explosions), process-initiated events, and externally initiated events. Radionuclides which contributed at least 1% to the overall dose were designated as significant contributors. The present analysis extends and complements the past analyses through considering a broader spectrum of fuel types and a wider range of irradiation conditions. The results provide for a more thorough understanding of the influences of fuel composition and irradiation parameters on fission product distributions (at 2 years or more). Additionally, the present work allows for a more comprehensive evaluation of radionuclide contributions to dose and an estimation of the variability in the radionuclide composition of the dose source term that results from the spent fuel sent to waste encompassing a broad spectrum of fuel compositions and irradiation conditions

  11. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  12. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  13. Sensitivity of reactor integral parameters to #betta##betta# parameter of resolved resonances of fertile isotopes and to the α values, in thermal and epithermal spectra

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    A sensitivity analysis of reactor integral parameter to more 10% variation in the resolved resonance parameters #betta##betta# of the fertile isotope and the variations of more 10% in the α values (#betta# sub(#betta#)/#betta# sub(f)) of fissile isotopes of PWR fuel elements, is done. The analysis is made with thermal and epithermal spectra, those last generated in a fuel cell with low V sub(M)/V sub(F). The HAMMER system, the interface programs HELP and LITHE and the HAMMER computer codes, were used as a base for this study. (E.G.) [pt

  14. Performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Roy, M.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.

    2013-01-01

    Highlights: ► Rapid analysis of heavy water samples, with precise temperature control. ► Entire composition range covered. ► Both variations in mole and wt.% of D 2 O in the heavy water sample studied. ► Standard error of calibration and prediction were estimated. - Abstract: The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of heavy water (D 2 O) in a simulated water sample. Feasibility of refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been amply demonstrated. Temperature of the samples has been precisely controlled to eliminate the effect of temperature fluctuation on refractive index measurement. The method is found to exhibit a reasonable analytical response to its calibration performance over the purity range of 0–100% D 2 O. An accuracy of below ±1% in the measurement of isotopic purity of heavy water for the entire range could be achieved

  15. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors; Desarrollo de una metodologia simplificada para la determinacion isotopica del combustible gastado en reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez N, H.; Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: hermilo@lairn.fi-b.unam.mx

    2005-07-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  16. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  17. Nondestructive determination of burnup and fissile isotope balance in spent fuel assemblies of water cooled reactors

    International Nuclear Information System (INIS)

    Pinel, J.

    1983-03-01

    Two non-destructive methods for measuring fuel assemblies in storage pools have been developed: a gamma fuel scanning method, using the 134 Cs - 137 Cs and 144 Ce gamma rays, and the measurement of the neutron flux emitted by the fuel assembly. For interpreting the measurement, we have used calculated correlations to establish a connection between the measured phenomena and the parameters to be determined. A measurement campaign involving 58 assemblies from the C.N.A. reactor was conducted in the reprocessing plant of LA HAGUE. The results obtained show that the objectives can be achevied within an industrial environment [fr

  18. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    International Nuclear Information System (INIS)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V.; Boulyga, S.F.; Becker, J.S.

    2005-01-01

    An analytical method is described for the estimation of uranium concentrations, of 235 U/ 238 U and 236 U/ 238 U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10 -9 g/g to 2.0 x 10 -6 g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing 235 U/ 238 U and 236 U/ 238 U isotope ratios and the average value amounted to 9.4±0.3 MWd/(kg U). (orig.)

  19. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  20. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  1. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    DEFF Research Database (Denmark)

    Vinther, Jeppe; Hedegaard, Mads Marquardt; Gardner, Paul Phillip

    2006-01-01

    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection...

  2. The Texts of the Instruments connected with the Agency's Assistance to Argentina in Establishing a Research and Isotope Production Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-11-04

    The texts of the Title Transfer Agreement between the Agency and the Governments of Argentina and the United States of America, and of the Project Agreement between the Agency and the Government of Argentina, in connection with the Agency's assistance to that Government in establishing a research and isotope production reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 2 December 1964.

  3. The Texts of the Instruments connected with the Agency's Assistance to Argentina in Establishing a Research and Isotope Production Reactor Project

    International Nuclear Information System (INIS)

    1965-01-01

    The texts of the Title Transfer Agreement between the Agency and the Governments of Argentina and the United States of America, and of the Project Agreement between the Agency and the Government of Argentina, in connection with the Agency's assistance to that Government in establishing a research and isotope production reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 2 December 1964

  4. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    International Nuclear Information System (INIS)

    Washington, J.; King, J.; Shayer, Z.

    2017-01-01

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO_2, Pu_3Si_2, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO_2) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO_2), Pu_0_._3_1ZrH_1_._6Th_1_._0_8, and PuZrO_2MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B_4C, CdO, Dy_2O_3, Er_2O_3, Eu_2O_3, Gd_2O_3, HfO_2, In_2O_3, Lu_2O_3, Sm_2O_3, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO_2MgO (8 wt% Pu) target fuel with a coating of Lu_2O_3 resulted in the highest rate of plutonium transmutation with the greatest reduction in curium

  5. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  6. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  7. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched (<20% {sup 235}U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  8. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S.

    2011-01-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched ( 235 U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  9. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    Knight, R.W.; Morin, R.A.

    1999-01-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U 3 O 8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  10. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  11. Chamber wall response to target implosion in inertial fusion reactors: new and critical assessments

    International Nuclear Information System (INIS)

    Hassanein, A.; Morozov, V.

    2002-01-01

    The chamber walls in inertial fusion energy (IFE) reactors are exposed to harsh conditions following each target implosion. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure desirable conditions prior to next target implosion. Several methods for wall protection have been proposed in the past, each having its own advantages and disadvantages. These methods include use of solid bare walls, gas-filled cavities, and liquid walls/jets. Detailed models have been developed for reflected laser light, emitted photons, and target debris deposition and interaction with chamber components and have been implemented in the comprehensive HEIGHTS software package. The focus of this study is to critically assess the reliability and the dynamic response of chamber walls in IFE systems. Of particular concern is the effect on wall erosion lifetime due to various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls

  12. Chamber wall response to target implosion in inertial fusion reactors : new and critical assessments

    International Nuclear Information System (INIS)

    Hassanein, A.; Morozov, V.

    2002-01-01

    The chamber walls in inertial fusion energy (IFE) reactors are exposed to harsh conditions following each target implosion. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure desirable conditions prior to target implosion. Several methods for wall protection have been proposed in the past, each having its own advantages and disadvantages. These methods include use of solid bare walls, gas-filled cavities, and liquid walls/jets. Detailed models have been developed for reflected laser light, emitted photons, and target debris deposition and interaction with chamber components and have been implemented in the comprehensive HEIGHTS software package. The hydrodynamic response of gas filled cavities and photon radiation transport of the deposited energy has been calculated by means of new and advanced numerical techniques. Fragmentation models of liquid jets as a result of the deposited energy have also been developed, and the impact on chamber clearing dynamics has been evaluated. Th focus of this study is to critically assess the reliability and the dynamic response of chamber walls in various proposed protection methods for IFE systems. Of particular concern is the effect on wall erosion lifetime of various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls

  13. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  14. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  15. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  16. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  17. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  18. Procedure for 40K isotope separation from beam of potassium atoms using optical orientation of atoms and radio-frequency excitation of target isotope

    International Nuclear Information System (INIS)

    Nikitin, A.I.; Velichko, A.M.; Vnukov, A.V.; Mal'tsev, K.K.; Nabiev, Sh.Sh.

    1999-01-01

    The procedure for potassium isotope separation, which is liable to reduce of the prise of the product as compared with the up-to-date prise of the 40 K isotope obtained by means of electromagnetic procedure for isotope separation, is proposed. The scheme assumes the increasing flow of the wanted isotope at the sacrifice of the increasing intensity of atomic beam and the increase of the selectivity of need isotope atoms at the sacrifice of the the reduction in the square of collector profile. The objective is achieved that provide of polarized state of the potassium atoms is produced by optic orientation with circular-polarized light [ru

  19. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  20. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  1. The Maple reactor project

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Labrie, J.-P.

    2003-01-01

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  2. Evaluations for the choice of the best target material in a accelerator-driven reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neuhold, P.

    1995-10-01

    From the point of view of the overall credibility of the machine the choice of the best target material play a fundamental role. That has to fulfill at least three requirements: (1) the maximum number of neutrons produced per incident proton; (2) the maximum melting point; (3) the minimum activation under neutron irradiation. A number of different candidates can be investigated, keeping in mind that the first requirement is roughly fulfilled by high atomic number elements: the most popular among them appear to be W, Pb, and Np. While the characteristics for the second point are well known (3410C, 327C and 640C), as well as many evaluations are done about the first point, even if showing numbers ranging roughly a factor of 2 between the lowest and the highest ones, poor attention instead has been given to the third one. As far as the operation/maintenance of the machine is concerned, is important to know the dose rate of the target due to its neutron activation. According to the author`s calculations, for example after one year of 800 MeV/62.5 mA proton irradiation of W, one can have, after one day of decay, dose rates as high as 2*10**6 Sv/hr, cumulative of the effects due to the direct proton beam and to the arising neutron flux. The author made use of the codes MSMPN, ANITA for the neutron activation analysis and of NMTC, ORIGEN for the proton interaction analysis. In particular it`s worth noting how dramatic differences can arise from different isotopic composition, that is for example between natural W or only W-186, due to the very different behavior of the daughter elements as decay time and gamma-energy. For example the dose rate due to the neutron activation alone, after one month of decay, for natural W is a factor of 500 greater than for W-186.

  3. Shielding calculations by using the analytic methods : Application to the radio-isotopes production in the CENM reactor

    International Nuclear Information System (INIS)

    Elmorabit, A.; Labrim, H.

    2010-01-01

    Full text: this work is part of developing an analytical method for solving the neutrons transport equation in improving the treatment of the anisotropy of neutron scattering through heterogeneous shielding. We also develop the tools necessary for the formation of multigroup libraries (cross section) with the best choice of the weighting function. Among the radioprotection problems of radioisotopes production experiments in the research reactor core is mainly the photons gamma generation produced by radiative capture: activation of samples and their capsules. So, in order to review the safety of operating personnel and the public is essential to quantify the neutrons flux and gamma photons produced. In this study a numerical methods is used in two different Fortran program to solve the neutron transport problem and to determine the neutron and photon flux. This program based on the Monte Carlo method: the neutron is born with a unit statistical weight, this corrected after each imposed scattering event during its whole history within the shield. The final neutron statistical weight is used in an appropriate estimator to determine the searched response. The generated gamma rays by neutron capture are calculated of different isotopes, and then the equivalent dose rate is evaluated in biological tissue for different neutron source energies. We have identified and studied the choice of the best weighting function to calculate a library of multigroup cross sections self protected by using the energy weighting function. A Fortran program is used as a mathematical tool to solve the neutron slowing down equation in infinite homogeneous medium for different dilutions. We determined the energetic flux distribution and the effective integrals. The results of both calculations are in a good agreement; the relative error is less than 0.5%.

  4. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    International Nuclear Information System (INIS)

    Rothrock, Benjamin G.; Farrar, Mike B.

    2009-01-01

    In June 1961, construction was started on the High Flux Isotope Reactor (HFIR) facility inside the Oak Ridge National Laboratory (ORNL), at the recommendation of the U.S. Atomic Energy Commission (AEC) Division of Research. Construction was completed in early 1965 with criticality achieved on August 25, 19651. From the first full power operating cycle beginning in September 1966, the HFIR has achieved an outstanding record of service to the scientific community. In early 1995, the ORNL deputy director formed a group to examine the need for upgrades to the HFIR following the cancellation of the Advanced Neutron Source Project by DOE. This group indicated that there was an immediate need for the installation of a cold neutron source facility in the HFIR to produce cold neutrons for neutron scattering research uses. Cold neutrons have long wavelengths in the range of 4-12 angstroms. Cold neutrons are ideal for research applications with long length-scale molecular structures such as polymers, nanophase materials, and biological samples. These materials require large scale examination (and therefore require a longer wavelength neutron). These materials represent particular areas of science are at the forefront of current research initiatives that have a potentially significant impact on the materials we use in our everyday lives and our knowledge of biology and medicine. This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  5. On the preparation of self-supporting zinc target foils of separated isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the second report on the practical method of preparation of targets for nuclear experiments following the previous one (INS-TL-121 (in Japanese)). In this report, a method is described for the preparation of self-supporting zinc foils from ZnO. The thicknesses of target foils and their uniformity were measured with an α-ray thickness gauge. (auth.)

  6. About the possibility of use of different types of targets as a neutron source for subcritical nuclear reactor driven by particle beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, E.F.; Dorokhovich, S.L.; Chusov, I.A. [Obninsk Institute of Nuclear Power Engineering (Russian Federation)

    1995-10-01

    The schemes of jet gas and liquid targets as well as the gastargets with a solid phase dispersion are introduced to use to receive the neutrons admitted to a subcritical reactor core. The possible variants of target position in the reactor are considered, target characteristics are calculated. The authors pay a great attention to the estimation of radioactive products yield receiving due to the interaction of the beam with the target.

  7. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Science.gov (United States)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  8. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G.; Perlado, J.M. E-mail: mperlado@denim.upm.es; Alonso, E.; Alonso, M.; Dominguez, E.; Rubiano, J.G.; Gil, J.M.; Gomez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Minguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P

    2001-05-21

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT{sub x} fuel with a small tritium initial content (x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures ({>=}100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower T{sub e} and to enhance radiation losses, reducing the plasma temperature, T{sub i}. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination

  9. 1987 target values for uncertainty components in fissile isotope and element assay

    International Nuclear Information System (INIS)

    De Bievre, P.; Baumann, S.; Gorgenyi, T.; Kuhn, E.; Deron, S.; Dalton, J.; Perrin, R.E.; Pietri, C.; De Regge, P.

    1987-01-01

    The Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA), which at present includes the representation of 37 nuclear analytical laboratories, has long been concerned with defining realistic performance characteristics of destructive analysis techniques. One of the terms of reference of the working groups is: ''to evaluate and recommend criteria for destructive analysis of nuclear materials for use by plant operators and safeguarding authorities''. Some of the most important and most badly needed criteria are those to be used for judging results of quantitative determinations of fissile isotope and element amounts. The working group has recognized and discussed this problem at several meetings and decided that it was appropriate to fix reasonable levels of performance as ''goals'' for nuclear analytical laboratories

  10. Comparative studies of liquid metals for an alternative divertor target in a fusion reactor

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Tafalla, D.; Martin-Rojo, A. B.; Pastor, I.; Ochando, M. A.; Medina, F.; Zurro, B.; McCarthy, K. J.; the TJ-II Team

    2017-12-01

    Two liquid metals (LM), Li and LiSn (20:80 at), presently considered as alternative materials for the divertor target of a fusion reactor, have been exposed to the plasma in a capillary porous system (CPS) arrangement in TJ-II. A negligible perturbation of the plasma has been recorded in both cases, even when stellarator plasmas are particularly sensitive to high Z elements due to the tendency to central impurity accumulation. The surface temperature of the LM CPS samples (made of a tungsten mesh impregnated in SnLi or Li) has been measured during the plasma pulse with ms resolution by pyrometry and the thermal balance during heating and cooling has been used to obtain the thermal parameters of the SnLi and Li CPS arrangements. Temperatures as high as 1150 K during TJ-II plasma exposure were observed for the LiSn solid case. Strong changes in the thermal conductivity of the alloy were recorded in the cooling phase at temperatures close to the nominal melting point. The deduced values for the thermal conductivity of the LiSn alloy/CPS sample were significantly lower than those predicted from their individual components.

  11. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    Science.gov (United States)

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  12. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  13. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  14. Calculation of attainable superheats and predicted embryonic flux rates in commercial water isotope targets

    International Nuclear Information System (INIS)

    Alvord, Charles W.; Ruggles, Arthur E.; West, Colin D.

    2008-01-01

    Phase change in a fluid subject to a large spectrum of radiations is examined. The statistical variation in the fluid energy is considered in concert with the radiation field attributes to establish conditions for spinodal decomposition and bulk nucleation. This approach is developed in general and carried forward for the specific case of 18 O-enriched water used in commercial targets for the production of 18 F. Sensitivities of the outcome to specific attributes of the fluid state model are examined. The possibility for very high bulk nucleation site densities is exposed and may explain the observed thermal-fluid behavior in commercial water targets. These targets operate at elevated pressure and temperatures at and in excess of the saturation temperature. They are also subjected to a large spectrum of radiations, with differing levels of energy deposition. The conditions for spinodal decomposition and bulk nucleation (with and without radiation) in these targets are evaluated. It is likely that some bulk nucleation is occurring, and causing the density reduction locally in the target. Suitable experiments to evaluate this potential are more fully possible

  15. Cellular Lipid Extraction for Targeted Stable Isotope Dilution Liquid Chromatography-Mass Spectrometry Analysis

    Science.gov (United States)

    Gelhaus, Stacy L.; Mesaros, A. Clementina; Blair, Ian A.

    2011-01-01

    The metabolism of fatty acids, such as arachidonic acid (AA) and linoleic acid (LA), results in the formation of oxidized bioactive lipids, including numerous stereoisomers1,2. These metabolites can be formed from free or esterified fatty acids. Many of these oxidized metabolites have biological activity and have been implicated in various diseases including cardiovascular and neurodegenerative diseases, asthma, and cancer3-7. Oxidized bioactive lipids can be formed enzymatically or by reactive oxygen species (ROS). Enzymes that metabolize fatty acids include cyclooxygenase (COX), lipoxygenase (LO), and cytochromes P450 (CYPs)1,8. Enzymatic metabolism results in enantioselective formation whereas ROS oxidation results in the racemic formation of products. While this protocol focuses primarily on the analysis of AA- and some LA-derived bioactive metabolites; it could be easily applied to metabolites of other fatty acids. Bioactive lipids are extracted from cell lysate or media using liquid-liquid (l-l) extraction. At the beginning of the l-l extraction process, stable isotope internal standards are added to account for errors during sample preparation. Stable isotope dilution (SID) also accounts for any differences, such as ion suppression, that metabolites may experience during the mass spectrometry (MS) analysis9. After the extraction, derivatization with an electron capture (EC) reagent, pentafluorylbenzyl bromide (PFB) is employed to increase detection sensitivity10,11. Multiple reaction monitoring (MRM) is used to increase the selectivity of the MS analysis. Before MS analysis, lipids are separated using chiral normal phase high performance liquid chromatography (HPLC). The HPLC conditions are optimized to separate the enantiomers and various stereoisomers of the monitored lipids12. This specific LC-MS method monitors prostaglandins (PGs), isoprostanes (isoPs), hydroxyeicosatetraenoic acids (HETEs), hydroxyoctadecadienoic acids (HODEs), oxoeicosatetraenoic

  16. Fast reactors: R and D targets and outlook for their introduction

    International Nuclear Information System (INIS)

    Poplavsky, V.; Barre, B.; Aizawa, K.

    1997-01-01

    In this paper the current status of fast reactors development is briefly outlined, including experimental, demonstration, and commercial installations. Data on the experience gained in development and operation of NPPs with reactors of this type are presented. The issues are discussed in connection with possibilities of fast reactor development in the nuclear power structure for the near (up to 2010-2020) and distant future. In the final part of the paper, an analysis is given of possible ways for R and D development in the field of NPPs with fast neutron reactors. (author)

  17. The text of the instruments connected with the Agency's assistance to Argentina in establishing a research and isotope production reactor project

    International Nuclear Information System (INIS)

    1995-01-01

    The Agreement between the Republic of Argentina, the Federative Republic of Brazil, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials and the International Atomic Energy Agency for the Application of Safeguards came into force on 4 March 1994. As a result of the coming into force of the aforesaid Agreement for Argentina, the application of safeguards under the Project Agreement of 2 December 1964 between Argentina and the IAEA in connection with the Agency's assistance to Argentina in establishing a research and isotope production reactor project has been suspended

  18. Hybrid nuclear reactors and muon catalysis

    International Nuclear Information System (INIS)

    Petrov, Yu.

    1983-01-01

    Three methods are described of the conversion of isotope 238 U to 239 Pu by neutron capture in fast breeder reactors, in the breeding blanket of hybrid thermonuclear reactors using neutrons generated by fusion and electronuclear breeding in which the target is bombarded with 1 GeV protons. Their possible use in power production is discussed. Another prospective energy source is the use of muon catalysis in the fusion of deuterium and tritium nuclei. (J.P.)

  19. Study of short-lived fission products with the aid of an isotope separator connected to reactor R2-0

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    This report constitutes a final report on project 74-3289 together with a preliminary report for project 75-3332. These projects have been included in the budget years 1974/75 and 1975/76 as a contribution to the operating costs of reactor R2-0 at Studsvik. The reactor was used for experimental studies on short-lived fission products with OSIRIS isotope-separator equipment. The scientific programme is very broad. It comprises, in the first place, characterisation of fission products (a study of their excitation levels, measurement of decay properties such as half-life and emission of delayed neutrons, determination of neutron energy spectrum, determination of total decay energy, etc.). An important application of this field of research is the determination of decay heat in nuclear fuel. The programme thus comprises research of a fundamental character and applied research. (H.E.G.)

  20. Selection of support structure materials for irradiation experiments in the HFIR [High Flux Isotope Reactor] at temperatures up to 500 degrees C

    International Nuclear Information System (INIS)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500 degree C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs

  1. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  2. Large area isotopic silicon targets for astrophysical reaction rate studies in Si-26

    NARCIS (Netherlands)

    Greene, JP; Berg, GPA

    2005-01-01

    For measurements of stellar reaction rates of proton rich nuclei involving resonance levels just above threshold, targets of Si-28 were used in studies of the Si-21(He-4, He-6)Si-26 reaction using the Research Center for Nuclear Physics (RCNP) Ring Cyclotron at Osaka University. Resonance structure

  3. Production of Cs and Fr isotopes from a high density UC targets with different grain dimensions

    CERN Document Server

    Panteleev, V. N; Barzakh, A. E; Fedorov, D. V; Ivanov, V. S; Mezilev, K. A; Moroz, F. V; Molkanov, P. L; Alyakrinskiy, O; Barbui, M; Tonezzer, M; Stroe, L; Orlov, S. Yu; Tecchio, L. B; Lhersonneau, G

    A UC target material of 12 g/cm3 density with the grain size of 20 and 5 μm manufactured in a form of pills by the method of powder metallurgy has been tested on-line within the temperature range of (1800-2000) °C. Abstract to ENAM2008

  4. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    Science.gov (United States)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  5. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  6. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  7. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    International Nuclear Information System (INIS)

    Uwe, Greife

    2014-01-01

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  8. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  9. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V. [Inst. of Radiobiology, Minsk Univ. (Belarus); Boulyga, S.F. [Inst. of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Becker, J.S. [Central Div. of Analytical Chemistry, Research Centre Juelich, Juelich (Germany)

    2005-07-01

    An analytical method is described for the estimation of uranium concentrations, of {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10{sup -9}g/g to 2.0 x 10{sup -6}g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and the average value amounted to 9.4{+-}0.3 MWd/(kg U). (orig.)

  10. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    Science.gov (United States)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  11. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  12. Isotopic distributions of the sup 1 sup 8 N fragmentation products in coincidence with neutrons on targets sup 1 sup 9 sup 7 Au and sup 9 Be

    CERN Document Server

    Li Xiang Qing; Ye Yan Lin; Hua Hui; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zhu Yu; Wang Su Fang

    2002-01-01

    The authors present the experimental isotopic distributions of the sup 1 sup 8 N projectile fragmentation products Li, Be, B and C in coincidence with neutrons, as well as the inclusive ones on sup 1 sup 9 sup 7 Au and sup 9 Be targets. In the framework of the abrasion-ablation model, these distributions are calculated for various nucleon density distributions of the projectile. The comparison with experimental isotopic distributions of the projectile-like fragments in coincidence with neutrons shows that the information on the nucleon density distribution of the sup 1 sup 8 N projectile can be extracted

  13. Performance of the multiple target He/PbI sub 2 aerosol jet system for mass separation of neutron-deficient actinide isotopes

    CERN Document Server

    Ichikawa, S; Asai, M; Haba, H; Sakama, M; Kojima, Y; Shibata, M; Nagame, Y; Oura, Y; Kawade, K

    2002-01-01

    A multiple target He/PbI sub 2 aerosol jet system coupled with a thermal ion source was installed in the isotope separator on line (JAERI-ISOL) at the JAERI tandem accelerator facility. The neutron-deficient americium and curium isotopes produced in the sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 U( sup 6 Li, xn) and sup 2 sup 3 sup 7 Np( sup 6 Li, xn) reactions were successfully mass-separated and the overall efficiency including the ionization of Am atoms was evaluated to be 0.3-0.4%. The identification of a new isotope sup 2 sup 3 sup 7 Cm with the present system is reported.

  14. A new infiltration method for coating highly permeable matrices with compound materials for high-power isotope-separator-on-line production target applications

    International Nuclear Information System (INIS)

    Kawai, Y.; Bilheux, Jean-Christophe; Stracener, Daniel W; Alton, Gerald D

    2005-01-01

    A new infiltration coating method has been conceived for uniform and controlled thickness deposition of target materials onto highly permeable, complex-structure matrices to form short-diffusion-length isotope-separator-on-line (ISOL) production targets for radioactive ion beam research applications. In this report, the infiltration technique is described in detail and the universal character of the technique illustrated in the form of SEMs of several metal-carbide, metal-oxide and metal-sulfide targets for potential use at present or future radioactive ion beam research facilities

  15. Fuel requirements for isotope production and reasearch reactors: Possible alternative ways of meeting non-proliferation objectives

    International Nuclear Information System (INIS)

    There is a continuing need for access to medium-to-high flux research reactors of intermediate power level (5-50 MW) for the production of industrial and medical radioisotopes, for the provision of neutron beams and for materials research. The construction of further reactors of this type is likely. To obtain the required flux levels in adequate volumes and at the lowest capital cost, past practice has been to design a small-core reactor around a fuel element concept using fully enriched uranium, that is, uranium enriched to 80% U-235 or greater. In recent years, however, it has been recognised that the use of fully enriched uranium in research reactors could give rise to significant risks of nuclear weapons proliferation. Accordingly, there would be advantage if research reactors could be operated on low enriched fuel, that is, enrichment levels of 20% or less. It is the purpose of this paper to explore the implications for proliferation of the enrichment level of research reactor fuel and to draw attention to possible options for reducing proliferation concerns which warrant further study. It does not, however, consider research reactors using very low enriched or natural uranium fuel. The paper is offered to stimulate discussion of the issues and the views expressed do not necessarily represent any formal Australian position

  16. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  17. Nuclear data needs for the analysis of generation and burn-up of actinide isotopes in nuclear reactors

    International Nuclear Information System (INIS)

    Kuesters, H.

    1980-04-01

    A reliable prediction of the in-pile and out-of-pile physics characteristics of nuclear fuel is one of the objectives of present-day reactor physics. The paper describes the main production paths of important actinides for light water and fast breeder reactors. The accuracy of recent nuclear data is examined by comparisons of theoretical predictions with the results from post-irradiation analysis of nuclear fuel from power reactors, and partly with results obtained in zero-power facilities. A world-wide comparison of nuclear data to be used in large fast power reactor burn-up and long term considerations is presented. The needs for further improvement of nuclear data are discussed. (orig.) [de

  18. Low enriched uranium UAl{sub X}-Al targets for the production of Molybdenum-99 in the IEA-R1 and RMB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nishiyama, Pedro J.B. de O., E-mail: pedro.julio@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2011-07-01

    The IEA-R1 reactor of IPEN/CNEN-SP in Brazil is a pool type research reactor cooled and moderated by demineralized water and having Beryllium and Graphite as reflectors. In 1997 the reactor received the operating licensing for 5 MW. A new research reactor is being planned in Brazil to replace the IEA-R1 reactor. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Low enriched uranium (LEU) (<20% {sup 235}U) UAl{sub x} dispersed in Al targets are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed, respectively, to compare the production of {sup 99}Mo for these targets in IEA-R1 reactor and RMB and to determine the temperatures achieved in the UAl{sub x}-Al targets during irradiation. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations was utilized the computer code MTRCR-IEAR1. (author)

  19. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  20. Design and Thermal Analysis for Irradiation of Pyrolytic Carbon/Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Department of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.

  1. Neutronic and thermal hydraulic analyses of LEU targets irradiated in a research reactor for Molybdenum-99 production

    International Nuclear Information System (INIS)

    Jo, Daeseong; Lee, Kyung-Hoon; Kim, Hong-Chul; Chae, Heetaek

    2014-01-01

    Highlights: • Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99. • Heat production during and after irradiation was evaluated using MCNP and ORIGEN-APR. • Cooling capacities under various cooling conditions were evaluated using TMAP. • Natural convective cooling was adequate for the decay power after 0.03 h from withdrawal. • Maximum temperature of the target decayed for 24 h does not exceed the blistering threshold. - Abstract: Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99 production in a research reactor were performed to investigate (1) the heat production during irradiation, (2) decay heat after irradiation, and (3) cooling capacities under various cooling conditions. The heat production on the target plates irradiated in the core was evaluated using the MCNP code. The decay heat after irradiation was evaluated using the ORIGEN-APR code, and compared against ANSI/ANS-5.1-1979. The cooling capacities of forced convective cooling during irradiation and natural convective cooling after irradiation were estimated using the TMAP code. An equilibrium core with different core statuses i.e., BOC, MOC, and EOC was used to evaluate power released from the targets and the axial power distribution. Based on the neutronic calculations, thermal margins i.e., the maximum wall temperature, minimum ONB temperature margin, and minimum CHF ratio were estimated, and the cooling strategy of the fission Mo targets was discussed. The targets were cooled by forced convective cooling during irradiation, and cooled by natural convective cooling after irradiation. For a further production process, the targets transported to a hot cell were exposed to the air, and cooled by natural convection cooling in air. As a result, the maximum wall temperature remained below the ONB temperature while the targets were under water, and the maximum wall temperature remained under the blistering limit while the targets

  2. Directions for reactor target design based on the US heavy ion fusion systems assessment

    International Nuclear Information System (INIS)

    Wilson, D.C.; Dudziak, D.; Magelssen, G.; Zuckerman, D.; Dreimeyer, D.

    1986-01-01

    We studied areas of major uncertainty in target design using the cost of electricity as our figure of merit. Net electric power from the plant was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain. Factors of three changes in gain cause only 8 to 12% changes in electricity cost. An increase in the peak power needed to drive targets poses only a small cost risk, but requires many more beamlets be transported to the target. A shortening of the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. To address the major uncertainties, target design should concentrate on the understanding requirements for ion range and peak driver power

  3. Study of the effect of irradiation of Mo targets at nuclear reactor

    International Nuclear Information System (INIS)

    Nieto, Renata C.; Lima, Ana Lucia V.P.; Silva, Nestor C. da; Osso Junior, Joao Alberto

    2000-01-01

    The most used radioisotope in nuclear medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by the 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MoO 3 , metallic Mo and Mo Zr gel were evaluated, as well as the radionuclidic purity of 99m Tc eluted from generators prepared. (author)

  4. Analysis of a Partial MOX Core Design with Tritium Targets for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anistratov, Dmitriy Y. [Texas A & M Univ., College Station, TX (United States); Adams, Marvin L. [Texas A & M Univ., College Station, TX (United States)

    1998-04-19

    This report constitutes tangible and verifiable deliverable associated with the task To study the effects of using WG MOX fuel in tritium-producing LWR” of the subproject Water Reactor Options for Disposition of Plutonium. The principal investigators of this subproject are Naeem M. Abdurrahman of the University of Texas at Austin and Marvin L. Adams of Texas A&M University. This work was sponsored by the Amarillo National Resource Center for Plutonium.

  5. Heavy ion inertial fusion: interface between target gain, accelerator phase space and reactor beam transport revisited

    International Nuclear Information System (INIS)

    Barletta, W.A.; Fawley, W.M.; Judd, D.L.; Mark, J.W.K.; Yu, S.S.

    1984-01-01

    Recently revised estimates of target gain have added additional optimistic inputs to the interface between targets, accelerators and fusion chamber beam transport. But it remains valid that neutralization of the beams in the fusion chamber is useful if ion charge state Z > 1 or if > 1 kA per beamlet is to be propagated. Some engineering and economic considerations favor higher currents

  6. Investigation of the delay in pressure vessel embrittlement specimen analysis for the Oak Ridge National Laboratory High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Rothrock, J.D.; Hoffman, E.E.; Manthey, G.C.; Sheffey, D.W.

    1987-01-01

    Analysis of the investigative data pertaining to this incident reveals the following conditions as key findings and probable causes: (1) The contractor failed to properly implement the surveillance program for monitoring reactor pressure vessel embrittlement. (2) Contractor and DOE organizations provided less than adequate oversight and independent overview, especially by not requiring operating organizations to provide documented evidence to substantiate claims that there was ''no problem'' with respect to embrittlement. (3) Although the temperature limitation for reactor pressurization identified in the Technical Specifications was never violated, the basis of this safety limitation was violated. (4) The basis for concluding that there would be no embrittlement of the pressure vessel steel over the expected life of the reactor is questionable. (5) The contractor and DOE failed to make the surveillance program visible by incorporating it in the Technical Specifications. (6) The Accident Analysis/Final Safety Analysis Report was never adequately reviewed and updated subsequent to its initial issuance. (7) Surveillance specimen analysis was incomplete and never transmitted to reactor operating personnel in a usable format prior to November 1986. (8) There was extensive delays (many years) in the testing, analysis, and reporting of surveillance program results

  7. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  8. Exploring the engineering limit of heat flux of a W/RAFM divertor target for fusion reactors

    Science.gov (United States)

    Mao, X.; Fursdon, M.; Chang, X. B.; Zhang, J. W.; Liu, P.; Ellwood, G.; Qian, X. Y.; Qin, S. J.; Peng, X. B.; Barrett, T. R.; Liu, P.

    2018-06-01

    The design and development of a fusion reactor divertor plasma facing component (PFC) is one of the many challenging issues on the road to commercial use of fusion energy. The divertor PFC is expected to exhaust steady state heat loads in the region of 10 MW m‑2 while keeping temperatures and thermo-mechanical stresses in its structure within the allowable limits. For ITER (International Thermo-Nuclear Experimental Reactor) a water cooled W/CuCrZr divertor PFC concept has been developed. However, this concept is not necessarily assured for use in future fusion reactors mainly because the neutron radiation dose would be at least an order magnitude higher, resulting in limited thermo-mechanical performance and considerably more activated waste products. In the present study, a water cooled divertor PFC using reduced activation ferritic-martensitic (RAFM) steel as the heat sink pipe has been designed with pressurised water reactor-like cooling conditions (pressure of 15.5 MPa, velocity of 10–20 m s‑1 and temperature of 300 °C). The PFC is made up of a number of rectangular tungsten tiles, each with an inner circular hole (so-called monoblocks), joined onto a RAFM steel pipe with copper interlayers. The thermo-mechanical performance of the PFC has been studied in detail. The heat transfer coefficient between the RAFM pipe inner surface and the water was calculated using published correlations. Geometric parameters and water velocity were optimized with finite element (FE) thermal analysis, to achieve acceptable temperatures in the structure given the target exhaust heat load of 10 MW m‑2. Under this heat load and the optimised thermal design parameters, the structure of the PFC was further assessed by mechanical analysis. We find that under these conditions the RAFM steel pipe experiences cyclic plasticity, and fails the common linear elastic ratchetting (3 Sm) rule. Nevertheless, the designed W/RAFM divertor PFU can withstand 10 MW m‑2 heat load, albeit

  9. Review on transactinium isotope build-up and decay in reactor fuel and related sensitivities to cross section changes and results and main conclusions of the IAEA-Advisory Group Meeting on Transactinium Nuclear Data, held at Karlsruhe, November 1975

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.

    1976-04-01

    In this report a review is given on the actinium isotope build-up and decay in LWRs, LMFBRs and HTRs. The dependence of the corresponding physical aspects on reactor type, fuel cycle strategy, calculational methods and cross section uncertainties is discussed. Results from postirradiation analyses and from integral experiments in fast zero power assemblies are compared with theoretical predictions. Some sensitivity studies about the influence of actinium nuclear data uncertainties on the isotopic concentration, decay heat, and the radiation out-put in fuel and waste are presented. In a second part, the main results of the IAEA-Advisory Group Meeting on Transactinium Nuclear Data are summarized and discussed. (orig.) [de

  10. A demonstration of the 'isotope wind tunnel principle' in JET and its use in predicting reactor performance

    International Nuclear Information System (INIS)

    Cordey, J.; Alper, B.; Budny, R.

    2000-01-01

    ELMy H-mode pulses have been obtained with different hydrogenic isotopes (H and D) but having the same profiles of the dimensionless parameters ρ*, β*, ν* and q, to test whether the confinement scale invariance principle is valid in a tokamak. The fact that the confinement times, the ELM and sawtooth frequencies in the two pulses all scale as expected suggests that the invariance principle is satisfied through the plasma radial extent, in spite of the differing physical processes taking place in the plasma centre, core and edge regions. An application of this 'isotope windtunnel technique' to predicting D-T performance of next step devices is discussed. In tokamak discharges, such as the steady state ELMy H-mode, the physical processes change dramatically as one moves out in minor radius. In the central region the temperature gradient is controlled by MHD modes (sawteeth), whilst outside in what is known as the core confinement region the transport is thought to be due to small scale Larmor radius (r i ) size turbulence, such as that caused by the ion temperature gradient instability. Finally in the edge region the transport is almost neoclassical with intermittent MHD events (ELMs) controlling the steepness of the gradients in this region. From theoretical analysis, in particular the confinement scale invariance principle, it should be possible to describe the transport properties in all three regions in terms of the profiles of the basic dimensionless plasma physics parameters ρ*(∝(MT) 1/2 /aB), β(∝ nT/B 2 ), ν* (∝ na/T 2 ) and q (∝Bκ/Rj). The thermal diffusivity should have the form χ ∝ Ba 2 /M F(ρ*, β, ν*, q, ...) where the form of the function F will be different in each of the three regions. One method of checking whether the invariance principle is correct is to complete wind tunnel or identity experiments on different tokamaks. This involves setting up discharges on different tokamaks with the same profiles of ρ*, β, ν* and q and

  11. Isotope production

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Dewi M.

    1995-07-15

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the Cyclone-30

  12. Development of highly heat-resistant target elements for fusion reactors; Entwicklung hochwaermebestaendiger Targetelemente fuer Fusionsreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, Jean; Stadler, R.; Greuner, H.; Smirnow, M.; Drescher, N.; Boeswirth, B.; Tretter, J.; Mendelevitch, B.

    2016-06-15

    The following topics are dealt with: Scientific and technical results for divertor components (''target elements'') of the Wendelstein 7-X facility, development of nondestructive test procedures at the cooling structures, development of an automatized procedure for the visual inspection, the ''scraper''-element. (HSI)

  13. On the influence of the americium isotopic vector on the cooling time of minor actinides bearing blankets in fast reactors

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2018-01-01

    Full Text Available In the heterogeneous minor actinides transmutation approach, the nuclei to be transmuted are loaded in dedicated targets often located at the core periphery, so that long-lived heavy nuclides are turned into shorter-lived fission products by fission. To compensate for low flux level at the core periphery, the minor actinides content in the targets is set relatively high (around 20 at.%, which has a negative impact on the reprocessing of the targets due to their important decay heat level. After a complete analysis of the main contributors to the heat load of the irradiated targets, it is shown here that the choice of the reprocessing order of the various feeds of americium from the fuel cycle depends on the actual limit for fuel reprocessing. If reprocessing of hot targets is possible, it is more interesting to reprocess first the americium feed with a high 243Am content in order to limit the total cooling time of the targets, while if reprocessing of targets is limited by their decay heat, it is more interesting to wait for an increase in the 241Am content before loading the americium in the core. An optimization of the reprocessing order appears to lead to a decrease of the total cooling time by 15 years compared to a situation where all the americium feeds are mixed together when two feeds from SFR are considered with a high reprocessing limit.

  14. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  15. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    Directory of Open Access Journals (Sweden)

    T. Szücs

    2018-01-01

    Full Text Available The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ195Au, 191Ir(α,n194Au, 193Ir(α,n196mAu, 193Ir(α,n196Au reactions have been measured with the activation technique between Eα=13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α+nucleus optical potential gives a good description of the experimental data.

  16. The future of producing separated stable isotopes at Oak Ridge National Laboratory for accelerator applications

    International Nuclear Information System (INIS)

    Collins, E.D.

    1994-01-01

    Separated stable isotopes, produced in the calutrons at Oak Ridge National Laboratory, are essential target materials for production of numerous radioisotopes in accelerators and reactors. Recently, separated stable isotope production has been curtailed because government appropriations were discontinued and salts revenues decreased. The calutrons were placed in standby and the operating staff reduced to enable support by sales from existing inventories. Appeals were made to industry and government to preserve this national capability. Methods for providing volume-based price reductions were created to attract support from commercial isotope users. In 1994, the Department of Energy's Isotope Production and Distribution Program was restructured and a strategy produced to seek appropriated funding for the future production of rare, nonprofitable isotopes for research uses. This strategy, together with new demands for medical isotopes, will enable future operation of the calutrons. Moreover, production may be enhanced by complementing calutron capabilities with the Plasma Separation Process

  17. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  18. Optimization study and neutronic and thermal-hydraulic design calculations of a 75 KWTH aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Garcia, Lorena P. Rodriguez; Llanes, Jesus Salomon; Hernandez, Carlos R. Garcia, E-mail: dperez@instec.cu, E-mail: dmilian@instec.cu, E-mail: lorenapilar@instec.cu, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Lira, Carlos A. Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Rodriguez, Manuel Cadavid, E-mail: mcadavid2001@yahoo.com [Tecnologia Nuclear Medica Spa, TNM (Chile)

    2015-07-01

    {sup 99m}Tc is the most common radioisotope used in nuclear medicine. It is a very useful radioisotope, which is used in about 30-40 million procedures worldwide every year. Medical diagnostic imaging techniques using {sup 99m}Tc represent approximately 80% of all nuclear medicine procedures. Although {sup 99m}Tc can be produced directly on a cyclotron or other type of particle accelerator, currently is almost exclusively produced from the beta-decay of its 66-h parent {sup 99}Mo. {sup 99}Mo production system in an Aqueous Homogeneous Reactor (AHR) is potentially advantageous because of its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing and purification characteristics. In this paper, an AHR conceptual design using Low Enriched Uranium (LEU) is studied and optimized for the production of {sup 99}Mo. Aspects related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotopes production and the reactivity feedback introduced in the solution by the volumetric expansion of the fuel solution due to thermal expansion of the fuel solution and the void volume generated by radiolytic gas bubbles were evaluated. Thermal-hydraulics studies were carried out in order to show that sufficient cooling capacity exists to prevent fuel overheating. The neutronic and thermal-hydraulics calculations have been performed with the MCNPX computational code and the version 14 of ANSYS CFX respectively. The neutronic calculations demonstrated that the reactor is able to produce 370 six-day curies of {sup 99}Mo in 5 days operation cycles and the CFD simulation demonstrated that the heat removal systems provide sufficient cooling capacity to prevent fuel overheating, the maximum temperature reached by the fuel (89.29 deg C) was smaller to the allowable temperature limit (90 deg C). (author)

  19. ITER task T26/28 (1994): preliminary results on the solubility, diffusion and permeability of hydrogen isotopes in potentional fusion reactor ceramics

    International Nuclear Information System (INIS)

    Thompson, D.; Macauley-Newcombe, R.

    1995-02-01

    Ceramic insulators are integral parts of numerous components essential for the heating, control and diagnostic measurement of fusion plasmas. For safe and reliable reactor operations it is important to be able to predict the resultant tritium inventories and permeation fluxes. Currently there is little or no published data on tritium behaviour in AlN. This report contains the preliminary results of work begun in 1994 on ITER task T26/28. The ceramics studied in 1994 were AlN and Al 2 O 3 . Section 2.1 reports on the measurements of permeation through an AlN film on a vanadium substrate, with supplementary Rutherford backscattering measurements of the surface composition, before and after permeation. Section 2.2 deals with ion-beam analysis of hydrogen and deuterium in sapphire and alumina, before and after room temperature implantation of deuterium, with careful attention to the effects of the analysis ions upon the data; section 2.3 looks at the data in 2.2 from the perspective of ion-beam-induced desorption; and in section 2.4 a thermal desorption measurement is reported for comparison. The numbers derived include effective diffusivities and, in the case of AlN, an estimated solubility, for hydrogen isotopes. 16 refs., 1 tab., 12 figs

  20. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Marumo, Julio T., E-mail: bgeraldo@ipen.br, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taddei, Maria Helena T., E-mail: mhtaddei@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil)

    2013-07-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  1. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Marumo, Julio T.; Taddei, Maria Helena T.

    2013-01-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  2. Nuclear Data Target Accuracy Requirements For MA Burners

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.

    2011-01-01

    A nuclear data target accuracy assessment has been carried out for two types of transmuters: a critical sodium fast reactor(SFR) and an accelerator driven system (ADMAB). Results are provided for a 7 group energy structure. Considerations about fuel cycle parameters uncertainties illustrate their dependence from the isotope final densities at end of cycle.

  3. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    Science.gov (United States)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  4. Isotope distributions in primary heat transport and containment systems during a severe accident in CANDU type reactor

    International Nuclear Information System (INIS)

    Constantin, M.

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code. The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivation to begin with a simplified model. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU loss of coolant accident sequence (CATHENA code results). The source term of FPs introduced into the PHT was estimated by ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species were obtained by using SOPHAEROS module. The distributions within the containment are obtained by the CPA module (thermalhydraulic calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts of the containment and different hosts. (authors)

  5. ILL High Flux Reactor in the event of an earthquake: Safety targets, technical approaches and work carried out

    International Nuclear Information System (INIS)

    Plewinski, Francois; Coiscault, Thomas

    2006-01-01

    The Institut Max von Laue - Paul Langevin is a pan-European research organisation and the world leader in neutron science and technology. Since 1971 it has been operating the ILL High-Flux Reactor (HFR), the most intense continuous neutron source in the world. The ILL is governed by an intergovernmental Convention between France, Germany and the United Kingdom, which was signed in 1967; since then several other countries have joined the ILL as Scientific Member countries: Italy, Spain, Switzerland, Russia, Austria, the Czech Republic and Sweden. The fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. Thanks to the reliability of the HFR since its very first years of operation, scientific output at the ILL has developed in a spectacular fashion, allowing the Institute to become the world's foremost neutron facility in terms of scientific publications. The Millennium Programme, a 20 MEURO development plan, was set up in 2000 with the aim of launching an accelerated but sustainable programme of instrument renewal which will maintain the ILL's leading position. Over the next 10 years, a further 100 MEURO of investment is foreseen for the Millennium Programme. By way of comparison, the annual ILL general budget is around 75 MEURO. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. The Refit Programme for upgrading the installations and improving safety levels is now under way, in order to allow the ILL to operate for at least another 20 years. The contents of the paper is as follows: 1. Context; 2. HFR operations and scientific experiments; 3. HFR operations - Safety; 3.1. Operation at nominal power; 3.2. Automatic reactor shutdown - Transition to natural convection; 4. Seismic scenario; 4.1. Target equivalent doses for local populations; 4.2. Relevant source terms; 4.3. Radiological

  6. Comparison of low enriched uranium (UAlx-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G.; Nishiyama, Pedro J.B. de O.

    2011-01-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium ( 235 U) UAl x dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  7. Technology of micro- and macroshells and the problem of reactor targets

    International Nuclear Information System (INIS)

    Akunets, A.A.; Dorogotovtsev, V.M.; Merkul'ev, Yu.A.

    1987-01-01

    Technological principles, permitting to produce laser targets of 4.0 - 10 mm diameter are suggested. According to the given technique a particle of initial substance (drop or shell) with additions of a gas-forming agent under conditions similar to free fall, flies in the atmosphere of rarefied heat-exchange gas through a hot area. The process of its heating under conditions of a weak forced convective heat exchange is the main process taking much time. Starting heat treatment of a shell 4.0 mm in diameter with aspect ratio A = 200, i.e. thickness of 10 μm, the treatment can be finished with 10.0 mm diameter at A = 1300, i.e. with wall thickness 1.6 μm. Experimental testing has confirmed the evaluations. Shells of 4.0 mm diameter with A = 2500 are produced

  8. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Daddy, E-mail: d.setyawan@bapeten.go.id [Center for Assessment of Regulatory System and Technology for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia); Rohman, Budi [Licensing Directorate for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  9. Dating of the Francevillian sedimentary series and mineralogic and isotopic (Sm, Nd, Rb, Sr, K, Ar, U, O and C) characterization of the gangue of the reactors 10 and 13. Preliminary report

    International Nuclear Information System (INIS)

    Gautier-Lafaye, F.; Stille, P.; Bros, R.; Taieb, R.

    1993-01-01

    This paper summarizes the various ages reported for the diagenetic events in the Francevillian sedimentary series (Precambrian era) and the fission reactors of Oklo. Obviously, differences exist between the ages obtained on the silicate minerals and the ages obtained on the Uranium ores and on the reactors. Clay minerals which crystallized during the fission reactions yield younger ages than the reactors themselves. Similarly, the diagenetic clays (1870 Ma) show younger ages than the Uranium ores (2000 Ma). This is in contrast to mineralogical and field evidence indicating that Uranium mineralization occurred during diagenesis of the Francevillian sediments. These antithetical results give rise to several questions. Does the age obtained on the diagenetic clays date a late thermal event or does the age of the Uranium mineralization reflect a multistage U-Pb history. This work tries to bring answers with the help of new isotopic analysis and studies mineralogy of the gangue of reactors and isotopic compositions in Uranium ores. 8 refs., 4 figs

  10. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  11. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  12. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Bodey, Isaac T.; Curtis, Franklin G.; Arimilli, Rao V.; Ekici, Kivanc; Freels, James D.

    2015-01-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  13. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  14. Investigation of mechanisms of production of argon, krypton and xenon isotopes formed in heavy targets by protons with an energy ranging from 0.15 to 24 GeV

    International Nuclear Information System (INIS)

    Sauvageon, Henri

    1981-01-01

    As experimental results of the investigation of interactions between high-energy protons and nucleus generally lead to the distinction between four types of reaction mechanisms (spallation, fission, fragmentation and isotope production), this research thesis reports the study of this mechanisms by using the so-called 'thick target - thick collector' experiment and by studying the production of various isotopes of rare gases (argon, krypton, xenon). These isotopes are produced by using platinum, gold, bismuth and thorium targets bombarded by protons with an energy ranging from 0.15 to 24 GeV. The author presents the experimental methods (target preparation and irradiation, rare gas analysis system), reports the analysis of thick target - thick-collector experiments (vector-based representation, path determination, path-curve energy, corrections of experimental data, excitation energy of the intermediate nucleus), presents the experimental results, and discusses their interpretation (two-stage model of high energy nuclear reactions, isotopes produced by spallation and by fission, isotopes produced by deep spallation, representations of mechanisms of fragmentation and deep spallation)

  15. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Gill, R.L.

    1977-10-01

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  16. Numerical investigations of the fuel cycle for a 10 GW(TH)-OTTO-pebble-bed reactor with regard to high conversion ratio under special consideration of U-236 disconnexion through isotope-separation

    International Nuclear Information System (INIS)

    Werner, H.

    1976-12-01

    A conversion ratio of near 1.0 can be achieved in a pebble-bed reactor using the OTTO (once through then out) loading scheme, having an economic burn-up of the fuel, an economic power density and a moderation ratio, which is considered realistically for the future. The flexibility of the reactor concept and of the fuel element design allows to recycle the fuel during full-power operation. In the present report first the criteria are shown, which are necessary to reach a high conversion ratio. Further it is presented that the conversion ratio increases considerably by closing the fuel cycle in consequence of the building-up of U-233. In this way the fuel inventory and the fuel consumption can considerably be diminished. It is demonstrated that the building-up and the accumulation of U-236 effects an important deterioration of the neutron economy. By taking the reprocessed uranium through an isotope separation (for example: ultra-gas-centrifugation) and by separation of U-236 from the other uranium isotopes it is possible to reduce the fuel consumption considerably. The expenditure and the cost which are necessary for the isotope separation are presented. (orig.) [de

  17. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  18. Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation.

    Science.gov (United States)

    Penning, Holger; Elsner, Martin

    2007-11-01

    Potentially, compound-specific isotope analysis may provide unique information on source and fate of pesticides in natural systems. Yet for isotope analysis, LC-based methods that are based on the use of organic solvents often cannot be used and GC-based analysis is frequently not possible due to thermolability of the analyte. A typical example of a compound with such properties is isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea), belonging to the worldwide extensively used phenylurea herbicides. To make isoproturon accessible to carbon and nitrogen isotope analysis, we developed a GC-based method during which isoproturon was quantitatively fragmented to dimethylamine and 4-isopropylphenylisocyanate. Fragmentation occurred only partially in the injector but was mainly achieved on a heated capillary column. The fragments were then chromatographically separated and individually measured by isotope ratio mass spectrometry. The reliability of the method was tested in hydrolysis experiments with three isotopically different batches of isoproturon. For all three products, the same isotope fractionation factors were observed during conversion and the difference in isotope composition between the batches was preserved. This study demonstrates that fragmentation of phenylurea herbicides does not only make them accessible to isotope analysis but even enables determination of intramolecular isotope fractionation.

  19. Temperature effects on the behavior of liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target

    International Nuclear Information System (INIS)

    Kim, K.; Mok, L.S.

    1984-05-01

    The present work studies the temperature effects on the formation of a uniform liquid hydrogen layer inside a spherical glass shell (SGS). The profile of the liquid layer is first investigated for an isothermal case. An equation suitable for describing the profile is derived by including the London-van der Waals attractive forces between the liquid and substrate molecules. Two theoretical models are then established to explain the changes in the liquid layer profile under the influence of a vertically applied temperature gradient. The characteristics of the fluid flows are obtained by solving the fluid equations under the low-Reynolds-number approximations. The effect of the component separation both in the liquid layer and the vapor region, which is induced by the temperature gradient, is studied when the enclosure inside the SGS is a mixture of hydrogen isotopes. A uniform layer can also be formed for the mixture liquid except that the required temperature gradient is now positive in direction, unlike the case of the single-component liquid. The heating effect due to the radioactive decay of tritium is also evaluated. An experimental apparatus capable of generating a desired temperature gradient across the SGS at liquid hydrogen temperatures is described. The profiles of the liquid layer are observed for different temperature gradients and the results are in qualitative agreement with the theoretical predictions

  20. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  1. Manufacturing W fibre-reinforced Cu composite pipes for application as heat sink in divertor targets of future nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Alexander v.; You, Jeong-Ha [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Ewert, Dagmar [Institut fuer Textil- und Verfahrenstechnik Denkendorf, 73770 Denkendorf (Germany); Siefken, Udo [Louis Renner GmbH, 85221 Dachau (Germany)

    2016-07-01

    An important plasma-facing component (PFC) in future nuclear fusion reactors is the so-called divertor which allows power exhaust and removal of impurities from the main plasma. The most highly loaded parts of a divertor are the target plates which have to withstand intense particle bombardment. This intense particle bombardment leads to high heat fluxes onto the target plates which in turn lead to severe thermomechanical loads. With regard to future nuclear fusion reactors, an improvement of the performance of divertor targets is desirable in order to ensure reliable long term operation of such PFCs. The performance of a divertor target is most closely linked to the properties of the materials that are used for its design. W fibre-reinforced Cu (Wf/Cu) composites are regarded as promising heat sink materials in this respect. These materials do not only feature adequate thermophysical and mechanical properties, they do also offer metallurgical flexibility as their microstructure and hence their macroscopic properties can be tailored. The contribution will point out how Wf/Cu composites can be used to realise an advanced design of a divertor target and how these materials can be fabricated by means of liquid Cu infiltration.

  2. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria Jeanne [California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  3. Reactor-produced radionuclides at the University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Ketring, A.R.; Evans-Blumer, M.S.; Ehrhardt, G.J.

    1997-01-01

    Nuclear medicine has primarily been a diagnostic science for many years, but today is facing considerable challenges from other modalities in this area. However, these competing techniques (magnetic resonance imaging, ultrasound, and computer-assisted tomography) in general are not therapeutic. Although early nuclear medicine therapy was of limited efficacy, in recent years a revolution in radiotherapy has been developing base don more sophisticated targeting methods, including radioactive intra-arterial microspheres, chemically-guided bone agents, labelled monoclonal antibodies, and isotopically-tagged polypeptide receptor-binding agents. Although primarily used for malignancies, therapeutic nuclear medicine is also applicable to the treatment of rheumatoid arthritis and possibly coronary artery re closure following angioplasty. The isotopes of choice for these applications are reactor-produced beta emitters such as Sm-153, Re-186, Re-188, Ho-166, Lu-177, and Rh-105. Although alpha emitters possess greater cell toxicity due to their high LET, the greater range of beta emitters and the typically inhomogeneous deposition of radiotherapy agents in lesions leads to greater beta 'crossfire' and better overall results. The University of Missouri Research Reactor (MURR) has been in the forefront of research into means of preparing, handling and supplying these high-specific-activity isotopes in quantities appropriate not only for research, but also for patient trials in the US and around the world. Researchers at MURR in collaboration with others at the University of Missouri (MU) developed Sm-153 Quadramet TM , a drug recently approved in the US for palliation of bone tumor pain. In conjunction with researchers at the University of Missouri-Rolla, MURR also developed Y-90 TheraSphere TM , an agent for the treatment of liver cancer now approved in Canada. Considerable effort has been expended to develop techniques for irradiation, handling, and shipping isotopes

  4. Reactor-produced radionuclides at the University of Missouri Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ketring, A.R.; Evans-Blumer, M.S.; Ehrhardt, G.J. [University of Missouri Research Reactor, Colombia (United States). Departments of Radiology, Chemistry and Nuclear Engineering

    1997-10-01

    Nuclear medicine has primarily been a diagnostic science for many years, but today is facing considerable challenges from other modalities in this area. However, these competing techniques (magnetic resonance imaging, ultrasound, and computer-assisted tomography) in general are not therapeutic. Although early nuclear medicine therapy was of limited efficacy, in recent years a revolution in radiotherapy has been developing base don more sophisticated targeting methods, including radioactive intra-arterial microspheres, chemically-guided bone agents, labelled monoclonal antibodies, and isotopically-tagged polypeptide receptor-binding agents. Although primarily used for malignancies, therapeutic nuclear medicine is also applicable to the treatment of rheumatoid arthritis and possibly coronary artery re closure following angioplasty. The isotopes of choice for these applications are reactor-produced beta emitters such as Sm-153, Re-186, Re-188, Ho-166, Lu-177, and Rh-105. Although alpha emitters possess greater cell toxicity due to their high LET, the greater range of beta emitters and the typically inhomogeneous deposition of radiotherapy agents in lesions leads to greater beta `crossfire` and better overall results. The University of Missouri Research Reactor (MURR) has been in the forefront of research into means of preparing, handling and supplying these high-specific-activity isotopes in quantities appropriate not only for research, but also for patient trials in the US and around the world. Researchers at MURR in collaboration with others at the University of Missouri (MU) developed Sm-153 Quadramet{sup TM}, a drug recently approved in the US for palliation of bone tumor pain. In conjunction with researchers at the University of Missouri-Rolla, MURR also developed Y-90 TheraSphere{sup TM}, an agent for the treatment of liver cancer now approved in Canada. Considerable effort has been expended to develop techniques for irradiation, handling, and shipping isotopes

  5. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  6. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  7. Status and future plan of KUR-ISOL for new isotope search

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Akihiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-07-01

    He gas-jet type ISOL (KUR-ISOL: Kyoto University Reactor-Isotope Separator On-Line) was set up in Kyoto University Reactor in 1979. The thema of researches using KUR-ISOL are investigation of new isotope elements, study of nuclear structure of neutron-enrich nucleide in the neighborhood of 150 of mass number, development of unstable nuclide production unit and research of physical properties using unstable nuclide as probe. By KUR-ISOL, four kinds of new isotopes such as {sup 156}Pm, {sup 155}Nd, {sup 154}Pr and {sup 152}Ce and {beta}-decay of {sup 150}La had been identified. {beta}-decay of {sup 150}La as a sample of them was explained in this report. Today, the experiment of {sup 153}Pr, {sup 152}Pr and {sup 149,150}Ce are proceeding. For future plans, new beam line and new target used transuranic elements will be developed. (S.Y.)

  8. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  9. Production of americium isotopes in France

    International Nuclear Information System (INIS)

    Koehly, G.; Bourges, J.; Madic, C.; Nguyen, T.H.; Lecomte, M.

    1984-12-01

    The program of productions of americium 241 and 243 isotopes is based respectively on the retreatment of aged plutonium alloys or plutonium dioxide and on the treatment of plutonium targets irradiated either in CELESTIN reactors for Pu-Al alloys or OSIRIS reactor for plutonium 242 dioxide. All the operations, including americium final purifications, are carried out in hot cells equipped with remote manipulators. The chemical processes are based on the use of extraction chromatography with hydrophobic SiO 2 impregnated with extracting agents. Plutonium targets and aged plutonium alloys are dissolved in nitric acid using conventional techniques while plutonium dioxide dissolutions are performed routine at 300 grams scale with electrogenerated silver II in 4M HNO 3 at room temperature. The separation between plutonium and americium is performed by extraction of Pu(IV) either on TBP/SiO 2 or TOAHNO 3 /SiO 2 column. Americium recovery from waste streams rid of plutonium is realized by chromatographic extraction of Am(III) using mainly TBP and episodically DHDECMP as extractant. The final purification of both americium isotopes uses the selective extraction of Am(VI) on HDDiBMP/SiO 2 column at 60 grams scale. Using the overall process a total amount of 1000 grams of americium 241 and 100 grams of americium 243 has been produced nowadays and the AmO 2 final product indicates a purity better than 98.5%

  10. Range shortening, radiation transport, and Rayleigh-Taylor instability phenomena in ion-beam-driven inertial-fusion-reactor-size targets: Implosion, ignition, and burn phases

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1987-01-01

    In this paper we present an analysis of the theory of the energy deposition of ions in cold materials and hot dense plasmas together with numerical calculations for heavy and light ions of interest to ion-beam fusion. We have used the gorgon computer code of Long, Moritz, and Tahir (which is an extension of the code originally written for protons by Nardi, Peleg, and Zinamon) to carry out these calculations. The energy-deposition data calculated in this manner has been used in the design of heavy-ion-beam-driven fusion targets suitable for a reactor, by its inclusion in the medusa code of Christiansen, Ashby, and Roberts as extended by Tahir and Long. A number of other improvements have been made in this code and these are also discussed. Various aspects of the theoretical analysis of such targets are discussed including the calculation of the hydrodynamic stability, the hydrodynamic efficiency, and the gain. Various different target designs have been used, some of them new. In general these targets are driven by Bi + ions of energy 8--12 GeV, with an input energy of 4--6.5 MJ, with output energies in the range 600--900 MJ, and with gains in the range 120--180. The peak powers are in the range of 500--750 TW. We present detailed calculations of the ablation, compression, ignition, and burn phases. By the application of a new stability analysis which includes ablation and density-gradient effects we show that these targets appear to implode in a stable manner. Thus the targets designed offer working examples suited for use in a future inertial-confinement fusion reactor

  11. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  12. Production of Radioisotopes in Pakistan Research Reactor: Past, Present and Future

    International Nuclear Information System (INIS)

    Mushtaq, A.

    2013-01-01

    Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programs. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. The availability of short-lived radionuclides from radionuclide generators provides an inexpensive and convenient alternative to in-house radioisotope production facilities such as cyclotrons and reactors. The reactor offers large volume for irradiation, simultaneous irradiation of several samples, economy of production and possibility to produce a wide variety of radioisotopes. The accelerator-produced isotopes relatively constitute a smaller percentage of total use. (author)

  13. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  14. Particle transfer spectroscopy using radioactive targets

    CERN Document Server

    Naumann, R A

    1976-01-01

    The practicality of general use of radioactive targets to study nuclei off the stability line by transfer spectroscopy is examined. Some advantages of this spectroscopic technique are illustrated with recent results from (p, t) and (t, p) stable target studies of negative parity core-coupled states systematically occurring in 4 adjacent odd silver isotopes. Preliminary results from the study of the /sup 205/Pb (t, p)/sup 207/Pb reaction using reactor produced 3*10/sup 7/ year lead 205 are given. (3 refs).

  15. Neutron capture reactions on Lu isotopes at DANCE

    CERN Document Server

    Roig, O

    2010-01-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  16. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  17. Reactivity margins in heavy water moderated production reactors

    International Nuclear Information System (INIS)

    Benton, F.D.

    1981-11-01

    The design of the reactor core and components of the heavy water moderated reactors at the Savannah River Plant (SFP) can be varied to produce a number of isotopes. For the past decade, the predominant reactor core design has been the enriched-depleted lattice. In this lattice, fuel assemblies of highly enriched uranium and target assemblies of depleted uranium, which produce plutonium, occupy alternate lattice positions. This heterogeneous lattice arrangement and a nonuniform control rod distribution result in a reactor core that requires sophisticated calculational methods for accurate reactivity margin and power distribution predictions. For maximum accuracy, techniques must exist to provide a base of observed data for the calculations. Frequent enriched-depleted lattice design changes are required as product demands vary. These changes provided incentive for the development of techniques to combine the results of calculations and observed reactivity data to accurately and conveniently monitor reactivity margins during operation

  18. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  19. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  20. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  1. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  2. Neutronic and thermal-hydraulic analysis of a device for irradiation of LEU UAlx-Al targets for 99Mo production in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Nishiyama, Pedro Julio Batista de Oliveira

    2012-01-01

    Technetium-99m ( 99m Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of 99 Mo per week. Due to the crisis and the shortage of 99 Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce 99 Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for 99 Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl x -Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm 3 . For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of 99 Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the 99 Mo will be five days after the irradiation, we have that the 99 Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'

  3. Calculation of the transmutation rates of Tc-99, I-129 and Cs-135 in the High Flux Reactor, in the Phenix Reactor and in a light water reactor

    International Nuclear Information System (INIS)

    Bultman, J.

    1992-04-01

    Transmutation of long-lived fission products is of interest for the reduction of the possible dose to the population resulting from long-term leakage of nuclear waste from waste disposals. Three isotopes are of special interest: Tc-99, I-129 and Cs-135. Therefore, experiments on transmutation of these isotopes in nuclear reactors are planned. In the present study, the possible transmutation rates and mass reductions are determined for experiments in High Flux Reactor (HFR) located in Petten (Netherlands) and in Phenix (France). Also, rates were determined for a standard Light Water Reactor (LWR). The transmutation rates of the 3 fission products will be much higher in HFR than in Phenix reactor, as both total flux and effective cross sections are higher. For thick targets the effective half lives are approximately 3, 2 and 7 years for Tc-99, I-129 and Cs-135 irradiation respectively in HFR and 22, 16 and 40 years for Tc-99, I-129 and Cs-135 irradiation in Phenix reactor. The transmutation rates in LWR are low. Only the relatively large power of LWR guarantees a large total mass reduction. Especially transmutation of Cs-135 will be very difficult in Phenix and LWR, clearly shown by the very long effective half lives of 40 and 100 years, respectively. (author). 7 refs.; 5 figs.; 7 tabs

  4. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  5. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  6. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  7. Calculated activities of some isotopes in the RA reactor highly enriched fuel significant for possible environmental contamination - Operational report; Radni izvestaj - Proracun aktivnosti nekih izotopa u visokoobogacenom uranskom gorivu reaktora RA, znacajnih sa gledista moguce kontaminacije okoline

    Energy Technology Data Exchange (ETDEWEB)

    Bulovic, V; Martinc, R; Cupac, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1976-12-15

    This report contains calculation basis and obtained results of activities for three groups of isotopes in the RA reactor 80% enriched fuel element. The following isotopes are included: 1) {sup 85m}Kr, {sup 87}Kr, {sup 88}Kr, {sup 131}J, {sup 132}J, {sup 133}J, {sup 134}J, {sup 135}J, {sup 133}Xe, {sup 138}Xe i {sup 138}Cs, 2) {sup 89}Sr, {sup 90}Sr, {sup 91}Sr, {sup 92}Sr, {sup 95}Zr, {sup 97}Zr, {sup 103}Ru, {sup 105}Ru, {sup 106}Ru, {sup 129m}Te, {sup 134}Cs, {sup 137}Cs, {sup 140}Ba, {sup 144}Ce, kao i 3) {sup 238}Pu, {sup 239}Pu i {sup 240}Pu. It was estimated that the fuel is exposed to mean neutron flux. The periodicity of reactor operation is taken into account. Calculation results are given dependent on the time of exposure. These results are to be used as source data for Ra reactor safety analyses. [Serbo-Croat] Izlozene su osnove i prikazani su rezultati izvedenog proracuna aktivnosti tri grupe izotopa u gorivnom elementu reaktora RA sa 80% obogacenim uranom - 235. Obuhvaceni su: 1) {sup 85m}Kr, {sup 87}Kr, {sup 88}Kr, {sup 131}J, {sup 132}J, {sup 133}J, {sup 134}J, {sup 135}J, {sup 133}Xe, {sup 138}Xe i {sup 138}Cs, zatim, 2) {sup 89}Sr, {sup 90}Sr, {sup 91}Sr, {sup 92}Sr, {sup 95}Zr, {sup 97}Zr, {sup 103}Ru, {sup 105}Ru, {sup 106}Ru, {sup 129m}Te, {sup 134}Cs, {sup 137}Cs, {sup 140}Ba, {sup 144}Ce, kao i 3) {sup 238}Pu, {sup 239}Pu i {sup 240}Pu. Pretpostavljeno je da se gorivo ozracuje na srednjem fluksu neutrona, a periodicnost rada reaktora je uvazavana. Rezultati proracuna, dati u numerickom obliku, sistematizovani su kao funkcija toka vremena ozracivanja goriva. Ovi rezultati bice korisceni kao izvorni podaci kod izrade sigurnosnih analiza za reaktor RA (author)

  8. Advisory group meeting on design and performance of reactor and subcritical blanket systems with lead and lead-bismuth as coolant and/or target material. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    The purpose of the IAEA Advisory Group Meeting (AGM) on Design and Performance of Reactor and Sub-critical Blanket Systems with Lead and Lead-Bismuth as Coolant and/or Target Material was to provide a forum for international information exchange on all the topics relevant to Pb and Pb/Bi cooled critical and sub-critical reactors. In addition, the AGM aimed at: (1) finding ways and means to improve international co-ordination efforts in this area; (2) obtaining advice from the Member States with regard to the activities to be implemented in this area by the IAEA, in order to best meet their needs; and (3) laying out the plans for an effective co-ordination and support of the R and D activities in this area. The AGM stressed that nuclear energy is a realistic solution to satisfy the energy demand, considering the limited resources of fossil fuel, its uneven distribution in the world and the impact of its use on the planet, and taking into account the expected doubling of the world population in the 21st century and tripling of the electricity demand (especially in the developing countries). However, the AGM concluded that the development of an innovative nuclear technology meeting the following requirements must be pursued: (a) deterministic exclusion of any severe accident; (b) proliferation resistance; (c) cost competitiveness with alternative energy sources; (d) sustainable fuel supply; and (e) solution of the radioactive waste management problem

  9. Method of eliminating gaseous hydrogen isotopes

    International Nuclear Information System (INIS)

    Nagakura, Masaaki; Imaizumi, Hideki; Suemori, Nobuo; Aizawa, Takashi; Naito, Taisei.

    1983-01-01

    Purpose: To prevent external diffusion of gaseous hydrogen isotopes such as tritium or the like upon occurrence of tritium leakage accident in a thermonuclear reactor by recovering to eliminate the isotopes rapidly and with safety. Method: Gases at the region of a reactor container where hydrogen isotopes might leak are sucked by a recycing pump, dehumidified in a dehumidifier and then recycled from a preheater through a catalytic oxidation reactor to a water absorption tower. In this structure, the dehumidifier is disposed at the upstream of the catalytic oxidation reactor to reduce the water content of the gases to be processed, whereby the eliminating efficiency for the gases to be processed can be maintained well even when the oxidation reactor is operated at a low temperature condition near the ambient temperature. This method is based on the fact that the oxidating reactivity of the catalyst can be improved significantly by eliminating the water content in the gases to be processed. (Yoshino, Y.)

  10. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  11. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  12. Transportation of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  13. Transportation of medical isotopes

    International Nuclear Information System (INIS)

    Nielsen, D.L.

    1997-01-01

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document

  14. Effect of the plutonium isotopic composition on the performance of fast reactors; Effet de la composition isotopique du plutonium sur le rendement de reacteurs a neutrons rapides; Vliyanie izotopnogo sostava plutoniya na rabotu reaktorov na bystrykh nejtronakh; Efectos de la composicion isotopica del plutonio sobre el funcionamiento de los reactores rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Yiftah, S [Israel Atomic Energy Commission (Israel)

    1962-03-15

    The isotopic composition of plutonium to be used as fuel for fast reactors will depend on the source of plutonium. In principle three different sources are possible: (a) production reactors; (6) thermal power reactors (using natural uranium or enriched uranium as fuel); (c) fast reactor blankets. In general, source (a) and to some extent source (c) will provide relatively 'clean' plutonium, that is mostly Pu{sup 239}, while plutonium from source (6) will be 'dirty' plutonium, that is plutonium rich in Pu{sup 240}, Pu{sup 241}, and Pu{sup 242}. The degree of 'dirtiness' will depend on the kind of reactor, amount of burn-up and in general on the irradiation history of the fuel. The question then arises, can one use as fuel for fast reactors any kind of plutonium? To investigate the effect of different isotopic composition of the plutonium fuel, in the metallic, oxide and carbide form, on the performance of fast reactors, a limited series of spherical geometry 16-group diffusion theory calculations were performed, using the 16-group cross-section set developed recently by Yiftah, Okrent and Moldauer and taking three different kinds of plutonium, starting with pure Pu{sup 239} and increasing the amount of higher isotopes. For the systems studied-800, 1500 and 2500-l core-volumes, which are typical for large fast power reactors-the result is, when one takes into account only the thermally fissionable isotopes Pu{sup 239} arid Pu{sup 241}, that the 'dirtier' the plutonium, the smaller the critical mass and the higher the breeding ratio. For the 1500-l reactor, taken as an example, it is further found that in the metallic, oxide and carbide plutonium fuels the reactivity change upon removal of 40% of the sodium initially present in the core is made more negative (or less positive) when the plutonium is richer in higher isotopes. (author) [French] La composition isotopique du plutonium qui doit etre utilise comme combustible dans des reacteurs a neutrons rapides depend de

  15. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  16. Target and ion source developments for a helium-jet type ISOL at the Kyoto university reactor

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Okano, Kotoyuki; Funakoshi, Yoshihiro

    1985-01-01

    A target system and ion sources for a He-jet type ISOL have been successfully constructed and the characteristics have been studied. The beam intensities of short-lived fission products have been much improved by increasing the He gas pressure owing to a range effect of fission products in the He gas and a short transport time effect of aerosols in a target chamber and a capillary. An oscillating electron ion source has been coupled with the He-jet system and ten kinds of elements have been ionized with efficiencies of 0.4-2.4%. A high temperature thermal ion source has been studied to ionize the alkali, alkaline-earth and rare-earth elements. The effects of the He-jet on the ion source have been discussed. (orig.)

  17. Status of research reactors in China. Their utilization and safety upgrading

    International Nuclear Information System (INIS)

    Xu Hanming; Jin Huajin

    2000-01-01

    The main research reactors in China basically consist of several old reactors including HWRR, HFETR, SPR, MJTR and MNSR. Except the last one, all the other reactors operate at a high power density and represent themselves as main tools in China for engineering testing, radioactive isotope production, and neutron scattering research. The research and production activities by these reactors are briefed. Main equipment and research topics for neutron scattering are described. The production of radioisotope is summarized. Safety upgrading activities in recent years taken by these old reactors are described, which make the safety feature of each reactor significantly improved and on the whole more close to (even not completely consistent) with the targets set by the modern safety regulation. Since a new multi-purpose research reactor CARR is expected available around the year of 2005, a schedule about the construction of new reactor, reforming or decommissioning of old reactors and smoothly transition of research and production activities from old to new reactor during the coming years has been under careful planning. A suggestion of potential international cooperation items has been preliminarily given. (author)

  18. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  19. Isotope exchange reactions in hydrogen mixtures

    International Nuclear Information System (INIS)

    Czaplinski, W.; Gula, A.; Kravtsov, A.; Mikhailov, A.; Popov, N.

    1990-12-01

    The rates of isotopic exchange for the excited states of muonic hydrogen are calculated as functions of collision energy. Ground state population q 1s for different collision energies, target densities and isotope concentrations is obtained. It is shown that for principal quantum numbers n > 5 the isotopic exchange still considerably influences the value of q 1s . (author)

  20. Production Situation and Technology Prospect of Medical Isotopes

    Directory of Open Access Journals (Sweden)

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  1. A level-playing field for medical isotope production - How to phase-out reliance on HEU

    International Nuclear Information System (INIS)

    Kuperman, A.J.

    1999-01-01

    Two decades ago, civilian commerce in highly enriched uranium (HEU) for use as targets in the production of medical isotopes was considered a relatively minor security concern for three reasons. First, the number of producers was small. Second, the amount of HEU involved was small. Third, the amount of HEU was dwarfed by the quantities of HEU in civilian commerce as fuel for nuclear research and test reactors. Now, however, all three variables have changed. First, as the use of medical isotopes has expanded rapidly, production programs are proliferating. Second, as the result of such new producers and the expansion of existing production facilities, the amounts of HEU involved are growing. Third, as the RERTR program has facilitated the phase-out of HEU as fuel in most research and test reactors, the quantities of HEU for isotope production have come to represent a significant percentage of global commerce in this weapons-usable material. Medical isotope producers in several states are cooperating with the RERTR program to convert to low-enriched uranium (LEU) targets within the next few years, and one already relies on LEU for isotope production. However, the three biggest isotope producers - in Canada and the European Union - continue to rely on HEU, creating a double-standard that endangers the goal of the RERTR program. Each of these three producers has expressed economic concerns about being put at a competitive disadvantage if it alone converts. This paper proposes forging a firmer international consensus that all present and future isotope producers should convert to LEU, and calls for codifying such a commitment in a statement of intent to be prepared by producers over the next year. With such a level playing field, no producer would need fear being put at a competitive disadvantage by conversion, or being stigmatized by pressure groups for continued reliance on HEU. The phase-out of all HEU commerce for isotope production could be achieved within about

  2. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  3. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  4. Reactor utilization, Part 1

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1981-01-01

    The reactor operating plan for 1981 was subject to the needs of testing operation with the 80% enriched fuel and was fulfilled on the whole. This annex includes data about reactor operation, review of shorter interruptions due to demands of the experiments, data about safety shutdowns caused by power cuts. Period of operation at low power levels was used mostly for activation analyses, and the operation at higher power levels were used for testing and regular isotope production. Detailed data about samples activation are included as well as utilization of the reactor as neutron source and the operating plan for 1982 [sr

  5. First measurements of (236)U concentrations and (236)U/(239)Pu isotopic ratios in a Southern Hemisphere soil far from nuclear test or reactor sites.

    Science.gov (United States)

    Srncik, M; Tims, S G; De Cesare, M; Fifield, L K

    2014-06-01

    The variation of the (236)U and (239)Pu concentrations as a function of depth has been studied in a soil profile at a site in the Southern Hemisphere well removed from nuclear weapon test sites. Total inventories of (236)U and (239)Pu as well as the (236)U/(239)Pu isotopic ratio were derived. For this investigation a soil core from an undisturbed forest area in the Herbert River catchment (17°30' - 19°S) which is located in north-eastern Queensland (Australia) was chosen. The chemical separation of U and Pu was carried out with a double column which has the advantage of the extraction of both elements from a relatively large soil sample (∼20 g) within a day. The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both (236)U and (239)Pu were found at a depth of 2-3 cm. The (236)U/(239)Pu isotopic ratio in fallout at this site, as deduced from the ratio of the (236)U and (239)Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ∼0.2. The (236)U inventory of (8.4 ± 0.3) × 10(11) at/m(2) was more than an order of magnitude lower than values reported for the Northern Hemisphere. The (239)Pu activity concentrations are in excellent agreement with a previous study and the (239+240)Pu inventory was (13.85 ± 0.29) Bq/m(2). The weighted mean (240)Pu/(239)Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region (0-30°S). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of low enriched uranium (UAl{sub x}-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nishiyama, Pedro J.B. de O., E-mail: pedro.julio@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium (<20% {sup 235}U) UAl{sub x} dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  7. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  8. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  9. Development of key technology for the medical isotope production

    International Nuclear Information System (INIS)

    Oh, Soo Youl; Kim, I. S.; Kim, W. W.; Rhee, C. K.; Park, K. B.; Park, S. J.; Shin, H. S.; Shin, Y. J.

    2005-06-01

    The objective of this project is to experimentally verify and enhance Mo-99 and Sr-89 recovery/purification processes as the key technologies for the medical isotope production from a solution fuel reactor. A joint experiment was planned between KAERI and Kurchatov Institute (KI), Russia. The kinds of experiments planed are, a series of Mo-99 recovery/purification experiments from the ARGUS reactor which uses High Enriched Uranium (HEU) fuel, a series of the same experiments but from the Low Enriched Uranium (LEU) solution target, a demonstration of the mechanism of Sr-89 delivery from the air medium in the reactor vessel. Meanwhile, the survey and legalistic interpretation of relevant patents shows a possibility of infringement of TCI Inc.'s patents in case of exporting medical isotopes produced at the MIP to Japan and the US so far as the MIP adopts the concept of the Russian ARGUS and recovery/purification process. Eliminating, not minor changing, step(s) or condition(s) of patent processes would help to avoid the patent infringement. Because of a difficulty in the KAERI-KI full-time co-experiments at KI labs, a different idea between two parties about the depth of background information to be provided to KAERI, and other reasons, the experiment plan was not executed

  10. Calculation of radiation production of high specific activity isotopes 192Ir and 60Co

    International Nuclear Information System (INIS)

    Zhou Quan; Zhong Wenfa; Xu Xiaolin

    1997-01-01

    The high specific activity isotopes: 192 Ir and 60 Co in the high neutron flux reactor are calculated with the method of reactor physics. The results of calculation are analyzed in two aspects: the production of isotopes and the influence to parameters of the reactor, and hence a better case is proposed as a reference to the production

  11. Implementation of isotope correlation technique for safeguards

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.

    1989-01-01

    The isotopic correlation technique (ICT) is based on the fundamental physics principle that the isotopic compositions of nuclear material in the fuel cycle systems contain information regarding the design and history of nuclear material flow from fuel fabrication, reactor operation, and through input to the reprocessing plant. Isotopic Correlation in conjunction with the gravimetric (or Pu/U) method for mass determination can be developed to provide an independent in-field verification of the reprocessing input accountancy at the dissolver and/or accountancy stage of the reprocessing plant. The Argonne National Laboratory program in isotope correlation techniques is based on three-dimensional reactor physics calculations of characteristic geometries/composition in each reactor class. 10 refs., 1 fig., 3 tabs

  12. Apparatus for isotopic alteration of mercury vapor

    International Nuclear Information System (INIS)

    Grossman, M.W.; George, W.A.; Marcucci, R.V.

    1988-01-01

    This patent describes an apparatus for enriching the isotopic content of mercury. It comprises: a low pressure electric discharge lamp, the lamp comprising an envelope transparent to ultraviolet radiation and containing a fill comprising mercury and an inert gas; a filter concentrically arranged around the low pressure electric discharge lamp, the filter being transparent to ultraviolet radiation and containing mercury including 196 Hg isotope; means for controlling mercury pressure in the filter; and a reactor arranged around the filter such that radiation passes from the low pressure electric discharge lamp through the filter and into Said reactor, the reactor being transparent to ultraviolet light

  13. Isotope analysis of closely adjacent minerals

    International Nuclear Information System (INIS)

    Smith, M.P.

    1990-01-01

    This patent describes a method of determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development. It comprises: searching for a class of minerals in a mineral specimen comprising more than one class of minerals; identifying in the mineral specimen a target sample of the thus searched for class; directing thermally pyrolyzing laser beam radiation onto surface mineral substance of the target sample in the mineral specimen releasing surface mineral substance pyrolysate gases therefrom; and determining isotope composition essentially of the surface mineral substance from analyzing the pyrolysate gases released from the thus pyrolyzed target sample, the isotope composition including isotope(s) selected from the group consisting of carbon, hydrogen, and oxygen isotopes; determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development of the target mineral from thus determined isotope composition of surface mineral substance pyrolysate

  14. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  15. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  16. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  17. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    International Nuclear Information System (INIS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ℃). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  18. Project Plan Remote Target Fabrication Refurbishment Project

    International Nuclear Information System (INIS)

    Bell, Gary L.; Taylor, Robin D.

    2009-01-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of 252 Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The 252 Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of 252 Cf; the average irradiation period is ∼10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of 252 Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work

  19. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  20. Review of fusion DEMO reactor study

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1996-01-01

    Fusion DEMO Reactor is defined and the Steady State Tokamak Reactor (SSTR) concept is introduced as a typical example of a DEMO reactor. Recent DEMO reactor studies in Japan and abroad are introduced. The DREAM Reactor concept is introduced as an ultimate target of fusion research. (author)

  1. Proceedings of the Conference on research reactors application in Yugoslavia

    International Nuclear Information System (INIS)

    1978-05-01

    The Conference on research reactors operation was organised on the occasion of 20 anniversary of the RB zero power reactor start-up. The presentations showed that research reactors in Yugoslavia, RB, RA and TRIGA had an important role in development of nuclear sciences and technology in Yugoslavia. The reactors were applied in non-destructive testing of materials and fuel elements, development of reactor noise techniques, safety analyses, reactor control methods, neutron activation analysis, neutron radiography, dosimetry, isotope production, etc [sr

  2. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  3. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  4. New nuclear technologies will help to ensure the public trust and further development of research reactors

    International Nuclear Information System (INIS)

    Miasnikov, S.V.

    2001-01-01

    Decrease of public trust to research reactors causes the concern of experts working in this field. In the paper the reasons of public mistrust to research reactors are given. A new technology of 99 Mo production in the 'Argus' solution reactor developed in the Russian Research Centre 'Kurchatov Institute' is presented as an example assisting to eliminate these reasons. 99 Mo is the most widespread and important medical isotope. The product received employing a new technology completely meets the international specifications. Besides, the proposed technology raises the efficiency of 235 U consumption practically up to 100% and allows using a reactor with power 10 and more times lower than that in the target technology. The developed technology meets the requirements of the community to nuclear safety of manufacture, reduction of radioactive waste and non-proliferation of nuclear materials. (author)

  5. The centenary of the discovery of isotopes

    International Nuclear Information System (INIS)

    Soulie, Edgar

    2013-01-01

    This article recalls works performed by different scientists (Marckwald and Keetman, Stromholm and Svedberg, Soddy, Thompson, Aston) which resulted in the observation and identification of the existence of isotopes. The author also recalls various works related to mechanisms of production of isotopes, the discovery of uranium fission and the principle of chain reaction. The author notably evokes French scientists involved in the development of mass spectroscopy and in the research and applications on isotopes within the CEA after the Second World War. A bibliography of article and books published by one of them, Etienne Roth, is provided. References deal with nuclear applications of chemical engineering (heavy water and its production, chemical processes in fission reactors, tritium extraction and enrichment), isotopic fractioning and physical-chemical processes, mass spectrometry and isotopic analysis, isotopic geochemistry (on 07;Earth, search for deuterium in moon rocks and their consequences), first dating and the Oklo phenomenon, radioactive dating, water and climate (isotopic hydrology, isotopes and hailstone formation, the atmosphere), and miscellaneous scientific fields (nuclear measurements and radioactivity, isotopic abundances and atomic weight, isotopic separation and use of steady isotopes)

  6. Isotope angiocardiography

    International Nuclear Information System (INIS)

    Stepinska, J.; Ruzyllo, W.; Konieczny, W.

    1979-01-01

    Method of technetium isotope 99 m pass through the heart recording with the aid of radioisotope scanner connected with seriograph and computer is being presented. Preliminary tests were carried out in 26 patients with coronary disease without or with previous myocardial infarction, cardiomyopathy, ventricular septal defect and in patients with artificial mitral and aortic valves. The obtained scans were evaluated qualitatively and compared with performed later contrast X-rays of the heart. Size of the right ventricle, volume and rate of left atrial evacuation, size and contractability of left ventricle were evaluated. Similarity of direct and isotope angiocardiographs, non-invasional character and repeatability of isotope angiocardiography advocate its usefulness. (author)

  7. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  8. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  9. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  10. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  11. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  12. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  13. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  14. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  15. Evaluation and Compilation of Neutron Activation Cross Sections for Medical Isotope Production

    International Nuclear Information System (INIS)

    Binney, Stephen E.

    2004-01-01

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory

  16. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    Science.gov (United States)

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  17. Apparatus for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  18. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  19. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.; Howard, A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented

  20. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  1. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  2. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel.

  3. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2011-01-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel

  4. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Ishiguro, Yukio; Akie, Hiroshi; Kaneko, Kunio; Sasaki, Makoto.

    1986-01-01

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  5. Isotopes Project

    International Nuclear Information System (INIS)

    Dairiki, J.M.; Browne, E.; Firestone, R.B.; Lederer, C.M.; Shirley, V.S.

    1984-01-01

    The Isotopes Project compiles and evaluates nuclear structure and decay data and disseminates these data to the scientific community. From 1940-1978 the Project had as its main objective the production of the Table of Isotopes. Since publication of the seventh (and last) edition in 1978, the group now coordinates its nuclear data evaluation efforts with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains A = 167-194. All evaluated data are entered into the International Evaluated Nuclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets. In addition to the evaluation effort, the Isotopes Project is responsible for production of the Radioactivity Handbook

  6. Hydrogen isotope separation experience at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, M.W.

    1993-01-01

    Savannah River Site (SRS) is a sole producer of tritium for US Weapons Program. SRS has built Facilities, developed the tritium handling processes, and operated safely for the last forty years. Tritium is extracted from the irradiated reactor target, purified, mixed with deuterium, and loaded to the booster gas bottle in the weapon system for limited lifetime. Tritium is recovered from the retired bottle and recycled. Newly produced tritium is branded into the recycled tritium. One of the key process is the hydrogen isotope separation that tritium is separated from deuterium and protium. Several processes have been used for the hydrogen isotope separation at SRS: Thermal Diffusion Column (TD), Batch Cryogenic Still (CS), and Batch Chromatography called Fractional Sorption (FS). TD and CS requires straight vertical columns. The overall system separation factor depends on the length of the column. These are three story building high and difficult to put in glove box. FS is a batch process and slow operation. An improved continuous chromatographic process called Thermal Cycling Absorption Process (TCAP) has been developed. It is small enough to be about to put in a glove box yet high capacity comparable to CS. The SRS tritium purification processes can be directly applicable to the Fusion Fuel Cycle System of the fusion reactor

  7. The isotope correlation experiment

    International Nuclear Information System (INIS)

    Koch, L.; Schoof, S.

    1983-01-01

    The ESARDA working group on Isotopic Correlation Techniques, ICT and Reprocessing Input Analysis performed an Isotope Correlation Experiment, ICE with the aim to check the feasibility of the new technique. Ten input batches of the reprocessing of the KWO fuel at the WAK plant were analysed by 4 laboratories. All information to compare ICT with the gravimetric and volumetric methods was available. ICT combined with simplified reactor physics calculation was included. The main objectives of the statistical data evaluation were detection of outliers, the estimation of random errors and of systematic errors of the measurements performed by the 4 laboratories. Different methods for outlier detection, analysis of variances, Grubbs' analysis for the constant-bias model and Jaech's non-constant-bias model were applied. Some of the results of the statistical analysis may seem inconsistent which is due to the following reasons. For the statistical evaluations isotope abundance data (weight percent) as well as nuclear concentration data (atoms/initial metal atoms) were subjected to different outlier criteria before being used for further statistical evaluations. None of the four data evaluation groups performed a complete statistical data analysis which would render possible a comparison of the different methods applied since no commonly agreed statistical evaluation procedure existed. The results prove that ICT is as accurate as conventional techniques which have to rely on costly mass spectrometric isotope dilution analysis. The potential of outlier detection by ICT on the basis of the results from a single laboratory is as good as outlier detection by costly interlaboratory comparison. The application of fission product or Cm-244 correlations would be more timely than remeasurements at safeguards laboratories

  8. Isotopic safeguards statistics

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Stewart, K.B.

    1978-06-01

    The methods and results of our statistical analysis of isotopic data using isotopic safeguards techniques are illustrated using example data from the Yankee Rowe reactor. The statistical methods used in this analysis are the paired comparison and the regression analyses. A paired comparison results when a sample from a batch is analyzed by two different laboratories. Paired comparison techniques can be used with regression analysis to detect and identify outlier batches. The second analysis tool, linear regression, involves comparing various regression approaches. These approaches use two basic types of models: the intercept model (y = α + βx) and the initial point model [y - y 0 = β(x - x 0 )]. The intercept model fits strictly the exposure or burnup values of isotopic functions, while the initial point model utilizes the exposure values plus the initial or fabricator's data values in the regression analysis. Two fitting methods are applied to each of these models. These methods are: (1) the usual least squares fitting approach where x is measured without error, and (2) Deming's approach which uses the variance estimates obtained from the paired comparison results and considers x and y are both measured with error. The Yankee Rowe data were first measured by Nuclear Fuel Services (NFS) and remeasured by Nuclear Audit and Testing Company (NATCO). The ratio of Pu/U versus 235 D (in which 235 D is the amount of depleted 235 U expressed in weight percent) using actual numbers is the isotopic function illustrated. Statistical results using the Yankee Rowe data indicates the attractiveness of Deming's regression model over the usual approach by simple comparison of the given regression variances with the random variance from the paired comparison results

  9. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  10. The resonance absorption controlled reactor

    International Nuclear Information System (INIS)

    Caro, R.

    1977-01-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D 2 O/H 2 O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs

  11. The resonance absorption controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1977-07-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D{sub 2}O/H{sub 2}O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs.

  12. Design and safety considerations for the 10 MW(t) multipurpose TRIGA reactor in Thailand

    International Nuclear Information System (INIS)

    Razvi, J.; Bolin, J.M.; Saurwein, J.J.; Whittemore, W.L.; Proongmuang, S.

    1999-01-01

    General Atomics (GA) is constructing the Ongkharak Nuclear Research Center (ONRC) near Bangkok, Thailand for the Office of Atomic Energy for Peace. The ONRC complex includes the following: A multipurpose 10 MW(t) research reactor; An Isotope Production Facility; Centralized Radioactive Waste Processing and Storage Facilities. The Center is being built 60-km northeast of Bangkok, with a 10 MW(t) TRIGA type research reactor as the centerpiece. Facilities are included for neutron transmutation doping of silicon, neutron capture therapy neutron beam research and for production of a variety of radioisotopes. The facility will also be utilized for applied research and technology development as well as training in reactor operations, conduct of experiments and in reactor physics. The multipurpose, pool-type reactor will be fueled with high-density (45 wt%), low-enriched (19.7 wt%) uranium-erbium-zirconium-hydride (UErZrH) fuel rods, cooled and moderated by light water, and reflected by beryllium and heavy water. The general arrangement of the reactor and auxiliary pool structure allows irradiated targets to be transferred entirely under water from their irradiation locations to the hot cell, then pneumatically transferred to the adjacent Isotope Production Facility for processing. The core configuration includes 4 x 4 array standard TRIGA fuel clusters, modified clusters to serve as fast-neutron irradiation facilities, control rods and an in-core Ir-192 production facility. The active core is reflected on two sides by beryllium and on the other two sides by D 2 O. Additional irradiation facilities are also located in the beryllium reflector blocks and the D 2 O reflector blanket. The fuel provides the fundamental safety feature of the ONRC reactor, and as a result of all the well established accident-mitigating characteristics of the UErZrH fuel itself (large prompt negative temperature coefficient of reactivity, fission product retention and chemical stability), a

  13. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  14. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UALx-Al and U-Ni to production of 99Mo in reactor IEA-R1 and RMB

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2014-01-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl 2 -Al, U-Ni cylindrical and U-Ni plate) used for the production of 99 Mo by fission of 235 U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of 99 Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl 2 -Al (10 mini plates). Analyses have shown that the total activity obtained for 99 Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl 2 -Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental results. (author)

  15. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  16. Actinide behavior in the Integral Fast Reactor. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  17. Actinide behavior in the Integral Fast Reactor. Final project report

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ( 237 Np, 240 Pu, 241 Am, and 243 Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs

  18. Behavior of actinides in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Courtney, J.C.; Lineberry, M.J.

    1994-01-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ( 237 Np, 240 Pu, 241 Am, and 243 Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors' confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs

  19. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  20. THERMAL NEUTRON FLUX MAPPING ON A TARGET CAPSULE AT RABBIT FACILITY OF RSG-GAS REACTOR FOR USE IN k0-INAA

    Directory of Open Access Journals (Sweden)

    Sutisna Sutisna

    2015-03-01

    Full Text Available Instrumental neutron activation analysis based on the k0 method (k0-INAA requires the availability of the accurate reactor parameter data, in particular a thermal neutron flux that interact with a targets inside the target capsule. This research aims to determine and map the thermal neutron flux inside the capsule and irradiation channels used for the elemental quantification using the k0-AANI. Mapping of the thermal neutron flux (фth on two type of irradiation capsule have been done for RS01 and RS02 facilities of RSG-GAS reactor. Thermal neutron flux determined using Al-0,1%Au alloy through 197Au(n,g 198Au nuclear reaction, while the flux mapping done using statistics R. Thermal neutron flux are calculated using k0-IAEA software provided by IAEA. The results showed the average thermal neutron flux is (5.6±0.3×10+13 n.cm-2.s-1; (5.6±0.4×10+13 n.cm-2.s-1; (5.2±0.4×10+13 n.cm-2.s-1 and (5.3±0.4×10+13 n.cm-2.s-1 for Polyethylene capsule of 1st , 2nd, 3rd and 4th layer respectively. In the case of Aluminum capsule, the thermal neutron flux was lower compared to that on Polyethylene capsule. There were (3.0±0.2×10+13 n.cm-2.s-1; (2.8±0.1×10+13 n.cm-2.s-1; (3.2±0.3×10+13 n.cm-2.s-1 for 1st, 2nd and 3rd layers respectively. For each layer in the capsule, the thermal neutron flux is not uniform and it was no degradation flux in the axial direction, both for polyethylene and aluminum capsules. Contour map of eight layer on polyethylene capsule and six layers on aluminum capsule for RS01 and RS02 irradiation channels had a similar pattern with a small diversity for all type of the irradiation capsule. Keywords: thermal neutron, flux, capsule, NAA   Analisis aktivasi neutron instrumental berbasis metode k0 (k0-AANI memerlukan ketersediaan data parameter reaktor yang akurat, khususnya data fluks neutron termal yang berinteraksi dengan inti sasaran di dalam kapsul target. Penelitian ini bertujuan menentukan dan memetakan fluks neutron termal

  1. Inertial fusion reactor designs

    International Nuclear Information System (INIS)

    Meier, W.

    1987-01-01

    In this paper, a variety of reactor concepts are proposed. One of the prime concerns is dealing with the x-rays and debris that are emitted by the target. Internal neutron shielding can reduce radiation damage and activation, leading to longer life systems, reduced activation and fewer safety concerns. There is really no consensus on what the best reactor concept is at this point. There has been virtually no chamber technology development to date. This is the flip side of the coin of the separability of the target physics and the reactor design. Since reactor technology has not been required to do target experiments, it's not being developed. Economic analysis of conceptual designs indicates that ICF can be economically competitive with magnetic fusion, fission and fossil plants

  2. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  3. Second international conference on isotopes. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, C J [ed.

    1997-10-01

    The Second International Conference on Isotopes (2ICI) was hosted by the Australian Nuclear Association in Sydney, NSW, Australia. The Theme of the Second Conference: Isotopes for Industry, Health and a Better Environment recognizes that isotopes have been used in these fields successfully for many years and offer prospects for increasing use in the future. The worldwide interest in the use of research reactors and accelerators and in applications of stable and radioactive isotopes, isotopic techniques and radiation in industry, agriculture, medicine, environmental studies and research in general, was considered. Other radiation issues including radiation protection and safety were also addressed. International and national overviews and subject reviews invited from leading experts were included to introduce the program of technical sessions. The invited papers were supported by contributions accepted from participants for oral and poster presentation. A Technical Exhibition was held in association with the Conference. This volume contains the full text or extended abstracts of papers number 61- to number 114

  4. Construction of Research Reactors for Gen 3 and Gen 4 Reactors Development

    International Nuclear Information System (INIS)

    Behar, Christophe

    2014-01-01

    Christophe Behar, Director of the Nuclear Energy Division at CEA, detailed the different kind of research reactors and the issues in term of investment, use, side application such as the medical isotopes production

  5. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  6. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    International Nuclear Information System (INIS)

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  7. A Canadian isotope success story

    International Nuclear Information System (INIS)

    Malkoske, G.

    1997-01-01

    This paper provides some historical background on the commercial production of radioisotopes in Canada, and the evolution of the present vendor, MDS Nordion. The chief isotopes are molybdenum 99, iodine 131, and cobalt 60. Cobalt 60 for medical sterilization and irradiation is considered to be a significant growing market. Food irradiation is believed to be a big marketing opportunity, although attempts to popularize it have so far met with limited success. Candu reactors supply the bulk of the world's 60 Co supply. Eighty percent of the world's 99 Mo supply for medical imaging comes from Canada, and is at present produced in NRU Reactor, which is to be replaced by two Maple reactors coming into production in 1999 and 2000

  8. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  9. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murthy, G.S.

    1999-01-01

    At low power research reactor is being set up in Andhra University to cater to the needs of researchers and isotope users by the Department of Atomic Energy in collaboration with Andhra University. This reactor is expected to be commissioned by 2001-02. Departments like Chemistry, Earth Sciences, Physics, Life Sciences, Pharmacy, Medicine and Engineering would be the beneficiaries of the availability of this reactor. In this paper, details of the envisaged research programme and training activities are discussed. (author)

  10. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  11. Oklo natural reactor

    International Nuclear Information System (INIS)

    Fujii, Isao

    1985-01-01

    In 1954, Professor Kazuo, Kuroda of Arkansas University in USA published the possibility that spontaneously generated natural nuclear reactors existed in prehistoric age. In 1972, 18 years after that, Commissariat a l'Energie Atomique published that in the Oklo uranium deposit in Gabon, Africa, a natural nuclear reactor was found. This fact was immediately informed to the whole world, but in Japan, its details have not necessarily been well known. The chance of investigating into this fact and visiting the Oklo deposit by the favor of COMUF, the owner of the Oklo deposit, was given, therefore, the state of the natural reactors, which has been known so far, is reported. At present, 12 natural reactors have been found in the vicinity of the Oklo deposit. The natural reactors were generated spontaneously in uranium deposits about 1.7 billion years ago when the isotopic abundance of U-235 was 3 %, and the chain reaction started naturally. When the concentration of U-235 lowered, the reaction stopped naturally. The abnormality in the U-235 abundance in natural uranium was found, and the cause was pursued. The evidence of the existence of natural reactors was shown. (Kako, I.)

  12. The 1975 DAtF-KTG reactor conference in Nuernberg

    International Nuclear Information System (INIS)

    Henssen, H.; Rossbach, W.

    1975-01-01

    A comprehensive review on the meeting is given which reports on the most important of the 204 papers read in the four session groups: 1) reactor design and experiments, 2) fuel elements, fuel cycle, and isotope technique, 3) planning, construction and operation of nuclear reactor facilities and their components, and 4) reactor types and problems of cost-efficiency. (UA/AK) [de

  13. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  14. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    ratios showed distinct differences between the closed CANDU primary coolant system and radiopharmaceutical production releases. According to the concept proposed by Kalinowski and Pistner (2006), the relationship between different isotopic activity ratios based on three or four radioxenon isotopes was plotted in a log-log diagram for source characterisation (civil vs. nuclear test). The multiple isotopic activity ratios were distributed in three distinct areas: HC atmospheric monitoring ratios extended to far left; the CANDU primary coolant system ratios lay in the middle; and 99Mo stack monitoring ratios for ANSTO and CRL were located on the right. The closed CANDU primary coolant has the lowest logarithmic mean ratio that represents the nuclear power reactor operation. The HC atmospheric monitoring exhibited a broad range of ratios spreading over several orders of magnitude. In contrast, the ANSTO and CRL stack emissions showed the smallest range of ratios but the results indicate at least two processes involved in the 99Mo productions. Overall, most measurements were found to be shifted towards the reactor domain. The hypothesis is that this is due to an accumulation of the isotope 131mXe in the stack or atmospheric background as it has the longest half-life and extra 131mXe emissions from the decay of 131I. The contribution of older 131mXe to a fresh release shifts the ratio of 133mXe/131mXe to the left. It was also very interesting to note that there were some situations where isotopic ratios from 99Mo production emissions fell within the nuclear test domain. This is due to operational variability, such as shorter target irradiation times. Martin B. Kalinowski and Christoph Pistner, (2006), Isotopic signature of atmospheric xenon released from light water reactors, Journal of Environmental Radioactivity, 88, 215-235.

  15. High Flux Isotope Reactor technical specifications

    International Nuclear Information System (INIS)

    1977-03-01

    Included are sections covering safety limits and limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. An appendix deals with accidents and anticipated transients

  16. Neutron resonance parameters of CM isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.; Kolesov, A.G.; Poruchikov, V.A.

    1977-01-01

    The total neutron cross sections of isotopes 244, 245, 246, 248 Curium have been measured on reactor CM-2 using the time-of-flight method. Single-level Breit-Wigner resonance parameters: energy E 0 , neutron width 2g GITAn, total width GITA, total neutron cross section in resonance sigma 0 have been obtained by the shape and area methods

  17. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  18. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  19. Replacement research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, Ross

    1998-01-01

    In 1992, the Australian Government commissioned a review into the need for a replacement research reactor. That review concluded that in about years, if certain conditions were met, the Government could make a decision in favour of a replacement reactor. A major milestone was achieved when, on 3 September 1997, the Australian Government announced the construction of a replacement research reactor at the site of Australia's existing research reactor HIFAR, subject to the satisfactory outcome of an environmental assessment process. The reactor will be have the dual purpose of providing a first class facility for neutron beam research as well as providing irradiation facilities for both medical isotope production and commercial irradiations. The project is scheduled for completion before the end of 2005. (author)

  20. Broad-Application Test Reactor

    International Nuclear Information System (INIS)

    Motloch, C.G.

    1992-05-01

    This report is about a new, safe, and operationally efficient DOE reactor of nuclear research and testing proposed for the early to mid- 21st Century. Dubbed the Broad-Application Test Reactor (BATR), the proposed facility incorporates a multiple-application, multiple-mission design to support DOE programs such as naval reactors and space power and propulsion, as well as research in medical, science, isotope, and electronics arenas. DOE research reactors are aging, and implementing major replacement projects requires long lead times. Primary design drivers include safety, low risk, minimum operation cost, mission flexibility, waste minimization, and long life. Scientists and engineers at the Idaho National Engineering Laboratory are evaluating possible fuel forms, structural materials, reactor geometries, coolants, and moderators

  1. Economical preparation of extremely homogeneous nuclear accelerator targets

    International Nuclear Information System (INIS)

    Maier, H.J.

    1983-01-01

    Techniques for target preparation with a minimum consumption of isotopic material are described. The rotating substrate method, which generates extremely homogeneous targets, is discussed in some detail

  2. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  3. Hot vacuum extraction-isotopic dilution mass spectrometry for determination of hydrogen isotopes in zircaloys

    International Nuclear Information System (INIS)

    Shi, Y.; Leeson, P.K.; Wilkin, D.; Britton, A.; Macleod, R.

    2016-01-01

    A hot vacuum extraction-isotope dilution mass spectrometry (HVE-IDMS) was studied for determination of hydrogen isotopes in zirconium metal and alloys as nuclear reactor materials. A theoretical assessment of the completeness of the extraction of hydrogen isotopes under the chosen condition was carried out based on the hydrogen and deuterium solubility data for zirconium. The optimal isotopic spiking condition for conventional IDMS was further explored for the special case IDMS where the isotope abundance of the samples is varied and non-natural. Applying the optimal conditions, the accurate IDMS determination was realized. The agreement between the measured values and the certified or prepared values of standard reference materials and homemade standard materials validate the method developed. (author)

  4. Isotopic Generation and Confirmation of the PWR Application Model?

    International Nuclear Information System (INIS)

    L.B. Wimmer

    2003-01-01

    The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO 2 fuel is also included in the database. The isotopic database covers enrichments of 235 U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2

  5. Building a dynamic code to simulate new reactor concepts

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.

    2012-01-01

    Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.

  6. Nuclear spectroscopy of Ca and Sc isotopes from inelastic scattering and one-nucleon transfer reactions on a radioactive 41Ca target

    International Nuclear Information System (INIS)

    Vold, P.

    1978-04-01

    The structure of energy levels in 40 , 42 Ca and 42 Sc has been studied using inelastic proton scattering and one-nucleon stripping and pick-up transfer reactions on a 41 Ca target. Data has given the following information on the properties of the 41 Ca ground state wave function; i) the 41 Ca (g.s.) looks very much like an f (sub7/2) neutron coupled to the 40 Ca (g.s.) core. ii) The core-excited component of the 41 Ca (g.s.) is determined to be 10 or less. It was inferred that the main constituents of the spectroscopic strength leading to the (f(sub7/2)) 2 , (f(sub7/2)p(sub3/2))(subt=1) and (f(sub7/2)p(sub1/2))(subT=1) configurations have been identified. This was used to deduce the effective two-particle matrix elements for these configurations. The 42 Sc and 42 Ca data result in excellent agreement for the T=1 members of the (f(sub7/2)) 2 multiplet while the (f(sub7/2)p(sub3/2))(subT=1) matrix elements derived from the 42 Sc data are about 0.2 MeV more repulsive than those obtained from the 42 Ca data. The (f(sub7/2)d(sub3/2) -1 ) matrix elements derived from the present ( 3 He,α) data were compared to the corresponding values obtained from one-nucleon stripping to mass 34 nuclei. The two sets of matrix elements are in very good agreement. The 40 Ca values are also well reproduced by calculations using the modified surface delta interaction. The experimental spectroscopic factors to both the T=0 and T=1 states of the (f(sub7/2)) 2 multiplet are in remarkably good agreement with the predicted values of the coexistence model considering the simplicity of this model. (JIW)

  7. Fusion reactor fuel processing

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1972-06-01

    For thermonuclear power reactors based on the continuous fusion of deuterium and tritium the principal fuel processing problems occur in maintaining desired compositions in the primary fuel cycled through the reactor, in the recovery of tritium bred in the blanket surrounding the reactor, and in the prevention of tritium loss to the environment. Since all fuel recycled through the reactor must be cooled to cryogenic conditions for reinjection into the reactor, cryogenic fractional distillation is a likely process for controlling the primary fuel stream composition. Another practical possibility is the permeation of the hydrogen isotopes through thin metal membranes. The removal of tritium from the ash discharged from the power system would be accomplished by chemical procedures to assure physiologically safe concentration levels. The recovery process for tritium from the breeder blanket depends on the nature of the blanket fluids. For molten lithium the only practicable possibility appears to be permeation from the liquid phase. For molten salts the process would involve stripping with inert gas followed by chemical recovery. In either case extremely low concentrations of tritium in the melts would be desirable to maintain low tritium inventories, and to minimize escape of tritium through unwanted permeation, and to avoid embrittlement of metal walls. 21 refs

  8. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  9. Nuclear Burning Wave Modular Fast Reactor Concept

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  10. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Scott, S.W.

    1997-01-01

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients

  11. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  12. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  13. Measurement of delayed neutron-emitting fission products in nuclear reactor coolant water during reactor operation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The method covers the detection and measurement of delayed neutron-emitting fission products contained in nuclear reactor coolant water while the reactor is operating. The method is limited to the measurement of the delayed neutron-emitting bromine isotope of mass 87 and the delayed neutron-emitting iodine isotope of mass 137. The other delayed neutron-emitting fission products cannot be accurately distinguished from nitrogen 17, which is formed under some reactor conditions by neutron irradiation of the coolant water molecules. The method includes a description of significance, measurement variables, interferences, apparatus, sampling, calibration, standardization, sample measurement procedures, system efficiency determination, calculations, and precision

  14. Investigation of the properties of the nuclei using on the new generation reactor technology systems

    International Nuclear Information System (INIS)

    Tel, E.; Sahin, H. M.; Yalcin, S.; Altinok, T.; Kaplan, A.; Aydin, A.

    2007-01-01

    The application fields of the fast neutron are Accelerator-Driven subcritical Systems (ADS) for fission energy production and hybrid reactor systems. The technical design hybrid reactor and ADS systems potentialities require the knowledge of a wide range of better data and much effort. Thorium (Th) and Uranium (U) are nuclear fuels in these reactor systems. Lead (Pb), Bismuth (Bi) and Tungsten (W) are the target nuclei in the ADS reactor systems. The Hartree-Fock (H-F) method with an effective interaction with Skyrme forces is widely used for studying the properties of nuclei such as binding energy, Root Mean Square (RMS) charge radii, mass radii, neutron density, proton density, electromagnetic multipole moments, etc. In this study, by using H-F method with interaction Skyrme RMS charge radii, RMS mass radii, neutron density and proton density were calculated for the 2 32Th, 2 38U, 2 07Pb, 2 09Bi and 1 84W isotopes used on the new generation reactor systems. The calculation results of charge radii have been compared with experimental data and obtained other results have been discussed for hybrid and ADS reactor systems

  15. Nuclides and isotopes. Twelfth edition

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This explanatory booklet was designed to be used with the Chart of the Nuclides. It contains a brief history of the atomic theory of matter: ancient speculations, periodic properties of elements (Mendeleev table), radioactivity, early models of atomic structure, the Bohr atom, quantum numbers, nature of isotopes, artificial radioactivity, and neutron fission. Information on the pre-Fermi (natural) nuclear reactor at Oklo and the search for superheavy elements is given. The booklet also discusses information presented on the Chart and its coding: stable nuclides, metastable states, data display and color, isotopic abundances, neutron cross sections, spins and parities, fission yields, half-life variability, radioisotope power and production data, radioactive decay chains, and elements without names. The Periodic Table of the Elements is appended. 3 figures, 3 tables

  16. Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioisotopes

    International Nuclear Information System (INIS)

    2008-09-01

    Technetium-99m ( 99m Tc), the daughter of Molybdenum-99 ( 99 Mo), is the most commonly used medical radioisotope in the world. It accounts for over twenty-five million medical procedures each year worldwide, comprising about 80% of all radiopharmaceutical procedures. 99 Mo is mostly prepared by the fission of uranium-235 targets in a nuclear reactor with a fission yield of about 6.1%. Currently over 95% of the fission product 99 Mo is obtained using highly enriched uranium (HEU) targets. Smaller scale producers use low enriched uranium (LEU) targets. Small quantities of 99 Mo are also produced by neutron activation through the use of the (n, γ) reaction. The concept of a compact homogeneous aqueous reactor fuelled by a uranium salt solution with off-line separation of radioisotopes of interest ( 99 Mo, 131 I) from aliquots of irradiated fuel solution has been cited in a few presentations in the series of International Conference on Isotopes (ICI) held in Vancouver (2000), Cape Town (2003) and Brussels (2005) and recently some corporate interest has also been noticeable. Calculations and some experimental research have shown that the use of aqueous homogeneous reactors (AHRs) could be an efficient technology for fission radioisotope production, having some prospective advantages compared with traditional technology based on the use of solid uranium targets irradiated in research reactors. This review of AHR status and prospects by a team of experts engaged in the field of homogeneous reactors and radioisotope producers yields an objective evaluation of the technological challenges and other relevant implications. The meeting to develop this report facilitated the exchange of information on the 'state of the art' of the technology related to homogeneous aqueous solution nuclear reactors, especially in connection with the production of radioisotopes. This publication presents a summary of discussions of a consultants meeting which is followed by the technical

  17. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  18. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  19. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  20. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  1. Isotope exchange reaction on solid breeder materials

    International Nuclear Information System (INIS)

    Baba, A.; Nishikawa, M.; Eguchi, T.; Kawagoe, T.

    2000-01-01

    Lithium ceramic materials such as Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 2 TiO 3 and Li 4 SiO 4 are considered to be as candidate for the tritium breeding material in a deuterium-tritium (D-T) fusion reactor. In the recent blanket designs, helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas to reduce tritium inventory and promote tritium release from the breeding material. In addition, the rate of isotope exchange reaction between hydrogen isotopes in the purge gas and tritium on the surface of the breeding material is necessary to analyze the tritium release behavior from the breeding materials. However, the rate of isotope exchange reactions between hydrogen isotopes in the purge gas and tritium on the surface of those materials has not been quantified until recently. Recently, the present authors quantified the rate of isotope exchange reaction on Li 2 O and Li 2 ZrO 3 . The overall mass transfer coefficients representing the isotope exchange reaction between H 2 and D 2 O on breeding materials or the same between D 2 and H 2 O are experimentally obtained in this study. Comparison to isotope exchange reaction rates on various breeding materials is also performed in this study. Discussions about the effects of temperature, concentration of hydrogen in the purge gas or flow rate of the purge gas on the conversion of tritiated water to tritium gas are also performed

  2. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  3. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  4. Natural isotopes

    International Nuclear Information System (INIS)

    Vogel, J.C.

    1986-01-01

    14 C dates between 600 and 900 AD were obtained for early Iron Age sites in Natal, and from 1300 to 1450 AD for rock engraving sites in Bushmanland. Palaeoenvironmental data derived from the dating of samples related to sedimentary and geomorphic features in the central and northern Namib Desert enabled the production of a tentative graph for the changes in humidity in the region over the past 40000 years. These results suggest that relatively humid conditions came to an end in the Namib at ±25000 BP (before present). The increased precision of the SIRA mass spectrometer enabled the remeasurement of 13 C and 18 O in the Cango stalagmite. This data confirmed that the environmental temperatures in the Southern Cape remained constant to within ±1 o C during the past 5500 years. Techniques and applications for environmental isotopes in hydrology were developed to determine the origin and movement of ground water. Isotopic fractionation effects in light elements in nature were investigated. The 15 N/ 14 N ratio in bones of animals and humans increases in proportion to the aridity of the environment. This suggests that 15 N in bone from dated archaeological sites could be used to detect changes in past climatic conditions as naturally formed nitrate minerals are higly soluble and are only preserved in special, very dry environments. The sources and sinks of CO 2 on the South African subcontinent were also determined. The 13 C/ 12 C ratios of air CO 2 obtained suggest that the vegetation provides the major proportion of respired CO 2 . 9 refs., 1 fig

  5. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roback, Robert Clifford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace (238Pu ,241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am-241Pu model ages and interpretations.

  6. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  7. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  8. Department of Energy's High Flux Isotope Reactor (HFIR), October 20--24, 1980: A special report prepared for the Nuclear Facilities Personnel Qualification and Training Committee: An independent on-site safety review

    International Nuclear Information System (INIS)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFIR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations are based upon licensed reactor facility practices used to meet industry standards. For the most part, these standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the provisions of past AEC and ERDA policy, the Team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFIR reactor has a significantly greater degree of inherent safety (low temperature, low pressure, low power) than a licensed reactor

  9. Radioisotopes in the primary circuit of a fast reactor

    International Nuclear Information System (INIS)

    Berlin, M.; Cauvin, M.

    1976-01-01

    In the frame of the research performed to understand the behaviour of the radioactive isotopes of iodine in the primary coolant circuit of fast reactor, a simple theoretical model is proposed. Results concerning PHENIX and RAPSODIE are given

  10. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  11. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  12. Safety inspections to TRIGA reactors

    International Nuclear Information System (INIS)

    Byszewski, W.

    1988-01-01

    The operational safety advisory programme was created to provide useful assistance and advice from an international perspective to research reactor operators and regulators on how to enhance operational safety and radiation protection on their reactors. Safety missions cover not only the operational safety of reactors themselves, but also the safety of associated experimental loops, isotope laboratories and other experimental facilities. Safety missions are also performed on request in other Member States which are interested in receiving impartial advice and assistance in order to enhance the safety of research reactors. The results of the inspections have shown that in some countries there are problems with radiation protection practices and nuclear safety. Very often the Safety Analysis Report is not updated, regulatory supervision needs clarification and improvement, maintenance procedures should be more formalised and records and reports are not maintained properly. In many cases population density around the facility has increased affecting the validity of the original safety analysis

  13. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  14. Reactor decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1984-01-01

    A pioneering project on the decommissioning of the Windscale Advanced Gas-cooled Reactor, by the UKAEA, is described. Reactor data; policy; waste management; remote handling equipment; development; and recording and timescales, are all briefly discussed. (U.K.)

  15. Estimation of radioactivity in structural materials of ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National Center for Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Precise knowledge of the thermal neutron flux in the different structural materials of a reactor is necessary to estimate the radioactive inventory in these materials that are needed in any decommissioning study of the reactor. ETRR-1 is a research reactor that went critical on 2/1691. In spite of this long age of the reactor, the effective operation time of this reactor is very short since the reactor was shutdown for long periods. Because of this long age one may think of reactor decommissioning. For this purpose, the radioactivity of the reactor structural materials was estimated. Apart from the reactor core, the important structural materials in the ETRR-1 are the reactor tank, shielding concrete, and the graphite thermal column. The thermal neutron flux was determined by the monte Carlo method in these materials and the isotope inventory and the radioactivity were calculated by the international code ORIGEN-JR. 1 fig.

  16. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  17. Reorientation measurements on tungsten isotopes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J J; Saladin, J X; Baktash, C; Alessi, J G [Pittsburgh Univ., Pa. (USA)

    1977-11-14

    In a particle-..gamma.. coincidence experiment, a thick tungsten target, of natural isotopic abundance, was bombarded with ..cap alpha.. and /sup 16/O beams. From analysis of the deexcitation ..gamma..-rays following Coulomb excitation, the spectroscopic quadrupole moment of the second 2/sup +/ state (the 2/sup +/' state) was determined for /sup 186/W and /sup 184/W. In a separate Coulomb excitation experiment a thin, isotopically enriched /sup 186/W target was bombarded with /sup 16/O ions. From analysis of projectiles scattered elastically and inelastically the quadrupole moment of the 2/sup +/' state of /sup 186/W was extracted. The results of the two experiments are in good agreement. The quadrupole moment of the 2/sup +/' state is found to be opposite in sign to that of the first 2/sup +/ state for both isotopes studied. However, its magnitude decreases rapidly in going from /sup 186/W to /sup 184/W, in contrast to the predictions of the rotation-vibration of asymmetric rotor models. The microscopic theory of Kumar and Baranger does predict the experimental trend, qualitatively. Thus the present results are interpreted as being evidence of strong coupling between ..beta.. and ..gamma.. degrees of freedom in the tungsten isotopes, which, according to the theory of Kumar and Baranger, is the source of the reduced value of the quadrupole moment.

  18. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr

  19. Multiregion reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The study of reflected reactors can be done employing the multigroup diffusion method. The neutron conservation equations, inside the intervals, can be written by fluxes and group constants. A reflected reactor (one and two groups) for a slab geometry is studied, aplying the continuity of flux and current in the interface. At the end, the appropriated solutions for a infinite cylindrical reactor and for a spherical reactor are presented. (Author) [pt

  20. Post-Irradiation Examination of Array Targets - Part I

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.