WorldWideScience

Sample records for isotope production facility

  1. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  2. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  3. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Scott, S.W.

    1997-01-01

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients

  4. Activation of air and concrete in medical isotope production facilities

    Science.gov (United States)

    Dodd, Adam C.; Shackelton, R. J.; Carr, D. A.; Ismail, A.

    2017-05-01

    Medical isotope facilities operating in the 10 to 25 MeV proton energy range have long been used to generate radioisotopes for medical diagnostic imaging. In the last few years the beam currents available in commercially available cyclotrons have increased dramatically, and so the activation of the materials within cyclotron vaults may now pose more serious radiological hazards. This will impact the regulatory oversight of cyclotron operations, cyclotron servicing and future decommissioning activities. Air activation could pose a hazard to cyclotron staff. With the increased cyclotron beam currents it was necessary to examine the issue more carefully. Therefore the ways in which radioactivity may be induced in air by neutron reactions and neutron captures were considered and it was found that the dominant mechanism is neutron capture on Ar-40. A study of the activation of the air by neutron capture on Ar-40 within a cyclotron vault was performed using the MCNP Monte Carlo code. The neutron source energy spectrum used was from the production of the widely used F-18 PET isotope. The results showed that the activation of the air within a cyclotron vault does not pose a significant radiological hazard at the beam intensities currently in use and shows how ventilation affects the results. A second MCNP study on the activation of ordinary concrete in cyclotron vaults by neutron capture was made with a view to determining the optimum thickness of borated polyethylene to reduce neutron activation on both the inner surfaces of the vault and around production targets. This is of importance in decommissioning cyclotrons and therefore in the design of new cyclotron vaults. The distribution of activation on the walls as a function of the source position was also studied. Results are presented for both borated and regular polyethylene, and F-18 and Tc-99 neutron spectra.

  5. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-01-01

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand

  6. Real-time Stack Monitoring at the BaTek Medical Isotope Production Facility

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Agusbudiman, A.; Cameron, Ian M.; Dumais, Johannes R.; Eslinger, Paul W.; Gheddou, A.; Khrustalev, Kirill; Marsoem, Pujadi; Miley, Harry S.; Nikkinen, Mika; Prinke, Amanda M.; Ripplinger, Mike D.; Schrom, Brian T.; Sliger, William A.; Stoehlker, Ulrich; Suhariyono, G.; Warren, Glen A.; Widodo, Susilo; Woods, Vincent T.

    2016-04-01

    Radioxenon emissions from radiopharmaceutical production are a major source of background concentrations affecting the radioxenon detection systems of the International Monitoring System (IMS). Collection of real-time emissions data from production facilities makes it possible to screen out some medical isotope signatures from the IMS radioxenon data sets. This paper describes an effort to obtain and analyze real-time stack emissions data with the design, construction and installation of a small stack monitoring system developed by a joint CTBTO-IDC, BATAN, and PNNL team at the BaTek medical isotope production facility near Jakarta, Indonesia.

  7. Targetry at the LANL 100 MeV isotope production facility: lessons learned from facility commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nortier, F. M. (Francois M.); Fassbender, M. E. (Michael E.); DeJohn, M.; Hamilton, V. T. (Virginia T.); Heaton, R. C. (Richard C.); Jamriska, David J.; Kitten, J. J. (Jason J.); Lenz, J. W.; Lowe, C. E.; Moddrell, C. F.; McCurdy, L. M. (Lisa M.); Peterson, E. J. (Eugene J.); Pitt, L. R. (Lawrence R.); Phillips, D. R. (Dennis R.); Salazar, L. L. (Louie L.); Smith, P. A. (Paul A.); Valdez, Frank O.

    2004-01-01

    The new Isotope Production Facility (IPF) at Los Alamos National Laboratory has been commissioned during the spring of 2004. Commissioning activities focused on the establishment of a radionuclide database, the review and approval of two specific target stack designs, and four trial runs with subsequent chemical processing and data analyses. This paper highlights some aspects of the facility and the targetry of the two approved target stacks used during the commissioning process. Since one niobium encapsulated gallium target developed a blister after the extended irradiation of 4 days, a further evaluation of the gallium targets is required. Beside this gallium target, no other target showed any sign of thermal failure. Considering the uncertainties involved, the production yields obtained for targets irradiated in the same energy slot are consistent for all three 'Prototype' stacks. A careful analysis of the temperature profile in the RbCl targets shows that energy shifts occur in the RbCl and Ga targets. Energy shifts are a result of density variations in the RbCl disk under bombardment. Thickness adjustments of targets in the prototype stack are required to ensure maximum production yields of {sup 82}Sr and {sup 68}Ge in the design energy windows. The {sup 68}Ge yields obtained are still consistently lower than the predicted yield value, which requires further investigation. After recalculation of the energy windows for the RbCl and Ga targets, the measured {sup 82}Sr production yields compare rather well with values predicted on the basis of evaluated experimental excitation function data.

  8. A conversion development program to LEU targets for medical isotope production in the MAPLE Facilities

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2000-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). The molybdenum extraction process from the HEU targets provided predictable, consistent yields for our high-volume molybdenum production process. A reliable supply of HEU for the NRU research reactor targets has enabled MDS Nordion to develop a secure chain of medical isotope supply for the international nuclear medicine community. Each link of the isotope supply chain, from isotope production to patient application, has been established on a proven method of HEU target irradiation and processing. To ensure a continued reliable and timely supply of medical isotopes, the design of the MAPLE facilities was based on our established process - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a program to convert the MAPLE facilities to LEU targets. An initial feasibility study was initiated to identify the technical issues to convert the MAPLE targets from HEU to LEU. This paper will present the results of the feasibility study. It will also describe future challenges and opportunities in converting the MAPLE facilities to LEU targets for large scale, commercial medical isotope production. (author)

  9. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  10. A cyclotron isotope production facility designed to maximize production and minimize radiation dose

    International Nuclear Information System (INIS)

    Dickie, W.J.; Stevenson, N.R.; Szlavik, F.F.

    1993-01-01

    Continuing increases in requirements from the nuclear medicine industry for cyclotron isotopes is increasing the demands being put on an aging stock of machines. In addition, with the 1990 recommendations of the ICRP publication in place, strict dose limits will be required and this will have an effect on the way these machines are being operated. Recent advances in cyclotron design combined with lessons learned from two decades of commercial production mean that new facilities can result in a substantial charge on target, low personnel dose, and minimal residual activation. An optimal facility would utilize a well engineered variable energy/high current H - cyclotron design, multiple beam extraction, and individual target caves. Materials would be selected to minimize activation and absorb neutrons. Equipment would be designed to minimize maintenance activities performed in high radiation fields. (orig.)

  11. TARGETRY AT THE LANL 100 MeV ISOTOPE PRODUCTION FACILITY: LES-SONS LEARNED FROM FACILITY COMMISSIONING

    International Nuclear Information System (INIS)

    Nortier, F.M.; Fassbender, M.E.; DeJohn, M.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Kitten, J.J.; Lenz, J.W.; Lowe, C.E.; Moddrell, C.F.; McCurdy, L.M.; Peterson, E.J.; Pitt, L.R.; Phillips, D.R.; Salazar, P.A.; Smith, P.A.; Valdez, F.O.

    2004-01-01

    The new Isotope Production Facility (IPF) at Los Alamos National Laboratory has been commissioned during the spring of 2004. Commissioning activities focused on the establishment of a radionuclide database, the review and approval of two specific target stack designs, and four trial irradiation runs with subsequent chemical processing and data analyses. This paper highlights some aspects of the facility and the targetry of the two approved target stacks used during the commissioning process

  12. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  13. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  14. Rare isotope production in the Oak Ridge Calutron facility: a status report

    International Nuclear Information System (INIS)

    Wellman, H.N.

    1985-01-01

    A workshop on rare isotope production in the Oak Ridge Calutron facility was held during the first week of February 1982, in great part also stimulated by the Department of Energy (DOE) and held under the auspices of the National Academy of Sciences (NAS). It was an excellent symposium on isotope production, chaired by Dr. Gerhardt Friedlander and organized by Dr. Henry Wagner, who is also participating in this symposium. A summary of the workshop recommendations and the Calutrons and their importance are discussed

  15. Abatement of xenon and iodine emissions from medical isotope production facilities.

    Science.gov (United States)

    Doll, Charles G; Sorensen, Christina M; Bowyer, Theodore W; Friese, Judah I; Hayes, James C; Hoffmann, Emmy; Kephart, Rosara

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes. Published by Elsevier Ltd.

  16. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions.

    Science.gov (United States)

    Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J

    2013-01-01

    Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Estimates of radioxenon released from Southern Hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling.

    Science.gov (United States)

    Eslinger, Paul W; Friese, Judah I; Lowrey, Justin D; McIntyre, Justin I; Miley, Harry S; Schrom, Brian T

    2014-09-01

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus

    2008-01-01

    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  19. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  20. Isotope production

    International Nuclear Information System (INIS)

    Lewis, Dewi M.

    1995-01-01

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the

  1. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.; Cappiello, M. [Westinghouse Savannah River Co., Aiken, SC (United States); Pitcher, E. [Los Alamos National Laboratory, Los Alamos, NM (United States); O`Brien, H. [O`Brien and Associates, Los Alamos, NM (United States)

    1998-08-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M{ampersand}O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project.

  2. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  3. Source Term Estimates of Radioxenon Released from the BaTek Medical Isotope Production Facility Using External Measured Air Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Cameron, Ian M.; Dumais, Johannes R.; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I.; Miley, Harry S.; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T.

    2015-10-01

    Abstract Batan Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies 99mTc for use in medical procedures. Atmospheric releases of Xe-133 in the production process at BaTek are known to influence the measurements taken at the closest stations of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The xenon isotopes released from BaTek are the same as those produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide whether a specific measurement result came from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84E13 Bq of Xe-133. Concentrations of Xe-133 in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88E13 Bq. The same optimization process yielded a release estimate of 1.70E13 Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10 percent of each other. Weekly release estimates of 1.8E13 Bq and a 40 percent facility operation rate yields a rough annual release estimate of 3.7E13 Bq of Xe-133. This value is consistent with previously published estimates of annual releases for this facility, which are based on measurements at three IMS stations. These multiple lines of evidence cross-validate the stack release estimates and the release estimates from atmospheric samplers.

  4. Source term estimates of radioxenon released from the BaTek medical isotope production facility using external measured air concentrations.

    Science.gov (United States)

    Eslinger, Paul W; Cameron, Ian M; Dumais, Johannes Robert; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I; Miley, Harry S; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T

    2015-10-01

    BATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The major xenon isotopes released from BaTek are also produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide if a specific measurement result could have originated from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84 × 10(13) Bq of (133)Xe. Concentrations of (133)Xe in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88 × 10(13) Bq. The same optimization process yielded a release estimate of 1.70 × 10(13) Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10% of each other. Unpublished production data and the release estimate from June 2013 yield a rough annual release estimate of 8 × 10(14) Bq of (133)Xe in 2014. These multiple lines of evidence cross-validate the stack release estimates and the release estimates based on atmospheric samplers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Estimation of radiation dose rates around medical isotopes production facility of Cyclotron

    International Nuclear Information System (INIS)

    Srihari, K.; Bandyopadhyay, Tapas; Saha, Subimal; Das, M.K.

    2015-01-01

    The demand of the radio isotopes for medical application is increasing day by day. Cyclotron is a tool for production of these proton rich isotopes which are termed a SPECT and PET isotopes. The irradiated hot targets from a cyclotron bunker are transferred to the hot cells for processing chemically to obtain the required radioisotope. A pre estimation of dose rates at various locations of the hot cells with worst and normal operation conditions is essential. An exercise of estimation of worst cases also gives an idea about the dose to the workers and necessary preparedness without compromising on the regulatory aspects. 18 F, 67 Ga, 201 Tl are the most important isotopes that will be produced in medical cyclotron. They are produced by bombarding proton on suitable target materials. The activated targets transferred to the hot cells from irradiated machine/production bunker. Chemist has to work at hot cells for chemical synthesis for 18 F to form FDG. For SPECT isotope production target has to under go two stages of chemical synthesis. The dose rate estimation around the hot cells will give the estimation of dose to the radiation workers. In addition to medical isotope the other materials surrounding the target also get activated because of proton or neutron activation. The dose estimation depends on the total activity that is produced and the period of time for entire the chemical processing. The dose rate are estimated by using suitable expressions considering normal and worst scenario conditions. A procedure and a case was discussed and result shown both for normal and worse scenario case. It is observed that not only shielding many other factors like ventilation etc played important role. A case study was made and results are shown with the suggestive preventive measures. (author)

  6. ORNL Isotopes Facilities Shutdown Program Plan

    International Nuclear Information System (INIS)

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  7. Analysis and results of a hydrogen-moderated isotope production assembly in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1989-01-01

    This paper reports on a cobalt test assembly containing yttrium hydride pins for neutron moderation irradiated in the Fast Flux Test Facility (FFTF) during cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce 60 Co and a set of four pins with europium oxide to produce 153 Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the 60 Co production to be predictable to an accuracy of ∼ 5%. The measured 60 Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average 60 Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes 152 Eu and 154 Eu to an absolute accuracy of ≅ 10%. The measured europium radioisotope and 153 Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many FFTF isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly

  8. Magnet design concepts for the 100-MeV isotope production facility

    International Nuclear Information System (INIS)

    Wadlinger, E.A.; Merrill, F.E.; Power, J.F.; Rose, C.R.; Walstrom, P.L.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The North Port Target Facility proposal includes a 100-MeV beam line to be built at the LANSCE accelerator. In developing cost and schedule estimates for this proposal, the greatest uncertainties are associated with the kicker magnet that is needed to divert portions of the beam into the new beam line. This magnet must fit into a rigidly defined space within the transition region of the existing accelerator and must operate in synchrony with the current accelerator operations systems. In addition, it must not degrade the beam quality when beam is directed to other areas of the complex. Because of these constraints the magnet must be specifically designed and built for this intended application. The authors have produced conceptual designs of a kicker-magnet and power supply that will meet all of the design requirements. The power supply design is based on a working design for the RIKI kicker magnet that switches 800-MeV beam into the PSR. This report presents the kicker-magnet and power-supply designs and cost and schedule estimates for incorporation into the IP facility proposal. The feasibility of various design alternatives are briefly discussed

  9. Potential impact of releases from a new Molybdenum-99 production facility on regional measurements of airborne xenon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, Ted W.; Eslinger, Paul W.; Cameron, Ian M.; Friese, Judah I.; Hayes, James C.; Metz, Lori A.; Miley, Harry S.

    2014-03-01

    The monitoring of the radioactive xenon isotopes 131mXe, 133Xe, 133mXe, and 135Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of 99Mo used for medical procedures. One of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula, where the Democratic Republic of North Korea (DPRK) has announced that it had conducted three nuclear tests between 2009 and 2013. This paper explores the backgrounds that would be caused by the medium to large scale production of 99Mo in the region of the Korean peninsula.

  10. Capability of the electromagnetic isotope-enrichment facility at ORNL

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    The isotope separation program at Oak Ridge National Laboratory (ORNL) prepares and distributes electromagnetically enriched stable isotopes to the worldwide scientific community. Among the topics discussed in the present paper are the methods of enriching isotopes, the limitations that apply to the quantity and final assay of the separation products, and a generalized production flowsheet indicating the capability of the facility. A brief description of each of the production steps, from the selection and preparation of initial feedstock to the recovery and distribution of the isotopically enriched material, is presented. The future of the facility, the continued supply of enriched isotopes, and the response of the program to new and changing requirements are emphasized

  11. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eversole, R.E.

    1997-05-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

  12. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1997-01-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation's Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program

  13. Brayton Isotope Power System (BIPS) facility specification

    International Nuclear Information System (INIS)

    1976-01-01

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included

  14. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  15. Beneficial uses and production of isotopes

    CERN Document Server

    2001-01-01

    Isotopes, radioactive and stable, are used worldwide in various applications related to medical diagnosis or care, industry and scientific research. More than fifty countries have isotope production or separation facilities operated for domestic supply, and sometimes for international markets. This publication provides up-to-date information on the current status of, and trends in, isotope uses and production. It also presents key issues, conclusions and recommendations, which will be of interest to policy makers in governmental bodies, scientists and industrial actors in the field.

  16. Accelerator Production of Isotopes for Medical Use

    Science.gov (United States)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  17. The influence on the radioxenon background during the temporary suspension of operations of three major medical isotope production facilities in the Northern Hemisphere and during the start-up of another facility in the Southern Hemisphere.

    Science.gov (United States)

    Saey, Paul R J; Auer, Matthias; Becker, Andreas; Hoffmann, Emmy; Nikkinen, Mika; Ringbom, Anders; Tinker, Rick; Schlosser, Clemens; Sonck, Michel

    2010-09-01

    Medical isotope production facilities (MIPF) have recently been identified to emit the major part of the environmental radioxenon measured at many globally distributed monitoring sites deployed to strengthen the radionuclide component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification regime. Efforts to raise a global radioxenon emission inventory revealed that the yearly global total emission from MIPF's is around 15 times higher than the total radioxenon emission from nuclear power plants (NPP's). Given that situation, from mid 2008 until early 2009 two out of the ordinary hemisphere-specific events occured: 1) In the Northern hemisphere, a joint temporary suspension of operations of the three largest MIPF's made it possible to quantify the effects of the emissions related to NPP's. The average activity concentrations of (133)Xe measured at a monitoring station close to Freiburg, Germany, went down significantly from 4.5 +/- 0.5 mBq/m(3) to 1.1 +/- 0.1 mBq/m(3) and in Stockholm, Sweden, from 2.0 +/- 0.4 mBq/m(3) to 1.05 +/- 0.15 mBq/m(3). 2) In the Southern hemisphere the only radioxenon-emitting MIPF in Australia started up test production in late November 2008. During eight test runs, up to 6.2 +/- 0.2 mBq/m(3) of (133)Xe was measured at the station in Melbourne, 700 km south-west from the facility, where no radioxenon had been observed before, originating from the isotopic production process. This paper clearly confirms the hypothesis that medical isotope production facility are at present the major emitters of radioxenon to the atmosphere. Suspension of operations of these facilities indicates the scale of their normal contribution to the European radioxenon background, which decreased two to four fold. This also gives a unique opportunity to detect and investigate the influence of other local and long distance sources on the radioxenon background. Finally the opposing effect was studied: the contribution of the start-up of a renewed

  18. World new facilities for radioactive isotope beams

    International Nuclear Information System (INIS)

    Motobayashi, T.

    2014-01-01

    The use of unstable nuclei in the form of energetic beams for nuclear physics studies is now entering into a new era. 'New-generation' facilities are either in operation, under construction or being planned. They are designed to provide radioactive isotope (RI) beams with very high intensities over a wide range of nuclides. These facilities are expected to provide opportunities to study nuclear structure, astrophysical nuclear processes and nuclear matter with large proton-neutron imbalance in grate detail. This article reports on the current status of such new-generation RI-beam facilities around the world. In order to cover different energy domains and to meet various scientific demands, the designs of RI-beam facilities are of a wide variety. For example, RIBF in Japan, FAIR in Germany and FRIB in US are based on the fragmentation scheme for beams with energies of a few hundred MeV/nucleon to GeV/nucleon, whereas Spiral2 in France, SPES in Italy, HIE-ISOLDE in Switzerland/France, and the future facility EURISOL in Europe are based on the ISOL method, and aim at providing lower-energy RI beams. There are a many other projects including upgrades of existing facilities in the three continents, America, Asia and Europe

  19. Symposium on isotope production and applications

    International Nuclear Information System (INIS)

    1981-01-01

    This report contains the papers delivered at the symposium on isotope production and applications, held at Pelindaba, Pretoria, South Africa. The following topics were discussed: facilities for the production of radioisotopes at Pelindaba; the role of the chemist in the development and production of radioisotopic preparations; quality control of radioisotopic products; applications of radioisotopes in medicine; concepts and current status of nuclear imaging; industrial and research applications of radioisotopic tracers and radioisotopic radiation sources; radiation processing using intense radioisotopic radiation sources; a review of current and future radioisotope production activities at the Council for Scientific and Industrial Research

  20. 77 FR 32146 - Safety Evaluation Report, International Isotopes Fluorine Products, Inc., Fluorine Extraction...

    Science.gov (United States)

    2012-05-31

    ..., International Isotopes Fluorine Products, Inc., Fluorine Extraction Process and Depleted Uranium Deconversion... license to International Isotopes Fluorine Products, Inc., (IIFP or the applicant) to authorize construction and operations of a depleted uranium deconversion facility and possession and use of source...

  1. Dose control programme of Hot Cell facility at Isotope Wing

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Suresh, Manju; Shreenivas, V.; Amruta, C.T.; Yadav, R.K.B.; Gopalkrishanan, R.K.; Patil, B.N.; Sastry, K.V.S.

    2015-01-01

    Hot Cell Facility of Board of Radiation Isotope Technology (BRIT) at Radiological Laboratories (RLG) is involved in fabrication of sealed radioisotopes like Cobalt-60, Cesium-137 and Iridium-192 radioisotopes which are widely used for various medical and industrial applications. In the field of Medicine, above radioactive sources are used for treatment procedures such as Teletherapy and Brachytherapy. 192 Ir radioisotope is widely used for industrial radiography particularly for non-destructive testing of welds in steel in the oil and gas industries. In spite of the increased production of these radioisotopes to meet the requirements from medical and industrial sector, the annual Collective Dose for BRIT facility, during 2011-2013 has shown a downward trend. This paper describes in brief the measures adopted by the facility based on the radiological safety inputs provided by Radiation Hazards Control (RHC) Unit of Isotope Wing, RLG for reducing the collective dose during year 2012 and 2013 by nearly 40% of collective dose consumed for year-2011. Strict implementation of the radiological safety measures during handling of radioactive sources, administrative controls and engineered safety measures resulted in lowering of collective dose during year 2011-2013. (author)

  2. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  3. Calculation of in-target production rates for radioactive isotope beam production at TRIUMF

    Science.gov (United States)

    Garcia, Fatima; Andreoiu, Corina; Kunz, Peter; Laxdal, Aurelia

    2016-09-01

    Rare Isotope Beam (RIB) facilities around the world, such as TRIUMF, work towards development of new target materials to generate exotic species. Access to these rare radioactive isotopes is key for applications in nuclear medicine, astrophysics and fundamental nuclear science. To better understand production from these and other materials, we have built a computer simulation of the RIB targets used at the TRIUMF Isotope Separation and ACceleration (ISAC) facility, to support new target material development. Built at Simon Fraser University, the simulation runs in the GEANT4 nuclear transport toolkit, and can simulate the production rate of isotopes from a given set of beam and target characteristics. The simulation models the bombardment of a production target by an incident high-energy proton beam and calculates isotope in-target production rates different nuclear reactions. Results from the simulation will be presented, along with an evaluation of various nuclear reaction models and a experimentally determined RIB yields at the ISAC Yield Station.

  4. Sci—Fri PM: Topics — 07: Monte Carlo Simulation of Primary Dose and PET Isotope Production for the TRIUMF Proton Therapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, C; Jirasek, A [University of Victoria (Australia); Blackmore, E; Hoehr, C; Schaffer, P; Trinczek, M [TRIUMF (Canada); Sossi, V [University of British Columbia (Canada)

    2014-08-15

    Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients, yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.

  5. Fabrication, cladding, and handling of irradiation targets for isotope production at LAMPF

    International Nuclear Information System (INIS)

    Bentley, G.E.; Barnes, J.W.; DeBusk, T.P.; Ott, M.A.

    1978-01-01

    The intense medium-energy proton beam available at the Los Alamos Meson Physics Facility (LAMPF) allows the production of large quantities of neutron-deficient isotopes. Interest from the medical community for these heretofore relatively rare isotopes has resulted in the development of a curie-scale isotope-production project. Target materials for proton irradiation are selected based on the desired isotope and the availability of the target material. Targets and target cladding are fabricated in several different configurations. Targets are transported from the radiochemistry site to LAMPF in carriers that have provisions for remote handling, and for attaching targets to the target insertion mechanism at the LAMPF isotope production facility

  6. Isotope Production at the Hanford Site in Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Ammoniums

    1999-06-01

    This report was prepared in response to a request from the Nuclear Energy Research Advisory Committee (NERAC) subcommittee on ''Long-Term Isotope Research and Production Plans.'' The NERAC subcommittee has asked for a reply to a number of questions regarding (1) ''How well does the Department of Energy (DOE) infrastructure sme the need for commercial and medical isotopes?'' and (2) ''What should be the long-term role of the federal government in providing commercial and medical isotopes?' Our report addresses the questions raised by the NERAC subcommittee, and especially the 10 issues that were raised under the first of the above questions (see Appendix). These issues are related to the isotope products offered by the DOE Isotope Production Sites, the capabilities and condition of the facilities used to produce these products, the management of the isotope production programs at DOE laboratories, and the customer service record of the DOE Isotope Production sites. An important component of our report is a description of the Fast Flux Test Facility (FFTF) reactor at the Hbford Site and the future plans for its utilization as a source of radioisotopes needed by nuclear medicine physicians, by researchers, and by customers in the commercial sector. In response to the second question raised by the NERAC subcommittee, it is our firm belief that the supply of isotopes provided by DOE for medical, industrial, and research applications must be strengthened in the near future. Many of the radioisotopes currently used for medical diagnosis and therapy of cancer and other diseases are imported from Canada, Europe, and Asia. This situation places the control of isotope availability, quality, and pricing in the hands of non-U.S. suppliers. It is our opinion that the needs of the U.S. customers for isotopes and isotope products are not being adequately served, and that the DOE infrastructure and facilities devoted to the

  7. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    Science.gov (United States)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  8. Oak Ridge Isotope Products and Services - Current and Expected Supply and Demand

    International Nuclear Information System (INIS)

    Aaron, W.S.; Alexander, C.W.; Cline, R.L.; Collins, E.D.; Klein, J.A.; Knauer, J.B. Jr.; Mirzadeh, S.

    1999-01-01

    Oak Ridge National Laboratory (ORNL) has been a major center of isotope production research, development, and distribution for over 50 years. Currently, the major isotope production activities include (1) the production of transuranium element radioisotopes, including 252 Cf; (2) the production of medical and industrial radioisotopes; (3) maintenance and expansion of the capabilities for production of enriched stable isotopes; and, (4) preparation of a wide range of custom-order chemical and physical forms of isotope products, particularly in accelerator physics research. The recent supply of and demand for isotope products and services in these areas, research and development (R ampersand D), and the capabilities for future supply are described in more detail below. The keys to continuing the supply of these important products and services are the maintenance, improvement, and potential expansion of specialized facilities, including (1) the High Flux Isotope Reactor (HFIR), (2) the Radiochemical Engineering Development Center (REDC) and Radiochemical Development Laboratory (RDL) hot cell facilities, (3) the electromagnetic calutron mass separators and the plasma separation process equipment for isotope enrichment, and (4) the Isotope Research Materials Laboratory (IRML) equipment for preparation of specialized chemical and physical forms of isotope products. The status and plans for these ORNL isotope production facilities are also described below

  9. Production Facility SCADA Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  10. Chemical production of chondrule oxygen isotopic composition

    Science.gov (United States)

    Thiemens, M. H.

    1994-01-01

    Defining the source of observed meteoritic O isotopic anomalies remains a fundamental challenge. The O isotopic composition of chondrules are particularly striking. There are at least three types of chemical processes that produce the isotopic compositions observed in chondrules and Ca-Al-rich inclusions (CAI's). The processes are rather general, viz, they require no specialized processes and the processes associated with chondrule production are likely to produce the observed compositions.

  11. TRI mu P - A new facility to produce and trap radioactive isotopes

    NARCIS (Netherlands)

    Sohani, M

    At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRI mu P) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station

  12. Medical Isotopes Production Project: Molybdenum-99 and related isotopes: Environmental Impact Statement, Volume I

    International Nuclear Information System (INIS)

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related medical isotopes (iodine-131, xenon-133 and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition to the preferred alternative, three other reasonable alternatives and a no action alternative are analyzed in detail. The sites for the three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities, of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity

  13. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The

  14. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  15. Transportable activation facility for preparation of radioactive sodium under industrial conditions to study boreholes by isotope methods

    International Nuclear Information System (INIS)

    Kostin, Yu.I.; Zajchenkov, B.D.; Ibatullin, R.A.; Gulin, Yu.A.; Tugarinov, L.N.

    1981-01-01

    A method of short-living isotope production at the place their application is proposed. A transportable activation facility for the preparation of radioactive sodium under industrial conditions was developed to radioactive tracer logging. Facility specifications and its application results are given [ru

  16. Transportable activation facility for preparation of radioactive sodium under industrial conditions to study boreholes by isotope methods

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu.I.; Zajchenkov, B.D.; Ibatullin, R.A.; Gulin, Yu.A.; Tugarinov, L.N. (Vsesoyuznyj Nauchno-Issledovatel' skij i Proektno-Konstruktorskij Inst. Geofizicheskikh Issledovanij Geologorazvedochnykh Skvazhin, Oktyabr' skij (USSR))

    1981-01-01

    A method of short-living isotope production at the place their application is proposed. A transportable activation facility for the preparation of radioactive sodium under industrial conditions was developed to radioactive tracer logging. Facility specifications and its application results are given.

  17. Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-27

    The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

  18. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  19. Strontium-89 production with medical isotope production reactor

    International Nuclear Information System (INIS)

    Deng Qimin; Li Maoliang; Cheng Zuoyong

    2007-01-01

    Medical isotope production reactor (MIPR) is a new type reactor for isotope production, it's an aqueous homogeneous solution reactor which can use High Enriched Uranium (HEU) or Low Enriched Uranium (LEU) as fuel. 89 Sr is bone seeking radiopharmaceuticals used for palliation of bone pain from osseous metastases. The current status of 89 Sr production, the structure and characteristics of MIPR as well as the principle of 89 Sr production whith MIPR are described here. (authors)

  20. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  1. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  2. The production of stable isotopes in Spain

    International Nuclear Information System (INIS)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-01-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs

  3. CERN-MEDICIS (MEDical Isotopes Collected from ISOLDE): a new facility

    International Nuclear Information System (INIS)

    Augusto, R.; Bernardes, A.P.; Catherall, R.; Giles, T.; Lawson, Z.; Marzari, S.; Stora, T.; )

    2014-01-01

    The CERN-MEDICIS facility will build a dedicated target irradiation station at the HRS beam dump and a conveyor system to move the irradiated target back into a preparatory hot cell. Indeed, 1.4 GeV proton beam loses only 10% of its intensity and energy, the precise figure depending of the type of target operated for ISOLDE. The primary proton beam also experiences some scattering when going through the primary target. This impacts the CERN-MEDICIS target layout to preserve similar in-target production rates as those observed today for the online facility ISOLDE operating 20 cm long, 2 cm in diameter targets. Up to three 500 MBq different isotope batches, first purified by electromagnetic mass separation, followed by an eventual radiochemical purification stage, will be collected in parallel on a weekly basis. Light targets will first be operated for the commissioning phase and to gain experience with the new facility. This will progressively evolve towards the production and purification of alpha-emitting isotopes, such the well-known 149 Tb isotope produced with tantalum targets, and will extend further with the operation of uranium carbide targets. Future upgrades including laser ion sources and links to facilities where GBq pharmaceutical-grade (ie, cGMP) batches will also be addressed. Collaborations with local university hospitals in Geneva and Lausanne and with fundamental research centres such as ISREC at the Swiss Federal School of Technology and SINP have been established and will be developed further throughout the years

  4. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  5. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    International Nuclear Information System (INIS)

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-01-01

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge

  6. The reactor and the production of isotopes

    International Nuclear Information System (INIS)

    Hevesy, G. de

    1962-01-01

    The construction of the cyclotron immensely advanced the availability of radioactive tracers, a few of which even today can be produced only with the aid of this device. But even this great advance was overshadowed by the fabulous production of isotopes by the reactors. Isotopes of almost any element and of almost unlimited activity became available. It now became possible to apply H 3 - discovered already in the 'thirties by Rutherford and Oliphant - and C 14 , and these were used in thousands of investigations

  7. Linacs for Medical Isotope Production

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2011-04-01

    Full Text Available This paper reviews efforts on using high energy (25-30 MeV and high power (10-20 kW electron linacs and lower energy (7 MeV proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography radioisotopes are produced through photonuclear reactions such as 19F(γ,n18F, which also allow production of other PET radionuclides 11C, 13N, and 15O. Other mostly used medical radionuclides 99mTc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons

  8. Medical Isotopes Production Project: Molybdenum-99 and related isotopes - environmental impact statement. Volume II, comment response document

    International Nuclear Information System (INIS)

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related isotopes (iodine-131, xenon-133, and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community as soon as practicable. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition, three other reasonable alternatives and a No Action alternative are analyzed in detail, The sites for these three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity. This document contains comments recieved from meetings held regarding the site selection for isotope production

  9. Isotope production potential at Sandia National Laboratories: Product, waste, packaging, and transportation

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99 Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided

  10. CERN-MEDICIS (Medical Isotopes Collected from ISOLDE: A New Facility

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel dos Santos Augusto

    2014-05-01

    Full Text Available About 50% of the 1.4 GeV CERN (European Organization for Nuclear Research, www.cern.ch protons are sent onto targets to produce radioactive beams by online mass separation at the Isotope Separator Online Device (ISOLDE facility, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to Phase I trials. Five hundred megabecquerel isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. A possible future upgrade with gigabecquerel pharmaceutical-grade i.e., current good manufacturing practices (cGMP batch production capabilities is finally presented.

  11. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  12. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  13. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  14. Thermal neutron beam modification studies using an isotope based neutron radiography facility

    International Nuclear Information System (INIS)

    Baheti, G.L.; Khatri, P.K.; Meghwal, L.R.; Meena, V.L.

    1996-01-01

    Neutron radiography has established itself as one of the advanced NDT technique. Isotope based facilities are being developed to make the technique available for inplant use. Quality of neutron radiograph obtained is a function of beam parameters like flux, Cd ratio and neutron to gamma ratio, scattered neutrons etc. These parameters can be modified using design features of the facility. Effect of modifications in these parameters on final image quality has been studied and were found to be useful in meeting the widely varying radiographic requirements, particularly through an isotope based facility. These modifications can also overcome some of the inherent limitations of isotope based neutron radiography facilities. (author)

  15. Production and supply of isotopes in the world

    International Nuclear Information System (INIS)

    Umezawa, Hirokazu

    2000-01-01

    This review describes present global state of production and supply of radioisotopes and stable isotopes for various usages. Radioisotopes are produced by nuclear reactors and accelerators or as by-products in atomic fuel cycle. Reactors such as MDS Nordion in Canada and MAYAK in Russia are the biggest ones for supplying radioisotopes, however, supply of 60 Co with high specific activity for medical use tends to be in shortage since its production requires high neutron beam. In Japan, 99 Mo, an important source of 99m Tc-radiopharmaceuticals, is supplied from Canada. Cyclotron produces many important radioisotopes for medical use like 67 Ga, 81 Rb, 111 In, 123 I and 201 Tl as well as those for PET. Six cyclotrons (DRL and NMP) are working exclusively for production of medical radioisotopes and 30 machines, for PET, in Japan. At present, regions of northern America (Canada and U.S.), Russia and Europe are playing important roles for production and supply of radioisotopes although other countries also have facilities. As for stable isotopes, Russia is a important country for supplying them because operation of Calutron in U.S. ORNL was ceased in 1998. (K.H.)

  16. Production Situation and Technology Prospect of Medical Isotopes

    Directory of Open Access Journals (Sweden)

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  17. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  18. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  19. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    Science.gov (United States)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  20. Studies on Separation Process and Production Technology of Boron Isotope

    OpenAIRE

    LI Jian-ping

    2014-01-01

    The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material di...

  1. Production of americium isotopes in France

    International Nuclear Information System (INIS)

    Koehly, G.; Bourges, J.; Madic, C.; Nguyen, T.H.; Lecomte, M.

    1984-12-01

    The program of productions of americium 241 and 243 isotopes is based respectively on the retreatment of aged plutonium alloys or plutonium dioxide and on the treatment of plutonium targets irradiated either in CELESTIN reactors for Pu-Al alloys or OSIRIS reactor for plutonium 242 dioxide. All the operations, including americium final purifications, are carried out in hot cells equipped with remote manipulators. The chemical processes are based on the use of extraction chromatography with hydrophobic SiO 2 impregnated with extracting agents. Plutonium targets and aged plutonium alloys are dissolved in nitric acid using conventional techniques while plutonium dioxide dissolutions are performed routine at 300 grams scale with electrogenerated silver II in 4M HNO 3 at room temperature. The separation between plutonium and americium is performed by extraction of Pu(IV) either on TBP/SiO 2 or TOAHNO 3 /SiO 2 column. Americium recovery from waste streams rid of plutonium is realized by chromatographic extraction of Am(III) using mainly TBP and episodically DHDECMP as extractant. The final purification of both americium isotopes uses the selective extraction of Am(VI) on HDDiBMP/SiO 2 column at 60 grams scale. Using the overall process a total amount of 1000 grams of americium 241 and 100 grams of americium 243 has been produced nowadays and the AmO 2 final product indicates a purity better than 98.5%

  2. Production of medical 99 m Tc isotope via photonuclear reaction

    Science.gov (United States)

    Fujiwara, M.; Nakai, K.; Takahashi, N.; Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Fan, G. T.; Takemoto, A.; Yamaguchi, M.; Nishimura, M.

    2017-01-01

    99 m Tc with a 6 hour half-life is one of the most important medical isotopes used for the Single-Photon Emission Computed Tomography (SPECT) inspection in hospitals of US, Canada, Europe and Japan. 99 m Tc isotopes are extracted by the milking method from parent 99Mo isotopes with a 66 hour half-life. The supply of 99Mo isotopes now encounters a serious crisis. Hospitals may not suitably receive 99Mo medical isotopes in near future, due to difficulties in production by research nuclear reactors. Many countries are now looking for alternative ways to generate 99Mo isotopes other than those with research reactors. We discuss a sustained availability of 99 m Tc isotopes via the nat Mo(γ, n) photonuclear reaction, and discuss to solve technical problems for extracting pure 99 m Tc isotopes from other output materials of photonuclear reactions.

  3. Stable isotope sales; Mound Facility customer and shipment summaries, FY 1977

    International Nuclear Information System (INIS)

    Ruwe, A.H. Jr.

    1978-01-01

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1977. Purchasers are listed alphabeticaly and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  4. Development of lowenergy accelerator-based production of medical isotopes

    OpenAIRE

    Radcliffe, Naomi; Barlow, Roger; Cywinski, Robert; Beasley, P.

    2013-01-01

    Here we present methods for production of new and existing isotopes for SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) imaging using accelerator-based systems. Such isotopes are already widely used in medical diagnostics and research, and there is constant development of new drugs and isotopes. However the main production method for 99mTc, is currently in research reactors and is at risk due to scheduled and unscheduled shut downs. Therefore, a low c...

  5. Production of radioisotopes with BR2 facilities

    International Nuclear Information System (INIS)

    Fallais, C.J.; Morel de Westfaver, A.; Heeren, L.; Baugnet, J.M.; Gandolfo, J.M.; Boeykens, W.

    1978-01-01

    After a brief account on the isotopes production evolution in the industrialized countries the irradiation devices and the types of standardized capsules used in the BR2 reactor are described as well as the thermal neutron flux. Production of most important radioisotopes like 131 Iodine, 60 Cobalt, 192 Iridium and 99 Molybdenum and their main utilizations (uses)are described. The mean specific activities and the limit of use for different radioisotopes are reported. (A.F.)

  6. Operation status and prospect of radioisotope production facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Minjin; Jung, H.S.

    2012-01-01

    At the RIPF at HANARO, Radioisotopes for industrial and medical purpose are produced and research and development for various radioisotopes are carried out. Major products include Ir-192 for NDT, I-131 for treatment and diagnosis of thyroid cancer, Mo-99/Tc-99m Generator for imaging diagnosis of cancer. Production of radioisotope and radiopharmaceutical is being increased every year. Due to world-wide unstableness in the supply of Mo-99, a technology to produce (n,γ)Mo-99 generator at HANARO had been developed as a short term countermeasure. It will be available by the end of 2012. As a long term countermeasure, we are trying to build a new fully dedicated isotope reactor that will produce Fission Mo-99. At present, utilization of RIPF at HANARO is being increased. However when the construction of a new dedicated isotope reactor is completed in 2016, the role of the existing facility and new facility should be established accordingly so that none of the facilities are idling. In the near future, when the prospect of a utilization plan is completed, we expect an opportunity to present the result. (author)

  7. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  8. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  9. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) until the facilities are included in the Decontamination and Decommissioning (D ampersand D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes ampersand Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report

  10. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  11. Status report of the Jyvaskyla ion guide isotope separator on-line facility

    NARCIS (Netherlands)

    Penttila, H; Dendooven, P; Honkanen, A; Huhta, M; Jauho, PP; Jokinen, A; Lhersonneau, G; Oinonen, M; Parmonen, JM; Perajarvi, K; Aysto, J

    The ion guide isotope separator facility IGISOL of the University of Jyvaskyla has been moved to the new K-130 heavy ion cyclotron laboratory. The totally reconstructed facility is described in detail. The primary beams and targets, helium pumping, separator beam line construction and separator beam

  12. Isotopes for the improvement of industrial products

    International Nuclear Information System (INIS)

    Schultze-Kraft, P.

    1978-01-01

    Full text: For many years the International Atomic Energy Agency has been giving technical assistance to developing countries on the application of radioisotopes in medicine, agriculture and hydrology. With increasing industrialization, these countries feel a growing need for the use of isotopic methods as a means of improving the control of production processes and the quality of industrial products. In response to the demand for training in this field, the IAEA recently held its first Regional Training Course in the Practical Use of Radioisotope Techniques in Industry for Process and Quality Control. The course was given from 27 March to 28 April 1978 at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela, in co-operation with the Consejo Nacional para el Desarrollo de la Industria Nuclear (CONAN) and the Junta del Acuerdo de Cartagena. It was financed jointly by the IAEA and CONAN, and in addition received a special contribution by the Government of the Federal Republic of Germany. Participants were 18 engineers and physicists from Bolivia, Chile, Colombia, Ecuador, Peru and Venezuela, and the lecturers came from Denmark, Federal Republic of Germany, Poland and the host country. Course directors were Dr. J.J. Henriquez (IVIC) and Dr. L. Wiesner (IAEA expert). The idea of the course was to demonstrate that radioisotope techniques can considerably reduce production costs by optimizing industrial processes and making more efficient use of raw materials. It is estimated that the paper industry in the USA, for example, is saving about 100 million dollars per year through the application of radioisotopes. During the training course, the participants gained practical experience in applying isotopic techniques in several fields: in a paper mill at Moron they measured the weight per surface area, and in the cement factory of Ocumare del Tuy the residence time of clinker, at the new international airport of Maiquetia they determined the

  13. Advances in the production of isotopes and radiopharmaceuticals at the Atomic Energy Corporation of South Africa

    International Nuclear Information System (INIS)

    Louw, P.A.; De Villiers, W.Y.Z.; Jarvis, N.V.

    1997-01-01

    The Atomic Energy Corporation of South Africa Ltd (AEC) owns and operates the 20 MW research reactor, SAFARI-1. Utilisation of the reactor has in recent years changed from research and materials testing to the production of isotopes. The most important breakthrough achieved in recent years is the production of high quality fission 99Mo. This has been produced routinely since April 1993 and supplied to clients across the world. A capability for the reliable production of 1000 Ci of 99Mo per week (calibrated for six days after production) has been proven. The AEC has also established facilities to produce its own 99mTc generators together with a most of radiopharmaceutical kits for diagnostic nuclear medicine purposes. The production of 153 Sm and 131 I (tellurium oxide route) has been operational for many years. Applications include therapeutic radiopharmaceuticals such as 153 Sm-EDTMP for bone cancer pain palliation, 13' I-Lipiodol for liver cancer and 131 I capsules for thyroid treatment. Facilities for the production of other isotopes such as 131 I (from fission), 32 P and 35 S are in various stages of completion. Extensive analytical methods and equipment have been developed and are routinely used to certify the quality of exported isotopes. Irradiation and encapsulation of 192 Ir is also performed routinely at the AEC. Modern facilities allow for the production of isotopes such as 131 Ba and 140 La on an ad hoc basis. Quality assurance procedures based on ISO9000 were developed for all aspects of the production of the various isotopes. Documentation, such as Drug Master Files, required by authorities in various countries has also been submitted and accepted

  14. Fuel preparation for use in the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Policke, Timothy A.; Aase, Scott B.; Stagg, William R.

    2016-10-25

    The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, but not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.

  15. [CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility].

    Science.gov (United States)

    Viertl, David; Buchegger, Franz; Prior, John O; Forni, Michel; Morel, Philippe; Ratib, Osman; Bühler Léo H; Stora, Thierry

    2015-06-17

    CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.

  16. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  17. Isotope methods for the control of food products and beverages

    International Nuclear Information System (INIS)

    Guillou, C.; Reniero, F.

    2001-01-01

    The measurement of the stable isotope contents provides useful information for the detection of many frauds in food products. Nuclear magnetic resonance (NMR) and isotopic ratio mass spectroscopy (IRMS) are the two main analytical techniques used for the determination of stable isotope contents in food products. These analytical techniques have been considerably improved in the last years offering wider possibilities of applications for food analysis. A review of the applications for the control of food products and beverages is presented. The need for new reference materials is discussed. (author)

  18. Radioactive isotopes production in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Arzumanov, A.; Batishev, V.; Popov, Y.; Sychikov, G.; Hamidov, N.

    1996-01-01

    The purpose of the project - is to develop the regular production of Radioactive Isotopes to meet the needs of the Republic of Kazakstan.To reach the purpose of the Project the follow problems will be solved: Producing beams of accelerated ions with necessary parameters and develop methods of effective extraction of necessary radioactive isotopes from irradiated targets. During carrying out the Project there will be irradiation of internal targets also, when high beam current is needed. It is also necessary to increase reliability and accuracy of the beam diagnosis, to improve reliability of radiation shielding, radioisotopes transport system and others. There will be developed method for uniform irradiation of the target. Extraction of radioactive isotopes from irradiated targets and preparing ready to use isotopes products will be produced in separate radiochemical laboratory.Anticipated results: Beam of ions parameters necessary for isotopes production, it's diagnostics on the internal and external targets; effective and reliable target's head; yields of radioactive isotopes while irradiating targets by light particles in the reactions of (p, x n) type; radiochemical methods of radiochemical separation and extraction from irradiated targets; production of Co-57, Ga-67, Cd-109, Tl-201 radioactive isotopes at the necessary quantities; additionally it is planned also to carry out research on production of Iodine-123 (for medicine use), Polonium-209 and Plutonium-206 (for environment research)

  19. CERN-MEDICIS (MEDical Isotopes Collected from ISOLDE): A new facility

    CERN Document Server

    Augusto, Ricardo Manuel dos Santos; Lawson, Zoe; Marzari, Stefano; Stachura, Monika; Stora, Thierry; CERN. Geneva. ATS Department

    2014-01-01

    About 50% of the 1.4GeV CERN’s protons are sent onto targets to produce radioactive beams by online mass separation at ISOLDE, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to phase I trials. 500 MBq isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. Possible future u...

  20. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    Science.gov (United States)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  1. Production of isotopes using high power proton beams

    Science.gov (United States)

    Nolen, Jr., Jerry A.; Gomes, Itacil C.

    2015-12-01

    The invention provides for a method for producing isotopes using a beam of particles from an accelerator, whereby the beam is maintained at between about 70 to 2000 MeV; and contacting a thorium-containing target with the particles. The medically important isotope .sup.225Ac is produced via the nuclear reaction (p,2p6n), whereby an energetic proton causes the ejection of 2 protons and 6 neutrons from a .sup.232Th target nucleus. Another medically important isotope .sup.213Bi is then available as a decay product. The production of highly purified .sup.211At is also provided.

  2. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  3. Measurement of radium isotopes with the ANU AMS facility

    International Nuclear Information System (INIS)

    Tims, S.G.; Fifield, L.K.

    2003-01-01

    In contaminated environments the spatial distribution of thorium should be far more uniform than that for uranium. Accordingly, measurements of the 228 Ra/ 226 Ra ratio may provide a probe with which to assess variations in the amount of uranium-process derived 226 Ra. Furthermore, for contaminated or rehabilitated areas where the 226 Ra/ 228 Ra ratio is anomalous, measurements of the transport of material away from the site via the ratio could provide information on the local erosion rate. Accelerator Mass Spectrometry (AMS) adds a tandem ion accelerator and additional analysis stages to a conventional mass spectrometry arrangement, in order to facilitate ultra-trace level abundance measurements of selected isotopes. In doing so, it also makes use of the detection and analysis techniques of traditional nuclear physics. For the 226,228 Ra isotopes AMS offers a number of advantages over the more traditional techniques of a-and γ- spectroscopy. AMS requires less sample mass, and because of its very high selectivity provides excellent discrimination against potential interferences. The smaller sample size (∼1g) also allows a considerable simplification of the radio-chemical processing compared with α-spectroscopy. Two major advantages are the ability to measure both isotopes with the one technique without the necessity of waiting for 228 Th to grow in and, that once prepared, the 228 Ra/ 226 Ra ratio for ∼30 samples can be determined in about a day. This paper will describe the AMS technique, and highlight recent developments in the measurement of 226,228 Ra with the ANU system

  4. Possibilities for the production of non-stable isotopes

    International Nuclear Information System (INIS)

    Benlliure, J.; Enqvist, T.; Junghans, A.R.; Ricciardi, V.; Schmidt, K.H.; Farget, F.

    1999-04-01

    The production of neutron-rich isotopes is discussed in terms of the two main reaction mechanisms leading to the formation of these nuclei, projectile fragmentation and fission. Production cross sections are calculated for cold-fragmentation and fission. The expected yields are estimated taking into account different technical approaches actually discussed for the production of radioactive beams. (orig.)

  5. Isotopic dilution requirements for 233U criticality safety in processing and disposal facilities

    International Nuclear Information System (INIS)

    Elam, K.R.; Forsberg, C.W.; Hopper, C.M.; Wright, R.Q.

    1997-11-01

    The disposal of excess 233 U as waste is being considered. Because 233 U is a fissile material, one of the key requirements for processing 233 U to a final waste form and disposing of it is to avoid nuclear criticality. For many processing and disposal options, isotopic dilution is the most feasible and preferred option to avoid nuclear criticality. Isotopic dilution is dilution of fissile 233 U with nonfissile 238 U. The use of isotopic dilution removes any need to control nuclear criticality in process or disposal facilities through geometry or chemical composition. Isotopic dilution allows the use of existing waste management facilities, that are not designed for significant quantities of fissile materials, to be used for processing and disposing of 233 U. The amount of isotopic dilution required to reduce criticality concerns to reasonable levels was determined in this study to be ∼ 0.66 wt% 233 U. The numerical calculations used to define this limit consisted of a homogeneous system of silicon dioxide (SiO 2 ), water (H 2 O), 233 U, and depleted uranium (DU) in which the ratio of each component was varied to determine the conditions of maximum nuclear reactivity. About 188 parts of DU (0.2 wt% 235 U) are required to dilute 1 part of 233 U to this limit in a water-moderated system with no SiO 2 present. Thus, for the US inventory of 233 U, several hundred metric tons of DU would be required for isotopic dilution

  6. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  7. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  8. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  9. Life cycle baseline summary for ADS 6504IS Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    The purpose of the Isotopes Facility Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. This baseline plan establishes the official target schedule for completing the deactivation work and the associated budget required for deactivation and the necessary S ampersand M. Deactivation of the facilities 3026C, 3026D, 3028, 3029, 3038E, 3038M, and 3038AHF, the Center Circle buildings 3047, 3517, and 7025 will continue though Fiscal Year (FY) 1999. The focus of the project in the early years will be on the smaller buildings that require less deactivation and can bring an early return in reducing S ampersand M costs. This baseline plan covers the period from FY1995 throughout FY2000. Deactivation will continue in various facilities through FY1999. A final year of S ampersand M will conclude the project in FY2000. The estimated total cost of the project during this period is $51M

  10. Feasibility study of medical isotope production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for 99 Mo, the parent of 99m Tc, in the event of an interruption in the current Canadian supply. 99m Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for 99 Mo and to identify and examine all issues with potential for environmental impact

  11. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  12. Feasibility study of medical isotope production at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

  13. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  14. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  15. Short-lived radionuclide production capability at the Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Mausner, L.F.; Richards, P.

    1985-01-01

    The Brookhaven National Linac Isotope Producer is the first facility to demonstrate the capability of a large linear accelerator for efficient and economical production of difficult-to-make, medically useful radionuclides. The linac provides a beam of 200-MeV protons at an integrated beam current of up to 60 μA. The 200-MeV proton energy is very suitable for isotope production because the spallation process can create radionuclides unavailable at lower energy accelerators or reactors. Several medically important short-lived radionuclides are presently being prepared for on-site and off-site collaborative research programs. These are iodine-123, iron-52, manganese-52m, ruthenium-97, and the rubidium-81-krypton-81m system. The production parameters for these are summarized

  16. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  17. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J

    2003-01-01

    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  18. Development of stable isotope separation technology for radioisotope production

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Park, Kyung Bae

    2003-05-01

    The ultimate goal of this project is to construct the domestic production system of stable isotopes O-18 and Tl-203 used as target materials in accelerator for the production of medical radioisotopes F-18 and Tl-201, respectively. In order to achieve this goal, diode laser spectroscopic analytical system was constructed and automatic measurement computer software for the direct analysis of H 2 16 O/H 2 18 O ratio were developed. Distillation process, laser process, and membrane diffusion process were analyzed for the evaluation of O-18 production. And electromagnetic process, plasma process, and laser process were analyzed for the evaluation of Tl-203 production. UV laser system, IR laser system, and detailed system Tl-203 production were designed. Finally, current and future worldwide demand/supply of stable isotopes O-18 and Tl-203 were estimated

  19. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  20. Production and use of stable isotopes in France

    International Nuclear Information System (INIS)

    Roth, E.; Letolle, R.

    1991-01-01

    This paper can not cover the field of production and use of stable isotopes in France exhaustively within six pages. We have chosen to concentrate on highlights of the subject and on recent work, and to give references for further reading. 26 refs

  1. Medical-isotope supply hit by production problems

    Science.gov (United States)

    Gould, Paula

    2008-10-01

    A shortfall in the production of medical isotopes in Europe has forced hospitals to delay patient scans or offer alternative diagnostic tests. The problems began in August when all three nuclear reactors used to generate molybdenum-99, which then decays to form the key nuclear-imaging agent technetium-99, had to be unexpectedly shut down at the same time.

  2. Return of isotope capsules to the Waste Encapsulation and Storage Facility

    International Nuclear Information System (INIS)

    1994-05-01

    Cesium-137 and strontium-90 isotopes were removed from Hanford Site high-level tank wastes, and were encapsulated at the Hanford Site's Waste Encapsulation and Storage Facility (WESF), beginning in 1974. Over the past several years, radioactive isotope capsules have been sent to other U.S. Department of Energy (DOE)-controlled sites to be used for research and development applications, as well as leased to a number of commercial facilities for commercial applications (e.g., sterilization of medical supplies). Due to uncertainty regarding the cause of the release of a small quantity of cesium-137 to an isolated water basin from a WESF cesium-137 capsule in a commercial facility in Decatur, Georgia, the DOE has determined that it needs to return leased capsules from IOTECH, Incorporated (IOTECH), Northglenn, Colorado; Pacific Northwest Laboratory (PNL), Richland, Washington; and the Applied Radiant Energy Corporation (ARECO), Lynchburg, Virginia; to the WESF Facility on the Hanford Site, to ensure safe management and storage, pending final disposition. All of these capsules located at the commercial facilities were successfully tested during Calendar Year 1993, and none showed any indication of off-normal specifications. Storage at the WESF will continue under the actions selected in the Record of Decision for the Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington

  3. Installation and testing of a hospital-based cyclotron for radiation therapy and isotope production

    International Nuclear Information System (INIS)

    Almond, P.R.; Marbach, J.R.; Otte, V.A.

    1983-01-01

    A hospital based cyclotron is under installation at The University of Texas M.D. Anderson Hospital in Houston. This machine will be used for the production of radioactive isotopes and for the generation of neutrons for the radiotherapy treatment of cancer. It is a Cyclotron Corporation CP-42 negative proton accelerator. For neutron production the protons are transported through an isocentrically mounted beam transport system that can be rotated around the patient. The shielding requirements of this facility will be described as will the initial measurements on the characteristics of the neutron beam

  4. Gasification Product Improvement Facility (GPIF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  5. Overview on recent developments: alternative isotope production methods in Canada

    International Nuclear Information System (INIS)

    Huynh, K.

    2012-01-01

    The purpose of this paper is to provide an update on the Government of Canada's programs in alternative isotope production methods for securing supply of technetium 99m for Canadians. The supply disruptions of isotopes in 2007 and 2009/2010 caused by unplanned outages at AECL's National Research Universal (NRU) reactor highlighted the fragility of the supply chain that delivers medical isotopes, specifically Technetium 99m (Tc99m) to patients in Canada and globally. Tc99m, which is derived from its parent, molybdenum99 (Mo99) is the most widely used medical isotope for imaging, and accounts for 80 percent of nuclear medicine diagnostic procedures. Prior to the outage, nearly all the Mo99 produced for the world market came from five aging government owned research reactors in Canada, France, the Netherlands, Belgium and South Africa. The NRU, the largest of these, produced about 30 to 40 percent of the world supply of isotopes prior to 2009 - since its return to service in 2010, its world market share is estimated at 15 to 20%.

  6. Evaluation of isotope utilizations in consumer products

    International Nuclear Information System (INIS)

    Sato, Otomaru

    1980-01-01

    Consumer products are generally divided into three groups, according to the state of radioactive material or radiation used. First, there are those intentionally added with radioactive materials, such as self-luminous paints and ionization type smoke detectors, utilizing the ionization and excitation by radiation. Second, there are those utilizing natural radioactive materials like glaze. Third, there are those materials containing intrinsically natural radioactive materials. In the first group, the safety evaluation of self-luminous watches and clocks and the risk-benefit evaluation of ionization type smoke detectors are described, and the approval standards for the consumer products and the R/B evaluation method are explained. There are variety of consumer products utilizing radiation, by the exposure dose caused by them is extremely insignificant, far lower than that due to natural radiation. (J.P.N.)

  7. Pinellas Plant facts. [Products, processes, laboratory facilities

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  8. A level-playing field for medical isotope production - How to phase-out reliance on HEU

    International Nuclear Information System (INIS)

    Kuperman, A.J.

    1999-01-01

    Two decades ago, civilian commerce in highly enriched uranium (HEU) for use as targets in the production of medical isotopes was considered a relatively minor security concern for three reasons. First, the number of producers was small. Second, the amount of HEU involved was small. Third, the amount of HEU was dwarfed by the quantities of HEU in civilian commerce as fuel for nuclear research and test reactors. Now, however, all three variables have changed. First, as the use of medical isotopes has expanded rapidly, production programs are proliferating. Second, as the result of such new producers and the expansion of existing production facilities, the amounts of HEU involved are growing. Third, as the RERTR program has facilitated the phase-out of HEU as fuel in most research and test reactors, the quantities of HEU for isotope production have come to represent a significant percentage of global commerce in this weapons-usable material. Medical isotope producers in several states are cooperating with the RERTR program to convert to low-enriched uranium (LEU) targets within the next few years, and one already relies on LEU for isotope production. However, the three biggest isotope producers - in Canada and the European Union - continue to rely on HEU, creating a double-standard that endangers the goal of the RERTR program. Each of these three producers has expressed economic concerns about being put at a competitive disadvantage if it alone converts. This paper proposes forging a firmer international consensus that all present and future isotope producers should convert to LEU, and calls for codifying such a commitment in a statement of intent to be prepared by producers over the next year. With such a level playing field, no producer would need fear being put at a competitive disadvantage by conversion, or being stigmatized by pressure groups for continued reliance on HEU. The phase-out of all HEU commerce for isotope production could be achieved within about

  9. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  10. Fuel Processing Plants - ETHANOL_PRODUCTION_FACILITIES_IN: Ethanol Production Facilities in Indiana (Indiana Geological Survey, Point Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This GIS layer shows the locations of ethanol production facilities in the state of Indiana. Attributes include the name and address of the facility, and information...

  11. Subsystem for control of isotope production with linear electron accelerator

    International Nuclear Information System (INIS)

    Karasyov, S.P.; Pomatsalyuk, R.I.; Uvarov, V.L.

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels

  12. Subsystem for control of isotope production with linear electron accelerator

    CERN Document Server

    Karasyov, S P; Uvarov, V L

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels.

  13. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  14. Routes for the production of isotopes for PET with high intensity deuteron accelerators

    Science.gov (United States)

    Arias de Saavedra, F.; Porras, I.; Praena, J.

    2018-04-01

    Recent advances in accelerator science are opening new possibilities in different fields of physics. In particular, the development of compact linear accelerators that can provide charged particles of low-medium energy (few MeV) with high current (above mA) allows for the study of new possibilities in neutron production and for new routes for the production of radioisotopes. Keeping in mind how radioisotopes are actually produced in dedicated facilities, we have performed a study of alternative reactions to produce PET isotopes induced by low-energy deuterons. We have fitted the EXFOR cross sections data, used the fitted values of the stopping power by Andersen and Ziegler and calculated by numerical integration the production rate of isotopes for charged particles up to 20 MeV. The results for deuterons up to 3 MeV are compared with the ones from cyclotrons, which are able to provide higher energies to the charged projectiles but with lower intensities. Our results indicate that using linear accelerators may be a good alternative for producing PET isotopes, reducing the problem of neutron activation.

  15. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  16. Radiation protection programme for a radioisotope production facility

    International Nuclear Information System (INIS)

    Makgato, Thutu Nelson

    2015-02-01

    The present project reviews reactor based radioisotope production facilities. An overview of techniques and methodologies used as well as laboratory facilities necessary for the production process are discussed. Specific details of reactor based production and processing of more commonly used industrial and pharmaceutical radioisotopes are provided. Ultimately, based on facilities and techniques utilized as well as the associated hazard assessment, a proposed radiation protection programme is discussed. Elements of the radiation protection programme will also consider lessons from recent incidents and accidents encountered in radioisotope production facilities. (au)

  17. CERN-MEDICIS (MEDical Isotopes Collected from ISOLDE): A new facility

    OpenAIRE

    Augusto, Ricardo Manuel dos Santos; Buehler, Leo; Lawson, Zoe; Marzari, Stefano; Stachura, Monika; Stora, Thierry

    2014-01-01

    About 50% of the 1.4 GeV CERN (European Organization for Nuclear Research, www.cern.ch) protons are sent onto targets to produce radioactive beams by online mass separation at the Isotope Separator Online Device (ISOLDE) facility, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratori...

  18. Final report of the HFIR (High Flux Isotope Reactor) irradiation facilities improvement project

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987.

  19. Isotope production and target preparation for nuclear astrophysics data

    Directory of Open Access Journals (Sweden)

    Schumann Dorothea

    2017-01-01

    Full Text Available Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN, Switzerland as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: “Determination of the half-life and experiments on neutron capture cross sections of 53Mn” and “32Si – a new chronometer for nuclear dating” are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  20. Isotope production and target preparation for nuclear astrophysics data

    Science.gov (United States)

    Schumann, Dorothea; Dressler, Rugard; Maugeri, Emilio Andrea; Heinitz, Stephan

    2017-09-01

    Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN), Switzerland) as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: "Determination of the half-life and experiments on neutron capture cross sections of 53Mn" and "32Si - a new chronometer for nuclear dating" are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  1. A large acceptance spectrometer for reaccelerated radioactive beams at the proposed facility for rare isotope beams (FRIB) in the USA

    International Nuclear Information System (INIS)

    Souliotis, G.A.

    2008-01-01

    A large acceptance ray-tracing spectrometer is being designed in order to fully exploit the research opportunities that will be offered by reaccelerated radioactive beams in the energy range 6-15 MeV/nucleon from the proposed facility for rare isotope beams (FRIB) in the USA. The preliminary design of the spectrometer has been benefitted by several similar instruments in Europe (e.g. VAMOS, PRISMA, MAGNEX). The design is of QQD type (quadrupole-quadrupole-dipole) with two large-bore quadrupoles and a large-gap 70 o bending magnet offering an angular acceptance around 50 msr and a momentum acceptance of 10%. The maximum magnetic rigidity is 2.5 T-m, providing a range appropriate for the most neutron-rich products expected from binary reactions with reaccelerated radioactive beams. The spectrometer will play an important role in nuclear structure and reaction studies, combined with gamma-ray and particle detector arrays around the target.

  2. Quantification soil production and erosion using isotopic techniques

    Science.gov (United States)

    Dosseto, Anthony; Suresh, P. O.

    2010-05-01

    Soil is a critical resource, especially in the context of a rapidly growing world's population. Thus, it is crucial to be able to quantify how soil resources evolve with time and how fast they become depleted. Over the past few years, the application of cosmogenic isotopes has permitted to constrain rates of soil denudation. By assuming constant soil thickness, it is also possible to use these denudation rates to infer soil production rates (Heimsath et al. 1997). However, in this case, it is not possible to discuss any imbalance between erosion and production, which is the core question when interested in soil resource sustainability. Recently, the measurement of uranium-series isotopes in soils has been used to quantify the residence time of soil material in the weathering profile and to infer soil production rates (Dequincey et al. 2002; Dosseto et al. 2008). Thus, the combination of U-series and cosmogenic isotopes can be used to discuss how soil resources evolve with time, whether they are depleting, increasing or in steady-state. Recent work has been undertaken in temperate southeastern Australia where a several meters thick saprolite is developed over a graniodioritc bedrock and underlains a meter or less of soil (Dosseto et al., 2008) and in tropical Puerto Rico, also in a granitic catchment. Results show that in an environment where human activity is minimal, soil and saprolite are renewed as fast as they are destroyed through denudation. Further work is investigating these processes at other sites in southeastern Australia (Frogs Hollow; Heimsath et al. 2001) and Puerto Rico (Rio Mameyes catchment; andesitic bedrock). Results will be presented and a review of the quantification of the rates of soil evolution using isotopic techniques will be given. Dequincey, O., F. Chabaux, et al. (2002). Chemical mobilizations in laterites: Evidence from trace elements and 238U-234U-230Th disequilibria. Geochim. Cosmochim. Acta 66(7): 1197-1210. Dosseto, A., S. P

  3. Design of GMP compliance radiopharmaceutical production facility in MINT

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Shaharum Ramli; M Rizal Mamat Ibrahim; Rosli Darmawan; Yusof Azuddin Ali; Jusnan Hashim

    2005-01-01

    In 1985, MINT built the only radiopharmaceutical production facility in Malaysia. The facility was designed based on IAEA (International Atomic Energy Agency) standard guidelines which provide radiation safety to the staff and the surrounding environment from radioactive contamination. Since 1999, BPFK (Biro Pengawalan Farmaseutikal Kebangsaan) has used the guidelines from Pharmaceutical Inspection Convention Scheme (PICS) to meet the requirements of the Good Manufacturing Practice (GMP) for Pharmaceutical Products. In the guidelines, the pharmaceutical production facility shall be designed based on clean room environment. In order to design a radiopharmaceutical production facility, it is important to combine the concept of radiation safety and clean room to ensure that both requirements from GMP and IAEA are met. The design requirement is necessary to set up a complete radiopharmaceutical production facility, which is safe, has high production quality and complies with the Malaysian and International standards. (Author)

  4. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  5. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  6. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean

    Science.gov (United States)

    Prasanna, K.; Ghosh, Prosenjit; Bhattacharya, S. K.; Mohan, K.; Anilkumar, N.

    2016-01-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ18O and δ13C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75–200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ18O and δ13C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a ‘vital effect’ or a higher calcification rate. An interesting pattern of increase in the δ13C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ13C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude. PMID:26903274

  7. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  8. SCK-CEN increases production of medical isotopes by half

    International Nuclear Information System (INIS)

    Ponsard, B.; Leysen, P.; Janssens, J.

    2010-01-01

    It is impossible to imagine the medical world today without radioisotopes, and due to rapid technological progress in nuclear medicine their use is still on the rise. An important role of research reactors is the production of molybdenum-99. Around the world this is done primarily by five nuclear research reactors, one of which is the BR2 reactor of SCK-CEN. As a result of checks and maintenance work on three other reactors, for a few years there has been a serious crisis in the availability of this medical isotope. In order to guarantee the worldwide supply of radioisotopes, SCK-CEN expanded its production of molybdenum-99 by 50 percent in 2010.

  9. Time-of-flight isotope separator for a second-generation ISOL facility

    CERN Document Server

    Jacquot, B

    2003-01-01

    We focus on the study of a low energy and a high resolving power separator dedicated for an exotic isotope accelerator facility. The approach is based on the use of a time-of-flight technique in a long isochronous section. Different ion species are bunched and then separated in time, in an energy-isochronous section. We then transform the time shift in a transverse shift by a chopper in order to eliminate the unwanted ions using slits. A mass-resolving power of R sub M =10,000 seems feasible for low energy, multi-charged or mono-charged beams with a transverse acceptance up to 50 pi mm mrad.

  10. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  11. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    Science.gov (United States)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org, p. 267]. For low intensity ion beam [30-300 keV/1 pA-10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  12. A post-accelerator for the US rare isotope accelerator facility

    CERN Document Server

    Ostroumov, P N; Kolomiets, A A; Nolen, J A; Portillo, M; Shepard, K W; Vinogradov, N E

    2003-01-01

    The proposed rare isotope accelerator (RIA) facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the Coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described . This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/DELTA m=20 000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level includes calculations up to fifth order. The RIB...

  13. Calculation of isotopic mass and energy production by a matrix operator method

    International Nuclear Information System (INIS)

    Lee, C.E.

    1976-08-01

    The Volterra method of the multiplicative integral is used to determine the isotopic density, mass, and energy production in linear systems. The solution method, assumptions, and limitations are discussed. The method allows a rapid accurate calculation of the change in isotopic density, mass, and energy production independent of the magnitude of the time steps, production or decay rates, or flux levels

  14. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ... Manufacturing Facility Visits to submit requests to CTP. DATES: Submit either an electronic or written request... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0853] Tobacco Product Manufacturing Facility Visits AGENCY: Food and Drug Administration, HHS. ACTION: Notice...

  15. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Science.gov (United States)

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. N Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment...

  16. Method for production of an isotopically enriched compound

    Science.gov (United States)

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  17. Tracking Eukaryotic Production and Burial Through Time with Zinc Isotopes

    Science.gov (United States)

    Tang, T. Y. S.; Planavsky, N.; Owens, J. D.; Love, G. D.; Lyons, T.; Peterson, L. C.; Knoll, A. H.; Dupont, C. L.; Reinhard, C.; Zumberge, A.

    2015-12-01

    Zinc is an important, often co-limiting nutrient for eukaryotes in the oceans today. Given the importance of Zn in the modern oceans, we developed a Zn isotope approach to track the extent of Zn limitation and eukaryotic production through Earth's history. Specifically, we use the isotopic systematics of the pyrite (δ66Znpyr), rock extracts (bitumen) and kerogen pyrolysate (δ66Znorg) within euxinic black shales. We show that δ66Znpyr of euxinic core-top muds from the Cariaco basin capture the global deep seawater signature, validating its use as a seawater proxy. Additionally, we propose that Δ66Znpyr-org can be used to track surface water zinc bioavailability. Detailed studies of short-lived oceanic anoxic events such as Cretaceous OAE2, which punctuate an otherwise dominantly oxic Phanerozoic world, exhibit dramatic shifts in seawater δ66Zn and organic bound zinc. Such perturbations are consistent with the demise of eukaryotes under a nitrogen stressed regime, in which cyanobacteria carry the competitive advantage. Contradictory to previous models, however, our data suggest that zinc remained largely bioavailable throughout these anoxic intervals despite significant drawdown of the global reservoir. The framework developed from studies of the modern, Cenozoic, and Mesozoic can be used to track the Precambrian evolution of the marine Zn cycle and the rise of eukaryotic algae to ecological dominance.

  18. Development of key technology for the medical isotope production

    International Nuclear Information System (INIS)

    Oh, Soo Youl; Kim, I. S.; Kim, W. W.; Rhee, C. K.; Park, K. B.; Park, S. J.; Shin, H. S.; Shin, Y. J.

    2005-06-01

    The objective of this project is to experimentally verify and enhance Mo-99 and Sr-89 recovery/purification processes as the key technologies for the medical isotope production from a solution fuel reactor. A joint experiment was planned between KAERI and Kurchatov Institute (KI), Russia. The kinds of experiments planed are, a series of Mo-99 recovery/purification experiments from the ARGUS reactor which uses High Enriched Uranium (HEU) fuel, a series of the same experiments but from the Low Enriched Uranium (LEU) solution target, a demonstration of the mechanism of Sr-89 delivery from the air medium in the reactor vessel. Meanwhile, the survey and legalistic interpretation of relevant patents shows a possibility of infringement of TCI Inc.'s patents in case of exporting medical isotopes produced at the MIP to Japan and the US so far as the MIP adopts the concept of the Russian ARGUS and recovery/purification process. Eliminating, not minor changing, step(s) or condition(s) of patent processes would help to avoid the patent infringement. Because of a difficulty in the KAERI-KI full-time co-experiments at KI labs, a different idea between two parties about the depth of background information to be provided to KAERI, and other reasons, the experiment plan was not executed

  19. Pb and Sr isotopic compositions of ancient pottery: a method to discriminate production sites

    International Nuclear Information System (INIS)

    Zhang Xun; Chen Jiangfeng; Ma Lin; He Jianfeng; Wang Changsui; Qiu Ping

    2004-01-01

    The discriminating of production sites of ancient pottery samples using multi-isotopic systematics was described. Previous work has proven that Pb isotopic ratios can be used for discriminating the production sites of ancient pottery under certain conditions. The present work suggests that although Nd isotopic ratios are not sensitive to the production sites of ancient pottery, Sr isotopic ratios are important for the purpose. Pb isotopic ratios are indistinguishable for the pottery excavated from the Jiahu relict, Wuyang, Henan Province and for famous Qin Terra-cotta Figures. But, the 87 Sr/ 86 Sr ratios for the former (about 0.715) are significantly lower than that of the latter (0.717-0.718). The authors concluded that a combined use of Pb and Sr isotopes would be a more powerful method for discriminating the production site of ancient pottery. (authors)

  20. Safety evaluation for regulatory management of Australian radioisotope production facilities.

    Science.gov (United States)

    Sarkar, S

    2009-01-01

    This paper describes the approach of Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) in the regulatory management of Radioisotope Production facilities in Australia. ARPANSA is the regulatory authority for commonwealth entities operating nuclear installations including Radioisotope Production facilities. In assessing the application for operating nuclear installations the ARPANSA assessors prepare a Safety Evaluation Report, which is a recommendation to the Chief Executive Officer (CEO) of ARPANSA whether to issue a licence to site, construct, operate and decommission facilities. In particular, the CEO must take into account international best practice in radiation protection and nuclear safety when making licence decisions.

  1. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  2. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  3. Calculation of radiation production of high specific activity isotopes 192Ir and 60Co

    International Nuclear Information System (INIS)

    Zhou Quan; Zhong Wenfa; Xu Xiaolin

    1997-01-01

    The high specific activity isotopes: 192 Ir and 60 Co in the high neutron flux reactor are calculated with the method of reactor physics. The results of calculation are analyzed in two aspects: the production of isotopes and the influence to parameters of the reactor, and hence a better case is proposed as a reference to the production

  4. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  5. Methicillin-resistant Staphylococcus aureus in pork production shower facilities.

    Science.gov (United States)

    Leedom Larson, Kerry R; Harper, Abby L; Hanson, Blake M; Male, Michael J; Wardyn, Shylo E; Dressler, Anne E; Wagstrom, Elizabeth A; Tendolkar, Shaliesh; Diekema, Daniel J; Donham, Kelley J; Smith, Tara C

    2011-01-01

    As methicillin-resistant Staphylococcus aureus (MRSA) has been found in pigs, we sought to determine if MRSA is present in pork production shower facilities. In two production systems tested, 3% and 26% of shower samples were positive for MRSA. spa types identified included t034, t189, t753, and t1746.

  6. Neutron Scattering Facilities at the Oak Ridge National Laboratory High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Selby, D. L.

    2013-01-01

    This paper will address four aspects of the neutron scattering science utilization of the High Flux Isotope Reactor (HFIR): 1) Since the last IGORR meeting, two instruments (IMAGINE- a single crystal diffractometer and a polarized beam station) have been declared operational. In addition, cold neutron beam line CG-1D has been fully devoted to imaging studies. One specific characteristic that will be discussed will be the neutron optics mirror system that has been used for the IMAGINE instrument in lieu of a conventional neutron guide. 2) For the last 15 years there has been a focused effort to fully utilize the open neutron beam positions at the High Flux Isotope Reactor (HFIR). With the addition of the new instruments and plans to build a new spin echo test station at beam port CG-4B we will have filled out all 16 presently available beam instrument positions. Therefore, at HFIR we are starting to shift our focus to major upgrades of existing instruments. Many of these instruments are now over 10 years old and new technology, including advances in neutron optics techniques, can provide significant increases in the utilization of the existing neutron beams. In addition, upgrades will allow the use of new sample environment equipment that is presently prohibited because of geometry restrictions. The plans for these upgrades and expected gains in performance will be discussed. 3) Another proposal to increase the utilization capabilities at HFIR is to build a new building next to the HB-4 cold neutron guide hall that would provide space for 9 lab facilities. These labs would include magnet, sample environment, polarization, and sample preparation support capabilities for the neutron scattering instruments. In addition, there is still a proposal being discussed with the United States Department of Energy to build a second moderator and guide hall tied to the HB-2 beam line at HFIR. The status of these two proposed major projects will be addressed. 4) Finally, the

  7. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities

    International Nuclear Information System (INIS)

    Rowan, D.J.

    2013-01-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of 137 Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable 133 Cs) from geologic sources and the other released in pulses ( 137 Cs) from reactor operations. I also compare 137 Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test 137 Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher 137 Cs BAFs than expected from 133 Cs BAFs for the same fish or 137 Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation

  8. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    Science.gov (United States)

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  9. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  10. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review.

    Science.gov (United States)

    Duan, Haoran; Ye, Liu; Erler, Dirk; Ni, Bing-Jie; Yuan, Zhiguo

    2017-10-01

    Nitrous oxide (N 2 O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N 2 O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N 2 O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N 2 O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N 2 O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design of Stack Monitoring System for PET Medical Cyclotron Facilities with Isotope Identification and Released Activity Concentration Measurement

    International Nuclear Information System (INIS)

    Osovizky, A.; Ginzburg, D.; Pushkarsky, V.; Shmidov, D.; Vax, E.; Knafo, Y.; Semyonov, N.; Kaplan, L.; Kadmon, Y.; Cohen, Y.; Mazor, T.

    2014-01-01

    Cyclotrons are commonly used for production of radioactive isotopes utilized for Positron Emission Tomography (PET) imaging and other purposes(1). During the isotopes production process there are routine releases of nonhazardous amounts of radioactive isotopes into the atmosphere. The activity concentration of radioactive effluents, released into the atmosphere are subjected to restrictions by national regulations based on international recommendations(2). Uncontrolled isotopes emission through the ventilation system would increase the radiation hazard potential to nearby population. In order to control and prevent such emissions, monitoring and assessment of the released activity concentration is required. For this purpose, a radiation detection system is required to be installed in the ventilation stack. The design of such a monitoring system should cope with two main difficulties: the capability to detect low concentration level and the capability to accurately assess the emitted activity per released isotope. In this work, we present innovative stack monitoring detection system that combines new detector design, electronics, friendly interface software and unique algorithms that provide a comprehensive solution for the above-mentioned requirements. Activity releases measured by the system are discussed along with calculation for the system sensitivity, detectable level and isotope identification algorithm

  12. BIPAL - a data library for computing the burnup of fissionable isotopes and products of their decay

    International Nuclear Information System (INIS)

    Kralovcova, E.; Hep, J.; Valenta, V.

    1978-01-01

    The BIPAL databank contains data on 100 heavy metal isotopes starting with 206 Tl and finishing with 253 Es. Four are stable, the others are unstable. The following data are currently stored in the databank: the serial number and name of isotopes, decay modes and, for stable isotopes, the isotopic abundance (%), numbers of P decays and Q captures, numbers of corresponding final products, branching ratios, half-lives and their units, decay constants, thermal neutron captures, and fission cross sections, and other data (mainly alpha, beta and gamma intensities). The description of data and a printout of the BIPAL library are presented. (J.B.)

  13. Isotope Production and Distribution Program. Financial statements, September 30, 1994 and 1993

    Energy Technology Data Exchange (ETDEWEB)

    Marwick, P.

    1994-11-30

    The attached report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution (IP&D) Program`s financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on IP&D`s 1994 statements. Their reports on IP&D`s internal control structure and on compliance with laws,and regulations are also provided. The charter of the Isotope Program covers the production and sale of radioactive and stable isotopes, byproducts, and related isotope services. Prior to October 1, 1989, the Program was subsidized by the Department of Energy through a combination of appropriated funds and isotope sales revenue. The Fiscal Year 1990 Appropriations Act, Public Law 101-101, authorized a separate Isotope Revolving Fund account for the Program, which was to support itself solely from the proceeds of isotope sales. The initial capitalization was about $16 million plus the value of the isotope assets in inventory or on loan for research and the unexpended appropriation available at the close of FY 1989. During late FY 1994, Public Law 103--316 restructured the Program to provide for supplemental appropriations to cover costs which are impractical to incorporate into the selling price of isotopes. Additional information about the Program is provided in the notes to the financial statements.

  14. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  15. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  16. Production and trapping of Na isotopes for beta-decay studies

    NARCIS (Netherlands)

    Rogachevskiy, Andrey Valerievich

    2007-01-01

    TRImP is a new facility at KVI, which is presently being completed. The acronym TRImP stands for Trapped Radioactive Isotopes: micro-laboratories for fundamental physics. The Standard Model (SM) quantitatively describes the electroweak and strong interactions. It is agrees very well with

  17. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  18. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  19. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    Science.gov (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  20. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  1. Characteristics of multi-stage AGMD-DCMD cascade system for oxygen isotope production

    International Nuclear Information System (INIS)

    Kim, Jae Woo; Choi, Hwa Rim; Chang, Dae Sik; Kim, Taek Soo; Lim, Gwon; Jeong, Do Young

    2005-01-01

    Membrane distillation (MD) appears to be useful for the separation of the light isotopes such as oxygen and hydrogen isotopes contained in water, because membrane permeation units are compact and simple, and more importantly its energy consumption is low compared to conventional water fractional distillation.1-4 Permeation fluxes and the degree of oxygen isotope separation of AGMD (Air Gap Membrane Distillation) and VEMD (Vacuum Enhanced Membrane Distillation) processes were measured by using the hot water feed. Even though VEMD shows slightly higher isotopic separation degree with higher permeation flux, it is very difficult to apply VEMD to multi-stage cascade system. Since local oxygen isotope separation coefficient for a single membrane unit is low, multi-stage membrane cascade system is required to increase isotopic concentration further in product. Although AGMD is suitable for constructing the membrane cascading system, permeation flux for AGMD is still too low to apply to the isotope production system. In this investigation, we increased permeation flux of AGMD using AGMD-DCMD (Direct Contact Membrane Distillation) combined process. Permeation flux and degree of isotope separation of AGMD-DCMD combined process were measured by using 10 stages cascade system

  2. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  3. Development of the radioisotope production facility for the HANARO

    International Nuclear Information System (INIS)

    Lee, Ji Bok; Wu, J. S.; Baik, S. T.

    1998-06-01

    Hot cell and related facilities were developed in the RI production building of the HANARO. 1. development of concrete H/C and related components 2. development of lead H/C and related components 3. development of the hydraulic transfer system 4. development of radiation monitoring system 5. development of purification system for Co-60 storage pool 6. development of the fire fighting system for H/C 7. development of the experimental equipment. (author). 15 figs

  4. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.

    1981-01-01

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential

  5. Production of stable isotopes at Urenco. 10 years of progress

    International Nuclear Information System (INIS)

    Mol, C.A.; Rakhorst, H.

    2003-01-01

    In the last ten years, Urenco has built its spin-off activity of stable isotopes in a multi-million dollar business. It is a high quality, ISO certified, client oriented and profitable European business with further growth potential. (author)

  6. Changes in isotope ratios during domestic wastewater production

    NARCIS (Netherlands)

    Schilperoort, R. P. S.; Meijer, H. A. J.; Flamink, C. M. L.; Clemens, F. H. L. R.

    2007-01-01

    This paper presents considerations for the application of the natural water isotope method on catchment areas. For the estimation of the amount of infiltration and inflow in sewer systems the paper shows two applications in the Netherlands: one successful application on a relatively small catchment

  7. Experimental study of xenon isotopes production by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou Mingsheng; Liang Xiongwen; Zhang Yonggang; Dong Jinping

    2006-01-01

    The gas centrifuge technology is studied for the separation of Xe isotopes. The nature Xe is chosen as processing gas. A four-state cascade is designed to separate 124 Xe to a concentration of being greater than 65% in three separation runs. 124 Xe can be enriched to a concentration 99% in more separation runs using a cascade of more gas centrifuges. (authors)

  8. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station.

    Science.gov (United States)

    Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing

    2016-06-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from

  9. Uranium Production Safety Assessment Team. UPSAT. An international peer review service for uranium production facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme is designed to assist Member States to improve the safe operation of uranium production facilities. This programme facilitates the exchange of knowledge and experience between team members and industry personnel. An UPSAT mission is an international expert review, conducted outside of any regulatory framework. The programme is implemented in the spirit of voluntary co-operation to contribute to the enhancement of operational safety and practices where it is most effective, at the facility itself. An UPSAT review supplements other facility and regulatory efforts which may have the same objective

  10. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  11. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  12. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  13. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    Science.gov (United States)

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  14. Uranium isotopes in tree bark as a spatial tracer of environmental contamination near former uranium processing facilities in southwest Ohio.

    Science.gov (United States)

    Conte, Elise; Widom, Elisabeth; Kuentz, David

    2017-11-01

    Inappropriate handling of radioactive waste at nuclear facilities can introduce non-natural uranium (U) into the environment via the air or groundwater, leading to anthropogenic increases in U concentrations. Uranium isotopic analyses of natural materials (e.g. soil, plants or water) provide a means to distinguish between natural and anthropogenic U in areas near sources of radionuclides to the environment. This study examines the utility of two different tree bark transects for resolving the areal extent of U atmospheric contamination using several locations in southwest Ohio that historically processed U. This study is the first to utilize tree bark sampling transects to assess environmental contamination emanating from a nuclear facility. The former Fernald Feed Materials Production Center (FFMPC; Ross, Ohio) produced U metal from natural U ores and recycled nuclear materials from 1951 to 1989. Alba Craft Laboratory (Oxford, Ohio) machined several hundred tons of natural U metal from the FFMPC between 1952 and 1957. The Herring-Hall-Marvin Safe Company (HHM; Hamilton, Ohio) intermittently fabricated slugs rolled from natural U metal stock for use in nuclear reactors from 1943 to 1951. We have measured U concentrations and isotope signatures in tree bark sampled along an ∼35 km SSE-NNW transect from the former FFMPC to the vicinity of the former Alba Craft laboratories (transect #1) and an ∼20 km SW- NE (prevailing local wind direction) transect from the FFMPC to the vicinity of the former HHM (transect #2), with a focus on old trees with thick, persistent bark that could potentially record a time-integrated signature of environmental releases of U related to anthropogenic activity. Our results demonstrate the presence of anthropogenic U contamination in tree bark from the entire study area in both transects, with U concentrations within 1 km of the FFMPC up to ∼400 times local background levels of 0.066 ppm. Tree bark samples from the Alba Craft and

  15. HUMPF [Heterogeneous Unix Montecarlo Production Facility] users guide

    International Nuclear Information System (INIS)

    Cahill, P.; Edgecock, R.; Fisher, S.M.; Gee, C.N.P.; Gordon, J.C.; Kidd, T.; Leake, J.; Rigby, D.J.; Roberts, J.H.C.

    1992-11-01

    The Heterogenous Unix Monte Carlo Production Facility (HUMPF) simplifies the running of particle physics simulation programs on Unix workstations. Monte Carlo is the largest consumer of IBM (CPU) capacity within the Atlas centre at Rutherford Appleton Laboratory (RAL). It is likely that the future computing requirements of the LEP and HERA experiments cannot be satisfied by the IBM 3090 system. HUMPF adds extra capacity, and can be expanded with minimal effort. Monte Carlo programs are CPU-bound, and make little use of the vector or the input/output capacity of the IBM 3090. Such programs are therefore excellent candidates to use the spare capacity of powerful workstations. The main data storage is still handled centrally by the IBM 3090 and its peripherals. The HUMPF facility is suitable for any program with a similar profile. (author)

  16. The operation status and prospect of radioisotope production facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Minjin; Lim, Incheol

    2008-01-01

    Researches and production of radio-isotopes, radio-pharmaceuticals and cold kits are carried out in the Radio-isotope Production Facility (RIPF). Four concrete hot cells in Bank-1 are to produce the Ir-192 source for NDT. Eleven lead hot cells in Bank-2 are to produce Ho-166, Cr-51, P-32/33, Tc-99m, Lu-177, Sr-90/Y-90 and W-188/Re-188 for research purpose. Six lead hot cells in Bank-3 are used for the production of I-131 for diagnosis and therapy of cancer in the hospital. A hot cell in Bank-3 is also utilized for the research of I-125 and Br-82. Four lead hot cells in Bank-4 are utilized for the production of Mo-99/Tc-99m generators since 2005. The major systems including the Heat and Ventilated Air Conditioning (HVAC) system and the air cleaning system such as charcoal and HEPA filter trains to filter the radioactive contaminants are in operation. So are the systems such as power supply and distribution system, UPS, fire protection system, liquid radioactive waste collection systems. Recently, the repair work and replacements of the air cleaning system are successfully finished and the replacement of the electric power supply systems is in progress because they almost reached the lifespan of the electrical components. In order to monitor the gas effluent of the building, a continuous air monitoring system is in operation to measure the concentration of I-131, noble gas and the particle at the stack of RIPF. Modification and upgrade of the main control panel and fire alarm and receiving panel are also in consideration to utilize the state-of-the-art technology so that the remote control and supervisory of RIPF would be enabled in the near future

  17. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  18. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    Science.gov (United States)

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Managerial issues in facilities management: The impact of facilities service on student productivity

    DEFF Research Database (Denmark)

    Holzweber, Markus

    2017-01-01

    The study examines key issues and effects of managerial capability management in higher education premises at the University of Glasgow. A study was undertaken on the library’s ‘Learning Cafe’ area. This unique learning space provides complex process-oriented facilities- and IT services to students...... and users. The analysis of data related to the University of Glasgow Learning Cafe (UGLC) concept shows that developing and maintaining capabilities is strongly related to perceived productivity and performance of students and users. Findings are that managerial cognition and managerial human capital...

  20. Authentication of fishery and aquaculture products by multi-element and stable isotope analysis.

    Science.gov (United States)

    Li, Li; Boyd, Claude E; Sun, Zhenlong

    2016-03-01

    The market of fishery and aquaculture products is globalized with increasing numbers of mislabeled products. This highlights the need for approaches to indentify the origin of these products. Among the measures used to identify the origin of other agro-products, multi-element and stable isotope analysis are promising approaches to identify the authenticity and traceability of fishery and aquaculture products. The present paper reviews the use of multi-element and stable isotope analysis to determine the origin of fishery and aquaculture products. Principles and limitations of each method will be illustrated and perspectives for traceability of fishery and aquaculture products will be discussed. The aim of this review is to mediate fundamental knowledge for the interpretation of experimental data on authentication of aquaculture products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  2. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  3. Nuclear data for the production of radioisotopes in fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cheng, E.T.; Schenter, R.E.; Mann, F.M.; Ikeda, Y.

    1991-01-01

    The fusion materials irradiation facility (FMIF) is a neutron source generator that will produce a high-intensity 14-MeV neutron field for testing candidate fusion materials under reactor irradiation conditions. The construction of such a facility is one of the very important development stages toward realization of fusion energy as a practical energy source for electricity production. As a result of the high-intensity neutron field, 10 MW/m 2 or more equivalent neutron wall loading, and the relatively high-energy (10- to 20-MeV) neutrons, the FMIF, as future fusion reactors, also bears the potential capability of producing a significant quantity of radioisotopes. A study is being conducted to identify the potential capability of the FMIF to produce radioisotopes for medical and industrial applications. Two types of radioisotopes are involved: one is already available; the second might not be readily available using conventional production methods. For those radioisotopes that are not readily available, the FMIF could develop significant benefits for future generations as a result of the availability of such radioisotopes for medical or industrial applications. The current production of radioisotopes could help finance the operation of the FMIF for irradiating the candidate fusion materials; thus this concept is attractive. In any case, nuclear data are needed for calculating the neutron flux and spectrum in the FMIF and the potential production rates of these isotopes. In this paper, the authors report the result of a preliminary investigation on the production of 99 Mo, the parent radioisotope for 99m Tc

  4. Isotopes and their possible use as bio markers of microbial products

    International Nuclear Information System (INIS)

    Zyakun, A.M.

    1992-01-01

    The purpose of this presentation is to determine the range of possible variations in the distribution of carbon isotopes ( 12 C and 13 C) in the metabolic products of the basic biological systems (production of organic matter by photosynthetic bacteria, its consumption by heterotrophic organisms, biological production of methane, its utilization by methanotrophic organisms, biological production of carbon monoxide and its bacterial oxidation). 32 refs., 11 figs., 3 tabs

  5. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station

    International Nuclear Information System (INIS)

    Eslinger, Paul W.; Bowyer, Ted W.; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine

    2016-01-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of 99 Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of 133 Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from

  6. A facile method for the labeling of proteins with zirconium isotopes

    NARCIS (Netherlands)

    Meijs, WE; Haisma, HJ; VanderSchors, R; Wijbrandts, R; VandenOever, K; Klok, RP; Pinedo, HM; Herscheid, JDM

    To label proteins with positron emitters with a half life in the order of days, a method has been developed to label proteins with zirconium (Zr) isotopes. Therefore, the bifunctional chelating agent desferal (Df) was coupled to albumins via a thioether bond. Labeling of the premodified proteins was

  7. Facility for studying spin dependence in pion production near threshold

    CERN Document Server

    Rinckel, T; Meyer, H O; Balewski, J T; Doskow, J; Pollock, R E; Von Przewoski, B; Sperisen, F; Daehnick, W W; Flammang, R W; Saha, S K; Haeberli, W; Lorentz, B; Rathmann, F; Schwartz, B; Wise, T; Pancella, P V

    2000-01-01

    We describe an experimental setup for the measurement of polarization observables in pion production near threshold. Experiments carried out with this facility use a polarized proton beam in the Indiana University Cooler storage ring, and an internal, polarized hydrogen target. The detector system measures energy, direction and velocity of multiple outgoing charged particles that are within a forward cone of about 32 deg. opening angle. An array of scintillators also allows the detection of neutrons. In addition to the technical details of the apparatus, we describe the procedure for data acquisition, as well as some aspects of the analysis.

  8. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    Certain radioactive isotopes for North American and especially the United States' needs are enormously important to the medical community and their numerous patients. The most important medical isotope is 99 Mo, which is currently manufactured by Nordion International Inc. in a single, aging reactor operated by Atomic Energy of Canada, Ltd. The reactor's useful life is expected to end at the turn of the century. Production loss because of reactor shutdown possibilities prompted the US Congress to direct the DOE to provide for a US backup source for this crucial isotope. The SNL Annular Core Research Reactor (ACRR) was evaluated as a site to provide 99 Mo initially and other isotopes that can be economically extracted from the process. Medical isotope production at SNL is a new venture in manufacturing. Should SNL be selected and the project reach the manufacturing stage, SNL would expect to service up to 30% of the US market under normal circumstances as a backup to the Canadian supply with the capability to service 100% should the need arise. The demand for 99 Mo increases each year; hence, the proposed action accommodates growth in demand to meet this increase. The proposed project would guarantee the supply of medical isotopes would continue if either the irradiation or processing activities in Canada were interrupted

  9. Radioisotope handling facilities and automation of radioisotope production

    International Nuclear Information System (INIS)

    2004-12-01

    If a survey is made of the advances in radioisotope handling facilities, as well as the technical conditions and equipment used for radioisotope production, it can be observed that no fundamental changes in the design principles and technical conditions of conventional manufacture have happened over the last several years. Recent developments are mainly based on previous experience aimed at providing safer and more reliable operations, more sophisticated maintenance technology and radioactive waste disposal. In addition to the above observation, significant improvements have been made in the production conditions of radioisotopes intended for medical use, by establishing aseptic conditions with clean areas and isolators, as well as by introducing quality assurance as governing principle in the production of pharmaceutical grade radioactive products. Requirements of the good manufacturing practice (GMP) are increasingly complied with by improving the technical and organizational conditions, as well as data registration and documentation. Technical conditions required for the aseptic production of pharmaceuticals and those required for radioactive materials conflicting in some aspects are because of the contrasting contamination mechanisms and due consideration of the radiation safety. These can be resolved by combining protection methods developed for pharmaceuticals and radioactive materials, with the necessary compromise in some cases. Automation serves to decrease the radiation dose to the operator and environment as well as to ensure more reliable and precise radiochemical processing. Automation has mainly been introduced in the production of sealed sources and PET radiopharmaceuticals. PC controlled technologies ensure high reliability for the production and product quality, whilst providing automatic data acquisition and registration required by quality assurance. PC control is also useful in the operation of measuring instruments and in devices used for

  10. Decommissioning of the nuclear facilities-radio-isotope thermo-electrical generators in the Republic of Tajikistan

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Kamalov, D.

    2010-01-01

    One of peaceful uses of the nuclear energy is the production of electrical energy by using the phenomenon of fission of radioactive strontium in the radio-isotope thermo-electrical generators (RITEGs) to supply with energy lighthouses, radio-lighthouses and radio meteorological stations. They are installed in the remote territories far from the people’s dwellings and do not require presence of the personnel to maintain them. Republic of Tajikistan as other republics of the ex-Soviet Union used the radio isotope thermo- electrical generators (RITEGs) as sources for autonomous hydro- and meteorological navigational equipment, which was placed in the hard-to-reach mountainous regions. In the ex-Soviet Union, the RITEGs were under constant surveillance. But, after the breakup of the Soviet Union, hundreds of these small devices equipped with powerful sources of radiation remained out of control. Radioactive substance contained in them may be easily used as a source of radiation dispersion. By applying Strontium-90 as a material for a bomb one can disperse this radioactive substance after exploding the bomb. Having exploded one of such “dirty bombs” a terrorist may contaminate several cities by the radioactive materials. It was determined that there are around 1 000 RITEGs on the territory of the Russian Federation and approximately 30- on the territory of other states. It is presumed that approximately 1500 RITEGs were manufactured in the USSR. The exploitation period of all the RITEGs is around 10 years. At present, all the RITEGs which were in circulation have finalized their functionality period and should be withdrawn from the utilization. In Tajikistan, Tajikhydromet is the user of the RITEGs. The manufacturer of the RITEGs, according to the documentation, was the All-Russian Institute of Technological Physics and Automation in Moscow. The documents were sent to the plant-producer. According to the unofficial sources, during the times of the Soviet Union 15

  11. Data Processing and Product Access for the Zwicky Transient Facility

    Science.gov (United States)

    Shupe, David; Masci, Frank; Laher, Russ; Rusholme, Ben; Surace, Jason; Groom, Steven; Bellm, Eric; Graham, Matthew; Helou, George; Prince, Thomas; Kulkarni, Shri; ZTF Team

    2018-01-01

    The Zwicky Transient Facility (ZTF) is a new time-domain survey based at Palomar Observatory that will commence in early 2018. ZTF will use a 47 square degree field with a 600 megapixel camera to scan the entire northern visible sky at rates of ~ 3760 square degrees/hour to depths of R ~ 20.5 mag. We review the data processing pipelines and the science-enabling products derived therefrom. These will support a broad range of research themes: from fast and young supernovae, variable stars, eclipsing binaries, counterparts to gravitational wave sources, to Solar System objects. We also describe the methods for data access and the data-release schedule for products derived from the public surveys.

  12. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  13. Radon gas in oil and natural gas production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, W.P. [Western Radiation Services, Perth, WA (Australia)

    1994-12-31

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it`s decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs.

  14. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for Value-Added Products (VAPs) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun; (2) progress on existing VAPs; (3) future VAPs that have been recently approved; (4) other work that leads to a VAP; (5) top requested VAPs from the ARM Data Archive; and (6) a summary of VAP and data releases to production and evaluation. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text. The upcoming milestones and dates are highlighted in green.

  15. HFIR [High-Flux Isotope Reactor] irradiation facilities improvements: Completion of the HIFI [High Irradiation Facilities Improvements] project

    International Nuclear Information System (INIS)

    Thoms, K.R.; Hicks, G.R.; Montgomery, B.H.; Siman-Tov, I.I.; West, C.D.

    1987-01-01

    The HFIR Irradiation Facilities Improvements (HIFI) Project has now been completed. In August 1986, Phase I of the project was completed, providing the capability to perform instrumented irradiation experiments in the target region of the HFIR. In June 1987, Phase II of the project was completed with the assembly in the reactor mockup of all the components necessary to operate up to eight 46-mm-diam instrumented experiments in the removable beryllium region of the HFIR. In conjuntion with the installation of Phase I components, the first instrumented target capsule was installed to determine more accurately the probable temperature in the uninstrumented target capsules previously irradiated as part of the Japan/US fusion materials program. Data from this experiment indicate close agreement with expected temperatures in all positions except those at the extreme ends of the capsule. These data provide a more accurate axial gamma heating rate profile that will allow for better design of future HFIR target irradiation capsules

  16. Multi-isotopic signatures of organic and conventional Italian pasta along the production chain

    DEFF Research Database (Denmark)

    Bontempo, L.; Camin, F.; Paolini, M.

    2016-01-01

    The variability of stable isotope ratios (δ2H, δ13C, δ15N, δ18O and δ34S) along the production chain of pasta (durum wheat, flour and pasta) produced by using both conventional and organic farming systems in four Italian regions in 2 years was investigated. The aim was to evaluate if and how...... the farming system and geographical origin affect stable isotope ratios determined along the production chain. Irrespective of the processing technology, 65% of the samples were correctly classified according to the farming system and 98% were correctly classified regarding the geographical region. When...

  17. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    Science.gov (United States)

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Estimate of production of medical isotopes by photo-neutron reaction at the Canadian Light Source

    Science.gov (United States)

    Szpunar, B.; Rangacharyulu, C.; Daté, S.; Ejiri, H.

    2013-11-01

    In contrast to conventional bremsstrahlung photon beam sources, laser backscatter photon sources at electron synchrotrons provide the capability to selectively tune photons to energies of interest. This feature, coupled with the ubiquitous giant dipole resonance excitations of atomic nuclei, promises a fertile method of nuclear isotope production. In this article, we present the results of simulations of production of the medical/industrial isotopes 196Au, 192Ir and 99Mo by (γ,n) reactions. We employ FLUKA Monte Carlo code along with the simulated photon flux for a beamline at the Canadian Light Source in conjunction with a CO2 laser system.

  19. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    Science.gov (United States)

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely

  20. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  1. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-07-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  2. Methane Carbon Isotopic Composition Reveals Changing Production Pathways Across a Gradient of Permafrost Thaw

    Science.gov (United States)

    Rocci, K.; Burke, S. A.; Clariza, P.; Malhotra, A.; McCalley, C. K.; Verbeke, B. A.; Werner, S. L.; Roulet, N. T.; Varner, R. K.

    2017-12-01

    Methane (CH4) emission in areas of discontinuous permafrost may increase with warming temperatures resulting in a positive feedback to climate change. Characterizing the production pathways of CH4, which may be inferred by measuring carbon isotopes, can help determine underlying mechanistic changes. We studied CH4 flux and isotopic composition of porewater (δ13C-CH4) in a sub-arctic peatland in Abisko, Sweden to understand controls on these factors across a thaw gradient during four growing seasons. Methane chamber flux measurements and porewater samples were collected in July 2013, and over the growing seasons of 2014 to 2016. Samples were analyzed on a Gas Chromatograph with a Flame Ionization Detector for CH4 concentrations and a Quantum Cascade Laser for carbon isotopes. Increased emission rates and changing isotopic signatures were observed across the thaw gradient throughout the growing season. While CH4 flux increased with increases in temperature and shallower water table, δ13C-CH4 exhibited a seasonal pattern that did not correlate with measured environmental variables, suggesting dependence on other factors. The most significant controlling factor for both flux and isotopic signature was plant community composition, specifically, the presence of graminoid species. Graminoid cover increases with thaw stage so both CH4 emissions and δ13C-CH4 are likely to increase in a warmer world, suggesting a shift toward the acetoclastic pathway of methane production.

  3. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  4. Production Facility Prototype Blower 1000 Hour Test Results II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-08

    Long duration tests of the Aerzen GM 12.4 roots style blower in a closed loop configuration provides valuable data and lessons learned for long-term operation at the Mo-99 production facility. The blower was operated in a closed loop configuration with the flow conditions anticipated in plant operation with a Mo-100 target inline. The additional thermal energy generated from beam heating of the Mo-100 disks were not included in these tests. Five 1000 hour tests have been completed since the first test was performed in January of 2016. All five 1000 hour tests have proven successful in exposing preventable issues related to oil and helium leaks. All blower tests to this date have resulted in stable blower performance and consistency. A summary of the results for each test, including a review of the first and second tests, are included in this report.

  5. Production cross section of neutron-rich Pb and Bi isotopes in the fragmentation of 238U

    CERN Document Server

    Alvarez-Pol, H; Benlliure, J; Casarejos, E; Cortina-GilL, D; Napolitani, P; Enqvist, T; Schmidt, K-H; Yordanov, O; Junghans, A.R; Fernández, B; Pereira, P; Jurado, B; Rejmund, F; 10.1140/epja/i2009-10856-8

    Neutron-rich lead and bismuth isotopes have been produced by cold-fragmentation reactions induced by 238U projectiles at 1 AGeV impinging on a beryllium target. The high-resolving power FRagment Separator at GSI allowed us to identify and determine the production cross sections of 22 nuclei, nine of them for the first time 215Pb, 216Pb, 217Pb, 218Pb and 217Bi, 218Bi, 219Bi, 220Bi, 221Bi, 222Bi. These data are compared to other previously measured cross sections in similar reactions and model calculations. The validation of the codes is of utmost importance for estimating of the new limits accessible with the new generation radioactive beam facilities.

  6. Fundamentals for the development of a low-activation lead coolant with isotopic enrichment for advanced nuclear power facilities

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Blokhin, A.I.

    2002-01-01

    The purpose of this paper is to study the prospects of new coolants for fast reactors and accelerator driven systems. The main focus is on their improvement using the isotopic tailoring technique to reduce post-irradiation activity. Calculations using the FISPACT-3 code show that irradiating natural lead (Pb-nat) for 30 years leads to the accumulation of long-lived toxic radionuclides, 207 Bi, 208 Bi and 210 Pb, which extends the cooling down period to the clearance level. This time can be shortened by using the lead isotope 206 Pb instead of Pb-nat. This substantially decreases the concentration of the most toxic polonium isotope, 210 Po. Calculations for lead activation in the hard proton-neutron ADS spectrum were performed using the CASCADE/SNT code. The time-dependent activity of the 207 Bi produced in Pb-nat and 206 Pb after irradiation for one year with a proton beam having an energy of 0.8 GeV and a current of 30 mA is given. The activity of 207 Bi is decreased by four orders of magnitude when 206 Pb is used instead of natural lead as a coolant for ADS targets. The production of such radiotoxic nuclides as 210 Po is also substantially diminished. (author)

  7. Gold and isotopically enriched platinum targets for the production of radioactive beams of francium

    CERN Document Server

    Lipski, A R; Pearson, M R; Simsarian, J E; Sprouse, G D; Zhao, W Z

    1999-01-01

    Au and isotopically enriched Pt targets are discussed for the production of radioactive Fr beams. Target foils, serving also as ionizers, have to be heated in order to enhance the diffusion of atoms to the surface for further extraction and injection into the electrostatic transport system.

  8. Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Otero, Neus; Palau, Jordi; Shouakar-Stash, Orfan; Soler, Albert

    2013-01-01

    Highlights: ► TCE and cis-DCE Cl isotope fractionation was investigated for the first time with ZVI. ► A C–Cl bond is broken in the rate-limiting step during ethylene ZVI dechlorination. ► Dual C/Cl isotope plot is a promising tool to discriminate abiotic degradation. ► Product-related carbon isotopic fractionation gives evidence of abiotic degradation. ► Hydrogenolysis and β-dichloroelimination pathways occur simultaneously. - Abstract: This study investigated C and, for the first time, Cl isotope fractionation of trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by cast zero-valent iron (ZVI). Hydrogenolysis and β-dichloroelimination pathways occurred as parallel reactions, with ethene and ethane deriving from the β-dichloroelimination pathway. Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of Fe studied. Transformation of TCE and cis-DCE showed Cl isotopic enrichment factors (ε Cl ) of −2.6‰ ± 0.1‰ (TCE) and −6.2‰ ± 0.8‰ (cis-DCE), with Apparent Kinetic Isotope Effects (AKIE Cl ) for Cl of 1.008 ± 0.001 (TCE) and 1.013 ± 0.002 (cis-DCE). This indicates that a C–Cl bond breakage is rate-determining in TCE and cis-DCE transformation by ZVI. Two approaches were investigated to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. This study reports the first dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for cis-DCE differs markedly from that reported for biodegradation of the same compound by KB-1, a commercially available Dehalococcoides-containing culture. The different trends suggest an expedient approach to distinguish abiotic and biotic transformation, but this needs to be confirmed in future studies. (ii) Product-related isotope fractionation. Carbon isotope ratios of the hydrogenolysis product cis

  9. Isotope separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1978-11-01

    Separation of isotopes is treated in a general way, with special reference to the production of enriched uranium. Uses of separated isotopes are presented quickly. Then basic definitions and theoretical concepts are explained: isotopic effects, non statistical and statistical processes, reversible and irreversible processes, separation factor, enrichment, cascades, isotopic separative work, thermodynamics. Afterwards the main processes and productions are reviewed. Finally the economical and industrial aspects of uranium enrichment are resumed [fr

  10. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    Science.gov (United States)

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrodynamic and Environmental Controls on the Nitrogen Isotope Effect of Benthic N2 Production

    Science.gov (United States)

    Rooze, J.; Meile, C. D.

    2016-02-01

    Isotopic signatures of nitrogen (N) pools, together with knowledge on fractionation during the conversion between different forms of N, can be used to constrain marine N budgets. However, the reported extent of N isotope fractionation during benthic N2 production has differed substantially between studies, leading to uncertainty in the estimate of the global benthic N2 production rate. To assess the range and identify mechanisms underlying such observations, we developed a reactive transport model and ran simulations evaluating the impact of nitrification, denitrification, and anaerobic ammonium oxidation on the isotopic composition of in-situ N/2 production. Different hydrodynamic regimes were taken into account, including advective flow induced by bioirrigation and purely diffusive transport. The effects of the benthic mineralization rate and the composition of the overlying water were also quantified. The benthic redox conditions were found to control the N isotope effect, which under reducing conditions is driven by fractionation during nitrification and anaerobic ammonium oxidation and under oxidizing conditions by fractionation during denitrification. The mineralization rate, the bioirrigation intensity, and chemical composition of the overlying water affect the benthic redox zonation and therefore also the benthic N isotope effect. With increasing water-depth the mineralization rate and the advective nitrate supply to the sediment both decrease, constraining most benthic N cycling to the continental shelf. Simulations that reproduce observed trends of sediment O2 uptake and N2 fluxes with water depth, combined with ocean bathymetry yield an average benthic N isotope effect of -3‰, in line with independent estimates from global circulation models coupled to N cycle models (Somes et al., 2013. Biogeosciences 10, 5889-5910).

  12. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    Science.gov (United States)

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.

  13. Plutonium isotopic assay of reprocessing product solutions in the KfK K-edge densitometer

    International Nuclear Information System (INIS)

    Eberle, H.; Ottmar, H.; Matussek, P.

    1985-04-01

    The KfK K-edge densiometer, designed for accurate element concentration measurements using the technique of X-ray absorptiometry at the K absorption edge, provides as an additional option the possibility to determine the isotopic composition of freshly separated plutonium from an gamma-spectrometric analysis of its self-radiation. This report describes the underlying methodology and experimental procedures for the isotopic analysis in the K-edge densitometer. The paper also presents and discusses the experimental results so far obtained from routine measurements on reprocessing product solutions. (orig.)

  14. Contamination issues in a continuous ethanol production corn wet milling facility

    Science.gov (United States)

    Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...

  15. Use of Test Facilities Associated with the 25MM M919 Cartridge Production Contract

    National Research Council Canada - National Science Library

    Brannin, Patricia

    1996-01-01

    The audit objective was to evaluate the justification for the use of contractor test facilities as opposed to Government test facilities for production lot acceptance testing of the 25mm M919 cartridges...

  16. Strontium isotope study of coal utilization by-products interacting with environmental waters.

    Science.gov (United States)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2012-01-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Isotopic and sedimentological clues to productivity change in Late ...

    Indian Academy of Sciences (India)

    610Ma) intracratonic carbonate successions viz., Bhander Limestone of Vindhyan Basin and Raipur Limestone of Chattisgarh Basin suggest higher organic productivity during this period. This view is supported by sedimentological evidence of ...

  18. Isotopic and sedimentological clues to productivity change in Late

    Indian Academy of Sciences (India)

    610Ma) intracratonic carbonate successions viz., Bhander Limestone of Vindhyan Basin and Raipur Limestone of Chattisgarh Basin suggest higher organic productivity during this period. This view is supported by sedimentological evidence of ...

  19. Analysis of human errors in operating heavy water production facilities

    International Nuclear Information System (INIS)

    Preda, Irina; Lazar, Roxana; Croitoru, Cornelia

    1997-01-01

    The heavy water plants are complex chemical installations in which high quantities of H 2 S, a corrosive inflammable explosive high toxicity gas are circulated. In addition, in the process, it is maintained at high temperatures and pressures. According to the statistics, about 20-30% of the damages arising in the installations are due directly or indirectly to human errors. These are due mainly to incorrect actions, maintenance errors, incorrect recording of instrumental readings, etc. This study of human performances by probabilistic safety analysis gives the possibilities of evaluating the human error contribution in the occurrence of event/accident sequences. This work presents the results obtained from the analysis of human errors at the stage 1 of the heavy water production pilot, at INC-DTCI ICIS Rm.Valcea, using the dual temperature process in the H 2 O-H 2 S isotopic exchange. The case of loss of steam was considered. The results are interpreted having in view the making decision of improving the activity, as well as, the level of safety/reliability, in order to reduce the risk for population/environment. For such an initiation event, the event tree has been developed based on failure trees. The human error probabilities were assessed as a function of the action complexity, the psychological stress level, the existence of written procedures and of a secondary control (the method of decision tree). For a critical accident sequence, weight evaluations (RAW, RRW, F and V) to make evident the contribution of human errors at the risk level and methods to reduce this errors were suggested

  20. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  1. Human error - Risk factor in operating heavy water production facilities

    International Nuclear Information System (INIS)

    Preda, Irina; Lazar, Roxana; Croitoru, Cornelia

    1998-01-01

    Continued increasing of the operating security of heavy water production facilities was and continues to be a basic preoccupation of the reliability specialists. According to statistical records about 20-30% of the failures occurred in such installations are directly or indirectly related to human errors. These are caused mainly by incorrect actions, maintenance errors, incorrect reading out of instrument indications. Not all the human errors have an impact on the system. A human error can be remedied before the undesirable consequences occur. Treating the human performances in probabilistic analytical studies provides the possibility of evaluating the human error contribution to the occurrence of event sequences. This work presents the possibility of utilizing probabilistic methods (event trees, failure trees) to identify solutions of improving the human reliability as far as the aspect of minimizing the risks in industrial installation operation is concerned. Also, different types of human errors were defined as well as the causes leading to committing mistakes, while, as technique for evaluating the human reliability, the method of decision tree analysis is presented. Exemplification for application of the method of human error analysis was made on the basis of operational data from the heavy water production pilot plant at Valcea, Romania. As initiation event for the accident situation the event of steam supply failure was considered. The contribution of human errors was analyzed for the accident sequence with the most serious consequences

  2. Sirius-T, a symmetrically illuminated ICF tritium production facility

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Sawan, M.E.; Moses, G.A.; Kulcinski, G.L.; Engelstad, R.L.; Larsen, E.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Wittenberg, L.J.

    1989-01-01

    A scoping study of a symmetrically illuminated ICF tritium production facility utilizing a KrF laser is presented. A single shell ICF target is illuminated by 92 beams symmetrically distributed around a spherical cavity filled with xenon gas at 1.0 torr. The driver energy and target gain are taken to be 2 MJ and 50 for the optimistic case and 1 MJ and 100 for the conservative case. Based on a graphite dry wall evaporation rate of 0.1 cm/y for a 100 MJ yield, the authors estimate a cavity radius of 3.5 m for a rep-rate of 10 Hz and 3.0 m for 5 Hz. A spherical structural frame has been scoped out capable of supporting 92 blanket modules, each with a beam port in the center. They have selected liquid lithium in vanadium structure as the primary breeding concept utilizing beryllium as a neutron multiplier. A tritium breeding ratio of 1.83 can be achieved in the 3 m radius cavity which at 10 Hz and an availability of 75% provides an annual tritium surplus of 32.6 kg. Assuming 100% debt financing over a 30 year reactor lifetime, the production cost of T 2 for the 2 MJ driver case is $7,325/g for a 5% interest rate and $12,370/g for a 10% interest rate. 8 refs., 3 figs., 4 tabs

  3. Automated yield forecasting in a high product mix ASIC facility

    Science.gov (United States)

    Barber, Duane; Giewont, Mark; Hanson, Jeff; Shen, Jun

    2005-05-01

    Yield forecasting is a key component in running a successful semiconductor fab. It is also a significant challenge for facilities such as ASIC houses, which fabricate a wide range of devices using multiple technologies. Yield forecasting takes on increased significance in these environments, with new products introduced frequently and many products running only in small numbers. An accurate yield prediction system can greatly accelerate the process of identifying design bugs, test program issues and process integration problems. To this end, we have constructed a forecasting model geared for our ASIC manufacturing line. The model will accommodate an arbitrary number of design and/or process elements, each with an associated defectivity term. In addition, we have automated the generation of the yield forecast through passively linking to the already existing EDA design tools and scripts used by LSI Logic. Once the model is constructed, an automated query engine can extract the design and process parameters for any requested device, insert the data into the forecasting model, and deliver the resulting yield prediction. The actual yield for any lot or group of lots may thus be compared to the forecast, greatly assisting yield enhancement activities. This is especially useful for prototype lots and low-volume devices, for which it eliminates a great deal of manual computation and searching of design files. Using the model in conjunction with the query engine, any deviations from expected yield performance are generated automatically, quickly and efficiently highlighting opportunities for improvement.

  4. Production Potential of 47Sc Using Spallation Neutron Flux at the Los Alamos Isotope Production Facility

    Science.gov (United States)

    2014-03-27

    up, and high-fidelity delayed-gamma emission. MCNP6 is a fusion of MCNPX and MCNP5. MCNP5 allows for neutral particle and electron transport, while...bins will be listed [20]. This tally, in combination with the eighth entry on MCNPs LCA physics model card entry, NOACT, is very useful in extracting...19 and 23 (K, Ca, Sc, Ti, and V) resulting from direct neutron reactions. The 8th LCA entry of NOACT=-2 forces the model to assume all particles react

  5. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  6. ITEP ElectroNuclear neutron and proton facility

    International Nuclear Information System (INIS)

    Shvedoy, O.V.; Igumnov, M.I.; Katz, M.M.; Kolomietz, A.A.; Kozodaev, A.M.; Lazarev, N.V.; Vasilyev, V.V.; Volkov, E.B.; Shymchukk, G.V.

    1997-01-01

    Construction and current stage of the ITEP Subcritical Facility on the base will be described. The facility uses 36 MeV protons, Be neutron producing target and heavy water reflector. Neutron and proton beam parameters are listed. Special attention is devoted to isotope production and isotope application for e - --e + tomography

  7. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    Science.gov (United States)

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  8. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    Science.gov (United States)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  9. METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT

    Science.gov (United States)

    Dole, M.

    1959-09-22

    An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

  10. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  11. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  12. Lead contamination in cocoa and cocoa products: isotopic evidence of global contamination.

    Science.gov (United States)

    Rankin, Charley W; Nriagu, Jerome O; Aggarwal, Jugdeep K; Arowolo, Toyin A; Adebayo, Kola; Flegal, A Russell

    2005-10-01

    In this article we present lead concentrations and isotopic compositions from analyses of cocoa beans, their shells, and soils from six Nigerian cocoa farms, and analyses of manufactured cocoa and chocolate products. The average lead concentration of cocoa beans was contamination of the finished products is tentatively attributed to atmospheric emissions of leaded gasoline, which is still being used in Nigeria. Because of the high capacity of cocoa bean shells to adsorb lead, contamination from leaded gasoline emissions may occur during the fermentation and sun-drying of unshelled beans at cocoa farms. This mechanism is supported by similarities in lead isotopic compositions of cocoa bean shells from the different farms (206Pb/207Pb = 1.1548-1.1581; 208Pb/207Pb = 2.4344-2.4394) with those of finished cocoa products (206Pb/207Pb = 1.1475-1.1977; 208Pb/207Pb = 2.4234-2.4673). However, the much higher lead concentrations and larger variability in lead isotopic composition of finished cocoa products, which falls within the global range of industrial lead aerosols, indicate that most contamination occurs during shipping and/or processing of the cocoa beans and the manufacture of cocoa and chocolate products.

  13. Optimization of neutron flux distribution in Isotope Production Reactor

    International Nuclear Information System (INIS)

    Valladares, G.L.

    1988-01-01

    In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely the Vmod / Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO 2 ) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author) [pt

  14. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  15. Mortality among workers at a nuclear fuels production facility

    International Nuclear Information System (INIS)

    Cragle, D.L.; McLain, R.W.; Qualters, J.R.; Hickey, J.L.; Wilkinson, G.S.; Tankersley, W.G.; Lushbaugh, C.C.

    1988-01-01

    A retrospective cohort mortality study was conducted in a population of workers employed at a facility with the primary task of production of nuclear fuels and other materials. Data for hourly and salaried employees were analyzed separately by time period of first employment and length of employment. The hourly (N = 6687 with 728 deaths) and salaried (N = 2745 with 294 deaths) employees had a mortality experience comparable to that of the United States and, in fact, exhibited significant fewer deaths in many categories of diseases that are traditionally associated with the healthy worker effect. Specifically, fewer deaths were noted in the categories of all causes, all cancers, cancer of the digestive organs, lung cancer, brain cancer (hourly workers only), diabetes, all diseases of the circulatory system, all respiratory diseases, all digestive system diseases, all diseases of the genitourinary system (hourly only), and all external causes of death. A statistically significant, and as yet unexplained increase in leukemia mortality (6 observed vs. 2.18 expected) appeared among a subset of the hourly employees, first hired before 1955, and employed between 5-15 years

  16. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Bowyer, Ted W.; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J. Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T.; Seibert, Petra; Stein, Ariel F.; Ungar, Kurt; Yi, Jing

    2016-06-01

    Abstract The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward (Bowyer et al., 2013). Fission-based production of 99Mo for medical purposes also releases radioxenon isotopes to the atmosphere (Saey, 2009). One of the ways to mitigate the effect of emissions from medical isotope production is the use of stack monitoring data, if it were available, so that the effect of radioactive xenon emissions could be subtracted from the effect from a presumed nuclear explosion, when detected at an IMS station location. To date, no studies have addressed the impacts the time resolution or data accuracy of stack monitoring data have on predicted concentrations at an IMS station location. Recently, participants from seven nations used atmospheric transport modeling to predict the time-history of 133Xe concentration measurements at an IMS station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well (a high composite statistical model comparison rank or a small mean square error with the measured values). The results suggest release data on a 15 min time spacing is best. The model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. Further research is needed to identify optimal methods for selecting ensemble members and those methods may depend on the specific transport problem. None of the submissions based only

  17. Isotopic composition of uranium in U3O8 by neutron induced reactions utilizing thermal neutrons from critical facility and high resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Acharya, R.; Pujari, P.K.; Goel, Lokesh

    2015-01-01

    Uranium in oxide and metal forms is used as fuel material in nuclear power reactors. For chemical quality control, it is necessary to know the isotopic composition (IC) of uranium i.e., 235 U to 238 U atom ratio as well as 235 U atom % in addition to its total concentration. Uranium samples can be directly assayed by passive gamma ray spectrometry for obtaining IC by utilizing 185 keV (γ-ray abundance 57.2%) of 235 U and 1001 keV (γ-ray abundance 0.837%) of 234m Pa (decay product of 238 U). However, due to low abundance of 1001 keV, often it is not practiced to obtain IC by this method as it gives higher uncertainty even if higher mass of sample and counting time are used. IC of uranium can be determined using activity ratio of neutron induced fission product of 235 U to activation product of 238 U ( 239 Np). In the present work, authors have demonstrated methodologies for determination of IC of U as well as 235 U atom% in natural ( 235 U 0.715%) and low enriched uranium (LEU, 3-20 atom % of 235 U) samples of uranium oxide (U 3 O 8 ) by utilizing ratio of counts at 185 keV γ-ray or γ-rays of fission products with respect to 277 keV of 239 Np. Natural and enriched samples (about 25 mg) were neutron irradiated for 4 hours in graphite reflector position of AHWR Critical Facility (CF) using highly thermalized (>99.9% thermal component) neutron flux (∼10 7 cm -2 s -1 )

  18. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Janssen, Sarah E; Schaefer, Jeffra K; Barkay, Tamar; Reinfelder, John R

    2016-08-02

    The biological production of monomethylmercury (MeHg) in soils and sediments is an important factor controlling mercury (Hg) accumulation in aquatic and terrestrial food webs. In this study we examined the fractionation of Hg stable isotopes during Hg methylation in nongrowing cultures of the anaerobic bacteria Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Both organisms showed mass-dependent, but no mass-independent fractionation of Hg stable isotopes during Hg methylation. Despite differences in methylation rates, the two bacteria had similar Hg fractionation factors (αr/p = 1.0009 and 1.0011, respectively). Unexpectedly, δ(202)Hg values of MeHg for both organisms were 0.4‰ higher than the value of initial inorganic Hg after about 35% of inorganic Hg had been methylated. These results indicate that a (202)Hg-enriched pool of inorganic Hg was preferentially utilized as a substrate for methylation by these organisms, but that multiple intra- and/or extracellular pools supplied inorganic Hg for biological methylation. Understanding the controls of the Hg stable isotopic composition of microbially produced MeHg is important to identifying bioavailable Hg in natural systems and the interpretation of Hg stable isotopes in aquatic food webs.

  19. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  20. Investigation of two technical toxaphene products by using isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, W.; Armbruster, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Gleixner, G. [Max-Planck-Institut fuer Biogeochemie, Jena (Germany)

    2004-09-15

    Organochlorine compounds have been used in high quantities throughout the past 60 years. Being long-lived in the environment and toxic to humans and wildlife, some of them were classified as persistent organic pollutants (POPs). One of the POPs of special concern is toxaphene which is produced by the chlorination of the natural product camphene (or {alpha}-pinene). The technical products consist of several hundred compounds, mainly of chlorobornanes with an average number of eight chlorine substituents. Toxaphene has been produced in high quantities in different parts of the world. Even though the use has been discontinued during the last two decades, there are still several ecosystems which are heavily contaminated with this chloropesticide. Due to the huge variety of the technical products accompanied with a severe change of composition in the environment, analytical tracing back of toxaphene residues to a specific product has not yet been achieved. One of the potential analytical tools for distinguishing substances that differ only in their way of production is the determination of ratios of stable isotopes ({sup 13}C/{sup 12}C; {sup 2}H/{sup 1}H; {sup 15}N/{sup 14}N). Since the synthesis of toxaphene is starting from natural compounds obtained from different continents, the technical products could have different ratios of stable isotopes. In this study, we investigated the {sup 13}C/{sup 12}C ratio of two former major toxaphene products.

  1. Transportation of medical isotopes

    International Nuclear Information System (INIS)

    Nielsen, D.L.

    1997-01-01

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document

  2. Transportation of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  3. Permeability of hydrogen isotope through Hastelloy XR in the HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Inagaki, Yoshiyuki; Ogawa, Masuro

    2000-01-01

    Permeation of hydrogen isotope through a high-temperature alloy as used heat exchanger and reformer tubes is an important problem in the hydrogen production system connected to be the high-temperature engineering test reactor (HTTR). The objective of this test is to investigate a governing process of hydrogen permeation and effective methods of reducing an amount of permeated hydrogen isotope through the tubes. This paper described the governing process of hydrogen permeation in the HTTR hydrogen production system and permeability of hydrogen and deuterium of Hastelloy XR. A diffusion process in a solid metal limited the amount of permeated hydrogen isotope in the HTTR hydrogen production system. An activation energy for hydrogen permeation of Hastelloy XR was almost equal to that of Hastelloy X. It was found that an oxide film produced during 140 h heating under helium gas circumference has an effect of reducing the amount of permeated hydrogen isotope. We obtained the permeability of hydrogen and deuterium for Hastelloy XR as follows. Hydrogen : Temperature=570-820degC, Partial pressure=1.06 x 10 2 - 3.95 x 10 3 Pa. Activation energy, E 0 = 67.2 ± 1.2 (kJ·mol -1 ). Pre-exponential factor, F 0 = (1.0 ± 0.2) x 10 -4 (cm 3 (NTP)·cm -1 ·s -1 ·Pa -0.5 ). Deuterium : Temperature = 670 - 820degC, Partial pressure : 9.89 x 10 2 - 4.04 x 10 3 Pa. Activation energy, E 0 = 76.6 ± 0.5 (kJ·mol -1 ). Pre-exponential factor, F 0 = (2.5 ± 0.3) x 10 -4 (cm 3 (NTP)·cm -1 ·s -1 ·Pa -0.5 ). (author)

  4. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  5. 40 CFR Appendix C to Part 122 - Criteria for Determining a Concentrated Aquatic Animal Production Facility (§ 122.24)

    Science.gov (United States)

    2010-07-01

    ... Concentrated Aquatic Animal Production Facility (§ 122.24) A hatchery, fish farm, or other facility is a concentrated aquatic animal production facility for purposes of § 122.24 if it contains, grows, or holds... Concentrated Aquatic Animal Production Facility (§ 122.24) C Appendix C to Part 122 Protection of Environment...

  6. Production and identification of heavy Ni isotopes: Evidence for the doubly magic nucleus 7828Ni. Short note

    International Nuclear Information System (INIS)

    Engelmann, C.; Ameil, F.; Bernas, M.; Heinz, A.; Janas, Z.; Kozhuharov, C.; Miehe, C.; Pfuetzner, M.; Roehl, C.; Stephan, C.; Tassan-Got, L.; Voss, B.

    1995-07-01

    We report the first observation of the doubly magic nucleus 78 Ni 50 and the heavy isotopes 77 Ni, 73,74,75 Co, 80 Cu. The isotopes were produced by nuclear fission in collisions of 750 A.MeV projectiles of 238 U on Be target nuclei. The fully-stripped fission products were separated in-flight by the fragment separator FRS and identified event-by-event by measuring the magnetic rigidity, the trajectory, the energy deposit, and the time of flight. Production cross-sections and fission yields for the new Ni-isotopes are given. (orig.)

  7. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    Guzman R, G.H.

    1980-01-01

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH 3 -H 2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  8. Production and separation of neutron-rich rare isotopes around and below the Fermi energy

    CERN Document Server

    Souliotis, G A; Chubarian, G; Yennello, S J

    2003-01-01

    The production of n-rich rare isotopes around and below the Fermi energy is investigated using beams from the K500 Superconducting Cyclotron and the MARS recoil separator at the Cyclotron Institute of Texas A and M University. The experimental results from the reactions of 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni and 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 Sn are presented and compared with simulations. The calculations involve a deep inelastic transfer (DIT) code for the primary interaction stage followed by the code GEMINI for the de-excitation stage. The results are also compared with the EPAX parametrization. The data on the 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni reaction show that both proton-removal and several-neutron pick-up isotopes are produced. An enhancement is observed in the production of n-rich isotopes close to the projectile relative to the predictions of DIT/GEMINI and the expectations of EPAX. The data of 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 ...

  9. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  10. Using triple isotopes of dissolved oxygen to evaluate global marine productivity.

    Science.gov (United States)

    Juranek, L W; Quay, P D

    2013-01-01

    Since the triple isotopic composition of dissolved O(2) ((17)Δ) was introduced as a natural tracer of photosynthetic gross O(2) production (GOP) over 10 years ago, observations of (17)Δ have been used to constrain marine productivity throughout the global ocean. This incubation-independent approach has several advantages: It allows the determination of production free from containment artifacts and reduces logistical hurdles that can make obtaining productivity with traditional incubation-dependent methods difficult. As such, GOP estimates derived from (17)Δ have been used to give insight into potential biases in incubation-based approaches and to evaluate satellite-based estimates of production at the regional scale. With increased use, we have also learned more about the potential biases and uncertainties of this approach, some of which have been addressed by recent method improvements. We recap the major advances the (17)Δ method has brought to improved understanding of biological carbon cycling, from incubation bottles to ocean basins.

  11. Cosmic-ray production rates of neon isotopes in meteorite minerals

    International Nuclear Information System (INIS)

    Bhandari, N.

    1988-01-01

    The rates of production of 21 Ne and 22 Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of 21 Ne and 22 Ne due to galactic cosmic rays, and the 22 Ne/ 21 Ne ratio depend upon the size of the meteoroid. The 22 Ne/ 21 Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2 cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the 22 Ne/ 21 Ne ratio. Composite production profiles are given and compared with measurements in some meteorites. (author). 22 refs

  12. Track 8: health and radiological applications. Isotopes and radiation: general. 2. Radiation Pasteurization for Diverse Food Products

    International Nuclear Information System (INIS)

    Braby, L.A.; Whittaker, A.D.; McLellan, M.; Waltar, A.E.

    2001-01-01

    requiring differential dosing, and many other technical variables. Both the testing of specific products and the basic research on irradiation processing require a fully instrumented irradiation facility and an extensive food safety and quality testing capability. To meet the needs of food processors that wish to consider entering the radiation-pasteurized product market, Texas A and M University (Texas A and M) has initiated a program to develop a comprehensive radiation pasteurization research facility. A 2-MV electrostatic electron accelerator for studying the potential benefits of surface pasteurization of some products is currently being assembled and will probably be the first radiation source to come on-line. A collaboration with Sure Beam Corporation, the major manufacturer of high-energy electron beam and X-ray irradiation equipment, will establish a new Texas A and M research and testing facility with two 20-kW, 10-MeV electron beam accelerators and a 5-MV X-ray source, all of which will be ready for use in 2002. An isotopic source of mono-energetic photons is also being considered. The food irradiation lines will connect directly with a new, 16 000-ft 2 , fully controlled temperature facility that is equipped with a loading ramp that can accommodate 18-wheeler trucks for receiving and delivering test market-sized loads of products. All of these irradiation facilities will be located in close proximity to the extensive food safety and quality testing facilities of Texas A and M, which operates one of the largest agricultural engineering and food sciences programs in American universities. We believe that this combination will provide the research and testing capability needed to support the rapid growth of radiation pasteurization that we expect to occur in the next few years. (authors)

  13. Gamma ray NDA assay system for total plutonium and isotopics in plutonium product solutions

    International Nuclear Information System (INIS)

    Cowder, L.R.; Hsue, S.T.; Johnson, S.S.; Parker, J.L.; Russo, P.A.; Sprinkle, J.K.; Asakura, Y.; Fukuda, T.; Kondo, I.

    1979-01-01

    A LASL-designed gamma-ray NDA instrument for assay of total plutonium and isotopics of product solutions at Tokai-Mura is currently installed and operating. The instrument is, optimally, a densitometer that uses radioisotopic sources for total plutonium measurements at the K absorption edge. The measured transmissions of additional gamma-ray lines from the same radioisotopic sources are used to correct for self-attenuation of passive gamma rays from plutonium. The corrected passive data give the plutonium isotopic content of freshly separated to moderately aged solutions. This off-line instrument is fully automated under computer control, with the exception of sample positioning, and operates routinely in a mode designed for measurement control. A one-half percent precision in total plutonium concentration is achieved with a 15-minute measurement

  14. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  15. Carbon and nitrogen stable isotopes in U.S. milk: Insight into production process.

    Science.gov (United States)

    Bostic, Joshua N; Hagopian, William M; Jahren, A Hope

    2018-04-15

    Stable isotope analysis (SIA), a potential method of verifying the geographic origin and production method of dairy products, has not been applied to United States (U.S.) dairy samples on a national scale. To determine the potential of carbon and nitrogen SIA in authenticity assessment of U.S. dairy products, we analyzed a geographically representative collection of conventional milk samples to determine isotopic variations with (1) Purchase Location and (2) Macronutrient Content. A total of 136 milk samples spanning five commercially available varieties (3.25% [i.e., 'whole'], 2%, 1%, 0% [i.e., 'skim'] and 1% chocolate) were collected from randomly selected counties across the U.S. as part of the United States Department of Agriculture's (USDA's) National Food and Nutrient Analysis program. δ 13 C and δ 15 N values of bulk samples determined via elemental analysis/isotope ratio mass spectrometry (EA/IRMS) were used to assess the contribution of fat content, added sugar content and census-designated region of collection to isotopic variations within the dataset. There was a negative linear relationship between fat content and δ 13 C values, with average milk δ 13 C values decreasing by 0.33‰ for each 8.75% increase in dry weight (1% wet weight) fat content. The average δ 13 C value of flavored 1% chocolate milk samples, which contain an additional 12 g of added sugar, was 2.05‰ higher than that of 1% unflavored milk (-16.47‰ for chocolate milk vs -18.52‰ for unflavored milk). When controlling for macronutrient content, milk samples collected in West region supermarkets possessed significantly lower δ 13 C values than samples collected from Midwest, South, and Northeast regions. δ 15 N values did not vary with macronutrient content or region of collection. Carbon stable isotope ratios in U.S. milk samples varied with macronutrient content and region of purchase, suggesting that SIA can provide insight into production processes within the U.S. dairy

  16. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  17. Do facilities matter? : The influence of facility satisfaction on perceived labour productivity of office employee

    NARCIS (Netherlands)

    Batenburg, RS; van der Voordt, Theo

    2008-01-01

    Purpose: Companies spend a lot of money to provide facilities such as a nice, effective and efficient building, well designed ergonomic furniture, sophisticated IT, cleaning services, catering, and safety services. Both from a theoretical perspective as well as from a managerial point of view, it is

  18. A Strategic Framework for the Establishment of International Production Facilities

    DEFF Research Database (Denmark)

    Nielsen, A.P.; Riis, Jens Ove

    2000-01-01

    is the distinction between three different levels of analysis and the use of a production concept to connect the levels. The production concept emerges from the integration of different viewpoints, e.g., a strategic viewpoint, a product-market viewpoint, a supply and production viewpoint, and a concrete...

  19. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    Science.gov (United States)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  20. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  1. Climate dependent diatom production is preserved in biogenic Si isotope signatures

    Directory of Open Access Journals (Sweden)

    X. Sun

    2011-11-01

    Full Text Available The aim of this study was to reconstruct diatom production in the subarctic northern tip of the Baltic Sea, Bothnian Bay, based on down-core analysis of Si isotopes in biogenic silica (BSi. Dating of the sediment showed that the samples covered the period 1820 to 2000. The sediment core record can be divided into two periods, an unperturbed period from 1820 to 1950 and a second period affected by human activities (from 1950 to 2000. This has been observed elsewhere in the Baltic Sea. The shift in the sediment core record after 1950 is likely caused by large scale damming of rivers. Diatom production was inferred from the Si isotope composition which ranged between δ30Si −0.18‰ and +0.58‰ in BSi, and assuming fractionation patterns due to the Raleigh distillation, the production was shown to be correlated with air and water temperature, which in turn were correlated with the mixed layer (ML depth. The sedimentary record showed that the deeper ML depth observed in colder years resulted in less production of diatoms. Pelagic investigations in the 1990's have clearly shown that diatom production in the Baltic Sea is controlled by the ML depth. Especially after cold winters and deep water mixing, diatom production was limited and dissolved silicate (DSi concentrations were not depleted in the water column after the spring bloom. Our method corroborates these findings and offers a new method to estimate diatom production over much longer periods of time in diatom dominated aquatic systems, i.e. a large part of the world's ocean and coastal seas.

  2. MRSA in pork production shower facilities: an intervention to reduce occupational exposure.

    Science.gov (United States)

    Leedom Larson, K R; Wagstrom, E A; Donham, K J; Harper, A L; Hanson, B M; Male, M J; Smith, T C

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization has been documented in swine and swine workers. MRSA has also been found in the shower facilities of conventional swine farms. We previously conducted a review of the literature to identify measures used to reduce MRSA prevalence in athletic facilities. In this study, we evaluated those measures for adaptability to the pork production environment. A best practices protocol was developed to reduce MRSA levels in pork production shower facilities and implemented in two conventional swine production systems.

  3. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  4. Measurement of 230Pa and 186Re Production Cross Sections Induced by Deuterons at Arronax Facility

    Science.gov (United States)

    Duchemin, Charlotte; Guertin, Arnaud; Metivier, Vincent; Haddad, Ferid; Michel, Nathalie

    2014-02-01

    A dedicated program has been launched on production of innovative radionuclides for PET imaging and for β- and α targeted radiotherapy using proton or α particles at the ARRONAX cyclotron. Since the accelerator is also able to deliver deuteron beams up to 35 MeV, we have reconsidered the possibility of using them to produce medical isotopes. Two isotopes dedicated to targeted therapy have been considered: 226Th, a decay product of 230Pa, and 186Re. The production cross sections of 230Pa and 186Re, as well as those of the contaminants created during the irradiation, have been determined by the stacked-foil technique using deuteron beams. Experimental values have been quantified using a referenced cross section. The measured cross sections have been used to determine expected production yields and compared with the calculated values obtained using the Talys code with default parameters.

  5. Odour from animal production facilities: its relationship to diet

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Dinh Phung, Le P.D.; Ogink, N.W.M.; Becker, P.M.; Verstegen, M.W.A.

    2005-01-01

    Though bad odour has always been associated with animal production, it did not attract much research attention until in many countries the odour production and emission from intensified animal production caused serious nuisance and was implicated in the health problems of individuals living near

  6. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Directory of Open Access Journals (Sweden)

    S. N. Ladd

    2017-09-01

    Full Text Available The hydrogen isotopic composition (δ2H of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H∕1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early

  7. Considerations in the design of a high power medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, Russell M.; Nordyke, William H.; Brown, Roy

    2002-01-01

    For the low enriched aqueous homogeneous reactor to be economic in the production of medical isotopes, such as Mo-99 and Sr-89, the power level should be of the order of 100 kWth. This is double the earlier designs and this paper discusses the design changes which must be considered to meet this goal. The topics considered are: 1. Heat removal from the reactor solution; 2. Recombination of radiolytic gases; 3. Adequate radiation shielding; 4. Stability of reactor power with fluctuating reactivity; 5. Adequate cooling of the reflector; 6. Independent shutdown mechanisms; 7. Required volume of the reactor; 8. Economic implementation. (author)

  8. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Science.gov (United States)

    Nemiah Ladd, S.; Dubois, Nathalie; Schubert, Carsten J.

    2017-09-01

    The hydrogen isotopic composition (δ2H) of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H/1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early spring, which are displaced by

  9. Comparisons of Neutron Cross Sections and Isotopic Composition Calculations for Fission-Product Evaluations

    Science.gov (United States)

    Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok

    2005-05-01

    The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.

  10. 18 CFR 292.204 - Criteria for qualifying small power production facilities.

    Science.gov (United States)

    2010-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... production facilities that use the same energy resource, are owned by the same person(s) or its affiliates... qualification is sought and, for hydroelectric facilities, if they use water from the same impoundment for power...

  11. Medical isotope production: A new research initiative for the Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Coats, R.L.; Parma, E.J.

    1993-01-01

    An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of 99 Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater 99 Mo production ensuring adequate capacity for future years

  12. Evaluation of a Low-Cost Salmon Production Facility; 1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hill, James M.; Olson, Todd

    1989-05-01

    This fiscal year 1988 study sponsored by the Bonneville Power Administration evaluates an existing, small-scale salmon production facility operated and maintained by the Clatsop County Economic Development Committee's Fisheries Project.

  13. Stable carbon isotopes in high-productive littoral areas of Lake Constance

    International Nuclear Information System (INIS)

    Chondrogianni, C.

    1992-01-01

    The investigation attempted to extend understanding of C fractionation in aquatic systems and to facilitate the interpretation of palaeolimnological isotope data. Particular interest was taken in the aspect of bicarbonate assimilation at high productivity and in the exchange processes between water and atmosphere. Littoral areas of lakes were chosen as areas of investigation as they offer a high-productivity environment with large populations of submersed macrophytes and periphytes. To get a better picture of the factors influencing C fractionation, litteral and pellagial regions were compared on the one hand and a mesotrophic (Ueberlingersee) and a eutrophic (Gnadensee) lake section on the other hand. Further factors of differentiation between the two lake parts were: Volume, the proportional share of the litteral area, and water exchange. Two main fields of interest were investigated: - Determination of the C isotope ratio (δ 13 C) in the dissolved bicarbonate of water in the sediments of a single year for the purpose of calibrating its fractionation in the basis of the present chemical and physical status of the lake water (water programme). - Determination of δ 13 C in selected carbonate components from sedimentary cores in order to find out about palaeolimnological events in the areas of investigation (sediment programme). (orig.) [de

  14. Production of osmium-191 in the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Butler, T.A.; Guyer, C.E.; Knapp, F.F. Jr.

    1985-01-01

    Osmium-191 (T/sub 1/2/, 15.4 days) is the parent radionuclide of /sup 191m/Ir (T/sub 1/2/, 4.96 sec) which is attractive for radionuclide angiography for the detection of left-to-right shunts in infants and the determination of ventricular ejection fraction. The radiopharmaceutical is derived from 191 Os→/sup 191m/Ir clinical generators that are loaded with 191 Os prepared at the Oak Ridge National Laboratory (ORNL) and now made available through Medical Cooperative Programs. Described here are studies of the parameters for production of 191 Os in the ORNL High Flux Isotope Reactor (HFIR) by irradiation of isotopically enriched (97.8%) 190 Os for time periods of 2 to 14 days. Preliminary data were also obtained for comparative purposes from irradiations of natural osmium (26.4% 190 Os) under the same conditions. Osmium-191 specific activities of 170 mCi/mg (2-day irradiation) to 550 mCi/mg (14-day irradiation) were achieved. Irradiation of natural osmium (26.4% 190 Os) resulted in corresponding lower specific activities of 191 Os. These studies suggest that irradiation of enriched 190 Os targets is the preferred production mode for 191 Os to be used for the 181 Os→/sup 191m/Ir generator system

  15. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Science.gov (United States)

    2010-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  16. Validation of the method for determination of plutonium isotopes in urine samples and its application in a nuclear facility at Otwock

    Directory of Open Access Journals (Sweden)

    Rzemek Katarzyna

    2015-03-01

    Full Text Available The studies aimed at determining low activities of alpha radioactive elements are widely recognized as essential for the human health, because of their high radiotoxicity in case of internal contamination. Some groups of workers of nuclear facility at Otwock are potentially exposed to contamination with plutonium isotopes. For this reason, the method for determination of plutonium isotopes has been introduced and validated in Radiation Protection Measurements Laboratory (LPD of the National Centre for Nuclear Research (NCBJ. In this method the plutonium is isolated from a sample by coprecipitation with phosphates and separated on a AG 1-X2 Resin. After electrodeposition, the sample is measured by alpha spectrometry. Validation was performed in order to assess parameters such as: selectivity, accuracy (trueness and precision and linearity of the method. The results of plutonium determination in urine samples of persons potentially exposed to internal contamination are presented in this work.

  17. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  18. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge

    In this research project the focus has been on the identification and production of new, unconventional Augerelectron- emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Augeremitter 119Sb has been identified......Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron...... as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been...

  19. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  20. Isotope distribution program at the Oak Ridge National Laboratory with emphasis on medical isotopes

    International Nuclear Information System (INIS)

    Adair, H.L.

    1987-01-01

    The Isotope Distribution Program (IDP) is a group of individual activities with separate and diverse DOE sponsors which share the common mission of the production and distribution of isotope products and the performance of isotope-related services. Its basic mission is to provide isotope products and associated services to the user community by utilizing government-owned facilities that are excess to the primary mission of the DOE. The IDP is in its 41st year of operation. Initially, the program provided research quantities of radioactive materials, and through the 1950's it was the major supplier of radioisotopes for both research and commercial application. Distribution of enriched stable isotopes began in 1954. This paper discusses the use of radioisotopes in medicine and the role that ORNL plays in this field

  1. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production

    Science.gov (United States)

    Anex, R. P.; Francis Clar, J.

    2015-12-01

    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  2. Resource-recovery facilities: Production and cost functions, and debt-financing issues

    International Nuclear Information System (INIS)

    Simonsen, W.S.

    1991-01-01

    Some of the fiscal questions relating to resource-recovery, or trash-burning, facilities are addressed. Production and cost functions for resource-recovery facilities are estimated using regression analysis. Whether or not there are returns to scale are addressed using the production and cost-function framework. Production functions are also estimated using data envelopment analysis (DEA), and results are compared to the regression results. DEA is a linear-program-based technique that can provide information about the production process. The data used to estimate the production and cost functions were collected from the Resource Recovery Yearbook. Once the decision is made to construct a resource-recovery facility, it needs to be financed. The high cost of these facilities usually prohibits financing construction out of regular operating revenues. Therefore, the issues a government faces when debt is used to finance a resource-recovery facility are analyzed. The most important public policy finding is that increasing economies of scale do not seem to be present for resource-recovery facilities

  3. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  4. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    Science.gov (United States)

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  5. Control of Listeria species food safety at a poultry food production facility.

    Science.gov (United States)

    Fox, Edward M; Wall, Patrick G; Fanning, Séamus

    2015-10-01

    Surveillance and control of food-borne human pathogens, such as Listeria monocytogenes, is a critical aspect of modern food safety programs at food production facilities. This study evaluated contamination patterns of Listeria species at a poultry food production facility, and evaluated the efficacy of procedures to control the contamination and transfer of the bacteria throughout the plant. The presence of Listeria species was studied along the production chain, including raw ingredients, food-contact, non-food-contact surfaces, and finished product. All isolates were sub-typed by pulsed-field gel electrophoresis (PFGE) to identify possible entry points for Listeria species into the production chain, as well as identifying possible transfer routes through the facility. The efficacy of selected in-house sanitizers against a sub-set of the isolates was evaluated. Of the 77 different PFGE-types identified, 10 were found among two or more of the five categories/areas (ingredients, food preparation, cooking and packing, bulk packing, and product), indicating potential transfer routes at the facility. One of the six sanitizers used was identified as unsuitable for control of Listeria species. Combining PFGE data, together with information on isolate location and timeframe, facilitated identification of a persistent Listeria species contamination that had colonized the facility, along with others that were transient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture.

    NARCIS (Netherlands)

    Egorova-Zachernyuk, T.A.; Bosman, G.J.C.G.M.; Pistorius, A.M.A.; Grip, W.J. de

    2009-01-01

    Preparation of stable isotope-labelled yeastolates opens up ways to establish more cost-effective stable isotope labelling of biomolecules in insect and mammalian cell lines and hence to employ higher eukaryotic cell lines for stable isotope labelling of complex recombinant proteins. Therefore, we

  7. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  8. Plutonium production story at the Hanford site: processes and facilities history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  9. Methicillin-Resistant Staphylococcus aureus in Pork Production Shower Facilities

    Science.gov (United States)

    Leedom Larson, Kerry R.; Harper, Abby L.; Hanson, Blake M.; Male, Michael J.; Wardyn, Shylo E.; Dressler, Anne E.; Wagstrom, Elizabeth A.; Tendolkar, Shaliesh; Diekema, Daniel J.; Donham, Kelley J.; Smith, Tara C.

    2011-01-01

    As methicillin-resistant Staphylococcus aureus (MRSA) has been found in pigs, we sought to determine if MRSA is present in pork production shower facilities. In two production systems tested, 3% and 26% of shower samples were positive for MRSA. spa types identified included t034, t189, t753, and t1746. PMID:21097587

  10. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  11. Evaluation Study for the Production of the Medical Isotope ^90Y, using a Cyclotron

    Science.gov (United States)

    Necsoiu, D.; Morgan, I. L.; Hupf, Homer; Armbruster, J.; Boyce, D.; El Bouanani, M.; McDaniel, F. D.

    2000-10-01

    The use of radioisotopes in therapy, medical imaging and laboratory tests is well-established worldwide. ^90Y is a very good therapeutic candidate for radioimmunotherapy applications. Traditionally, medical radioisotopes are produced using either nuclear reactors or proton accelerators. In this study, the medical isotope ^90Y has been produced using ^90Zr(n,p)^90Y nuclear reaction. Neutrons for the activation process were produced using ^natRh(p,xn) reaction with a 27 MeV proton beam from a cyclotron. Since ^90Y is a pure beta emitter, the gamma rays from the ^90Zr(n,2n)^89Zr reaction were used to quantify the incident neutron flux on the ^90Zr sample. Experimental results of the neutron production and ^90Y activity are presented.

  12. Use Of Stable Isotope To Determine Time of Red River Water Recharging To Production Groundwater Wells In Hanoi

    International Nuclear Information System (INIS)

    Trinh Van Giap; Dang Anh Minh

    2011-01-01

    Stable isotope O-18 and lump parameter models has been used to determine time of Red River water recharging to some production groundwater wells at Yen Phu station in Ha noi. Composition of stable isotope O-18 in Red River water changed on time in a year has been used as a tracer with lump parameter models to study flow of groundwater. Composition of stable isotope O-18 in production groundwater wells was measured on months in a year and the fitting of measured data and calculation data with selected flow models was carried out by lumped parameter models. The results of fitting shows resident time or time of Red River water recharging to production groundwater wells. At 4 production groundwater wells of Yen Phu station selected in this study, the time of Red River water recharging to wells H26 and H29 is following 3.5 months and 11 months. Composition of stable isotope O-18 at wells H12 and H27 do not change on time, but proportions of Red River water in production groundwater at these wells were calculated of following 99% and 97%. (author)

  13. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2003-01-01

    The availability of isotope grade, Highly Enriched Uranium (HEU), from the United States for use in the manufacture of targets for molybdenum-99 production in AECL's NRU research reactor has been a key factor to enable MDS Nordion to develop a reliable, secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets is a proven and established method that has reliably produced medical isotopes for several decades. The HEU process provides predictable, consistent yields for our high-volume, molybdenum-99 production. Other medical isotopes such as I-131 and Xe-133, which play an important role in nuclear medicine applications, are also produced from irradiated HEU targets as a by-product of the molybdenum-99 process. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the commissioning of two MAPLE reactors and an associated isotope processing facility (the New Processing Facility). The new MAPLE facilities, which will be dedicated exclusively to medical isotope production, will provide an essential contribution to a secure, robust global healthcare system. Design and construction of these facilities has been based on a life cycle management philosophy for the isotope production process. This includes target irradiation, isotope extraction and waste management. The MAPLE reactors will operate with Low Enriched Uranium (LEU) fuel, a significant contribution to the objectives of the RERTR program. The design of the isotope production process in the MAPLE facilities is based on an established process - extraction of isotopes from HEU target material. This is a proven technology that has been demonstrated over more than three decades of operation. However, in support of the RERTR program and in compliance with U.S. legislation, MDS Nordion has undertaken a LEU Target Development and Conversion Program for the MAPLE facilities. This paper will provide an

  14. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  15. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    Science.gov (United States)

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions. © 2016 John Wiley & Sons Ltd.

  16. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  17. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    International Nuclear Information System (INIS)

    Tahir, N A; Weick, H; Iwase, H

    2005-01-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump

  18. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    Science.gov (United States)

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  19. The South African National Accelerator Centre: particle therapy and isotope production programmes

    Science.gov (United States)

    Jones, D. T. L.; Mills, S. J.

    1998-06-01

    The National Accelerator Centre (NAC) provides facilities for basic and applied research, radioisotope production and particle therapy. To date, 851 patients have been treated on the 66 MeV p+Be isocentric neutron therapy unit while 191 patients have been treated (mainly for intracranial conditions) on the 200 MeV horizontal proton beam facility. A variety of radioisotopes such as 67Ga, 81Rb/ 81Kr, 111In, 123I, and 201Tl are produced on a regular weekly basis, and more than 1000 consignments of radiopharmaceuticals prepared from these radioisotopes are supplied to more than 30 hospitals and private practices throughout South Africa each year. Some non-medical radioisotopes are also produced.

  20. Production and chemical isolation procedure of positron-emitting isotopes of arsenic for environmental and medical applications

    Science.gov (United States)

    Ellison, P. A.; Barnhart, T. E.; Engle, J. W.; Nickles, R. J.; DeJesus, O. T.

    2012-12-01

    The positron-emitting isotopes of arsenic have unique potential for imaging research in medical and environmental applications. The production and purification of radioarsenic from proton-irradiated natural GeO2 targets is reported. The separation procedure utilizes precipitation and anion exchange separation steps. Two anion exchange procedures were investigated. An overall arsenic decay-corrected separation yield of 80% was obtained.

  1. Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Lestringuez, J.; Yiou, F.

    1975-01-01

    Cross sections for the production of Li and Be isotopes in carbon targets irradiated by 300 GeV protons were measured by mass spectrometry. The results are compared with lower energy measurements and discussed in terms of the variation of the cosmic ray L/M ratio in this energy region [fr

  2. Making high-value, long-lived isotopes to balance a sustainable radiotracer production facility

    OpenAIRE

    Engle, J. W.; Barnhart, T. E.; Valdovinos, H. F.; Graves, S.; Ellison, P. A.; Nickles, R. J.

    2015-01-01

    Introduction The embrace of PET by medical clinicians has been reluctant (ΔT ≈ 20 yr) primarily due to the scale of the infrastructure that is needed. The capital cost of a cyclotron (≈ 106 USD) is now dwarfed by the demand for compliance to recent regulatory standards. This is a recurring expense, not only imposing an order-of-magnitude increase in staffing and operating costs, but damping the enthusiasm of researchers recalling the brisk pace of research in earlier days. Now an academic ...

  3. Development of post-irradiation test facility for domestic production of 99Mo

    International Nuclear Information System (INIS)

    Taguchi, Taketoshi; Yonekawa, Minoru; Kato, Yoshiaki; Kurosawa, Makoto; Nishikata, Kaori; Ishida, Takuya; Kawamata, Kazuo

    2013-01-01

    JMTR focus on the activation method. By carrying out the preliminary tests using irradiation facilities existing, and verification tests using the irradiation facility that has developed in the cutting-edge research and development strategic strengthening business, as irradiation tests towards the production of 99 Mo, we have been conducting research and development that can contribute to supply about 25% for 99 Mo demand in Japan and the stable supply of radiopharmaceutical. This report describes a summary of the status of the preliminary tests for the production of 99 Mo: Maintenance of test equipment in the facility in JMTR hot laboratory in preparation for research and development for the production of 99 Mo in JMTR and using MoO 3 pellet irradiated at Kyoto University Research Reactor Institute (KUR). (author)

  4. Health and safety consequences of medical isotope processing at the Hanford Site 325 building

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, D. L.

    1997-11-19

    Potential activities associated with medical isotope processing at the Hanford Site 325 Building laboratory and hot cell facilities are evaluated to assess the health and safety consequences if these activities are to be implemented as part of a combined tritium and medical isotope production mission for the Fast Flux Text Facility (FFTF). The types of activities included in this analysis are unloading irradiated isotope production assemblies at the 325 Building, recovery and dissolution of the target materials, separation of the product isotopes as required, and preparation of the isotopes for shipment to commercial distributors who supply isotopes to the medical conunuriity. Possible consequences to members of the public and to workers from both radiological and non-radiological hazards are considered in this evaluation. Section 2 of this docinnent describes the assumptions and methods used for the health and safety consequences analysis, section 3 presents the results of the analysis, and section 4 summarizes the results and conclusions from the analysis.

  5. Preliminary design of a production automation framework for a pyroprocessing facility

    Directory of Open Access Journals (Sweden)

    Moonsoo Shin

    2018-04-01

    Full Text Available Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided. Keywords: Manufacturing Execution System, Material-handling, Production Automation, Production Planning and Control, Pyroprocessing, Pyroprocessing Execution System

  6. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  7. Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of [18F]Fluorodeoxyglucose (FDG)

    International Nuclear Information System (INIS)

    2012-01-01

    Positron emission tomography (PET) has advanced rapidly in recent years and is becoming an indispensable imaging modality for the evaluation and staging of cancer patients. A key component of the successful operation of a PET centre is the on-demand availability of radiotracers (radiopharmaceuticals) labelled with suitable positron emitting radioisotopes. Of the hundreds of positron labelled radiotracers, 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG) is the most successful and widely used imaging agent in PET today. While FDG is utilized largely in oncology for the management of cancer patients, its applications in neurology and cardiology are also steadily growing. A large number of PET facilities have been established in Member States over the past few years, and more are being planned. The design and operation of a facility for the production of FDG requires attention to detail, in particular the application of good manufacturing practices (GMP) guidelines and quality assurance. The product must conform to the required quality specifications and must be safe for human use. This book is intended to be a resource manual with practical information for planning and operating an FDG production facility, including design and implementation of the laboratories, facility layout, equipment, personnel and FDG quality assessment. GMP and quality management are discussed only briefly, since these topics are covered extensively in the IAEA publication Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility (Technical Reports Series No. 471). It should be noted that manufacturing processes and quality specifications for FDG are not currently globally harmonized, and these do vary to some extent. However, there is no disagreement over the need to ensure that the product is manufactured in a controlled manner, that it conforms to applicable quality specifications and that it is safe for human use. Administrators, managers, radiopharmaceutical scientists, production

  8. Isotope Production for Pet’s Changing Clientele: Surviving the Centrifugal Forces

    International Nuclear Information System (INIS)

    Barnhart, T.E.; Engle, J.W.; Nickles, R.J.

    2009-01-01

    After thirty years of slow growth, the production of PET tracers at the University of Wisconsin has ignited, entering an exponential phase. The capacity has undergone a major boost with new facilities, but difficulties arise in trying to maintain a balance that has traditionally existed between the expectations of basic scientists using novel tracers, clinicians needing reliable supply of routine agents, and our academic mission for the training of graduate students toward their doctoral degrees. This IAEA CRP has provided a template that has assisted us in our pursuit of sustainable operation, critical for the transfer of technology to Member States with widely differing needs and resources. (author)

  9. Establishing the potential of Ca isotopes as proxy for consumption of dairy products

    International Nuclear Information System (INIS)

    Chu, N.-C.; Henderson, Gideon M.; Belshaw, Nick S.; Hedges, Robert E.M.

    2006-01-01

    A procedure has been developed which allows precise determination of Ca isotope ratios in natural and organic samples such as bones, milk and other biological materials. In this study the procedure is used to determine Ca isotope ratios in modern dietary systems and to establish the potential of Ca isotopes as a paleodiet tracer by analysis of bones. Multi-sampling across a 5 cm portion of a red deer jawbone shows invariant Ca isotope ratios and suggests negligible isotopic effect during bone remodelling. The difference between Ca isotopes in red deer diet and bones from one location was 0.65 per mille , in agreement with a previous study of diet/bone offsets. Similar values for modern deer-bone δ 44/42 Ca from four geographically diverse populations demonstrate that geological/environmental conditions do not cause large variability and suggest that diet is the major cause for variations in bone δ 44/42 Ca. δ 44/42 Ca of herbivore milk is found to be ∼0.5 to 0.6 higher than the corresponding diet. Modern human milk has a δ 44/42 Ca of -1.15 (n = 4) and is isotopically the lightest material reported in this study. This suggests that, for these samples, a significant portion of Ca intake was from dairy sources, and that human milk has Ca which is, again, ∼0.6 per mille isotopically lighter than dietary Ca intake. Finally, Ca isotope ratios are presented from a variety of samples formed during fermentation processes (e.g., curds, whey, etc.) which indicate that these processes do not fractionate Ca isotopes significantly. Together, the data in this paper indicate that, because milk is an important dietary source of Ca with a distinctive signature, Ca isotope ratios should provide a tracer for past dairy consumption. A simplified model is outlined to demonstrate the ability to quantify dairy consumption by the analysis of Ca isotopes in bones

  10. Annex I: Case study of a Slovakian production facility: The application of the Model Business Plan from Project INT/5/145 to a specific facility

    International Nuclear Information System (INIS)

    2008-01-01

    This case study was used to test the Model Business Plan. Conclusions from that test remain valid. Although the facility has not reached the production level originally anticipated and therefore none of the scenarios have come to pass, the actual figures for production capacity, costs etc., may easily be corrected in the model. The cost-of-labour assumptions are updated in Section A1.9.1. On the supply side, the greatest impact is from a new sterile Medfly facility in Spain which has the capacity to produce up to 600 million sterile males per week. The potential near term demand far exceeds this level, however. Other changes in terms of prices of product, for example, can be assessed by changing the assumptions in the model. For the time being, the InSecta-IZSAS Institute of Zoology, Slovak Academy of Science (SAS) facility has a production capacity of around 500,000 sterile Medfly males per week which have been used mainly for research purposes (e.g. EU 6th Framework Project, Cleanfruit). There are still plans to expand the operation. One option for the future is to build an egg producing facility to supply other sterile male-only Medfly facilities. The tsetse facility is used as a back-up facility for African programmes such as the one in Ethiopia. Several thousands pupae per month are shipped from the facility already. The colony has 110,000 females of G. fuscipes, G. morsitans morsitans and G. pallidipes

  11. A 12-year analysis of Malmquist total factor productivity in dialysis facilities.

    Science.gov (United States)

    Kontodimopoulos, Nick; Niakas, Dimitris

    2006-10-01

    This study examined total factor productivity of dialysis facilities in Greece over a 12-year period, using nationally representative panel data. Data Envelopment Analysis (DEA) was used to compute Malmquist productivity indices, which were decomposed into technical efficiency change and technological change. The sample consisted of 73 dialysis facilities operating throughout the entire study period (1993-2004), corresponding to 97.3% and 58.9% of all facilities in the first and last study years respectively. Production variables were nursing staff and dialysis machines (inputs) and dialysis sessions (output). The DEA model was input-oriented allowing for constant returns to scale (CRS). Technical efficiency change was decomposed into scale efficiency change and variable returns to scale (VRS) "pure" technical efficiency change. Mean overall efficiency, throughout the study years, ranged from 39.6 to 63.1% with an all-time average of 56.7%, and only 2-4% of the facilities were fully efficient in each study year. Productivity indices indicated year-by-year progress or regress up to 5%, but the efficiency and technological components differed, in some cases, by as much as 30%. Although interesting subperiod effects were observed, conclusions could not be generalized for the entire study period due to alternating trends. We suggest that preliminary insight to productivity in this sector has been obtained, but particular subperiods must be isolated and further investigated.

  12. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  13. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Boll, Rose Ann; Garland, Marc A.; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (∼40 g or ∼8 Ci; ∼80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  14. Determination of management by labor competencies in the production process of the Isotope Center

    International Nuclear Information System (INIS)

    Pérez Centurión, Yoneiki; Fernández Rodríguez, Rosio

    2016-01-01

    The present research is carried out in the Center of Isotopes (CENTIS) belonging to the Agency of Nuclear Energy and Advanced Technologies of the Ministry of Science, Technology and Environment of Cuba (CITMA). Its mission is to develop, produce, and supply radiopharmaceuticals, clinical diagnostics and scientific and technical health services in the national and international markets. Based on a diagnosis of the organization through the GRH-DPC model, it was determined that the main problem is the Deficient Management of Human Resources, highlighting as main cause that the labor competencies are not identified at any of its three levels . As a result of this analysis the need to establish a procedure to carry out the process of identification and validation of the competency system, as well as the design of the profile of positions by competencies of the entity. For the development of this work, different tools and techniques were used in the field of research such as: bibliographical analysis, brainstorming, expert method, statistical tools, cause and effect diagram, SWOT matrix, flow diagram, among others. The main result of the research is the identification of the organization's distinctive competencies, those of the key production processes of 99 Mo-99mTc Generators and the profiles of the positions of the Production Management linked to the selected subprocesses.

  15. Production of He-, Ne-, Ar-, Kr-, and Xe-isotopes by proton-induced reactions on lead

    International Nuclear Information System (INIS)

    Leya, I.; Michel, R.

    2003-01-01

    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr-, and Xe-isotopes from lead from the respective reaction thresholds up to 2.6 GeV. The production of noble gas isotopes in lead by proton-induced reactions is of special importance for design studies of accelerator driven systems and energy amplifiers. In order to minimise the influences of secondary particles on the production of residual nuclides a new Mini-Stack approach was used instead of the well-known stacked-foil techniques for all experiments with proton energies above 200 MeV. With some exceptions our database for the proton-induced production of noble gas isotopes from lead is consistent and nearly complete. In contradistinction to the production of He from Al and Fe, where the cross sections obtained by thin-target irradiation experiments are up to a factor of 2 higher than the NESSI data, both datasets agree for the He production from lead. (orig.)

  16. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  18. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  19. Development of proliferation resistant isotope separation technology

    International Nuclear Information System (INIS)

    Jeong, Doyoung; Ko, Kwanghoon; Kim, Taeksoo; Park, Hyunmin; Lim, Gwon; Cha, Yongho; Han, Jaemin; Baik, Sunghoon; Cha, Hyungki

    2012-02-01

    This project was accomplished with an aim of establishing the industrial facilities for isotope separation in Korea. The experiment for the measurement of neutrino mass that has been an issue in physics, needs very much of enriched calcium-48 isotope. However, calcium-48 isotope can be produced only by the electro-magnetic method and, thus, its price is very expensive. Therefore, we expect that ALSIS can replace the electro-magnetic method for calcium-48 isotope production. In this research stage, the research was advanced systematically with core technologies, such as atomic vapor production, the measurement of vapor characteristics and stable and powerful laser development. These researches will be the basis of the next research stages. In addition, the international research trends and cooperation results are reported in this report

  20. A novel sequential vegetable production facility for life support system in space

    Science.gov (United States)

    Liu, Hui; Berkovich, Yuliy A.; Liu, Hong; Fu, Yuming; Shao, Lingzhi; Erokhin, A. N.; Wang, Minjuan

    2012-07-01

    Vegetable cultivation plays a crucial role for dietary supplements and psychosocial benefits of the crew during manned space flight. The idea of onboard vegetables cultivation was generally proposed as the first step of food regeneration in life support system of space. Here a novel sequential vegetable production facility was developed, which was able to simulate microgravity conditions and carry out modularized-cultivation of leaf-vegetables. Its growth chamber (GC) had conic form and volume of 0.12 m ^{3}. Its planting surface of 0.154 m ^{2} was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved on along with plant growth. The total illuminated crop area of 0.567 m ^{2} was provided by a combination of both red and white light emitting diodes distributed on the GC cone internal surface. In tests with a 24-hr photoperiod, the productivity of the facility at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Compared to lettuce from market, the quality of lettuce of the facility did not change significantly during long-term cultivation. Our results demonstrate that the facility is high efficiency in vegetable production, and basically meets the application requirements of space microgravity environment. Keywords:, vegetable; modularized-cultivation; sequential production; life support system

  1. A Tool for the Design of Facilities for the Sustainable Production of Knowledge

    NARCIS (Netherlands)

    Wu, J.

    2005-01-01

    The aim of the study is to develop a ‘design tool’, that is a method to enhance the design and planning of facilities for the sustainable production of new knowledge. More precisely, the objective is to identify a method to support the conception of building complexes related to the long-term

  2. Material erosion and erosion products in disruption simulation experiments at the MK-200 UG facility

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.I.; Bakhtin, V.P.; Kurkin, S.M.; Safronov, V.M.; Toporkov, D.A.; Vasenin, S.G.; Zhitlukhin, A.M.; Wuerz, H. E-mail: hermann.wurz@ihm.fzk.de

    2000-11-01

    Plasma/material interaction was studied in disruption simulation experiments at the plasma gun facility MK-200 UG. Graphite, tungsten and aluminium targets (beryllium-like material) were irradiated by intense plasma streams under heat fluxes typical for international thermonuclear experimental reactor (ITER) hard disruption. Materials were also exposed to radiation emitted by target plasma shields. Surface damage and erosion products were analysed.

  3. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review

    OpenAIRE

    Benjamin D. Anderson; Benjamin D. Anderson; John A. Lednicky; Montserrat Torremorell; Gregory C. Gray

    2017-01-01

    Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents ...

  4. Stable isotope composition of environmental water and food products as a tracer of origin

    International Nuclear Information System (INIS)

    Wierzchnicki, R.; Owczarczyk, A.; Soltyk, W.

    2004-01-01

    The paper is the review of Institute of Nuclear Chemistry and Technology (INCT) activity in application of stable isotope ratios (especially D/H and 18 O/ 16 O) for environmental studies and food origin control. INCT has at disposal since 1998, a high class instrument - Isotope Ratio Mass Spectrometer, Delta Plus, Finnigan MAT, Germany - suitable to perform such measurements. (author)

  5. Discovery of the cadmium isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Thoennessen, M.

    2010-01-01

    Thirty-seven cadmium isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  6. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei

    2016-08-22

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.

  7. Canadian Neutron Source (CNS): a research reactor solution for medical isotopes and neutrons for science

    International Nuclear Information System (INIS)

    Chapman, D.

    2009-01-01

    This presentation describes a dual purpose research facility at the University of Saskatchewan for Canada for the production of medical isotopes and neutrons for scientific research. The proposed research reactor is intended to supply most of Canada's medical isotope requirements and provide a neutron source for Canada's research community. Scientific research would include materials research, biomedical research and imaging.

  8. Breathing new life into your production irradiator the case for reinvesting in your facility

    International Nuclear Information System (INIS)

    Aube, Robert; Wynnyk, Mike

    2002-01-01

    This paper focuses on one of the important technology issues facing the gamma processing industry today: that of strategically planning for extending the useful life of a production irradiator. Production irradiator owners are typically faced with the difficult question of whether or not to significantly reinvest in their facilities after 15-20 years of service. At this point in time the irradiator has likely provided many years of safe, reliable service and has paid for itself many times over. As the equipment ages, it may become less reliable, due to wear and maintenance practices, and more costly to operate. The cost of refurbishing the equipment may be significant and the downtime required to complete the refurbishment is also likely to be a challenge. This makes it essential to present a clear and rational justification for reinvesting in the facility. There has been a growing trend in recent years for irradiator owners to refurbish or upgrade their facilities. This trend is driven by the need to keep the facilities operating efficiently and safely as well as by the desire to take advantage of advancements that have occurred in the technology over the years. These advancements can enhance equipment efficiency, improve operational effectiveness and maintain or exceed quality assurance requirements. This paper illustrates the value of reinvesting in irradiator facilities, and highlights the significant benefits derived

  9. Status of the isotope enrichment program at Oak Ridge National Laboratory

    Science.gov (United States)

    Tracy, J. G.

    1991-05-01

    The objectives of the isotope enrichment program at the Oak Ridge National Laboratory are to prepare and distribute electromagnetically separated stable isotopes to the research, medical and industrial communities on a worldwide basis. Topics discussed in this presentation include (1) a review of facility modifications, (2) current facility capabilities, (3) enrichment processes, and (4) final product distribution. An update on alternative separations methods to augment the electromagnetic separations process is covered, as well as special services that are available for providing custom materials to meet special applications. Recent changes in U.S. Department of Energy policy that impact the nation's isotope and isotope-related programs are summarized, with special emphasis on the effects on isotope enrichment, radioisotope production, target fabrication, pricing, and marketing and distribution of stable isotopes.

  10. Analysis of federal and state policies and environmental issues for bioethanol production facilities.

    Science.gov (United States)

    McGee, Chandra; Chan Hilton, Amy B

    2011-03-01

    The purpose of this work was to investigate incentives and barriers to fuel ethanol production from biomass in the U.S. during the past decade (2000-2010). In particular, we examine the results of policies and economic conditions during this period by way of cellulosic ethanol activity in four selected states with the potential to produce different types of feedstocks (i.e., sugar, starch, and cellulosic crops) for ethanol production (Florida, California, Hawaii, and Iowa). Two of the four states, Iowa and California, currently have commercial ethanol production facilities in operation using corn feedstocks. While several companies have proposed commercial scale facilities in Florida and Hawaii, none are operating to date. Federal and state policies and incentives, potential for feedstock production and conversion to ethanol and associated potential environmental impacts, and environmental regulatory conditions among the states were investigated. Additionally, an analysis of proposed and operational ethanol production facilities provided evidence that a combination of these policies and incentives along with the ability to address environmental issues and regulatory environment and positive economic conditions all impact ethanol production. The 2000-2010 decade saw the rise of the promise of cellulosic ethanol. Federal and state policies were enacted to increase ethanol production. Since the initial push for development, expansion of cellulosic ethanol production has not happened as quickly as predicted. Government and private funding supported the development of ethanol production facilities, which peaked and then declined by the end of the decade. Although there are technical issues that remain to be solved to more efficiently convert cellulosic material to ethanol while reducing environmental impacts, the largest barriers to increasing ethanol production appear to be related to government policies, economics, and logistical issues. The numerous federal and state

  11. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  12. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    Science.gov (United States)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  13. New neutron-rich isotope production in 154Sm+160Gd

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-09-01

    Full Text Available Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD model and time dependent Hartree–Fock (TDHF theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58≤Z≤76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  14. Deuteron induced Tb-155 production, a theranostic isotope for SPECT imaging and auger therapy.

    Science.gov (United States)

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2016-12-01

    Several terbium isotopes are suited for diagnosis or therapy in nuclear medicine. Tb-155 is of interest for SPECT imaging and/or Auger therapy. High radionuclide purity is mandatory for many applications in medicine. The quantification of the activity of the produced contaminants is therefore as important as that of the radionuclide of interest. The experiments performed at the ARRONAX cyclotron (Nantes, France), using the deuteron beam delivered up to 34MeV, provide an additional measurement of the excitation function of the Gd-nat(d,x)Tb-155 reaction and of the produced terbium and gadolinium contaminants. In this study, we investigate the achievable yield for each radionuclide produced in natural gadolinium as a function of the deuteron energy. Other reactions are discussed in order to define the production route that could provide Tb-155 with a high yield and a high radionuclide purity. This article aims to improve data for the Gd-nat(d,x) reaction and to optimize the irradiation conditions required to produce Tb-155. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  16. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  17. Isotope studies on plant productivity. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1996-07-01

    In order to explore this approach, a Co-ordinated Research Programme (CRP) on the Use of Isotope Studies for Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics was initiated in October 1989 and complete in October 1994. Almost half of the work carried out under this programme concentrated on water use efficiency and the rest on phosphate use efficiency. Egypt, Morocco and Tunisia focused on wheat; Nigeria and Sierra Leone on cowpea; Kenya, Sudan and the United Republic of Tanzania on nitrogen fixing trees such as Prosopis, Acacia and Gliricidia; and Viet Nam on rice. Experiments conducted in the field showed that there is a wealth of genetic diversity among the genotypes/provenances of crop and tree species in their capacity for uptake and use of phosphorus and water from soils limited in resources. Several elite genotypes/provenances were identified which are highly efficient in water or phosphate use. In a few cases, the high water use efficiency (or the high phosphorus use efficiency) feature was seen in the same genotype where the grain yield was also high. Morphological parameters responsible for making some genotypes superior in their capacity to use phosphorus or water have also been investigated. It is our hope that the findings reported in this publication will help agricultural scientists in the Member States, particularly in Africa, in their quest of finding solutions to problems of food security. Refs, figs, tabs

  18. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sushil K.; Kamys, Boguslaw [Jagiellonian University, The Marian Smoluchowski Institute of Physics, Krakow (Poland); Goldenbaum, Frank; Filges, Detlef [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany)

    2017-07-15

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by {sup 136}Xe projectiles at 500 AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed. (orig.)

  19. Re-enrichment of O-18 isotopic water used for the production of F-18 in a cyclotron

    International Nuclear Information System (INIS)

    Kim, J.; Kim, T.S.; Choi, H.; Jang, D.S.; Jeong, D.Y.

    2004-01-01

    Full text: The demand for and applications of stable isotopes in medicine, industry, and science in the modern era has increased and expanded significantly. Especially, 18 O-enriched water (> 90%) is used as a target in a cyclotron for the production of the β -emitting radioisotope 18 F, which is essential for PET (Positron Emission Tomography) pharmaceutical [ 18 F]-labeled 2-deoxyglucose (FDG) synthesis. Currently, 18 O is produced by a cold distillation of NO (Nitric Oxide) or a fractional distillation of water. These processes, however, are technically complicated and costly so as to limit the production of 18 O. In this regard, it is essential to re-use the used target water as much as possible since the 18 O-enriched water is so expensive (∼ $150/g). In order to recycle the used target water, it is necessary to purify the organic and inorganic impurities contaminated during the 18 f-FDG production loop and to re-enrich the 18 O isotope in the target water diluted during the purification process. For the development of a compact target water 18 O re-enrichment system, the 18 O isotope separation characteristics of MD (Membrane Distillation) were investigated. The 18 O isotopic water permeation and separation characteristics of a hydrophobic PTFE membrane using Air Gap MD and Vacuum Enhanced MD were evaluated. Permeation fluxes were measured by weighing the collected membrane-permeated water vapor. 18 O/ 16 O of each water sample was analyzed by a Tunable Diode Laser Absorption Spectroscopy (TDLAS). We observed the effects of the air in the membrane pores and the temperature gradient applied to the membrane surfaces on the vapor permeation flux and the oxygen isotope separation for the first time. For both AGMD and VEMD, the permeation flux and the degree of 18 O separation increased as the membrane interfacial temperature gradient increased. Even though the oxygen isotope separation and the permeation flux for the VEMD is slightly higher than the AGMD, the

  20. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    Science.gov (United States)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  1. Thermodynamic Evaluation of Floating Production Storage and Offloading Facilities with Liquefaction Processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira

    2016-01-01

    because of the lack of infrastructure in remotelocations. The present work investigates the possibility of integrating liquefaction processes on such facilities, consideringfour possible petroleum compositions, which differ in their contents of carbon dioxide, light and heavy hydrocarbons.The performance......Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing.They have gained interest because they are more flexible than conventional plants and can be used for producingoil and gas in deep-water fields. In general, gas export is challenging...

  2. Using stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems.

    Science.gov (United States)

    Clough, T J; Müller, C; Laughlin, R J

    2013-06-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the dominant anthropogenic stratospheric ozone-depleting emission. The tropospheric concentration of N2O continues to increase, with animal production systems constituting the largest anthropogenic source. Stable isotopes of nitrogen (N) provide tools for constraining emission sources and, following the temporal dynamics of N2O, providing additional insight and unequivocal proof of N2O source, production pathways and consumption. The potential for using stable isotopes of N is underutilised. The intent of this article is to provide an overview of what these tools are and demonstrate where and how these tools could be applied to advance the mitigation of N2O emissions from animal production systems. Nitrogen inputs and outputs are dominated by fertiliser and excreta, respectively, both of which are substrates for N2O production. These substrates can be labelled with 15N to enable the substrate-N to be traced and linked to N2O emissions. Thus, the effects of changes to animal production systems to reduce feed-N wastage by animals and fertiliser wastage, aimed at N2O mitigation and/or improved animal or economic performance, can be traced. Further 15N-tracer studies are required to fully understand the dynamics and N2O fluxes associated with excreta, and the biological contribution to these fluxes. These data are also essential for the new generation of 15N models. Recent technique developments in isotopomer science along with stable isotope probing using multiple isotopes also offer exciting capability for addressing the N2O mitigation quest.

  3. Impacts of facility size and location decisions on ethanol production cost

    International Nuclear Information System (INIS)

    Kocoloski, Matt; Michael Griffin, W.; Scott Matthews, H.

    2011-01-01

    Cellulosic ethanol has been identified as a promising alternative to fossil fuels to provide energy for the transportation sector. One of the obstacles cellulosic ethanol must overcome in order to contribute to transportation energy demand is the infrastructure required to produce and distribute the fuel. Given a nascent cellulosic ethanol industry, locating cellulosic ethanol refineries and creating the accompanying infrastructure is essentially a greenfield problem that may benefit greatly from quantitative analysis. This study models cellulosic ethanol infrastructure investment using a mixed integer program (MIP) that locates ethanol refineries and connects these refineries to the biomass supplies and ethanol demands in a way that minimizes the total cost. For the single- and multi-state regions examined in this study, larger facilities can decrease ethanol costs by $0.20-0.30 per gallon, and placing these facilities in locations that minimize feedstock and product transportation costs can decrease ethanol costs by up to $0.25 per gallon compared to uninformed placement that could result from influences such as local subsidies to encourage economic development. To best benefit society, policies should allow for incentives that encourage these low-cost production scenarios and avoid politically motivated siting of plants. - Research highlights: → Mixed-integer programming can be used to model ethanol infrastructure investment. → Large cellulosic ethanol facilities can decrease production cost by $0.20/gallon. → Optimized facility placement can save $0.25/gallon.

  4. Integration of the nuclear energy among the production facilities of energy in France

    International Nuclear Information System (INIS)

    Ailleret, P.; Taranger, P.

    1955-01-01

    The present report gives an overview of the present facilities of energy productions in France and their perspectives. the electric production comes for half about power stations hydraulics and for half of thermal power stations. However due to the increase of the energy consumption, France is particularly interested by the atomic energy that appears to bring a supply in due time to the hydraulics and to limit a development of the thermal power stations to which the natural resources of France in classic fuel would not permit to cope presumably. The integration of the nuclear plants to the other production facilities will make itself gradually according to the evolution of the energy needs. (M.B.) [fr

  5. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  6. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  7. The method for production of high purity carrier free ortophosphoric acid labeled with isotopes Phosphorus-32 and Phosphorus-33

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Abdusalyamov, A.N.; Chistyakov, P.G.; Yuldashev, B.S.

    2001-01-01

    Extensive application for various radioactive isotopes was found in an extremity of the 20-Th century in a science and production. Labeled compounds are used with growing effectiveness in a molecular biology, gene engineering, medicine and other areas. Phosphorus-32 and Phosphorus-33 isotopes as a different labeled compounds that are used mainly in molecular biology are produced at the Radiopreparat enterprise of the Institute of Nuclear Physics of Academy of Sciences of Uzbekistan Republic. The quality of labeled preparations is very high. The specifications for above mentioned preparations corresponds to demands most of customers in different countries. P-32 or P-33 labeled orthophosphoric acid has high radiochemical purity (more than 99 %) and specific radioactivity close to theoretical. Orthophosphoric acid prepared by the described above method has radiochemical purity about 95 % and output of the target product 99%

  8. Consuming algal products: trophic interactions of bacteria and a diatom species determined by RNA stable isotope probing

    Science.gov (United States)

    Sapp, Melanie; Gerdts, Gunnar; Wellinger, Marco; Wichels, Antje

    2008-09-01

    Heterotrophic marine bacteria utilise a wide range of carbon sources. Recently, techniques were developed to link bacterial identity and physiological capacity of microorganisms within natural communities. One of these methods is stable isotope probing (SIP) which allows an identification of active microorganisms using particular growth substrates. In this study, we present the first attempt to analyse bacterial communities associated with microalgae by rRNA-SIP. This approach was used to analyse bacterial populations consuming algal products of Thalassiosira rotula by applying SIP followed by reverse transcription of 16S rRNA and denaturing gradient gel electrophoresis. Generally, our results indicate that bacteria which consume algal products can be detected by isotope arrays coupled with fingerprinting methods.

  9. Team engineering for successful reuse and mission enhancement of a former DOE Weapons Material Production Facility

    International Nuclear Information System (INIS)

    Blackford, L.T.; Mizner, J.H. Jr.

    1994-11-01

    This paper describes the team engineering approach used to resolve issues associated with converting a 50-year-old fuel processing facility into a decontamination facility. In only nine months, the multi-disciplinary team formed for this task has made significant progress toward both long-term and short-term goals, including conceptual design of two decontamination modules. The team's accomplishments are even more notable in light of frequent changes in scope and mission. Today, the team serves as a venue for troubleshooting operational issues, sharing vendor information, developing long-range strategies, and addressing integration issues within the facility's organizational structure. The team's approach could serve as a useful model to address the many issues surrounding the transition of the U.S. Department of Energy (DOE) and commercial complexes from a production and supply role to one of cleanup and environmental remediation

  10. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  12. 77 FR 64999 - Guidance for Industry: Necessity of the Use of Food Product Categories in Food Facility...

    Science.gov (United States)

    2012-10-24

    ...] Guidance for Industry: Necessity of the Use of Food Product Categories in Food Facility Registrations and... industry entitled ``Necessity of the Use of Food Product Categories in Food Facility Registrations and... made available a draft guidance entitled ``Guidance for Industry: Necessity of the Use of Food [[Page...

  13. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Science.gov (United States)

    2010-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... the Federal Power Act, at which non-Federal hydroelectric development is permissible; or (2) An...

  14. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs, see...

  15. Preparation of isotopes and sources of actinide elements

    International Nuclear Information System (INIS)

    Madic, C.; Bourges, J.; Koehly, G.

    1984-09-01

    As the C.E.A. possesses no isotopic separation facility, the productions of isotopes of actinide elements are performed: a) by neutron irradiation and chemical treatment of special targets, b) by milking decay products from stocks of aged actinide elements, c) by chemical treatment of alpha active wastes. These productions concern the following isotopes: 233 U, 238 Pu, 242 Pu, 243 Cm, 242 Cm, 244 Cm (a); 228 Th, 229 Th, 234 U, 237 U, 239 Np, 240 Pu, 241 Am, 248 Cm (b); 237 Np, 241 Am (c). These isotopes are produced to satisfy French and international needs and are sent to users in various forms: solutions, metals, oxides, fluorides, or in different sources forms. The preparation of the sources represents an important field of activities divided into two parts: 1/Industrial sources: production of large series of different sources, 2/ Scientific sources: production of sources suitable for a specific scientific problem. A large overview of these activities is given

  16. Production of actinide isotopes in simulated PWR fuel and their influence on inherent neutron emission

    International Nuclear Information System (INIS)

    Bosler, G.E.; Phillips, J.R.; Wilson, W.B.; LaBauve, R.J.; England, T.R.

    1982-07-01

    This report describes calculations that examine the sensitivity of actinide isotopes to various reactor parameters. The impact of actinide isotope build-up, depletion, and decay on the neutron source rate in a spent-fuel assembly is determined, and correlations between neutron source rates and spent-fuel characteristics such as exposure, fissile content, and plutonium content are established. The application of calculations for evaluating experimental results is discussed

  17. Production of krypton and xenon isotopes in thick stony and iron targets isotropically irradiated with 1600 MeV protons

    CERN Document Server

    Gilabert, E; Lavielle, B; Leya, I; Michel, R; Neumann, S

    2002-01-01

    Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay, in order to simulate the production of nuclides in meteorites induced by galactic cosmic-ray protons in space. These experiments supply depth-dependent production rate data for a wide range of radioactive and stable isotopes in up to 28 target elements. In this paper, we report results for /sup 78/Kr, /sup 80-86/Kr isotopes in Rb, Sr, Y and Zr and for /sup 124/Xe, /sup 126/Xe, /sup 128-132/Xe, /sup 134/Xe, /sup 136/Xe isotopes in Ba and La. Krypton and xenon concentrations have been measured at different depths in the spheres by using conventional mass spectrometry. Based on Monte-Carlo techniques, theoretical production rates are calculated by folding depth-dependent spectra of primary and secondary protons and secondary neutrons with the excitation functions of the relevant nuclear reac...

  18. Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review

    International Nuclear Information System (INIS)

    Wulff, W.

    1990-01-01

    A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs

  19. The use of the isotopic composition of individual compounds for correlating spilled oils and refined products in the environment with suspected sources

    International Nuclear Information System (INIS)

    Philp, R.P.; Allen, J.; Kuder, T.

    2002-01-01

    Gas chromatography (GC) and gas chromatography/mass spectrometry (CGMS) are two methods generally used to correlate crude oils and refined products found in the environment with their suspected pollution sources. In certain cases, this can be done with bulk carbon isotope compositions, but with crude condensates, or refined products, the lack of biomarkers prohibits the successful use for making unique correlations. Such products can be correlated using an alternative method which makes use of combined gas chromatography-isotope ratio and mass spectrometry (GCIRMS). This method makes it possible to determine the carbon and hydrogen isotopic composition of individual compounds in crude oil, thus producing isotopic fingerprints that could be used in correlation studies. The feasibility of using of GCIRMS to correlate various spilled products in different environments was the main focus of this study. The authors are not proposing that this method will replace GC or GCMS, but are suggesting that it is a powerful tool that could be used in conjunction with the early methods. Carbon and hydrogen isotopic fractionation has been reported for light components such as benzene and toluene. Higher carbon numbered compounds do not seem to undergo major carbon isotopic fractionation as a result of weathering. Hydrogen variations are currently undergoing investigation for compounds with a carbon number greater than C10. Also, isotopic fractionation for refined products has the potential to attenuate naturally. 33 refs., 6 figs

  20. Design, Fabrication, Installation and Commissioning of the Helium Refrigeration system Supporting Superconducting Radio Frequency Testing at Facility for Rare Isotope Beams at Michigan State University

    Science.gov (United States)

    Casagrande, F.; Fila, A.; Nguyen, C.; Tatsumoto, H.

    2017-12-01

    The Facility for Rare Isotope Beams (FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). The FRIB linear accelerator (LINAC) will be comprised of cryomodules each with multiple Superconducting Radio Frequency (SRF) cavities operating at 2 K. A helium refrigeration system was designed, fabricated, installed and commissioned in the SRF high bay building to test and certify these cavities and cryomodules before installation in the FRIB LINAC tunnel. The helium refrigeration system includes a helium refrigerator which has nominal capacity of 900 W at 4 K, 5000 L liquid helium storage Dewar, helium gas storage, two room temperature vacuum pumps capable of 2.5 g/s each for 2 K testing, purifier, purifier recovery compressor, and the distribution system for liquid nitrogen and helium. The helium refrigeration system is now operational supporting three below grade cavity testing Dewars and one cryomodule testing bunker meeting the required throughput of 1 cavity per day.

  1. The Effect of Implementing a Maintenance Information System on the Efficiency of Production Facilities

    Directory of Open Access Journals (Sweden)

    Slaichova Eva

    2013-09-01

    Full Text Available The paper deals with the topic of facility management focusing on maintenance area and its importance for increasing company competitiveness. The importance of functional company facility management has risen dramatically in recent years. The reason for this is the increased pressure on cost reduction and additional value to the core business of the enterprise. The paper introduces a current theoretical literature-based framework for this topic in order to examine and analyse the supporting activities and processes connected with production facilities and maintenance particularly. The main aim of the paper is to show the importance of a maintenance management information system and the effects of its implementation on the overall equipment efficiency of the facility in the enterprise based on primary data gathered from a selected company. The data was processed in a case study using information from the maintenance department of the selected enterprise in the plastic-processing industry in selected years (2006, 2008, 2009 and 2010. As it shows, this particular system was intended to provide relevant information to workers responsible for adjusting and repairing machines, as well as to the management of the enterprise in order to help them to make the right decision. The results of the data analysis proved the importance of computerized maintenance management information system (CMMIS implementation in improving Overall Equipment Efficiency (OEE metrics and the efficient control of its production system.

  2. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  4. Stable Isotope and Isotopomeric Constraints on Nitrous Oxide Production in a Wastewater Treatment Plant

    Science.gov (United States)

    Bellucci, F.; Gonzalez-Meler, M. A.; Sturchio, N. C.; Bohlke, J. K.; Ostrom, N. E.; Kozak, J. A.

    2011-12-01

    Estimates of US anthropogenic greenhouse gas emissions by USEPA (Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009; 2011) indicate that wastewater treatment plants are the 7th highest contributor to atmospheric nitrous oxide. This unregulated gas has an estimated global warming potential (GWP) 310 times that of carbon dioxide on a per mol basis. There is general agreement that, within wastewater treatment plants, the vast majority of the nitrous oxide emissions occur in the aerobic zones for biological ammonia oxidation and/or downstream from anoxic zones used in biological nitrogen removal. However, the exact mechanism of production is not well understood, as both incomplete nitrification and denitrification might contribute to the overall nitrous oxide emissions. Determining the dominant biological pathways responsible for these emissions is important for the development of improved treatment systems that can reduce nitrous oxide greenhouse gas emissions to the atmosphere. In this study, we determined the total nitrous oxide flux from a single tank of one of the aeration basins from a large metropolitan wastewater treatment plant in Stickney, Illinois. Furthermore, we analyzed the changes in nitrogen and oxigen stable isotopic composition for ammonium, nitrate, and nitrous oxide, as well as the intramolecular site preference (SP) for δ15N within the linear N-N-O molecule, along the 520 meter wastewater flow path within the tank. Assuming the measured tank was representative of the 32 tanks constituting the 4 aeration basins of the plant, we estimate the combined annual nitrous oxide flux from this source to be approximately 230 metric ton/y. The δ15N values for ammonium ranged between +19.9% and +6.4%, those for nitrate ranged between +20.4% and +5.3%, and those for nitrous oxide ranged between -34.4% and 0.4%. The nitrous oxide SP ranged between +11.7% and -4.5%. The concentrations and δ15N values of ammonium and nitrate showed trends along the

  5. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  6. Reconstructing Eastern Tropical Pacific productivity across Marine Isotope Stage 3 using foraminifera faunal counts

    Science.gov (United States)

    McCourty, M.; Schmidt, M. W.; Glaubke, R.; Hertzberg, J. E.; Marcantonio, F.; Bianchi, T. S.

    2017-12-01

    The El Niño-Southern Oscillation is one of Earth's largest sources of interannual climate variability that has many global environmental impacts. Furthermore, the mean state of the tropical Pacific has the potential to change in the near future due to anthropogenic warming of the planet. In order to provide an analogue for future climate states, there is a critical need to understand how the tropical Pacific evolved across abrupt warming events in Earth's recent past. While most studies have focused on the evolution of ENSO across Marine Isotope Stages (MIS) 1 and 2, the dynamics of the tropical Pacific across the abrupt climate events of MIS 3 are still highly contentious. To develop a record of past changes in upwelling intensity in the EEP, a parameter critically linked to the tropical Pacific mean state, we quantify the faunal abundances of 6 planktonic foraminifera species from piston core MV1014-02-17JC (00° 10.83'S, 85° 52.00'W; 2846 m depth) on the Carnegie Ridge from 35 - 59 kyr. The relative abundance of Globigerina bulloides, a species associated with upwelling conditions, and 5 other planktonic foraminifera suggest an increase in water column productivity during Heinrich Event 4 and across several Dansgaard-Oeschger stadial intervals. Initial results suggest that stadials in the North Atlantic are associated with more permanent La Niña-like conditions in the EEP. However, multiple lines of evidence suggest that depth intervals in our core between 43.7 - 55.7 kyr were impacted by intense dissolution due to changes in bottom water chemistry, impacting the fidelity of our faunal count records across this interval. Future work includes extending our faunal record back to 100 kyr to include Heinrich Events 6 - 8.

  7. FFTF [Fast Flux Test Facility] performance measurements for safety, productivity and control

    International Nuclear Information System (INIS)

    A useful set of performance measurements for Safety, Productivity and Control has evolved at the Fast Flux Test Facility (FFTF). In response to declining budgets and the resulting need to safely manage a manpower rampdown, an ''Early Warning System'' was developed in 1984. Its purpose was to monitor the effects of the staffing rampdown such that appropriate remedial action could be taken to correct adverse trends before a significant problem occurred. 1 tab

  8. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility

    International Nuclear Information System (INIS)

    Beek, E.J.R. van; Schmiedeskamp, J.; Filbir, F.; Heil, W.; Wolf, M.; Otten, E.; Wild, J.M.; Paley, M.N.J.; Fichele, S.; Woodhouse, N.; Swift, A.; Knitz, F.; Mills, G.H.

    2003-01-01

    The aim of this study was to test the feasibility of a central production facility with distribution network for implementation of hyperpolarized 3-helium MRI. The 3-helium was hyperpolarized to 50-65% using a large-scale production facility based at a university in Germany. Using a specially designed transport box, containing a permanent low-field shielded magnet and dedicated iron-free glass cells, the hyperpolarized 3-helium gas was transported via airfreight to a university in the UK. At this location, the gas was used to perform in vivo MR experiments in normal volunteers and patients with chronic obstructive lung diseases. Following initial tests, the transport (road-air-road cargo) was successfully arranged on six occasions (approximately once per month). The duration of transport to imaging averaged 18 h (range 16-20 h), which was due mainly to organizational issues such as working times and flight connections. During the course of the project, polarization at imaging increased from 20% to more than 30%. A total of 4 healthy volunteers and 8 patients with chronic obstructive pulmonary disease were imaged. The feasibility of a central production facility for hyperpolarized 3-helium was demonstrated. This should enable a wider distribution of gas for this novel technology without the need for local start-up costs. (orig.)

  9. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  10. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  11. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  12. Proceedings of V International Seminar and V National Workshop 'Use and development of products isotopic health industry'. 20th anniversary CENTIS

    International Nuclear Information System (INIS)

    2016-01-01

    At the Salon Copa Room. Hotel Habana Riviera Took place the V International Seminar and V National Workshop 'Use and development of products isotopic health industry' for the 20th anniversary CENTIS. The event was organized by the Isotope Center. Some 200 domestic and foreign experts debated topics related to the development and production of radiopharmaceuticals in Cuba and the world, its therapeutic applications in certain tumors, and quality management systems in nuclear medicine. (author)

  13. Isotopic Monitoring of N2O Emissions from Wastewater Treatment: Evidence for N2O Production Associated with Anammox Metabolism?

    Science.gov (United States)

    Harris, E. J.; Wunderlin, P.; Joss, A.; Emmenegger, L.; Kipf, M.; Wolf, B.; Mohn, J.

    2015-12-01

    Microbial production is the major source of N2O, the strongest greenhouse gas produced within the nitrogen cycle, and the most important stratospheric ozone destructant released in the 21st century. Wastewater treatment is an important and growing source of N2O, with best estimates predicting N2O emissions from this sector will have increased by >25% by 2020. Novel treatment employing partial nitritation-anammox, rather than traditional nitrification-denitrification, has the potential to achieve a neutral carbon footprint due to increased biogas production - if N2O production accounts for treatment can be applied to our understanding of N cycling in the natural environment. This study presents the first online isotopic measurements of offgas N2O from a partial-nitritation anammox reactor 1. The measured N2O isotopic composition - in particular the N2O isotopic site preference (SP = δ15Nα - δ15Nβ) - was used to understand N2O production pathways in the reactor. When N2O emissions peaked due to high dissolved oxygen concentrations, low SP showed that N2O was produced primarily via nitrifier denitrification by ammonia oxidizing bacteria (AOBs). N2O production by AOBs via NH2OH oxidation, in contrast, did not appear to be important under any conditions. Over the majority of the one-month measurement period, the measured SP was much higher than expected following our current understanding of N2O production pathways 2. SP reached 41‰ during normal operating conditions and achieved a maximum of 45‰ when nitrite was added under anoxic conditions. These results could be explained by unexpectedly strong heterotrophic N2O reduction despite low dissolved organic matter concentrations, or by an incomplete understanding of isotopic fractionation during N2O production from NH2OH oxidation by AOBs - however the explanation most consistent with all results is a previously unknown N2O production pathway associated with anammox metabolism. Harris et al. (2015) Water Res., 83

  14. Demonstration of persistent contamination of a cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain

    DEFF Research Database (Denmark)

    Jakociune, D.; Bisgaard, M.; Pedersen, Karl

    2014-01-01

    Aims: The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility......, members of the persistent clone were weak producers of H2S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. Conclusions: It was concluded that the contamination was caused by a persistent strain...... in the production facility and that this strain apparently had adapted to grow in the relevant egg product. Significance and Impact of the Study: S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility...

  15. Volcanic dust veils from sixth century tree-ring isotopes linked to reduced irradiance, primary production and human health.

    Science.gov (United States)

    Helama, Samuli; Arppe, Laura; Uusitalo, Joonas; Holopainen, Jari; Mäkelä, Hanna M; Mäkinen, Harri; Mielikäinen, Kari; Nöjd, Pekka; Sutinen, Raimo; Taavitsainen, Jussi-Pekka; Timonen, Mauri; Oinonen, Markku

    2018-01-22

    The large volcanic eruptions of AD 536 and 540 led to climate cooling and contributed to hardships of Late Antiquity societies throughout Eurasia, and triggered a major environmental event in the historical Roman Empire. Our set of stable carbon isotope records from subfossil tree rings demonstrates a strong negative excursion in AD 536 and 541-544. Modern data from these sites show that carbon isotope variations are driven by solar radiation. A model based on sixth century isotopes reconstruct an irradiance anomaly for AD 536 and 541-544 of nearly three standard deviations below the mean value based on modern data. This anomaly can be explained by a volcanic dust veil reducing solar radiation and thus primary production threatening food security over a multitude of years. We offer a hypothesis that persistently low irradiance contributed to remarkably simultaneous outbreaks of famine and Justinianic plague in the eastern Roman Empire with adverse effects on crop production and photosynthesis of the vitamin D in human skin and thus, collectively, human health. Our results provide a hitherto unstudied proxy for exploring the mechanisms of 'volcanic summers' to demonstrate the post-eruption deficiencies in sunlight and to explain the human consequences during such calamity years.

  16. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jane A.; Pashley, Vanessa [NIGL, BGS, Keyworth, NG12 5GG (United Kingdom); Richards, Gemma J. [School of Veterinary Science, University of Bristol, Bristol BS40 5DU (United Kingdom); Brereton, Nicola [The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ (United Kingdom); Knowles, Toby G. [School of Veterinary Science, University of Bristol, Bristol BS40 5DU (United Kingdom)

    2015-12-15

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. - Highlights: • Lead (Pb) isotopes measured in modern British meat were geogenic in origin. • The match indicates that this technique may be used to provenance biological products. • There was no evidence for a contribution from modern anthropogenic Pb sources.

  17. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability

    International Nuclear Information System (INIS)

    Evans, Jane A.; Pashley, Vanessa; Richards, Gemma J.; Brereton, Nicola; Knowles, Toby G.

    2015-01-01

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. - Highlights: • Lead (Pb) isotopes measured in modern British meat were geogenic in origin. • The match indicates that this technique may be used to provenance biological products. • There was no evidence for a contribution from modern anthropogenic Pb sources.

  18. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

    Science.gov (United States)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1999-01-01

    The High Flux Isotope Reactor ( HFIR) at the Oak Ridge National Laboratory ( ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117 m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube ( HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22-24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions ( PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117 m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  19. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry

    Science.gov (United States)

    Leya, Ingo; Wieler, Rainer; Halliday, Alex N.

    2000-01-01

    Excesses and deficiencies in 182W in meteorites and lunar samples relative to the terrestrial 182W atomic abundance have been assigned to the decay of 182Hf (t1/2=9 Ma) and have been used to date metal-silicate fractionation events in the early solar system. Because the effects are very small, production and burn-out of tungsten isotopes by cosmic ray interactions are a concern in such studies. Masarik [J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, Earth Planet. Sci. Lett. 152 (1997) 181-185] showed that neutron-capture reactions on tungsten isotopes can account at best for a minor part of the observed deficit of 182W in Toluca and other iron meteorites. On the other hand, in lunar samples and stony meteorites the production of 182W from 181Ta may become crucial. Here, we calculate this contribution as well as production and consumption of 182-186W by other neutron-induced reactions. The neutron fluence of each sample is estimated by its nominal cosmic-ray exposure age deduced from noble gas data. This approach overestimates the true cosmogenic W isotopic shifts for samples that might have been irradiated very close to the regolith surface. A quantitative estimate is often also hampered by a lack of Ta data. Despite these reservations, it appears that in many lunar samples neutron-capture on Ta has caused a large part of the observed 182W excess. On the other hand, in some samples, especially those with very low exposure ages, clearly only a minor or even negligible fraction of the 182W excess can be cosmogenic. Therefore, the conclusion, based on Hf-W model ages, that the Moon formed 50 Myr after the start of the solar system remains valid. Martian meteorites have lower Ta/W ratios and cosmic ray exposure ages than most lunar samples. Therefore, cosmogenic production has not significantly altered the W isotopic composition in Martian meteorites. Observed 182W excesses in Martian meteorites as well as the very large

  20. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    Science.gov (United States)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  1. Leu based Mo-99 production facility using the Open Pool Australian Light-Water (OPAL) reactor

    International Nuclear Information System (INIS)

    Druce, M.; Turner, I.; Kenny, D.

    2006-01-01

    Full text: ARI currently manufactures Mo-99 in the HIFAR reactor by irradiating uranium dioxide pellets. Whilst this process is old and inefficient, it has enabled ARI to successfully supply Tc 99 m generators to meet the needs of the Australian nuclear medicine community. Along with the new OPAL reactor, ARI is introducing a new Mo-99 production process. Due to global threat reduction and non-proliferation concerns, this new process will be a low enriched uranium (LEU) process. The facility will provide improved efficiencies for Mo-99 production and greatly increase production capacity. A small-scale production plant will be established and the objective of the plant is twofold: to increase production capacity for both the Australian and Asian-Pacific markets and, to serve as a test platform for a much larger scale commercial Mo-99 production which could take advantage of the total OPAL irradiation capacity. Initially, the plant will have a capacity 4 times greater than the current HIFAR based production. Currently the USA and European radiopharmaceutical manufacturers rely on a supply of highly enriched uranium (HEU) to produce targets for the production of Mo-99 and other radionuclides. The new Australian LEU-based Mo-99 production process will be unique in the global marketplace

  2. On-line tritium production and heat deposition rate measurements at the Lotus facility

    International Nuclear Information System (INIS)

    Joneja, O.P.; Scherrer, P.; Anand, R.P.

    1994-01-01

    Integral tritium production and heat deposition measurement in a prototype fusion blanket would enable verification of the computational codes and the data based employed for the calculations. A large number of tritium production rate measurements have been reported for different type of blankets, whereas the direct heat deposition due to the mixed radiation field in the fusion environment, is still in its infancy. In order to ascertain the kerma factors and the photon production libraries, suitable techniques must be developed to directly measure the nuclear heat deposition rates in the materials required for the fusion systems. In this context, at the Lotus facility, we have developed an extremely efficient double ionizing chamber, for the on-line tritium production measurements and employed a pure graphite calorimeter to measure the nuclear heat deposition due to the mixed radiation field of the 14 MeV, Haefely neutron generator. This paper presents both systems and some of the recent measurements. (authors). 8 refs., 13 figs

  3. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  4. Atmospheric odd oxygen production due to the photodissociation of ordinary and isotopic molecular oxygen

    Science.gov (United States)

    Omidvar, K.; Frederick, J. E.

    1987-01-01

    Line-by-line calculations are performed to determine the contributions of the Schumann-Runge bands of ordinary and isotopic oxygen to the photodissociation of these molecules at different altitudes. The contributions to the dissociation rates of the satellite lines and of the first and higher vibrational states of the initial molecular states are found to be insignificant. At 70 km, (O-16)(O-18) is found to produce 10 times as much odd oxygen as would be produced if the isotope did not have selective absorption, and 6 percent of the odd oxygen produced is due to this isotope. It is noted that the excess odd oxygen produced is not enough to explain the excess quantity of ozone observed in the atmosphere, which cannot be accounted for in photochemical models. Comparison with previous results is made.

  5. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  6. Characterization and significance of indicator bacteria in commercial aquaculture production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fiederlein, R.J.; Davis, E.M.; Mathewson, J.J. [Univ. of Texas School of Public Health, Houston, TX (United States)

    1996-11-01

    Catfish production is the single largest segment of the domestic aquaculture industry. Waste discharges from aquaculture operations are regulated at both the federal and state level. The federal government regulates surface water discharges from aquaculture facilities using regulations promulgated under the Clean Water Act. These regulations designate concentrated aquatic animal production facilities as point sources of pollution, thus subjecting them to National Pollution Discharge Elimination Systems (NPDES) permit requirements. Previous studies of aquaculture effluents have primarily characterized the organic, chemical, and physical components of discharged wastewater and have only characterized to a limited extent the microbial component of discharged wastewater. This study was initiated to examine the levels of four wastewater indicator bacteria groups and to examine to the genus level the members of one of these groups in wastewater, or potential wastewater, from aquaculture facilities over the course of the growout season of several different species of fish. This study also examined the relationships between these bacterial levels and other water quality parameters and operational variables and enumerated and characterized Aeromonas hydrophila complex bacteria, members of which are potential water-borne pathogens. The effectiveness of waste stabilization ponds in the treatment of aquaculture wastewaters was also evaluated.

  7. A facility for recovery of uranium from the waste solutions of fission molybdenum production - AMOR II

    International Nuclear Information System (INIS)

    Hladik, O.; Boessert, W.; Bernhard, G.; Grahnert, T.

    1988-01-01

    A facility is described for the recovery of the enriched uranium from the waste solutions of the fission molybdenum production. To tackle this task a solvent extraction process for the separation of uranium from fission products by tri-n-butylphosphate, diluted in tetrachloro-ethen has been developed. Owing to the special composition of the feed solution and the technical conditions the well-known PUREX-process had to be modified. The extraction and reextraction of uranium is carried out by a new mixer-settler unit which works without mechanical moving parts. The whole facility including the immediate storage tanks is installed in four semi-hot cells, shielded with 24 cm steel stones. The needed plant throughput has been assumed as 5 kg U (35% enriched) per year. It will be able to process this amount in 10-12 weeks (process time: 7 h/day). The facility was put into operation in 1985. The content of nuclear material is regularly being examined by the International Atomic Energy Agency according to the non-proliferation agreement. (author)

  8. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Yu., E-mail: yuri.kudryavtsev@fys.kuleuven.be; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium); Vermeeren, L. [SCK-CEN, Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2014-02-15

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  9. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes.

    Science.gov (United States)

    Kudryavtsev, Yu; Ferrer, R; Huyse, M; Van den Bergh, P; Van Duppen, P; Vermeeren, L

    2014-02-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  10. Degradation products of profenofos as identified by high-field FTICR mass spectrometry: Isotopic fine structure approach.

    Science.gov (United States)

    Angthararuk, Dusit; Harir, Mourad; Schmitt-Kopplin, Philippe; Sutthivaiyakit, Somyote; Kettrup, Antonius; Sutthivaiyakit, Pakawadee

    2017-01-02

    This study was performed to identify the degradation products of profenofos "a phenyl organothiophosphate insecticide" in raw water (RW) collected from the entry point of Metropolitan Water Works Authority "Bangkaen, Thailand" and ultrapure water (UPW) with and without TiO 2 under simulated sunlight irradiation. Degradation of profenofos was followed with ultrahigh performance liquid chromatography (UHPLC) and follows pseudo first-order kinetic. Accordingly, high-field FTICR mass spectrometry coupled to an electrospray ionization source was used to reveal the degradation routes of profenofos and the isotopic fine structures (IFS) elucidations to approve the chemical structures of its degradation products. More degradation products were detected in UPW as compared to RW. Consequently, two main degradation pathways namely (i) interactive replacements of bromine and hydrogen by hydroxyl functional groups and (ii) rupture of PO, PS, CBr and CCl bonds were observed. None interactive replacement of chlorine by hydroxyl functional group was detected. Accordingly, mechanistical pathways of the main degradation products were established.

  11. ALARA dosimetry study for non productive radiation exposures in Pacific Northwest Laboratory facilities

    International Nuclear Information System (INIS)

    Hadlock, D.E.

    1981-04-01

    A special ALARA study was conducted during 1980 in selected Pacific Northwest Laboratory facilities. The study utilized thermoluminescent dosimeters (TLDs) which were designed to detect gamma, beta, and neutron exposures; however, only gamma exposures are evaluated in this report. The processing of ALARA (As Low As Reasonably Achievable) dosimeters was performed by the Dosimetry Technology Section of the Radiological Sciences Department. Evaluation of dosimetry data and locations was performed in conjunction with the Radiation Monitoring Section and the Radiological Safety and Engineering Section of the Occupational and Environmental Protection Department. This study was prompted by a DOE-RL directive to reduce radiation exposure to As Low As Reasonably Achievable (ALARA) with a goal of no personnel whole-body penetrating exposures exceeding 3 rem for calendar year 1980. The purpose of this study was to characterize the background radiation environment at selected locations within PNL facilities. Attention was focused on non productive radiation exposure received from the work environment

  12. Capacity optimization and scheduling of a multiproduct manufacturing facility for biotech products.

    Science.gov (United States)

    Shaik, Munawar A; Dhakre, Ankita; Rathore, Anurag S; Patil, Nitin

    2014-01-01

    A general mathematical framework has been proposed in this work for scheduling of a multiproduct and multipurpose facility involving manufacturing of biotech products. The specific problem involves several batch operations occurring in multiple units involving fixed processing time, unlimited storage policy, transition times, shared units, and deterministic and fixed data in the given time horizon. The different batch operations are modeled using state-task network representation. Two different mathematical formulations are proposed based on discrete- and continuous-time representations leading to a mixed-integer linear programming model which is solved using General Algebraic Modeling System software. A case study based on a real facility is presented to illustrate the potential and applicability of the proposed models. The continuous-time model required less number of events and has a smaller problem size compared to the discrete-time model. © 2014 American Institute of Chemical Engineers.

  13. Process for the production of heavy water by H2-methylamine isotopic exchange

    International Nuclear Information System (INIS)

    Briec, M.; Ravoire, J.; Rostaing, M.

    1977-01-01

    An isotopic exchange process for separating D 2 from H 2 is presented. The H 2 -monomethylamine system is studied on the laboratory scale (kinetics, H 2 solubility, thermal stability and solubility of the catalyst) and on the pilot plant scale (operating conditions and economics) [fr

  14. Measurement of mass and isotopic fission yields for heavy fission products with the LOHENGRIN mass spectrometer

    International Nuclear Information System (INIS)

    Bail, A.

    2009-05-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions 235 U(n th ,f), 239 Pu(n th ,f) and 241 Pu(n th ,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239 Pu(n th ,f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)

  15. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China.

    Science.gov (United States)

    Zhang, Ying; Wang, Pengjie; Wang, Lei; Sun, Guoqiang; Zhao, Jiaying; Zhang, Hui; Du, Na

    2015-02-15

    The current study investigates the existence of 15 phthalate esters (PAEs) in surface soils (27 samples) collected from 9 different facility agriculture sites in the black soil region of northeast China, during the process of agricultural production (comprising only three seasons spring, summer and autumn). Concentrations of the 15 PAEs detected significantly varied from spring to autumn and their values ranged from 1.37 to 4.90 mg/kg-dw, with a median value of 2.83 mg/kg-dw. The highest concentration of the 15 PAEs (4.90 mg/kg-dw) was determined in summer when mulching film was used in the greenhouses. Probably an increase in environmental temperature was a major reason for PAE transfer from the mulching film into the soil and coupled with the increased usage of chemical fertilizers in greenhouses. Results showed that of the 15 PAEs, di(2-ethylhexyl) phthalate(DEHP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP) and dimethyl phthalate (DMP) were in abundance with the mean value of 1.12 ± 0.22, 0.46 ± 0.05, 0.36 ± 0.04, and 0.17 ± 0.01 mg/kg-dw, respectively; and their average contributions in spring, summer, and autumn ranged between 64.08 and 90.51% among the 15 PAEs. The results of Principal Component Analysis (PCA) indicated the concentration of these four main PAEs significantly differed among the facility agricultures investigated, during the process of agricultural production. In comparison with foreign and domestic results of previous researches, it is proved that the black soils of facility agriculture in northeast China show higher pollution situation comparing with non-facility agriculture soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  17. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  18. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  19. Calculation of displacement and helium production at the LAMPF irradiation facility

    International Nuclear Information System (INIS)

    Davidson, D.R.; Greenwood, L.R.; Sommer, W.F.; Wechsler, M.S.

    1984-01-01

    Differential and total displacement and helium production rates are calculated for copper irradiated by spallation neutrons and 760 MeV protons at LAMPF. The calculations are performed using the SPECTER and VNMTC computer codes, the latter being specially designed for spallation radiation damage calculations. For comparison, similar SPECTER calculations are also described for irradiation of copper in EBR-II and RTNS-II. The results indicate substantial contributions to the displacement and helium production rates due to neutrons in the high-energy tail (above 40 MeV) of the LAMPF spallation neutron spectrum. Still higher production rates are calculated for irradiations in the direct proton beam. These results will provide useful background information for research to be conducted at a new irradiation facility at LAMPF

  20. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    DEFF Research Database (Denmark)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, R.

    2013-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution......, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm....... The Swarm SCARF (Satellite Constellation Application and Research Facility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data...

  1. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  2. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future.

    Science.gov (United States)

    Allen, Doug K; Bates, Philip D; Tjellström, Henrik

    2015-04-01

    Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant

  3. Probabilistic reliability modeling for oil exploration & production (E&P) facilities in the tallgrass prairie preserve.

    Science.gov (United States)

    Zambrano, Lyda; Sublette, Kerry; Duncan, Kathleen; Thoma, Greg

    2007-10-01

    The aging domestic oil production infrastructure represents a high risk to the environment because of the type of fluids being handled (oil and brine) and the potential for accidental release of these fluids into sensitive ecosystems. Currently, there is not a quantitative risk model directly applicable to onshore oil exploration and production (E&P) facilities. We report on a probabilistic reliability model created for onshore exploration and production (E&P) facilities. Reliability theory, failure modes and effects analysis (FMEA), and event trees were used to develop the model estimates of the failure probability of typical oil production equipment. Monte Carlo simulation was used to translate uncertainty in input parameter values to uncertainty in the model output. The predicted failure rates were calibrated to available failure rate information by adjusting probability density function parameters used as random variates in the Monte Carlo simulations. The mean and standard deviation of normal variate distributions from which the Weibull distribution characteristic life was chosen were used as adjustable parameters in the model calibration. The model was applied to oil production leases in the Tallgrass Prairie Preserve, Oklahoma. We present the estimated failure probability due to the combination of the most significant failure modes associated with each type of equipment (pumps, tanks, and pipes). The results show that the estimated probability of failure for tanks is about the same as that for pipes, but that pumps have much lower failure probability. The model can provide necessary equipment reliability information for proactive risk management at the lease level by providing quantitative information to base allocation of maintenance resources to high-risk equipment that will minimize both lost production and ecosystem damage.

  4. A system simulation model applied to the production schedule of a fish processing facility

    Directory of Open Access Journals (Sweden)

    Carla Roberta Pereira

    2012-11-01

    Full Text Available The simulation seeks to import the reality to a controlled environment, where it is possible to study it behavior, under several conditions, without involving physical risks and/or high costs. Thus, the system simulation becomes a useful and powerful technique in emergence markets, as the tilapiculture sector that needs to expand its business. The main purpose of this study was the development of a simulation model to assist the decisions making of the production scheduling of a fish processing facility. It was applied, as research method, the case study and the modeling/simulation, including in this set the SimuCAD methodology and the development phases of a simulation model. The model works with several alternative scenarios, testing different working shifts, types of flows and production capacity, besides variations of the ending inventory and sales. The result of this research was a useful and differentiated model simulation to assist the decision making of the production scheduling of fish processing facility studied.

  5. Study on control characteristics for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji

    2005-01-01

    The Japan Atomic Energy Research Institute has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the High-Temperature Engineering Test Reactor (HTTR). Prior to the coupling of a hydrogen production plant with the HTTR, simulation tests with a mock-up test facility of the HTTR hydrogen production system (HTTR-H2) is underway. The test facility is a 1/30-scale of the HTTR-H2 and simulates key components downstream from an intermediate heat exchanger of the HTTR. The main objective of the simulation tests is the establishment and demonstration of control technology, focusing on the mitigation of a thermal disturbance to the reactor by a steam generator (SG) and on the controllability of the pressure difference between the helium and process gases at the reaction tube in a steam reformer (SR). It was confirmed that the fluctuation of the outlet helium gas temperature at the SG and the pressure difference in the SR can be controlled within the allowable range for the HTTR-H2 in the case of the system controllability test for the fluctuation of chemical reaction. In addition, a dynamic simulation code for the HTTR-H2 was verified with the obtained test data

  6. Measurements of nuclear data and possibility to construct the nuclear data production facility based on electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, In Soo; Cho, Moo Hyun; Kim, Gui Nyun; Lee, Young Seok; Kang, Heung Sik [Pohang University of Science and Technology, Pohang(Korea)

    2001-04-01

    In order to construct an infrastructure to produce nuclear data, we studied three main items; (1) Study on the possibility to construct a facility for nuclear data production, (2) Production of nuclear data for nuclear power plant, and (3) Pulsed neutron source based on a 100-MeV electron linac at Pohang Accelerator Laboratory (PAL). We confirmed the possibility to build a nuclear data production facility utilizing a 100-MeV electron linac at PAL and manpower who wanted to participate the nuclear data production experiments. In order to measure the nuclear data for nuclear power plant, we used several nuclear data production facilities in abroad. We measured total cross sections and neutron caprure cross sections for {sup nat}Dy and {sup nat}Hf using the pulsed neutron facility in the Research Reactor Institute, Kyoto University (KURRI). The neutron capture cross sections for {sup 161,162,163,164}Dy were measured at KURRI in the neutron energy region between 0.001 eV and several tens keV, and at the fast neutron facility in Tokyo Institute of Technology in the neutron energy region between 10 keV and 100 keV. We also measured the neutron capture cross sections and gamma multiplicity of {sup 232}Th at the IBR30 in Dubna, Russia. We have construct a pulsed neutron source using a 100-MeV electron linac at PAL. We measured neutron time-of-flight (TOF) spectra in order to check the characteristics of the pulsed neutron source. We also measured a neutron total cross sections of W and Cu. The pulsed neutron facility can be utilized in the education facility for nuclear data production and the test facility for the R and D purpose of the nuclear data production facility. 29 refs., 57 figs., 22 tabs. (Author)

  7. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  8. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  9. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  10. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    Science.gov (United States)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  11. Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production

    Science.gov (United States)

    Kitagawa; van der Plicht J

    1998-02-20

    More than 250 carbon-14 accelerator mass spectrometry dates of terrestrial macrofossils from annually laminated sediments from Lake Suigetsu (Japan) provide a first atmospheric calibration for almost the total range of the radiocarbon method (45,000 years before the present). The results confirm the (recently revised) floating German pine chronology and are consistent with data from European and marine varved sediments, and combined uranium-thorium and carbon-14 dating of corals up to the Last Glacial Maximum. The data during the Glacial show large fluctuations in the atmospheric carbon-14 content, related to changes in global environment and in cosmogenic isotope production.

  12. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Amanda M. [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Heidrich, Brenden [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Durrant, Chad [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Bascom, Andrew [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Unlu, Kenan [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  13. Oil and Natural Gas Production Facilities National Emissions Standards for Hazardous Air Pollutants (NESHAP) Final Rule Fact Sheet

    Science.gov (United States)

    This page contains a January 2007 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Oil and Natural Gas Production Facilities. This document provides a summary of the 2007 final rule.

  14. Production planning and control for semiconductor wafer fabrication facilities modeling, analysis, and systems

    CERN Document Server

    Mönch, Lars; Mason, Scott J

    2012-01-01

    Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems

  15. Releases of PCDD/F from U.S. Chemical Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dyke, P. (PD Consulting, Brobury); Amendola, G. [Amendola Engineering, Westlake, OH (United States); Abel, T. [CCC, Arlington, VA (United States)

    2004-09-15

    There is continuing concern over the exposure of humans and ecosystems to trace levels of highly toxic organic compounds, in particular chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF). The U.S. Environmental Protection Agency (EPA) is developing inventories of releases of PCDD/F. As a contribution to this effort the Chlorine Chemistry Council (CCC is a business council of the American Chemistry Council) worked with EPA to develop estimates of releases of PCDD/F to the environment and off-site transfers from selected chemical production facilities in the U.S. that produce or use large quantities of chlorine.

  16. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  17. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    Energy Technology Data Exchange (ETDEWEB)

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander; Troshev, Alexander; Boriskin, Mikhail [ECOMET-S, Saint Petersburg (Russian Federation)

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnover is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)

  18. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  19. Calibrating the radiation detector of the ventilation of a PET radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Lacerda, Marco Aurelio de Sousa; Tavares, Jose Carlos Freitas; Silva, Juliana Batista da

    2011-01-01

    The aim of this work is to demonstrate a new methodology of estimating the calibration factor of the ventilation duct of a PET radiopharmaceutical facility. The proposed methodology was studied to minimize contamination risks for the workers, as well as the uncertainties attributed to the gas sampling. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. It was performed 3 consecutive irradiations with normal water (H 2 16 O) for production of nitrogen-13 to estimate the calibration factor of the detector located in the chimney of the facility. The readings of the detector were registered by the online radiation monitoring system (MEDISMARTS) during the transfer of the irradiated liquid until the count rate decreased for the background (BG) levels. The remaining activity of the water from the vial was measured and the decay corrected to the beginning of the transfer of the activity. The mean calibration factor estimated was (3.6 +- 0.5) kBq . m -3 . cps -1 . The maximum activities registered in the three irradiations were, respectively, 278 s, 370 s and 366 s after transferring of the activity to the hot cell. The conservative assumptions adopted and the values found for the calibration factor, which were close to the manufacturer published data, permit to estimate, safely, the discharges of radioactive gases in the installation. (author)

  20. Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities

    Directory of Open Access Journals (Sweden)

    Jessica A. Gray

    2018-04-01

    Full Text Available High mortality and hospitalization rates have seen Listeria monocytogenes as a foodborne pathogen of public health importance for many years and of particular concern for high-risk population groups. Food manufactures face an ongoing challenge in preventing the entry of L. monocytogenes into food production environments (FPEs due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes strains to colonize FPEs can lead to repeated identification of L. monocytogenes in FPE surveillance. The contamination of food products requiring product recall presents large economic burden to industry and is further exacerbated by damage to the brand. Poor equipment design, facility layout, and worn or damaged equipment can result in Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures may be inadequate. Novel biocontrol methods may offer FPEs effective means to help improve control of L. monocytogenes and decrease cross contamination of food. Bacteriophages have been used as a medical treatment for many years for their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are being explored as a biocontrol method for food preservation and in nanotechnology and medical applications. Antibacterial proteins known as bacteriocins have been used as alternatives to antibiotics for biopreservation and food product shelf life extension. Essential oils are natural antimicrobials formed by plants and have been used as food additives and preservatives for many years and more recently as a method to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally among bacteria in the environment. However, intentionally selecting and applying bacteria to effect competitive exclusion of food borne pathogens has potential as a biocontrol application. This review discusses these novel biocontrol

  1. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review.

    Science.gov (United States)

    Anderson, Benjamin D; Lednicky, John A; Torremorell, Montserrat; Gray, Gregory C

    2017-01-01

    Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.

  2. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review

    Directory of Open Access Journals (Sweden)

    Benjamin D. Anderson

    2017-07-01

    Full Text Available Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc., and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7% used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.

  3. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    Energy Technology Data Exchange (ETDEWEB)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  4. Production of Rare Earth Isotope Beams for Radiotracer-DLTS on SiC

    CERN Multimedia

    2002-01-01

    Electrical properties of semiconductors are extremely sensitive to minor traces of impurities and defects. This fact allows to intentionally modify material properties and is thus the very basis of semiconductor electronics and optoelectronics. In the present project, electronic properties and doping effects of rare-earth elements in the technologically important semiconductor SiC are to be investigated using optical and electrical characterization techniques like Photoluminescence, Deep Level Transient Spectroscopy and Thermal Admittance Spectroscopy. By using the elemental transmutation of radioactive isotopes as a tracer, it will be guaranteed that the impurity-related band gap states can definitively be distinguished from intrinsic or process-induced defects. For SiC up to now only detailed investigation of Er- related deep levels have been reported, preliminary data exist for Sm- and Gd- impurities. In this project we propose the implantation of Pr and Eu isotopes for detailed level studies.

  5. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  6. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    -dependent discrimination against 202Hg relative to 198Hg. G. sulfurreducens PCA and D. desulfuricans ND132 have similar kinetic reactant/product Hg fractionation factors. Using the Hg isotope data, we showed that there are multiple intra- and/or extracellular pools provide substrate inorganic Hg for methylation.

  7. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E. [Obninsk Institute of Nuclear Power Engineering, Obninsk (Russian Federation)

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  8. Three decades of research using IGISOL technique at the University of Jyväskylä a portrait of the Ion Guide Isotope Separator On-Line facility in Jyväskylä

    CERN Document Server

    Eronen, Tommi; Jokinen, Ari; Kankainen, Anu; Moore, Iain; Penttilä, Heikki

    2014-01-01

    The IGISOL group at the University of Jyväskyla studies the properties of nuclei far off the line of beta stability. These studies are performed locally at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility, as well as at a number of other laboratories such as the ISOLDE facility in CERN, at GANIL and in Helmholzzentrum GSI, the location of the future radioactive beam facility FAIR. The group is also actively involved in work to support the development of international future facilities EURISOL and aforementioned FAIR. This book presents  carefully selected papers to portrait the work at IGISOL. Previously published in the journals Hyperfine Interactions and European Physical Journal A.

  9. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  10. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. RAMI modeling of plant systems for proposed tritium production and extraction facilities

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    The control of life-cycle cost is a primary concern during the development, construction, operation, and decommissioning of DOE systems and facilities. An effective tool that can be used to control these costs, beginning with the design stage, is called a reliability, availability, maintainability, and inspectability analysis or, simply, RAMI for short. In 1997, RAMI technology was introduced to the Savannah River Site with applications at the conceptual design stage beginning with the Accelerator Production of Tritium (APT) Project and later extended to the Commercial Light Water Reactor (CLWR) Tritium Extraction Facility (TEF) Project. More recently it has been applied to the as-build Water Treatment Facilities designed for ground water environmental restoration. This new technology and database was applied to the assessment of balance-of-plant systems for the APT Conceptual Design Report. Initial results from the Heat Removal System Assessment revealed that the system conceptual design would cause the APT to fall short of its annual production goal. Using RAM technology to immediately assess this situation, it was demonstrated that the product loss could be gained back by upgrading the system's chiller unit capacity at a cost of less than $1.3 million. The reclaimed production is worth approximately $100 million. The RAM technology has now been extended to assess the conceptual design for the CLWR-TEF Project. More specifically, this technology and database is being used to translate high level availability goals into lower level system design requirements that will ensure the TEF meets its production goal. Results, from the limited number of system assessments performed to date, have already been used to modify the conceptual design for a remote handling system, improving its availability to the point that a redundant system, with its associated costs of installation and operation may no longer be required. RAMI results were also used to justify the elimination

  12. SENSITIVITY OF MOLDS ISOLATED FROM WAREHOUSES OF FOOD PRODUCTION FACILITY ON SELECTED ESSENTIAL OILS

    Directory of Open Access Journals (Sweden)

    Łukasz Kręcidło

    2015-07-01

    Full Text Available Storage of raw materials is one of steps in food production chain. The aim of this study was to estimate the influence of selected essential oils on the growth of four fungal strains: Trichoderma viride, Rhizomucor miehei, Penicillium chrysogenum, Penicillium janthinellum. Strains were isolated from warehouses of the food production facility. Selected essential oils: thyme oil, rosewood oil and rosemary oil were used to assess antifungal activity. Chemical composition of essential oils was determined by Gas Chromatography-Mass Spectroscopy (GC-MS. Antifungal activity of essential oils was estimated in relative to peracetic acid (PAA and sterile water with Tween 80 (0,5%. The influence of essential oils on fungal growth was carried by medium poisoning method. Increment of fungal mycelium was measured every day by 10 days. The thyme essential oils totally inhibited fungal growth in the lowest concentration of 1 mm3·cm-3. The most resistant strain was Penicillium janthinellum.

  13. Sustainable data policy for a data production facility: a work in (continual) progress

    Science.gov (United States)

    Ketcham, R. A.

    2017-12-01

    The University of Texas High-Resolution X-Ray Computed Tomography Facility (UTCT) has been producing volumetric data and data products of geological and other scientific specimens and engineering materials for over 20 years. Data volumes, both in terms of the size of individual data sets and overall facility production, have progressively grown and fluctuated near the upper boundary of what can be managed by contemporary workstations and lab-scale servers and network infrastructure, making data policy a preoccupation for our entire history. Although all projects have been archived since our first day of operation, policies on which data to keep (raw, reconstructed after corrections, processed) have varied, and been periodically revisited in consideration of the cost of curation and the likelihood of revisiting and reprocessing data when better techniques become available, such as improved artifact corrections or iterative tomographic reconstruction. Advances in instrumentation regularly make old data obsolete and more advantageous to reacquire, but the simple act of getting a sample to a scanning facility is a practical barrier that cannot be overlooked. In our experience, the main times that raw data have been revisited using improved processing to improve image quality were predictable, high-impact charismatic projects (e.g., Archaeopteryx, A. Afarensis "Lucy"). These cases actually provided the impetus for development of the new techniques (ring and beam hardening artifact reduction), which were subsequently incorporated into our data processing pipeline going forward but were rarely if ever retroactively applied to earlier data sets. The only other times raw data have been reprocessed were when reconstruction parameters were inappropriate, due to unnoticed sample features or human error, which are usually recognized fairly quickly. The optimal data retention policy thus remains an open question, although erring on the side of caution remains the default

  14. Emissions from cold heavy oil production with sands (CHOPS) facilities in Alberta, Canada

    Science.gov (United States)

    Roscioli, J. R.; Herndon, S. C.; Yacovitch, T. I.; Knighton, W. B.; Zavala-Araiza, D.; Johnson, M. R.; Tyner, D. R.

    2017-12-01

    Cold heavy oil production with sands (CHOPS) is generally characterized as a pump driven oil extraction method producing a mixture of sand, water, and heavy oil to heated liquid storage tanks. In addition to fluids, CHOPS sites also produce solution gas, primarily composed of methane, through the well annulus. Depending on formation and well production characteristics, large volumes of this solution gas are frequently vented to the atmosphere without flaring or conservation. To better understand these emission we present measurements of methane, ethane, propane and aromatic emission rates from CHOPS sites using dual tracer flux ratio methodology. The use of two tracers allowed on-site emission sources to be accurately identified and in one instance indicated that the annular vent was responsible for >75% of emissions at the facility. Overall, a measurement survey of five CHOPS sites finds that the methane emissions are in general significantly under-reported by operators. This under-reporting may arise from uncertainties associated with measured gas-to-oil ratios upon which the reported vent volume is based. Finally, measurements of ethane, propane and aromatics from these facilities indicates surprisingly low non-methane hydrocarbon content.

  15. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    International Nuclear Information System (INIS)

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-01-01

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility

  16. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    Science.gov (United States)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  17. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  18. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-09-01

    medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα−δ15Nβ, and δ18O of N2O (δ18O-N2O, we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures grown under 20% O2 and 43% to 87% under 0.5% O2. We also demonstrate that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2O. A positive relationship between SP and δ18O-N2O has been observed in environmental N2O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N2O production.

  19. Dynamics of N2O production pathways analyzed by 15N18O isotope labeling

    DEFF Research Database (Denmark)

    Jensen, Marlene Mark; Ma, Chun; Lavik, Gaute

    Nitrous oxide production associated with biological nitrogen transformations can contribute substantially to the CO2 footprint of both man-made and natural systems, but the pathways and regulation of N2O production are poorly understood. We developed a 15N/18O dual isotope labelling technique...

  20. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  1. The Supply of Medical Radioisotopes. 2015 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2015-2020

    International Nuclear Information System (INIS)

    Charlton, Kevin; )

    2015-08-01

    Medical diagnostic imaging techniques using technetium-99m ( 99m Tc) account for approximately 80% of all nuclear medicine procedures, representing 30-40 million examinations Worldwide every year. Disruptions in the supply chain of these medical isotopes - which have half-lives of 66 hours for molybdenum-99 ( 99 Mo) and only 6 hours for 99m Tc, and thus must be produced continuously - can lead to cancellations or delays in important medical testing services. Unfortunately, supply reliability has been challenged over the past decade due to unexpected shutdowns and extended refurbishment periods at some of the mostly ageing, 99 Mo-producing research reactors and processing facilities. These shutdowns have at times created conditions for extended global supply shortages (e.g. 2009-2010). At the request of its member countries, the Nuclear Energy Agency (NEA) became involved in global efforts to ensure a secure supply of 99 Mo/ 99m Tc. Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have examined the causes of supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The NEA has also reviewed the global 99 Mo supply situation periodically, using the most up-to-date data available from supply chain participants, to highlight periods of potential reduced supply and to underscore the case for implementing the HLG-MR policy approach in a timely and globally consistent manner. In 2012, the NEA released a M o supply and demand forecast up to 2030, identifying periods of potential low supply relative to demand. That 2012 forecast was updated with a report 'Medical Isotope Supply in the Future: Production Capacity and Demand Forecast for the 99 Mo/ 99m Tc Market 2015-2020' (NEA, 2014) in 2014 that focused on the much shorter 2015-2020 period. This report updates the 2014 report, and continues to focus on the potentially critical 2015

  2. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  3. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Fraile, L.M., E-mail: lmfraile@ucm.es [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L.; Udías, J.M.; Cal-González, J.; Corzo, P.M.G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E. [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Muñoz-Martín, A. [Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Vaquero, J.J. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid (Spain)

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a {sup 68}Ga and {sup 66}Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes in proton therapy.

  4. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    Science.gov (United States)

    Fraile, L. M.; Herraiz, J. L.; Udías, J. M.; Cal-González, J.; Corzo, P. M. G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E.; Muñoz-Martín, A.; Vaquero, J. J.

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with 68Ga and 66Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a 68Ga and 66Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with 68Ga and 66Ga radioisotopes in proton therapy.

  5. Improvement on Fermionic properties and new isotope production in molecular dynamics simulations

    Science.gov (United States)

    Wang, Ning; Wu, Tong; Zeng, Jie; Yang, Yongxu; Ou, Li

    2016-06-01

    By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in quantum molecular dynamics simulations. The case of a phase-space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics model, the fusion excitation functions of 16O+186W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with Z = 16-28 are observed in the central collisions of 238U+238U than that of 96Zr+124Sn, which indicates that multi-fragmentation of U+U may offer a fruitful pathway to new neutron-rich isotopes.

  6. (238)U/(235)U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance.

    Science.gov (United States)

    Noordmann, Janine; Weyer, Stefan; Georg, R Bastian; Jöns, Svenja; Sharma, Mukul

    2016-01-01

    In this study, the U isotope composition, n((238)U)/n((235)U), of major components of the upper continental crust, including granitic rocks of different age and post-Archaean shales, as well as that of rivers (the major U source to the oceans) was investigated. Furthermore, U isotope fractionation during the removal of U at mid-ocean ridges, an important sink for U from the oceans, was investigated by the analyses of hydrothermal water samples (including low- and high-temperature fluids), low-temperature altered basalts and calcium carbonate veins. All analysed rock samples from the continental crust fall into a limited range of δ(238)U between -0.45 and -0.21 ‰ (relative to NBL CRM 112-A), with an average of -0.30 ± 0.15 ‰ (2 SD, N = 11). Despite differences in catchment lithologies, all major rivers define a relatively narrow range between -0.31 and -0.13 ‰, with a weighted mean isotope composition of -0.27 ‰, which is indistinguishable from the estimate for the upper continental crust (-0.30 ‰). Only some tributary rivers from the Swiss Alps display a slightly larger range in δ(238)U (-0.29 to +0.01 ‰) and lower U concentrations (0.87-3.08 nmol/kg) compared to the investigated major rivers (5.19-11.69 nmol/kg). These findings indicate that only minor net U isotope fractionation occurs during weathering and transport of material from the continental crust to the oceans. Altered basalts display moderately enriched U concentrations (by a factor of 3-18) compared to those typically observed for normal mid-ocean ridge basalts. These, and carbonate veins within altered basalts, show large U isotope fractionation towards both heavy and light U isotope compositions (ranging from -0.63 to +0.27 ‰). Hydrothermal water samples display low U concentrations (0.3-1 nmol/kg) and only limited variations in their U isotope composition (-0.43 ± 0.25 ‰) around the seawater value. Nevertheless, two of the investigated fluids display

  7. Measuring the cosmic ray muon-induced fast neutron spectrum by (n,p) isotope production reactions in underground detectors

    International Nuclear Information System (INIS)

    Galbiati, Cristiano; Beacom, John F.

    2005-01-01

    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against; are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used FLUKA to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, because of their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive to just the relatively soft neutrons and not the fast-neutron component. We show that the neutron spectrum in the range ∼10-100 MeV can instead be probed by the (n,p)-induced isotope production rates 12 C(n,p) 12 B and 16 O(n,p) 16 N in oil- and water-based detectors. The result for 12 B is in good agreement with the recent KamLAND measurement. Besides testing the calculation of muon secondaries, these results are also of practical importance, since 12 B (T 1/2 =20.2 ms, Q=13.4 MeV) and 16 N (T 1/2 =7.13 s, Q=10.4 MeV) are among the dominant spallation backgrounds in these detectors

  8. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    Science.gov (United States)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  9. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    International Nuclear Information System (INIS)

    Revyakin, V.; Borisov, L.M.

    1996-01-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the help of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial

  10. Development of control technology for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A cooling system for a secondary helium with a steam generator (SG) and a radiator is installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of ±10 K at SG outlet. A dynamic simulation code of the cooling system for HTTR-H2 was verified with the obtained test data

  11. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    Science.gov (United States)

    Roscioli, J R; Herndon, S C; Yacovitch, T I; Knighton, W Berk; Zavala-Araiza, D; Johnson, M R; Tyner, D R

    2018-03-07

    Cold Heavy Oil Production with Sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here we present the results of field measurements of methane emissions from CHOPS wells and compare them to self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly under-reported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS site, and aid in developing policy to mitigate regional methane emissions. Implications Methane measurements from Cold Heavy Oil Production with Sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian Government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 years.

  12. Incidence of Listeria monocytogenes and Listeria spp. in a small-scale mushroom production facility.

    Science.gov (United States)

    Viswanath, Prema; Murugesan, Latha; Knabel, Stephen J; Verghese, Bindhu; Chikthimmah, Naveen; Laborde, Luke F

    2013-04-01

    Listeria monocytogenes is a foodborne pathogen of significant concern to the agricultural and food processing industry because of its ability to grow and persist in cool and moist environments and its association with listeriosis, a disease with a very high mortality rate. Although there have been no listeriosis outbreaks attributed to fresh mushrooms in the United States, retail surveys and recalls are evidence that L. monocytogenes contamination of mushrooms (Agaricus bisporus) can occur. The objective of this study was to determine the prevalence of Listeria spp., including L. monocytogenes, in a small-scale mushroom production facility on the campus of the Pennsylvania State University in the United States. Of 184 samples taken from five production zones within the facility, 29 (15.8%) samples were positive for Listeria spp. Among the Listeria spp. isolates, L. innocua was most prevalent (10.3%) followed by L. welshimeri (3.3%), L. monocytogenes (1.6%), and L. grayi (0.5%). L. monocytogenes was recovered only from the phase I raw material composting area. Isolates of L. monocytogenes were confirmed and serotyped by multiplex PCR. The epidemiological relatedness of the three L. monocytogenes isolates to those serotypes or lineages frequently encountered in listeriosis infections was determined by multi-virulence-locus sequence typing using six virulence genes, namely, prfA, inlB, inlC, dal, clpP, and lisR. The phylogenetic positions of the three isolates in the dendrogram prepared with data from other isolates of L. monocytogenes showed that all isolates were grouped with serotype 4a, lineage IIIA. To date, this serotype has rarely been reported in foodborne disease outbreaks.

  13. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  14. Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions

    Science.gov (United States)

    Breunig, Katharina; Scholten, Bernhard; Spahn, Ingo; Hermanne, Alex; Spellerberg, Stefan; Coenen, Heinz H.; Neumaier, Bernd

    2017-09-01

    The cross sections of α-particle induced reactions on arsenic leading to the formation of 76,77,78Br were measured from their respective thresholds up to 37 MeV. Thin sediments of elemental arsenic powder were irradiated together with Al degrader and Cu monitor foils using the established stacked-foil technique. For determination of the effective α-particle energies and of the effective beam current through the stacks the cross-section ratios of the monitor nuclides 67Ga/66Ga were used. This should help resolve discrepancies in existing literature data. Comparison of the data with the available excitation functions shows some slight energy shifts as well as some differences in curve shapes. The calculated thick target yields indicate, that 77Br can be produced in the energy range Eα = 25 → 17 MeV free of isotopic impurities in quantities sufficient for medical application.

  15. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  16. Comment on: "Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011

    Directory of Open Access Journals (Sweden)

    D. P. Nicholson

    2011-10-01

    Full Text Available Kaiser (2011 has introduced an improved method for calculating gross productivity from the triple isotopic composition of dissolved oxygen in aquatic systems. His equation avoids approximations of previous methodologies, and also accounts for additional physical processes such as kinetic fractionation during invasion and evasion at the air-sea interface. However, when comparing his new approach to previous methods, Kaiser inconsistently defines the biological end-member with the result of overestimating the degree to which the various approaches of previous studies diverge. In particular, for his base case, Kaiser assigns a 17O excess to the product of photosynthesis (17δP that is too low, resulting in his result being ~30 % too high when compared to previous equations. When this is corrected, I find that Kaiser's equations are consistent with all previous study methodologies within about ±20 % for realistic conditions of metabolic balance (f and gross productivity (g. A methodological bias of ±20 % is of similar magnitude to current uncertainty in the wind-speed dependence of the air-sea gas transfer velocity, k, which directly impacts calculated gross productivity rates as well. While previous results could and should be revisited and corrected using the proposed improved equations, the magnitude of such corrections may be much less than implied by Kaiser.

  17. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  18. Isotope effects on product polarization and reaction mechanism in the Li + HF(v = 0, j = 0) → LiF + H reaction

    Science.gov (United States)

    Yue, Xian-Fang; Wang, Mei-Shan

    2012-09-01

    Isotope effects on product polarization and reaction mechanism in the title reaction and its isotopic variants are investigated by employing the quasiclassical trajectory method. At a collision energy of 363 meV, the calculated differential cross sections display a strongly forward scattering in the Li + HF(v = 0, j = 0) → LiF + H reaction, but both the forward and sideways scatterings in the Li + DF(v = 0, j = 0) → LiF + D and Li + TF(v = 0, j = 0) → LiF + T reactions. Analysis of trajectories propagation along the time reveals that the Li + HF and Li + DF reactions proceed predominantly by the direct reaction mechanism. This is consistent with the experimental results of Becker et al. however, the Li + TF reaction undergoes both the direct and indirect reaction mechanisms. The product polarization shows a monotonically decreasing behavior with increasing the mass of the hydrogen isotopes.

  19. Evaluation of different production routes for the radio medical isotope ²⁰³Pb using TALYS 1.4 and EMPIRE 3.1 code calculations.

    Science.gov (United States)

    Azzam, A; Said, S A; Al-abyad, M

    2014-09-01

    (203)Pb radio-medical isotope has found great field of applications in nuclear medicine over the last decades. The previously measured excitation functions for the production of this isotope from different reactions were discussed, in order to confirm the most reasonable ones. Fitting curves were given for some reactions leading to the production of this isotope. The theoretical models TALYS 1.4, and EMPIRE 3.1 were used to construct the excitation functions for protons, deuterons, helium-3 and helium-4 induced reactions on Tl and Hg targets. The results of different models were compared with each other as well as with the collected experimental results, using the mean weighted deviation (F), and the relative variance (D) statistical parameters. Thick target yields were estimated, based on the discussed excitation functions, and compared with some measured values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of); Jo, Daeseong [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2016-07-15

    In the present study, temperature evaluations on long-term storage of radioactive waste produced in the process of isotope production were performed using two different methods. Three-dimensional analysis was carried out assuming a volumetric heat source, while two-dimensional studies were performed assuming a point source. The maximum temperature difference between the predictions of the volumetric and point source models was approximately 5°C. For the conceptual design level, a point source model may be suitable to obtain the overall temperature characteristics of different loading locations. For more detailed analysis, the model with the volumetric source may be applicable to optimize the loading pattern in order to obtain minimum temperatures.

  1. Research within the coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    Rosales, C.M.

    1980-07-01

    An extensive survey identified 500,000 ha of soil in the Philippines as being potentially Zn-deficient for rice production. Isotope-aided laboratory, greenhouse, and field experiments were conducted to identify the most efficient methods of supplying fertilizer Zn to flooded rice. The application of 5 kg Zn/ha as ZnSO 4 effectively corrected a Zn deficiency and increased rice yield and Zn uptake for three successive growing seasons. No further increases were noted with higher rates of Zn application. Fertilizer ZnSO 4 was equally effective when mixed with the soil, combined with urea fertilizers, or surface-applied at or two weeks after transplanting the rice. Mine tailings were also shown to be an effective source of Zn. Mixing organic compost with the ZnSO 4 decreased the percent Zn derived from the fertilizer and the rice yield. 65 Zn-labelled ZnSO 4 was used

  2. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  3. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    Schafer, R.

    1995-01-01

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H - , H + , and D + ). The proposed NBTF facility includes an 80 MeV, 1 mA H - cyclotron that will produce proton-induced (neutron deficient) research isotopes

  4. Characterization of 41Ar production in air at a PET cyclotron facility

    Science.gov (United States)

    Cicoria, Gianfranco; Cesarini, Francesco; Infantino, Angelo; Vichi, Sara; Zagni, Federico; Marengo, Mario

    2017-06-01

    In the production of Positron Emission Tomography (PET) nuclides at a medical cyclotron facility 41Ar (T1/2 = 109.34 m) is produced by the activation of air due to the neutron flux, according to the 40Ar(n, γ)41Ar reaction. In this work, we describe a relatively inexpensive and readily reproducible methodology of air sampling that can be used for quantification of 41Ar during the routine production of PET nuclides. We report the results of an extensive measurement campaign in the cyclotron bunker and in the ducts of the ventilation system, before and after final filtering of the extracted air. Air Samples were analyzed using a gamma-ray spectrometry system equipped with HPGe detector, with proper correction of the efficiency calibration to account for the samples density. The results of measurement were then used to evaluate the Total Effective Dose (TED) to the population living in the surrounding areas, due to routine emissions in the operation of the cyclotron. The average 41Ar saturation yield per one liter of air emitted in the environment resulted to be (0.044 ± 0.007) Bq/(μA ṡ dm3). The maximum value of TED for the critical group of the population, even considering an overestimated workload, was less than 0.19 μSv/year, well below the level of radiological relevance.

  5. Validation of the cleaning and sanitization method for radiopharmaceutical production facilities

    International Nuclear Information System (INIS)

    Robles, Anita; Morote, Mario; Moore, Mariel; Castro, Delcy; Paragulla, Wilson; Novoa, Carlos; Otero, Manuel; Miranda, Jesus; Herrera, Jorge; Gonzales, Luis

    2014-01-01

    A protocol for the cleaning and sanitization method for radiopharmaceutical production facilities has been designed and developed for the inner surface of the hot cells for the production of Sodium Pertechnetate Tc-99m and Sm-153 EDTMP, considering an extreme situation for each hot cell. Cleaning is performed with double-distilled water and sanitation with two disinfectant solutions, 70 % isopropyl alcohol and 3 % hydrogen peroxide in alternate weeks. Microbiological analysis of sanitized surfaces were made after 20 minutes and 48 hours for the hot cell of Tc-99m and 72 hours for the hot cell of EDTMP Sm-153 in 3 consecutive tests by the method of direct contact with plates containing culture medium, made for each sampling point (6 in the first and five in the second). The results showed that the microbial load on surfaces sanitized was below acceptable limits and that the lifetime of cleaning and sanitization is 48 hours for the hot cell of Tc-99m and 72 hours for the one of EDTMP-Sm-153. As a conclusion, the method of cleaning and sanitization is effective to reduce or eliminate microbial contamination therefore, the process is validated. (authors).

  6. Surfactant-enhanced recovery of dissolved hydrocarbons at petroleum production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.T.; Mayes, M. [Groundwater Solutions Ltd., Calgary, AB (Canada); Wassmuth, F.; Taylor, K. [Petroleum Recovery Inst., Calgary, AB (Canada); Rae, W. [Chemex Labs. (Alberta) Ltd., Calgary, AB (Canada); Kuipers, F. [Pembina Corp., Calgary, AB (Canada)

    1997-12-31

    The feasibility and cost effectiveness of surfactant-enhanced pumping to reduce source concentrations of petroleum hydrocarbons from contaminated soils was discussed. Light non-aqueous phase liquids (LNAPL) hydrocarbons are present beneath many petroleum production processing facilities in western Canada. Complete removal of LNAPLs from geologic materials is difficult and expensive. Treatment technologies include costly ex-situ methods such as excavation and in-situ methods such as physical extraction by soil venting and pumping, bioremediation, and combination methods such as bioventing, bioslurping or air sparging. Surfactant-aided pumping can reduce source hydrocarbon concentrations when used in conjunction with traditional pump and treat, or deep well injection. This study involved the selection of an appropriate surfactant from a wide variety of commercially available products. A site contaminated by hydrocarbons in Turner Valley, Alberta, was used for field scale testing. One of the major problems was quantifying the increase in the dissolved hydrocarbon concentrations in the recovered water once a surfactant was added. From the 30 surfactants screened in a series of washing and oil solubilization tests, two surfactants, Brij 97 and Tween 80, were selected for further evaluation. Increased hydrocarbon recovery was observed within 10 days of the introduction of the first surfactant. 2 refs., 7 figs.

  7. The external beam facility used to characterize corrosion products in metallic statuettes

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Tabacniks, M.H.; Added, N.; Barbosa, M.D.L.; Curado, J.F.; Santos, W.A.; Lima, S.C.; Melo, H.G.; Neiva, A.C.

    2005-01-01

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts

  8. Modeling of hydrogen sulfide removal from Petroleum production facilities using H2S scavenger

    Directory of Open Access Journals (Sweden)

    H.A. Elmawgoud

    2015-06-01

    Full Text Available The scavenging of hydrogen sulfide is the preferred method for minimizing the corrosion and operational risks in oil production facilities. Hydrogen sulfide removal from multiphase produced fluids prior to phase separation and processing by injection of EPRI H2S scavenger solution (one of the chemical products of Egyptian Petroleum Research Institute into the gas phase by using the considered chemical system corresponds to an existing oil well in Qarun Petroleum Company was modeled. Using a kinetic model the value of H2S in the three phases was determined along the flow path from well to separator tanks. The effect of variable parameters such as, gas flow rates, chemical injection doses, pipe diameter and length on mass transfer coefficient KGa, H2S outlet concentration and H2S scavenger efficiency has been studied. The modeling of the hydrogen sulfide concentration profiles for different conditions was performed. The results may be helpful in estimating injection rates of H2S scavengers for similar fields and conditions.

  9. The external beam facility used to characterize corrosion products in metallic statuettes

    Science.gov (United States)

    Rizzutto, M. A.; Tabacniks, M. H.; Added, N.; Barbosa, M. D. L.; Curado, J. F.; Santos, W. A.; Lima, S. C.; Melo, H. G.; Neiva, A. C.

    2005-10-01

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratório de Análise de Materiais por Feixes Iônicos) of University of São Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts.

  10. System reliability as perceived by maintenance personnel on petroleum production facilities

    International Nuclear Information System (INIS)

    Antonovsky, A.; Pollock, C.; Straker, L.

    2016-01-01

    The aim of this research was to understand the relationship between maintenance staff perceptions of organisational effectiveness and operational reliability in petroleum operations. Engineering measures exist that assess the effectiveness of maintenance and reliability of equipment. These measures are typically retrospective and may not provide insight into what impedes system reliability. Perceptions of organisational effectiveness by the workforce may provide a predictive measure that could improve our understanding of the human factors that influence system reliability. Maintenance personnel (n=133) from nine petroleum production facilities completed a survey as part of a study of human factors and maintenance reliability. 69 respondents (51.9%) provided comments to an open-ended question in the survey, and these data were analysed using Interpretive Phenomenological Analysis to extract themes. Four super-ordinate themes were identified from the analysis: 1) Communication and access to information, 2) Efficiency of current work systems, 3) Need for better workgroup support, and 4) Management impacts on the workplace. We found a significant relationship between the frequency of the four super-ordinate themes and the facility reliability level as measured by ‘Mean Time Between Failures’: χ 2 (6,N=158)=16.2, p=.013. These results demonstrated that operational effectiveness might be differentiated on the basis of survey-derived perceptions of maintenance personnel. - Highlights: • Thematic analysis of survey comments provided insights into workplace reliability • Worker’s comments on reliability related to technical data on time between failures • Management decision-making was the main theme in the lower reliability workplaces • Improving efficiency was the main theme in the higher reliability workplaces • Communication and better workgroup support were themes at all reliability levels

  11. Estimation of pathways of the production of greenhouse gases in the tropical swamp forest in Thailand by stable isotope investigation.

    Science.gov (United States)

    Boontanon, Narin; Ueda, Shingo; Wada, Eitaro

    2008-09-01

    Dynamics of greenhouse gases (N(2)O and CH(4)) with the dry-wet cycle along with the variation of oxidation-reduction boundaries were investigated in the tropical wetland in monsoon Asia. It was clarified that the production of N(2)O and CH(4) was closely related to the development of a redox boundary in the Bang Nara River systems. An intermittent increase in N(2)O was observed at the beginning of the rainy season, when a large amount of easily decomposable organic matter was introduced into the river. After 10 days, when dissolved oxygen was consumed completely at the middle reaches, the emission of CH(4) became maximal due to the possible occurrence of denitrification. The distribution of stable isotope ratios in N(2)O clearly demonstrated that nitrification is the major process for its production. Furthermore, the production of N(2)O in this study area was found to vary in time and space with changes in the redox boundary along the water flow.

  12. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    Science.gov (United States)

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  13. Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.

    Directory of Open Access Journals (Sweden)

    Sarah A Castine

    Full Text Available Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling and biological (microbial transformation processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2 was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3 h(-1 relative to other aquatic systems. Denitrification was the main driver of N(2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3 or methanol (paired t-Test; P = 0.744, n = 3 did not stimulate production of N(2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors to enhance N(2 production and N removal from aquaculture wastewater.

  14. Application of isotopes and radiation to increasing agricultural production - Phase 2. Indonesia. Project findings and recommendations

    International Nuclear Information System (INIS)

    1992-01-01

    This Phase 2 Project was primarily aimed at consolidating the advances made during the previous phase, formulating practical agricultural technologies which can be adopted by farmers, disseminating and applying these technologies, and enhancing the capability of the Centre for Application of Isotopes and Radiation (CAIR) to conduct agricultural research using nuclear and related techniques. Outputs generated by this project were generally in accordance with those anticipated in the Project Document. Some outputs have been transferred to the target beneficiaries (farmers) through existing systems of extension, in co-operation with the main implementing agency (BATAN). Other outputs have potential for further assessment, and may lead to practical applications in future. The rest remain as important contributions to scientific knowledge. The project has been managed to assure sustainability after project termination. A strong indication of such sustainability is evident in the on-going research and development work at CAIR and the adoption of transferred technologies by the end-users. To keep up with rapid global advancements in bio-science and technology, a new project on application of nuclear and related techniques in agricultural bio-science and technology would be needed in relation to the second long-term phase of the national development programmes. (author)

  15. Lignocellulosic ethanol production from woody biomass: The impact of facility siting on competitiveness

    International Nuclear Information System (INIS)

    Stephen, James D.; Mabee, Warren E.; Saddler, Jack N.

    2013-01-01

    Just as temperate region pulp and paper companies need to compete with Brazilian eucalyptus pulp producers, lignocellulosic biofuel producers in North America and Europe, in the absence of protectionist trade policies, will need to be competitive with tropical and sub-tropical biofuel producers. This work sought to determine the impact of lignocellulosic ethanol biorefinery siting on economic performance and minimum ethanol selling price (MESP) for both east and west coast North American fuel markets. Facility sites included the pine-dominated Pacific Northwest Interior, the mixed deciduous forest of Ontario and New York, and the Brazilian state of Espírito Santo. Feedstock scenarios included both plantation (poplar, willow, and eucalyptus, respectively) and managed forest harvest. Site specific variables in the techno-economic model included delivered feedstock cost, ethanol delivery cost, cost of capital, construction cost, labour cost, electricity revenues (and co-product credits), and taxes, insurance, and permits. Despite the long shipping distance from Brazil to North American east and west coast markets, the MESP for Brazilian-produced eucalyptus lignocellulosic ethanol, modelled at $0.74 L −1 , was notably lower than that of all North American-produced cases at $0.83–1.02 L −1 . - Highlights: • Lignocellulosic ethanol production costs vary notably by region. • Feedstock cost is the primary site-specific production cost variable. • Woody feedstocks in North America have a higher cost than those in Brazil. • Use of Brazilian eucalyptus resulted in the lowest MESP for considered feedstocks. • MESP ranged from −1 to >$1.00 L −1

  16. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  17. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  18. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  19. Landscape variation in the diet and productivity of reindeer in Alaska based on stable isotope analyses

    Science.gov (United States)

    Gregory L. Finstad; Knut Kielland

    2011-01-01