WorldWideScience

Sample records for isotope producer blip

  1. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  2. Fishing for isotopes in the Brookhaven Lab Isotope Producer (BLIP) cooling water

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider Accelerator Dept.

    2016-04-29

    Be-7 has been used in environmental studies; the isotope is produced during BLIP irradiations and accumulates in the 320 gallons of cooling water. Be-7 has a 53.24 day half-life, so the optimal production/purification time is at the end of the BLIP run season. To purify Be-7 fifteen to twenty gallons of BLIP cooling water are removed and pumped through ion exchange columns that retain Be-7. This labor intensive approach captures ~15 mCi of Be-7, but the solution requires further purification. The method can lead to increased radiation exposure to staff. The ideal way to capture isotopes from large volumes is to reach in to the solution and selectively pull out the desired isotope. It is a lot like fishing.

  3. BLIP

    International Nuclear Information System (INIS)

    Stang, L.G. Jr.

    1976-01-01

    The operation of the Brookhaven Linac Isotope Producer (BLIP) is discussed. Topics covered include targets, target holders, linac specifications, beam transport, and current production performance. The use of the BLIP is confined exclusively to the development of radionuclides that are, or should be, of medical interest, and the facility is moving rapidly into a self-supporting state from the income of the products

  4. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  5. MACHINE PROTECTION SYSTEM FOR CONCURRENT OPERATION OF RHIC AND BLIP

    International Nuclear Information System (INIS)

    WILINSKI, M.; BELLAVIA, S.; GLENN, J.W.; MAUSNER, L.F.; UNGER, K.L.

    2005-01-01

    The Brookhaven 200MeV linac is a multipurpose machine used to inject low intensity polarized protons for RHIC (Relativistic Heavy Ion Collider), as well as to inject high intensity protons to BLIP (Brookhaven Linac Isotope Producer), a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity currents are detected

  6. Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP)

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.; Kirk, H.; Ludewig, H.; /Brookhaven; Mokhov, N.; Hurh, P.; Misek, J.; /Fermilab

    2010-11-01

    Effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been under study using the Brookhaven National Laboratory's (BNL) 200 MeV Linac. The primary objectives of the study that includes a wide array of materials and alloys ranging between low and high-Z are to (a) observe changes in physio-mechanical properties which are important in maintaining high-power target functionality, (b) identify possible limits of proton flux or fluence above which certain material seize to maintain integrity, (c) study the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) correlate radiation damage effects of different species such as energetic protons and neutrons on materials by utilizing reactor and particle accelerator experience data. These objectives are specifically being addressed in the latest material irradiation study linked to the Long Baseline Neutrino Experiment (LBNE). Observations on irradiation effects on materials considered for high-power targets and other beam intercepting elements, such as collimators, from past studies and preliminary observations of the ongoing LBNE study are presented in this paper.

  7. Design of the beryllium window for Brookhaven Linac Isotope Producer

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  8. Design of the beryllium window for Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-01-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn't been a single window failure since the new design was implemented in 2012.

  9. Machine Protection System for Concurrent Operation of RHIC and BLIP

    CERN Document Server

    Wilinski, Michelle; Glenn, Joseph; Mausner, Leonard; Unger, Kerry

    2005-01-01

    The Brookhaven 200 MeV linac is a multipurpose machine used to inject low intensity polarized protons ultimately ending up in RHIC as well as to inject high intensity protons to BLIP, a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow for concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity is detected.

  10. CERN to start producing medical isotopes

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    A promising project that was hailed at the ICTR-PHE 2012 medical conference (see Bulletin issues 10-11/2012 and 12-13/2012) has seen the light of day at CERN. The project, known by the name of MEDICIS, will make it possible to produce a large variety of radioactive isotopes for medical research.   This image of a brain, superimposed on a drawing by Leonardo da Vinci, was taken by a PET scanner after injecting a molecule containing a positron-emitting isotope. CERN-MEDICIS will produce new isotopes for imaging which will be able to show up cancerous tissues and destroy them by emitting local radiation as the isotopes decay. In the United States, a new radium-based drug which targets bone metastases is about to go on the market. Radium, which can be brought to bear at the cell level, is a potent weapon in the fight against certain types of cancer, and is opening the way to a new form of medicine. This is the direction that CERN has decided to follow through the CERN-MEDICIS* (Medical Isotopes...

  11. TraLaLa Blip: Community Music for the Electronically Abled

    Science.gov (United States)

    Reimann, Randolf

    2012-01-01

    This article presents a personal reflection on the use of electronic music as a vehicle for community music in a disability setting. In order to do this, I draw on my experiences as the founder, facilitator, producer, tutor, sound artist and musician of TraLaLa Blip. I established the group in 2008, after having worked with people with…

  12. Specificity and cooperativity at [beta]-lactamase position 104 in TEM-1/BLIP and SHV-1/BLIP interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Melinda S.; Reynolds, Kimberly A.; McNamara, Case; Ghosh, Partho; Bonomo, Robert A.; Kirsch, Jack F.; Handel, Tracy M. (Case Western); (UCB); (UCSD)

    2011-11-02

    Establishing a quantitative understanding of the determinants of affinity in protein-protein interactions remains challenging. For example, TEM-1/{beta}-lactamase inhibitor protein (BLIP) and SHV-1/BLIP are homologous {beta}-lactamase/{beta}-lactamase inhibitor protein complexes with disparate K{sub d} values (3 nM and 2 {mu}M, respectively), and a single substitution, D104E in SHV-1, results in a 1000-fold enhancement in binding affinity. In TEM-1, E104 participates in a salt bridge with BLIP K74, whereas the corresponding SHV-1 D104 does not in the wild type SHV-1/BLIP co-structure. Here, we present a 1.6 {angstrom} crystal structure of the SHV-1 D104E/BLIP complex that demonstrates that this point mutation restores this salt bridge. Additionally, mutation of a neighboring residue, BLIP E73M, results in salt bridge formation between SHV-1 D104 and BLIP K74 and a 400-fold increase in binding affinity. To understand how this salt bridge contributes to complex affinity, the cooperativity between the E/K or D/K salt bridge pair and a neighboring hot spot residue (BLIP F142) was investigated using double mutant cycle analyses in the background of the E73M mutation. We find that BLIP F142 cooperatively stabilizes both interactions, illustrating how a single mutation at a hot spot position can drive large perturbations in interface stability and specificity through a cooperative interaction network.

  13. Role of β-lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIP-II

    Science.gov (United States)

    Fryszczyn, Bartlomiej G; Adamski, Carolyn J; Brown, Nicholas G; Rice, Kacie; Huang, Wanzhi; Palzkill, Timothy

    2014-01-01

    The β-lactamase inhibitory proteins (BLIPs) are a model system for examining molecular recognition in protein-protein interactions. BLIP and BLIP-II are structurally unrelated proteins that bind and inhibit TEM-1 β-lactamase. Both BLIPs share a common binding interface on TEM-1 and make contacts with many of the same TEM-1 surface residues. BLIP-II, however, binds TEM-1 over 150-fold tighter than BLIP despite the fact that it has fewer contact residues and a smaller binding interface. The role of eleven TEM-1 amino acid residues that contact both BLIP and BLIP-II was examined by alanine mutagenesis and determination of the association (kon) and dissociation (koff) rate constants for binding each partner. The substitutions had little impact on association rates and resulted in a wide range of dissociation rates as previously observed for substitutions on the BLIP side of the interface. The substitutions also had less effect on binding affinity for BLIP than BLIP-II. This is consistent with the high affinity and small binding interface of the TEM-1-BLIP-II complex, which predicts per residue contributions should be higher for TEM-1 binding to BLIP-II versus BLIP. Two TEM-1 residues (E104 and M129) were found to be hotspots for binding BLIP while five (L102, Y105, P107, K111, and M129) are hotspots for binding BLIP-II with only M129 as a common hotspot for both. Thus, although the same TEM-1 surface binds to both BLIP and BLIP-II, the distribution of binding energy on the surface is different for the two target proteins, that is, different binding strategies are employed. PMID:24947275

  14. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  15. Preliminary economic feasibility study of MIP (Medical Isotopes Producer)

    International Nuclear Information System (INIS)

    Mon, G. H.; O, S. Y.

    2004-01-01

    Preliminary economic feasibility study of MIP (Medical Isotopes Producer), which is used liquid nuclear fuel to produce medical isotopes of Mo-99 and Sr-89, was performed. To do this, this study was estimated the IRR(Internal Rate of Return) and PBP(Pay-back Period) about optimistic and pessimistic cases for market penetration of Asia and U.S.A. isotope markets. And sensitivity analysis is also performed about capital cost and price of Mo-99 and Sr-89. According to the results, IRR was between 14.9% and 24.3%, and PBP was between 4.8 years and 7.8 years. These suggest that MIP has economic merits. MIP can produce other medical isotopes such as Sr-90, I-131, Xe-133, Cs-137. So, it is necessary to do cost-benefit analysis considering production of these other isotopes

  16. Regolith history from cosmic-ray-produced isotopes

    International Nuclear Information System (INIS)

    Fireman, E.L.

    1974-04-01

    A statistical model is given for soil development relating meteoroid impacts on the moon to cosmic-ray-produced isotopes in the soil. By means of this model, the average lunar mass loss rate during the past 14 aeons is determined to be 170 g/sq cm aeon and the soil mixing rate to be approximately 200 cm/aeon from the gadolinium isotope data for the Apollo 15 and 16 drill stems. The isotope data also restrict the time variation of the meteoroid flux during the past 14 aeons. (U.S.)

  17. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  18. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    Science.gov (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  19. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  20. The Clinical Interpretation of Viral Blips in HIV Patients Receiving Antiviral Treatment: Are We Ready to Infer Poor Adherence?

    NARCIS (Netherlands)

    Chun-Hai Fung, Isaac; Gambhir, Manoj; van Sighem, Ard; de Wolf, Frank; Garnett, Geoffrey P.

    2012-01-01

    Objectives: Viral blips may be an indication of poor adherence to antiretroviral treatment. This article studies how the variations of the definitions of viral blips and that of the choice of sampling frame in studies investigating viral blips may contribute to the uncertainty of the associations

  1. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  2. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply

    International Nuclear Information System (INIS)

    Zubiarrain, A.

    2011-01-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  3. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  4. Stable isotope variations in benthic primary producers along the Bosphorus (Turkey): A preliminary study

    International Nuclear Information System (INIS)

    Calizza, Edoardo; Aktan, Yelda; Costantini, Maria Letizia; Rossi, Loreto

    2015-01-01

    Highlights: • Nitrogen pollution along the Bosphorus Strait was investigated. • C and N isotopic and elemental analyses on benthic primary producers were performed. • δ 15 N decreased, while δ 13 C and N% increased from north to south along the Strait. • Ulva lactuca was more useful than epiphytes as indicator of nitrogen pollution. • Preliminary isotopic analyses on resident organisms are useful monitoring tools. - Abstract: The Bosphorus Strait is a dynamic and complex system. Recent evidences showed nitrogen and heavy metal concentrations to follow opposite patterns across the Strait, suggesting a complex spatial organisation of the anthropogenic disturbance in this system. Here, we provide isotopic information on the origin and transportation of dissolved nitrogen along the Bosphorus. C and N isotopic and elemental analyses were performed on specimens of Ulva lactuca and associated epiphytes sampled in five locations across the Strait. Variations in C and N isotopic signatures were observed in U. lactuca, pointing to a decrease in the availability of anthropogenic organic dissolved nitrogen along a north-south direction. Conversely, epiphytes did not show isotopic or elemental patterns across the Strait. These results suggest that preliminary stable isotope surveys in extended costal systems basing on U. lactuca can represent a valuable tool to focus meaningful targets and hypotheses for pollution studies in the Mediterranean region

  5. High Resolution Gamma Ray Analysis of Medical Isotopes

    Science.gov (United States)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  6. A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients.

    Directory of Open Access Journals (Sweden)

    Jessica M Conway

    2011-04-01

    Full Text Available Motivated by viral persistence in HIV+ patients on long-term anti-retroviral treatment (ART, we present a stochastic model of HIV viral dynamics in the blood stream. We consider the hypothesis that the residual viremia in patients on ART can be explained principally by the activation of cells latently infected by HIV before the initiation of ART and that viral blips (clinically-observed short periods of detectable viral load represent large deviations from the mean. We model the system as a continuous-time, multi-type branching process. Deriving equations for the probability generating function we use a novel numerical approach to extract the probability distributions for latent reservoir sizes and viral loads. We find that latent reservoir extinction-time distributions underscore the importance of considering reservoir dynamics beyond simply the half-life. We calculate blip amplitudes and frequencies by computing complete viral load probability distributions, and study the duration of viral blips via direct numerical simulation. We find that our model qualitatively reproduces short small-amplitude blips detected in clinical studies of treated HIV infection. Stochastic models of this type provide insight into treatment-outcome variability that cannot be found from deterministic models.

  7. Russian ElectroKhimPribor integrated plant - producer and supplier of enriched stable isotopes

    International Nuclear Information System (INIS)

    Tatarinov, A.N.; Polyakov, L.A.

    1997-01-01

    Russian ElectroKhimPribor Integrated Plant, as well as ORNL, is a leading production which manufactures and supplied to the world market such specific products as stable isotopes. More than 200 isotopes of 44 elements can be obtained at its electromagnetic separator. Changes being underway for a few last years in Russia affected production and distribution of stable isotopes. There arose a necessity in a new approach to handling work in this field so as to create favourable conditions for both producers and customers. As a result, positive changes in calutron operation at ElectroKhimPribor has been reached; quality management system covering all stages of production has been set up; large and attractive stock of isotopes has been created; prospective scientific isotope-based developments are taken into account when planning separation F campaigns; executing the contracts is guaranteed; business philosophy has been changed to meet maximum of customer needs. For more than forty years ElectroKhimPribor have had no claim from customers as to quality of products or implementing contracts. Supplying enriched stable isotopes virtually to all the world's leading customers, ElectroKhimPribor cooperates successfully with Canadian company Trace Science since 1996

  8. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  9. TRI mu P - A new facility to produce and trap radioactive isotopes

    NARCIS (Netherlands)

    Sohani, M

    At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRI mu P) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station

  10. Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane.

    Science.gov (United States)

    Keppler, Frank; Schiller, Amanda; Ehehalt, Robert; Greule, Markus; Hartmann, Jan; Polag, Daniela

    2016-01-29

    Mammalian formation of methane (methanogenesis) is widely considered to occur exclusively by anaerobic microbial activity in the gastrointestinal tract. Approximately one third of humans, depending on colonization of the gut by methanogenic archaea, are considered methane producers based on the classification terminology of high and low emitters. In this study laser absorption spectroscopy was used to precisely measure concentrations and stable carbon isotope signatures of exhaled methane in breath samples from 112 volunteers with an age range from 1 to 80 years. Here we provide analytical evidence that volunteers exhaled methane levels were significantly above background (inhaled) air. Furthermore, stable carbon isotope values of the exhaled methane unambiguously confirmed that this gas was produced by all of the human subjects studied. Based on the emission and stable carbon isotope patterns of various age groups we hypothesize that next to microbial sources in the gastrointestinal tracts there might be other, as yet unidentified, processes involved in methane formation supporting the idea that humans might also produce methane endogenously in cells. Finally we suggest that stable isotope measurements of volatile organic compounds such as methane might become a useful tool in future medical research diagnostic programs.

  11. Development of a laser system of the laboratory AVLIS complex for producing isotopes and radionuclides

    Science.gov (United States)

    D’yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya.; Firsov, V. A.; Tsvetkov, G. O.

    2018-01-01

    The use of atomic vapour laser isotope separation (AVLIS) for solving a number of urgent problems (formation of 177Lu radionuclides for medical applications, 63Ni radionuclides for betavoltaic power supplies and 150Nd isotope for searching for neutrinoless double β decay and neutrino mass) is considered. An efficient three-step scheme of photoionisation of neodymium atoms through the 50474-cm‑1 autoionising state with radiation wavelengths of the corresponding stages of λ1 = 6289.7 Å, λ2 = 5609.4 Å and λ3 = 5972.1 Å is developed. The average saturation intensity of the autoionising transition is ∼6 W cm‑2, a value consistent with the characteristics of the previously developed photoionisation schemes for lutetium and nickel. A compact laser system for the technological AVLIS complex, designed to produce radionuclides and isotopes under laboratory conditions, is developed based on the experimental results.

  12. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  13. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NARCIS (Netherlands)

    Chivall, D.; M'Boule, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity

  14. Using Stable Isotopes to Assess Connectivity: the Importance of Oceanic and Watershed Nitrogen Sources for Estuarine Primary Producers

    Science.gov (United States)

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) d...

  15. Short-lived radionuclide production capability at the Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Mausner, L.F.; Richards, P.

    1985-01-01

    The Brookhaven National Linac Isotope Producer is the first facility to demonstrate the capability of a large linear accelerator for efficient and economical production of difficult-to-make, medically useful radionuclides. The linac provides a beam of 200-MeV protons at an integrated beam current of up to 60 μA. The 200-MeV proton energy is very suitable for isotope production because the spallation process can create radionuclides unavailable at lower energy accelerators or reactors. Several medically important short-lived radionuclides are presently being prepared for on-site and off-site collaborative research programs. These are iodine-123, iron-52, manganese-52m, ruthenium-97, and the rubidium-81-krypton-81m system. The production parameters for these are summarized

  16. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shikha, E-mail: shikha.sharma@mail.wvu.edu [Department of Geology and Geography, West Virginia University, Morgantown, WV 26506 (United States); Baggett, Joshua K. [Department of Ecosystem Science and Management, Texas A and M University, College Station, 77843 2126 (United States)

    2011-08-15

    Highlights: > Coalbed natural gas extraction results in large amount of produced water. > Risk of deterioration of ambient water quality. > Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C ({delta}{sup 13}C{sub DIC}) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for {delta}{sup 13}C{sub DIC}. The CBNG produced waters from outfalls and impoundments have positive {delta}{sup 13}C{sub DIC} values that fall within the range of +12 per mille to +22 per mille, distinct from

  17. Blip decomposition of the path integral: Exponential acceleration of real-time calculations on quantum dissipative systems

    International Nuclear Information System (INIS)

    Makri, Nancy

    2014-01-01

    The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the “fully incoherent limit” zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude

  18. Complete isotopic distributions of fragments produced in transfer- and fusion-induced reactions

    International Nuclear Information System (INIS)

    Delaune, O.; Caamano, M.; Farget, F.; Tarasov, O. B.; Derkx, X.; Schmidt, K. H.; Audouin, L.; Amthor, A. M.; Bacri, C. O.; Barreau, G.; Bastin, B.; Bazin, D.; Benlliure, J.; Blank, B.; Caceres, L.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Grevy, S.; Jurado, B.; Kamalou, O.; Lemasson, A.; Lukyanov, S. M.; Mittig, W.; Morrissey, D. J.; Navin, A.; Pereira, J.; Perrot, L.; Rejmund, M.; Roger, T.; Saint-Laurent, M. G.; Savajols, H.; Schmitt, C.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C. C.

    2013-01-01

    Two fission experiments have been performed at GANIL using 238 U beams at different energies and light targets. Different fissioning systems were produced with centre of mass energies from 10 to 240 MeV and their decay by fission was investigated with GANIL spectrometers. Fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of the fusion-fission mechanism. (authors)

  19. The stable isotopic signature of biologically produced molecular hydrogen (H2

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2012-10-01

    Full Text Available Biologically produced molecular hydrogen (H2 is characterised by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of H2. Large uncertainties exist in the quantification of the individual production and degradation processes that contribute to the atmospheric budget, and isotope measurements are a tool to distinguish the contributions from the different sources. Measurements of δ D from the various H2 sources are scarce and for biologically produced H2 only very few measurements exist. Here the first systematic study of the isotopic composition of biologically produced H2 is presented. In a first set of experiments, we investigated δ D of H2 produced in a biogas plant, covering different treatments of biogas production. In a second set of experiments, we investigated pure cultures of several H2 producing microorganisms such as bacteria or green algae. A Keeling plot analysis provides a robust overall source signature of δ D = −712‰ (±13‰ for the samples from the biogas reactor (at 38 °C, δ DH2O= +73.4‰, with a fractionation constant ϵH2-H2O of −689‰ (±20‰ between H2 and the water. The five experiments using pure culture samples from different microorganisms give a mean source signature of δ D = −728‰ (±28‰, and a fractionation constant ϵH2-H2O of −711‰ (±34‰ between H2 and the water. The results confirm the massive deuterium depletion of biologically produced H2 as was predicted by the calculation of the thermodynamic fractionation factors for hydrogen exchange between H2 and water vapour. Systematic errors in the isotope scale are difficult to assess in the absence of international standards for δ D of H2. As expected for a thermodynamic equilibrium, the fractionation factor is temperature dependent, but largely independent of the

  20. Influence of treatment complexity on adherence and incidence of blips in HIV/HCV coinfected patients.

    Science.gov (United States)

    Calvo-Cidoncha, Elena; González-Bueno, Javier; Almeida-González, Carmen Victoria; Morillo-Verdugo, Ramón

    2015-02-01

    The addition of antihepatitis C therapy to highly active antiretroviral treatment (HAART) in human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfected patients leads to an increase in the treatment complexity that may result in decreased adherence. Blips, defined as intermittent episodes of detectable low-level HIV viremia, may be an indication of poor adherence to HAART. To (a) determine the influence of adding anti-HCV therapy to HAART on complexity index, adherence, and incidence of blips and (b) determine complexity index and adherence in patient subgroups based on anti-HCV therapy. We conducted a prospective 2-center observational study. HIV/HCV coinfected patients under antiretroviral treatment who started anti-HCV bi-therapy or triple therapy between January 2011 and December 2013 were included. Patients were excluded if they were virologically uncontrolled (HIV viral load greater than 50 copies RNA/mL) or if they had changed antiretroviral treatment in the 6 months prior to the introduction of anti-HCV therapy. Data were collected before and after the addition of anti-HCV therapy to HAART. The main variables were complexity index, incidence of blips, and adherence. The complexity index was based on a score that utilized the number of pills per day, dosing schedule, dosage form, and any specific instructions linked to use of the drug. Blips were defined as a detectable HIV-RNA level ( greater than 50 copies/mL but no more than 1,000 copies/mL) occurring between 2 negative assays. Medication adherence was assessed using electronic pharmacy refill records. The threshold for optimal adherence was defined at 95% and above. Differences in the variables collected were assessed before and after the addition of anti-HCV therapy to HAART.R ESULTS: A total of 66 patients were included in the study. Based on the complexity index, the median value before and after the addition of anti-HCV therapy to HAART was 4.2 (interquartile range [IQR] = 3

  1. Virological Blips and Predictors of Post Treatment Viral Control After Stopping ART Started in Primary HIV Infection.

    Science.gov (United States)

    Fidler, Sarah; Olson, Ashley D; Bucher, Heiner C; Fox, Julie; Thornhill, John; Morrison, Charles; Muga, Roberto; Phillips, Andrew; Frater, John; Porter, Kholoud

    2017-02-01

    Few individuals commencing antiretroviral therapy (ART) in primary HIV infection (PHI) maintain undetectable viremia after treatment cessation. Associated factors remain unclear given the importance of the phenomenon to cure research. Using CASCADE data of seroconverters starting ART in PHI (≤6 months from seroconversion), we estimated proportions experiencing viral blips (>400 copies followed by HIV-RNA/mL without alteration of regimen) while on ART. We used Cox models to examine the association between time from ART stop to loss of control (2 consecutive measurements >1000 copies per milliliter) and magnitude and frequency of blips while on ART, time from seroconversion to ART, time on ART, adjusting for mean number of HIV-RNA measurements/year while on ART, and other confounders. Seven hundred seventy-eight seroconverters started ART in PHI with ≥3 HIV-RNA measurements. Median interquartile range (IQR) ART duration was 16.2 (8.0-35.9) months, within which we observed 13% with ≥1 blip. Of 228 who stopped ART, 119 rebounded; time to loss of control was associated with longer interval between seroconversion and ART initiation [hazard ratio (HR) = 1.16 per month; 1.04, 1.28], and blips while on ART (HR = 1.71 per blip; 95% confidence interval = 0.94 to 3.10). Longer time on ART (HR = 0.84 per additional month; 0.76, 0.92) was associated with lower risk of losing control. Of 228 stopping ART, 22 (10%) maintained post treatment control (PTC), ie, HIV-RNA HIV viral blips on therapy are associated with subsequent viral rebound on stopping ART among individuals treated in PHI. Longer duration on ART is associated with a greater chance of PTC.

  2. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    various CaCO 3 polymorphs, this is the first documented evidence for C isotope fractionation between ACC and the calcite it recrystallizes to. This phenomenon may prove important for the interpretation of CaCO 3 -based C isotope environmental proxies. - Highlights: • Earthworms produce granules of calcium carbonate that form from an amorphous calcium carbonate suspension. • The microspherulites of amorphous calcium carbonate coalesce and recrystallize. • Fractionation of C isotopes occurs as the ACC recrystallizes with ε calcite-ACC  = −1.20 ± 0.52%. • This is consistent with a dissolution-reprecipitation pathway rather than solid state rearrangement. • This may be important for the interpretation of CaCO 3 -based C isotope environmental proxies.

  3. Carbon and nitrogen isotope ratios of factory-produced RDX and HMX.

    Science.gov (United States)

    Howa, John D; Lott, Michael J; Chesson, Lesley A; Ehleringer, James R

    2014-07-01

    RDX and HMX are explosive compounds commonly used by the military and also occasionally associated with acts of terrorism. The isotopic characterization of an explosive can be a powerful approach to link evidence to an event or an explosives cache. We sampled explosive products and their reactants from commercial RDX manufacturers that used the direct nitration and/or the Bachmann synthesis process, and then analyzed these materials for carbon and nitrogen isotope ratios. For manufacturers using the Bachmann process, RDX (13)C enrichment relative to the hexamine substrate was small (+0.9‰) compared to RDX produced using the direct nitration process (+8.2‰ to +12.0‰). RDX (15)N depletion relative to the nitrogen-containing substrates (-3.6‰) was smaller in the Bachmann process than in the direct nitration process (-12.6‰ to -10.6‰). The sign and scale of these differences agree with theorized mechanisms of mass-dependent fractionation. We also examined the isotopic relationship between RDX and HMX isolated from explosive samples. The δ(13)C and δ(15)N values of RDX generally matched those of the HMX with few exceptions, most notably from a manufacturer known to make RDX using two different synthesis processes. The range in δ(13)C values of RDX in a survey of 100 samples from 12 manufacturers spanned 33‰ while the range spanned by δ(15)N values was 26‰; these ranges were much greater than any previously published observations. Understanding the relationship between products and reactants further explains the observed variation in industrially manufactured RDX and can be used as a diagnostic tool to analyze explosives found at a crime scene. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  5. Blip-summed quantum-classical path integral with cumulative quantum memory.

    Science.gov (United States)

    Makri, Nancy

    2016-12-22

    The quantum-classical path integral (QCPI) offers a rigorous methodology for simulating quantum mechanical processes in condensed-phase environments treated in full atomistic detail. This paper describes the implementation of QCPI on system-bath models, which are frequently employed in studying the dynamics of reactive processes. The QCPI methodology incorporates all effects associated with stimulated phonon absorption and emission as its crudest limit, thus can (in some regimes) converge faster than influence functional-based path integral methods specifically designed for system-bath Hamiltonians. It is shown that the QCPI phase arising from a harmonic bath can be summed analytically with respect to the discrete bath degrees of freedom and expressed in terms of precomputed influence functional coefficients, avoiding the explicit enumeration of forced oscillator trajectories, whose number grows exponentially with the length of quantum memory. Further, adoption of the blip decomposition (which classifies the system paths based on the time length over which their forward and backward components are not identical) and a cumulative treatment of the QCPI phase between blips allows elimination of the majority of system paths, leading to a dramatic increase in efficiency. The generalization of these acceleration techniques to anharmonic environments is discussed.

  6. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  7. Identification of the β-Lactamase Inhibitor Protein-II (BLIP-II) Interface Residues Essential for Binding Affinity and Specificity for Class A β-Lactamases*

    Science.gov (United States)

    Brown, Nicholas G.; Chow, Dar-Chone; Ruprecht, Kevin E.; Palzkill, Timothy

    2013-01-01

    The interactions between β-lactamase inhibitory proteins (BLIPs) and β-lactamases have been used as model systems to understand the principles of affinity and specificity in protein-protein interactions. The most extensively studied tight binding inhibitor, BLIP, has been characterized with respect to amino acid determinants of affinity and specificity for binding β-lactamases. BLIP-II, however, shares no sequence or structural homology to BLIP and is a femtomolar to picomolar potency inhibitor, and the amino acid determinants of binding affinity and specificity are unknown. In this study, alanine scanning mutagenesis was used in combination with determinations of on and off rates for each mutant to define the contribution of residues on the BLIP-II binding surface to both affinity and specificity toward four β-lactamases of diverse sequence. The residues making the largest contribution to binding energy are heavily biased toward aromatic amino acids near the center of the binding surface. In addition, substitutions that reduce binding energy do so by increasing off rates without impacting on rates. Also, residues with large contributions to binding energy generally exhibit low temperature factors in the structures of complexes. Finally, with the exception of D206A, BLIP-II alanine substitutions exhibit a similar trend of effect for all β-lactamases, i.e., a substitution that reduces affinity for one β-lactamase usually reduces affinity for all β-lactamases tested. PMID:23625930

  8. Galatic and solar cosmic ray - produced rare gas isotopes in lunar fines

    International Nuclear Information System (INIS)

    Bhushan, B.N.; Rao, M.N.; Venkatesan, T.R.

    1979-01-01

    Lunar fines 10084, 14163 and 14148 from Apollo 11 and 14 missions as well as 24087 from Soviet Luna 24 mission have been studied for elemental and isotopic composition of He, Ne, Ar, Kr and Xe using milligram amounts by step-wise heating techniques. From these studies, the isotopic composition of solar wind has been determined and it is found to be in good agreement with the results reported by other workers. The experimental procedure adopted for studying these samples is described in brief. The use of a gas glass spectrometer for detecting the subtle galatic and solar cosmic ray xenon is explained. Data on the concentration and isotopic composition of selected isotopes of Xe and Ne in lunar fines is presented. (K.B.)

  9. Identifying the sources of produced water in the oil field by isotopic techniques

    International Nuclear Information System (INIS)

    Nguyen Minh Quy; Hoang Long; Le Thi Thu Huong; Luong Van Huan; Vo Thi Tuong Hanh

    2014-01-01

    The objective of this study is to identify the sources of the formation water in the Southwest Su-Tu-Den (STD SW) basement reservoir. To achieve the objective, isotopic techniques along with geochemical analysis for chloride, bromide, strontium dissolved in the water were applied. The isotopic techniques used in this study were the determination of water stable isotopes signatures (δ 2 H and (δ 18 O) and of the 87 Sr/ 86 Sr ratio of strontium in rock cutting sample and that dissolved in the formation water. The obtained results showed that the stable isotopes compositions of water in the Lower Miocene was -3‰ and -23‰ for (δ 18 O and (δ 2 H, respectively indicating the primeval nature of seawater in the reservoir. Meanwhile, the isotopic composition of water in the basement was clustered in a range of alternated freshwater with (δ 18 O and (δ 2 H being -(3-4)‰ and -(54-60)‰, respectively). The strontium isotopes ratio for water in the Lower Miocene reservoir was lower compared to that for water in the basement confirming the different natures of the water in the two reservoirs. The obtained results are assured for the techniques applicability, and it is recommended that studies on identification of the flow-path of the formation water in the STD SW basement reservoir should be continued. (author)

  10. Viral persistence, latent reservoir, and blips: a review on HIV-1 dynamics and modeling during HAART and related treatment implications

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Perelson, Alan [Los Alamos National Laboratory

    2008-01-01

    HIV-1 eradication from infected individuals has not been achieved with the use of highly active antiretroviral therapy (HAART) for a prolonged period of time. The cellular reservoir for HIV-1 in resting memory CD4{sup +} T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time as is able to release replication competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling can help improve our understanding of HIV-1 dynamics in patients on HAART and the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.

  11. An Alternative Mechanism for Producing Global Changes in the Carbon Isotopic Composition of Platform Derived Sediments

    Science.gov (United States)

    Swart, P. K.

    2007-12-01

    The stable carbon isotopic composition of the skeletons of carbonate organisms and sediments has been widely used not only in order to derive information upon the burial of organic material throughout the geological record, but also for correlative purposes. While the preferred type of material for analysis in sediments younger than ~ 200 Ma are microfossils derived from oceanic sediments, in older deposits one is forced to use the δ13C of bulk sediments deposited on and surrounding carbonate platforms. Such sediments are often problematic as a result of diagenesis and the fact that they are derived from a variety of different sources which have differing δ13C values. This can lead to the correlation of the δ13C in age equivalent strata prograding from a carbonate platform. A notable example of this is shown in the Bahamas which show good correlations between individual sequences, but little correlation to global carbon curves derived from planktonic and benthonic foraminifera. In order to assess whether similar phenomenon are present surrounding other carbonate edifices over the same time period, the δ13C was measured in Holocene to Miocene aged material from cores taken off the Maldives (Ocean Drilling Program Site 716), the Queensland Plateau (Site 817), the Great Barrier Reef (Sites 821 and 822), and the Great Australian Bight (Site 1126). All these sites showed similar patterns in the δ13C values of the bulk sediments compared to the Bahamas between the present day and the middle Miocene and no correlation with the global δ13C curve. It is suggested that the synchronous variations in the δ13C values in sediments of equivalent age are related to variations in sea level which flood the platform, allowing the production of carbonate sediments with positive δ13C values. These sediments become admixed into pelagic sediments producing an apparent global signal. These results have obvious implications on the use of δ13C records in carbonate derived sediments

  12. Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP).

    Science.gov (United States)

    Wang, Jihong; Palzkill, Timothy; Chow, Dar-Chone

    2009-01-02

    In a previous study, we examined thermodynamic parameters for 20 alanine mutants in beta-lactamase inhibitory protein (BLIP) for binding to TEM-1 beta-lactamase. Here we have determined the structures of two thermodynamically distinctive complexes of BLIP mutants with TEM-1 beta-lactamase. The complex BLIP Y51A-TEM-1 is a tight binding complex with the most negative binding heat capacity change (DeltaG = approximately -13 kcal mol(-1) and DeltaCp = approximately -0.8 kcal mol(-1) K(-1)) among all of the mutants, whereas BLIP W150A-TEM-1 is a weak complex with one of the least negative binding heat capacity changes (DeltaG = approximately -8.5 kcal mol(-1) and DeltaCp = approximately -0.27 kcal mol(-1) K(-1)). We previously determined that BLIP Tyr51 is a canonical and Trp150 an anti-canonical TEM-1-contact residue, where canonical refers to the alanine substitution resulting in a matched change in the hydrophobicity of binding free energy. Structure determination indicates a rearrangement of the interactions between Asp49 of the W150A BLIP mutant and the catalytic pocket of TEM-1. The Asp49 of W150A moves more than 4 angstroms to form two new hydrogen bonds while losing four original hydrogen bonds. This explains the anti-canonical nature of the Trp150 to alanine substitution, and also reveals a strong long distance coupling between Trp150 and Asp49 of BLIP, because these two residues are more than 25 angstroms apart. Kinetic measurements indicate that the mutations influence the dissociation rate but not the association rate. Further analysis of the structures indicates that an increased number of interface-trapped water molecules correlate with poor interface packing in a mutant. It appears that the increase of interface-trapped water molecules is inversely correlated with negative binding heat capacity changes.

  13. Hydrogen Isotope Fractionation in Aquatic Primary Producers: Implications for Food Web Studies

    Science.gov (United States)

    Hondula, K. L.; Pace, M. L.; Cole, J. J.; Batt, R. D.

    2011-12-01

    Hydrogen in the organic matter of aquatic plants has a lower relative abundance of the deuterium isotope in comparison to hydrogen in the surrounding water due to a series of fractionation processes including photosynthesis and the biosynthesis of lipids. Expected differences between the deuterium values of different types of plant tissue have been used to observe terrestrial contributions to aquatic food webs and to discriminate organic matter sources in 3-isotope studies with more precision than in 2-isotope studies, however some values used in these studies are derived from an estimated fractionation value (ɛ) between water and plant tissue. We found significant differences in fractionation values between different groups of aquatic plants sampled from three system types: lakes, river, and coastal lagoon. Fractionation values between water and plant tissue of macrophytes and marine macroalgae were more similar to those of terrestrial plants and distinctly different than those of benthic microalgae and phytoplankton. Incorporating the variability in fractionation values between plant types will improve models and experimental designs used in isotopic food web studies for aquatic systems.

  14. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    Science.gov (United States)

    Wolhowe, M. D.; Prahl, F. G.; Probert, I.; Maldonado, M.

    2009-08-01

    Recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s, lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742) were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones. Further experiments were conducted with Emiliania huxleyi (CCMP 1742) andGephyrocapsa oceanica (PZ3-1) to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence. Emiliania huxleyi was observed to exhibit an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97) that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 may exist and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects of nutrient stress on U37K' temperature records.

  15. High-precision gamma-ray spectroscopy of 82Rb and 72As, two important medical isotopes used in positron emission tomography

    Science.gov (United States)

    Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.

    2015-10-01

    Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).

  16. Towards a palaeosalinity proxy: hydrogen isotopic fractionation between source water and lipids produced via different biosynthetic pathways in haptophyte algae

    Science.gov (United States)

    Chivall, David; M'Boule, Daniela; Heinzelmann, Sandra M.; Kasper, Sebastian; Sinke-Schoen, Daniëlle; Sininnghe-Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-05-01

    Palaeosalinity is one of the most important oceanographic parameters that cannot currently be quantified with reasonable accuracy from sedimentary records. Hydrogen isotopic fractionation between water and alkenones is dependent, amongst other factors, upon the salinity in which alkenone-producing haptophyte algae grow and is represented by the fractionation factor, α, increasing with salinity.1 As such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. Understanding the mechanism behind the sensitivity of fractionation to salinity is important for the correct application of the proxy, however this mechanism is currently unknown. Here we present hydrogen isotopic compositions of lipids produced via different biosynthetic pathways from batch cultures of Emiliania huxleyi CCMP 1516 and Isochrysis galbana CCMP 1323 grown over a range of salinities and discuss the possible sources of the sensitivity of hydrogen isotope fractionation to salinity. α for C37 alkenones (produced via an unknown biosynthetic pathway but assumed to be acetogenic; e.g.2) and that for C14:0, C16:0, and C18:1 fatty acids (acetogenic) from exponential growth phase I. galbana show a similar sensitivity to salinity, increasing at 0.0013-0.0019 per salinity unit (S-1). Meanwhile, in exponential growth phase E. huxleyi, α for C37 alkenones and α for brassicasterol (mevalonate pathway) increase at 0.0015-0.0022 S-1, but α for phytol (methylerythritol pathway) shows no significant relationship with salinity. These results suggest that fractionation is sensitive to salinity for lipids formed both in the chloroplast and cytosol. They also suggest that the sensitivity may either originate in glyceralde-3-phosphate or pyruvate but is then lost through hydrogen exchange with cell water during sugar rearrangements in the methylerythritol pathway or sensitivity originates with the production and consumption of acetate. References Schouten, S., Ossebaar, J., Schreiber

  17. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers.

    Science.gov (United States)

    McKellar, Ryan C; Wolfe, Alexander P; Muehlenbachs, Karlis; Tappert, Ralf; Engel, Michael S; Cheng, Tao; Sánchez-Azofeifa, G Arturo

    2011-11-07

    Despite centuries of research addressing amber and its various inclusions, relatively little is known about the specific events having stimulated the production of geologically relevant volumes of plant resin, ultimately yielding amber deposits. Although numerous hypotheses have invoked the role of insects, to date these have proven difficult to test. Here, we use the current mountain pine beetle outbreak in western Canada as an analogy for the effects of infestation on the stable isotopic composition of carbon in resins. We show that infestation results in a rapid (approx. 1 year) (13)C enrichment of fresh lodgepole pine resins, in a pattern directly comparable with that observed in resins collected from uninfested trees subjected to water stress. Furthermore, resin isotopic values are shown to track both the progression of infestation and instances of recovery. These findings can be extended to fossil resins, including Miocene amber from the Dominican Republic and Late Cretaceous New Jersey amber, revealing similar carbon-isotopic patterns between visually clean ambers and those associated with the attack of wood-boring insects. Plant exudate δ(13)C values constitute a sensitive monitor of ecological stress in both modern and ancient forest ecosystems, and provide considerable insight concerning the genesis of amber in the geological record.

  18. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    Science.gov (United States)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  19. Seasonal and spatial trends in production and stable isotope signatures of primary producers in Alberta oil sands reclamation wetlands

    International Nuclear Information System (INIS)

    Boutsivongsakd, M; Chen, H.; Legg, A.; Farwell, A.; Dixon, G.

    2010-01-01

    Oil sands processing produces large amounts of waste water that contains polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids (NAs). This study investigated the effects of exposure to PAHs and NA in aquatic organisms. The carbon and nitrogen dynamics in primary producers using stable isotopes in process-affected and reference wetlands were studied. Plankton and periphytic samples from artificial wetland substrates were collected and analyzed. Periphyton was collected in 14 to 20 day intervals for 5 different time periods in 2007 and 2008 in order to analyze seasonal trends in isotopic composition. Results of the study showed d15N enriched values for some consolidated tailings (CT) at sites in 2008. Other sites with mature fine tailings (MFT) as well as non-MFT sites did not have enriched d15N values. The study suggested that there are variations in ammonia levels in the CTs of different oil sands operators. Differences in the quality of the CT resulted in differences in d15N values of the periphyton-dominated by algae as well as in the periphyton dominated by microbes.

  20. Seasonal and spatial trends in production and stable isotope signatures of primary producers in Alberta oil sands reclamation wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Boutsivongsakd, M; Chen, H.; Legg, A.; Farwell, A.; Dixon, G. [Waterloo Univ., ON (Canada)

    2010-07-01

    Oil sands processing produces large amounts of waste water that contains polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids (NAs). This study investigated the effects of exposure to PAHs and NA in aquatic organisms. The carbon and nitrogen dynamics in primary producers using stable isotopes in process-affected and reference wetlands were studied. Plankton and periphytic samples from artificial wetland substrates were collected and analyzed. Periphyton was collected in 14 to 20 day intervals for 5 different time periods in 2007 and 2008 in order to analyze seasonal trends in isotopic composition. Results of the study showed d15N enriched values for some consolidated tailings (CT) at sites in 2008. Other sites with mature fine tailings (MFT) as well as non-MFT sites did not have enriched d15N values. The study suggested that there are variations in ammonia levels in the CTs of different oil sands operators. Differences in the quality of the CT resulted in differences in d15N values of the periphyton-dominated by algae as well as in the periphyton dominated by microbes.

  1. Isotopic characterization as a screening tool in authentication of organic produce commercially available in western North America.

    Science.gov (United States)

    Verenitch, Sergei; Mazumder, Asit

    2015-01-01

    The use of nitrogen stable isotopes to discriminate between conventionally and organically grown crops has been further developed in this study. Soil and irrigation water from different regions, as well as nitrogen fertilizers used, have been examined in detail to determine their effects on nitrogen isotope composition of spinach, lettuce, broccoli and tomatoes. Over 1000 samples of various types of organically and conventionally grown produce of known origin, along with the samples of nitrogen fertilizers used for their growth, have been analysed in order to assemble the datasets of crop/fertilizer correlations. The results demonstrate that the developed approach can be used as a valuable component in the verification of agricultural practices for more than 25 different types of commercially grown green produce, either organic or conventional. Over a period of two years, various organic and non-organic greens, from different stores in Seattle (WA, USA) and Victoria (BC, Canada), were collected and analysed using this methodology with the objective of determining any pattern of misrepresentation.

  2. Lightest Isotope of Bh Produced Via the 209Bi(52Cr,n)260BhReaction

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Sarah L.; Gregorich, Kenneth E.; Dragojevic, Irena; Garcia, Mitch A.; Gates, Jacklyn M.; Sudowe, Ralf; Nitsche, Heino

    2007-05-07

    The lightest isotope of Bh known was produced in the new {sup 209}Bi({sup 52}Cr,n){sup 260}Bh reaction at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Positive identification was made by observation of eight correlated alpha particle decay chains in the focal plane detector of the Berkeley Gas-Filled Separator. {sup 260}Bh decays with a 35{sub -9}{sup +19} ms half-life by alpha particle emission mainly by a group at 10.16 MeV. The measured cross section of 59{sub -20}{sup +29} pb is approximately a factor of four larger than compared to recent model predictions. The influences of the N = 152 and Z = 108 shells on alpha decay properties are discussed.

  3. Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of); Jo, Daeseong [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2016-07-15

    In the present study, temperature evaluations on long-term storage of radioactive waste produced in the process of isotope production were performed using two different methods. Three-dimensional analysis was carried out assuming a volumetric heat source, while two-dimensional studies were performed assuming a point source. The maximum temperature difference between the predictions of the volumetric and point source models was approximately 5°C. For the conceptual design level, a point source model may be suitable to obtain the overall temperature characteristics of different loading locations. For more detailed analysis, the model with the volumetric source may be applicable to optimize the loading pattern in order to obtain minimum temperatures.

  4. Chromium and titanium isotopes produced in photonuclear reactions of vanadium, revisited

    International Nuclear Information System (INIS)

    Sakamoto, K.; Yoshida, M.; Kubota, Y.; Fukasawa, T.; Kunugise, A.; Hamajima, Y.; Shibata, S.; Fujiwara, I.

    1988-10-01

    Photonuclear production yields of 51 Ti and 51,49,48 Cr from 51 V were redetermined for bremsstrahlung end-point energies (E 0 ) of 30 to 1000 or 1050 MeV with an aid of radiochemical separation of Cr. The yield curves for 51 Ti, 51 Cr, 49 Cr and 48 Cr show a clear evidence for two components ; one for secondary-proton reaction at E 0 π ± and the other for photopion reaction, at E 0 > Q π ±, Q π ± being Q values for (γ,π + ) and (γ,π - xn)-reactions. The contributions of the secondary reactions for production of the Ti and Cr isotopes at E 0 > Q π ± were then estimated by fitting a calculated secondary yields to the observed ones at E 0 π ±, and found to be about 40, 20, 4 and 4 % for 51 Ti, 51 Cr, 49 Cr and 48 Cr, respectively, at E 0 = 400 to 1000 MeV. The calculation of the secondary yields was based on the excitation functions for 51 V(n,p) and (p,x'n) calculated with ALICE code and the reported photoneutron and photoproton spectra from 12 C and some other complex nuclei. The present results for 49 Cr are very close to the reported ones, while the present 48 Cr yields differ by a factor of about 50. For the 51 Ti and 51 Cr yields, there are some discrepancies between the present and reported ones. The yields corrected for the secondaries, in unit of μb/equivalent quantum, were unfolded into cross sections per photon, in unit of μb, as a function of monochromatic photon energy with the LOUHI-82 code. The results for the 51 Ti and 49 Cr are in disagreement in both the magnitude and shape with the theoretical predictions based on DWIA and PWIA. A Monte Carlo calculation does not reproduce the present result for the 49 Cr yield. (author)

  5. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya

    2014-12-01

    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: http://doi.dx.org/10.5564/mjc.v15i0.313Mongolian Journal of Chemistry  15 (41, 2014, p4-10  

  6. On the usage of electron beam as a tool to produce radioactive isotopes in photonuclear reactions

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2009-01-01

    We treat the Bremsstrahlung, induced by initial electron beam in converter, and the production of a desirable radioisotope due to the photonuclear reaction caused by this Bremsstrahlung. By way of illustration, the yield of a number of some, the most applicable in practice, radioisotopes is evaluated. The acquired findings persuade us that usage of modern electron accelerators offers a practicable way to produce the radioisotopes needful nowadays for various valuable applications in the nuclear medicine

  7. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  8. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    Science.gov (United States)

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  9. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  10. A combustion setup to precisely reference δ13C and δ2H isotope ratios of pure CH4 to produce isotope reference gases of δ13C-CH4 in synthetic air

    Directory of Open Access Journals (Sweden)

    H. Schaefer

    2012-09-01

    Full Text Available Isotope records of atmospheric CH4 can be used to infer changes in the biogeochemistry of CH4. One factor currently limiting the quantitative interpretation of such changes are uncertainties in the isotope measurements stemming from the lack of a unique isotope reference gas, certified for δ13C-CH4 or δ2H-CH4. We present a method to produce isotope reference gases for CH4 in synthetic air that are precisely anchored to the VPDB and VSMOW scales and have δ13C-CH4 values typical for the modern and glacial atmosphere. We quantitatively combusted two pure CH4 gases from fossil and biogenic sources and determined the δ13C and δ2H values of the produced CO2 and H2O relative to the VPDB and VSMOW scales within a very small analytical uncertainty of 0.04‰ and 0.7‰, respectively. We found isotope ratios of −39.56‰ and −56.37‰ for δ13C and −170.1‰ and −317.4‰ for δ2H in the fossil and biogenic CH4, respectively. We used both CH4 types as parental gases from which we mixed two filial CH4 gases. Their δ13C was determined to be −42.21‰ and −47.25‰ representing glacial and present atmospheric δ13C-CH4. The δ2H isotope ratios of the filial CH4 gases were found to be −193.1‰ and −237.1‰, respectively. Next, we mixed aliquots of the filial CH4 gases with ultrapure N2/O2 (CH4 ≤ 2 ppb producing two isotope reference gases of synthetic air with CH4 mixing ratios near atmospheric values. We show that our method is reproducible and does not introduce isotopic fractionation for δ13C within the uncertainties of our detection limit (we cannot conclude this for δ2H because our system is currently not prepared for δ2H-CH4 measurements in air samples. The general principle of our method can be applied to produce synthetic isotope reference gases targeting δ2H-CH4 or other gas species.

  11. Removal of Radium isotopes from oil co-produced water using Bentonite

    International Nuclear Information System (INIS)

    Al Masri, M.S.; Al Attar, L.; Budeir, Y.; Al Chayah, O.

    2010-01-01

    In view of environmental concern, sorption of radium on natural bentonite mineral (Aleppo, Syria) was investigated using batch-type method. Data were expressed in terms of distribution coefficients. An attempt to increase the selectivity of bentonite for radium was made by preparing M-derivatives. Loss of mineral crystallinity in acidic media and the formation of new phase, such as BaCO 3 , in Ba-derivative were imposed by XRD characterisations. Of the cationic forms, Na-bentonite had shown the highest affinity. Mechanisms of radium uptake were pictured using M-derivatives and simulated radium solutions. The obtained results indicated that surface sorption/surface ion exchange were the predominated processes. The distinct sorption behaviour observed with Ba-form was, possibly, a reflection of radium co-precipitation with barium carbonate. The competing order of macro component, likely present in waste streams, was drawn by studying different concentrations of the corresponding salt media. As an outcome, sodium was the weakest inhibitor. The performance of natural bentonite and the most selective forms, i.e. Ba- and Na-derivatives, to sorb radium from actual oil co-produced waters, collected form Der Ezzor Petroleum Company (DEZPC), was studied. This mirrored the influential effect of waters pH over other comparable parameters. (author)

  12. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  13. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  14. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV 208Pb + p reaction

    International Nuclear Information System (INIS)

    Fernandez-Dominguez, B.

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction 208 Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z fis , A fis , E* fis ). In addition, the number of post-fission neutrons emitted from the fission fragments, v post , has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  15. Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy.

    Directory of Open Access Journals (Sweden)

    Libin Rong

    2009-10-01

    Full Text Available Although potent combination therapy is usually able to suppress plasma viral loads in HIV-1 patients to below the detection limit of conventional clinical assays, a low level of viremia frequently can be detected in plasma by more sensitive assays. Additionally, many patients experience transient episodes of viremia above the detection limit, termed viral blips, even after being on highly suppressive therapy for many years. An obstacle to viral eradication is the persistence of a latent reservoir for HIV-1 in resting memory CD4(+ T cells. The mechanisms underlying low viral load persistence, slow decay of the latent reservoir, and intermittent viral blips are not fully characterized. The quantitative contributions of residual viral replication to viral and the latent reservoir persistence remain unclear. In this paper, we probe these issues by developing a mathematical model that considers latently infected cell activation in response to stochastic antigenic stimulation. We demonstrate that programmed expansion and contraction of latently infected cells upon immune activation can generate both low-level persistent viremia and intermittent viral blips. Also, a small fraction of activated T cells revert to latency, providing a potential to replenish the latent reservoir. By this means, occasional activation of latently infected cells can explain the variable decay characteristics of the latent reservoir observed in different clinical studies. Finally, we propose a phenomenological model that includes a logistic term representing homeostatic proliferation of latently infected cells. The model is simple but can robustly generate the multiphasic viral decline seen after initiation of therapy, as well as low-level persistent viremia and intermittent HIV-1 blips. Using these models, we provide a quantitative and integrated prospective into the long-term dynamics of HIV-1 and the latent reservoir in the setting of potent antiretroviral therapy.

  16. The usage of electron beam to produce radio isotopes through the uranium fission by γ-rays and neutrons

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.V.

    2010-01-01

    We treat the production of desirable radio isotopes due to the 238 U photo-fission by the bremsstrahlung induced in converter by an initial electron beam provided by a linear electron accelerator. We consider as well the radio isotope production through the 238 U fission by the neutrons that stem in the 238 U sample irradiated by that bremsstrahlung. The yield of the most applicable radio isotope 99 Mo is calculated. We correlate the findings acquired in the work presented with those obtained by treating the nuclear photo-neutron reaction. Menace of the plutonium contamination of an irradiated uranium sample because of the neutron capture by 238 U is considered. As we get convinced, the photo-neutron production of radio isotopes proves to be more practicable than the production by the uranium photo- and neutron-fission. Both methods are certain to be brought into action due to usage of the electron beam provided by modern linear accelerators

  17. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply; Problemas en la produccion en reactores nucleares de isotopos con fines medicos y la crisis mundial de suministro de molibdeno ({sup 9}9Mo)

    Energy Technology Data Exchange (ETDEWEB)

    Zubiarrain, A.

    2011-07-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  18. Identification of New Neutron-Rich Isotopes in the Rare-Earth Region Produced by 345 MeV/nucleon 238U

    Science.gov (United States)

    Fukuda, Naoki; Kubo, Toshiyuki; Kameda, Daisuke; Inabe, Naohito; Suzuki, Hiroshi; Shimizu, Yohei; Takeda, Hiroyuki; Kusaka, Kensuke; Yanagisawa, Yoshiyuki; Ohtake, Masao; Tanaka, Kanenobu; Yoshida, Koichi; Sato, Hiromi; Baba, Hidetada; Kurokawa, Meiko; Ohnishi, Tetsuya; Iwasa, Naohito; Chiba, Ayuko; Yamada, Taku; Ideguchi, Eiji; Go, Shintaro; Yokoyama, Rin; Fujii, Toshihiko; Nishibata, Hiroki; Ieki, Kazuo; Murai, Daichi; Momota, Sadao; Nishimura, Daiki; Sato, Yoshiteru; Hwang, Jongwon; Kim, Sunji; Tarasov, Oleg B.; Morrissey, David J.; Simpson, Gary

    2018-01-01

    A search for new isotopes in the neutron-rich rare-earth region has been carried out using a 345 MeV/nucleon 238U beam at the RIKEN Nishina Center RI Beam Factory. Fragments produced were analyzed and identified using the BigRIPS in-flight separator. We observed a total of 29 new neutron-rich isotopes: 153Ba, 154,155,156La, 156,157,158Ce, 156,157,158,159,160,161Pr, 162,163Nd, 164,165Pm, 166,167Sm, 169Eu, 171Gd, 173,174Tb, 175,176Dy, 177,178Ho, and 179,180Er.

  19. First Measurement of the Radionuclide Purity of the Therapeutic Isotope 67Cu Produced by 68Zn(n,x) Reaction Using natC(d,n) Neutrons

    Science.gov (United States)

    Sato, Nozomi; Tsukada, Kazuaki; Watanabe, Satoshi; Ishioka, Noriko S.; Kawabata, Masako; Saeki, Hideya; Nagai, Yasuki; Kin, Tadahiro; Minato, Futoshi; Iwamoto, Nobuyuki; Iwamoto, Osamu

    2014-07-01

    We have for the first time studied the radionuclide purity of the therapeutic isotope 67Cu produced by the 68Zn(n,x)67Cu reaction. The neutrons were obtained by the natC(d,n) reaction using 40 MeV deuterons. We measured the γ-ray spectra of the reaction products produced by bombarding an enriched 68ZnO sample with the neutrons with a high-purity Ge detector. We found that the relative production yields of the impurity radionuclides 64Cu, 65Zn, and 69mZn to 67Cu are extremely low. The result indicates that the 68Zn(n,x)67Cu reaction is the most promising among those proposed routes until now for producing high-quality 67Cu, and could solve a longstanding problem of establishing an appropriate production method for 67Cu.

  20. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  1. Ecologically and Geologically Relevant Isotope Signatures of C, N, and S in Okenone Producing Purple Sulfur Bacteria

    Science.gov (United States)

    Smith, D.; Steele, A.; Bowden, R.; Fogel, M. L.

    2013-12-01

    The carbon (C), nitrogen (N), and sulfur (S) cycles are linked in euxinic environments by purple sulfur bacteria (PSB). PSB could be responsible for the isotopic enrichments that have been observed in both fresh and marine anoxic basins. Okenane, the only recognized molecular fossil unique to PSB, is derived from okenone, a carotenoid pigment unique to Chromatiaceae. Since PSB have this exclusive molecular fossil and are fundamental components in the overall ecology of euxinic environments, a comprehensive study was undertaken to assess the C, N, and S metabolisms PSB carryout under precise laboratory conditions. The consequential isotopic fractionations that may be documented in modern environments and geologic record were examined. Autotrophic cultures of Marichromatium purpuratum DSMZ 1591 (Mpurp1591) were observed to have a fractionation between CO2 and biomass (Δ13Cbiomass - CO2), ranging from -16.1 to -37.6‰, dependent on growth stage. This rather large range of CO2 fractionation expands previously reported values for RuBisCO in PSB. Ammonium assimilation, controlled by glutamate dehydrogenase, was shown to have a fractionation (Δ15Nbiomass - NH4) of -15‰ in autotrophic cultures of Mpurp1591 and Thiocapsa marina 5653, documented for the first time in PSB. While it has been previously shown that phototrophic sulfur oxidizing bacteria connect sulfur and carbon cycling in euxinic ecosystems, the percentage of elemental sulfur and bulk biomass δ34S values of Mpurp1591 cells were contingent upon their carbon metabolisms. Here we show that the isotopic enrichments of S and N observed in freshwater and marine anoxic basins could be explained by the prevalence of PSB.

  2. Strong linkage of polar cod (Boreogadus saida) to sea ice algae-produced carbon: Evidence from stomach content, fatty acid and stable isotope analyses

    Science.gov (United States)

    Kohlbach, Doreen; Schaafsma, Fokje L.; Graeve, Martin; Lebreton, Benoit; Lange, Benjamin Allen; David, Carmen; Vortkamp, Martina; Flores, Hauke

    2017-03-01

    The polar cod (Boreogadus saida) is considered an ecological key species, because it reaches high stock biomasses and constitutes an important carbon source for seabirds and marine mammals in high-Arctic ecosystems. Young polar cod (1-2 years) are often associated with the underside of sea ice. To evaluate the impact of changing Arctic sea ice habitats on polar cod, we examined the diet composition and quantified the contribution of ice algae-produced carbon (αIce) to the carbon budget of polar cod. Young polar cod were sampled in the ice-water interface layer in the central Arctic Ocean during late summer 2012. Diets and carbon sources of these fish were examined using 4 approaches: (1) stomach content analysis, (2) fatty acid (FA) analysis, (3) bulk nitrogen and carbon stable isotope analysis (BSIA) and (4) compound-specific stable isotope analysis (CSIA) of FAs. The ice-associated (sympagic) amphipod Apherusa glacialis dominated the stomach contents by mass, indicating a high importance of sympagic fauna in young polar cod diets. The biomass of food measured in stomachs implied constant feeding at daily rates of ∼1.2% body mass per fish, indicating the potential for positive growth. FA profiles of polar cod indicated that diatoms were the primary carbon source, indirectly obtained via amphipods and copepods. The αIce using bulk isotope data from muscle was estimated to be >90%. In comparison, αIce based on CSIA ranged from 34 to 65%, with the highest estimates from muscle and the lowest from liver tissue. Overall, our results indicate a strong dependency of polar cod on ice-algae produced carbon. This suggests that young polar cod may be particularly vulnerable to changes in the distribution and structure of sea ice habitats. Due to the ecological key role of polar cod, changes at the base of the sea ice-associated food web are likely to affect the higher trophic levels of high-Arctic ecosystems.

  3. Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale

    NARCIS (Netherlands)

    Christianen, M.J.A.; Middelburg, J.J.; Holthuijsen, S.J.; Jouta, J.; Compton, T.J.; van der Heide, T.; Piersma, T.; Sinninghe Damsté, J.S.; van der Veer, H.W.; Schouten, S.; Olff, H.

    2017-01-01

    Coastal food webs can be supported by local benthic or pelagic primary produc-ers and by the import of organic matter. Distinguishing between these energy sources is essen-tial for our understanding of ecosystem functioning. However, the relative contribution ofthese components to the food web at

  4. Investigation of radiopharmaceuticals from cyclotron produced radionuclides and development of mathematical models. Part of a coordinated programme on production of radiopharmaceuticals from accelerator-produced isotopes

    International Nuclear Information System (INIS)

    Slaus, I.

    1983-04-01

    Several radioisotopes for diagnostic uses in nuclear medicine studies are produced using the internal 15 MeV (30 MeV alphas) deuteron beam of the ''Ruder Boskovic'' Institute in Zagreb, Yugoslavia. Some of the most important radioisotopes produced during the last few years are: Gallium-67 (d, xn reaction on a Cu/Ni/Zn target) with yield of 7.6 MBq/uAh, 81 Rb-sup(81m)Kr generator (α, 2n reaction on a Cu/Cu 2 Br 2 target) with a yield of 99 MBq/uAh, Iodine-123 (α, 2n reaction on a Cu/Ag/Sb target) with a yield of 6.3 MBq/uAh, and Indium-111 (α, 2n reaction on a Cu/Cu/Ag target) with a yield of 7.2 MBq/uAh. In addition, a simple mathematical lung model for regional ventilation measurements was developed and used for ventilation studies on normal subjects and subjects with various lung diseases. Based on these studies, a more sophisticated and quantitative lung ventilation model for radioactive tracer tidal breathing was further developed. In this new model, the periodicity of breathing is completely taken into account, and it makes possible to actually determine lung ventilation and volume parameters. The model is experimentally verified on healthy subjects, and the value of the effective specific ventilation obtained is in agreement with comparable parameters in the literature. sup(81m)Kr from a generator was used to perform these experimental studies

  5. Benthic primary producers are key to sustain the Wadden Sea food web : Stable carbon isotope analysis at landscape scale

    NARCIS (Netherlands)

    Christianen, M J A; Middelburg, J J; Holthuijsen, S J; Jouta, J; Compton, T J; van der Heide, T; Piersma, T.; Sinninghe Damsté, J S; van der Veer, H W; Schouten, S; Olff, H

    Coastal food webs can be supported by local benthic or pelagic primary producers and by the import of organic matter. Distinguishing between these energy sources is essential for our understanding of ecosystem functioning. However, the relative contribution of these components to the food web at the

  6. Benthic primary producers are key to sustain the Wadden Sea food web : stable carbon isotope analysis at landscape scale

    NARCIS (Netherlands)

    Christianen, M.J.A.; Middelburg, Jack J.; Holthuijsen, S.J.; Jouta, J.; Compton, T.J.; van der Heide, T.; Piersma, T.; Sinninghe Damsté, Jaap S.; van der Veer, H.W.; Schouten, Stefan; Olff, H.

    Coastal food webs can be supported by local benthic or pelagic primary producers and by the import of organic matter. Distinguishing between these energy sources is essential for our understanding of ecosystem functioning. However, the relative contribution of these components to the food web at the

  7. Isotope production

    International Nuclear Information System (INIS)

    Lewis, Dewi M.

    1995-01-01

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the

  8. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  9. New neutron-rich isotopes in the scandium-to-nickel region, produced by fragmentation of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.; Geissel, H.; Keller, H.; Magel, A.; Muenzenberg, G.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Suemmerer, K.; Donzaud, C.; Guillemaud-Mueller, D.; Mueller, A.C.; Stephan, C.; Tassan-Got, L.; Dufour, J.P.; Pravikoff, M.; Grewe, A.; Voss, B.; Vieira, D.J.

    1991-10-01

    We have measured production cross-sections of the new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, 71 Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u 86 Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss mesurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parameterization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide 78 Ni, are discussed. (orig.)

  10. Secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Melander, L.; Sonders, U.

    1983-01-01

    Secondary isotope effects can be produced by isotopes of elements heavier than hydrogen, but secondary isotope effects of hydrogen are of greater interest, because they are larger and can be measured easier. Such aspects of the problem as solvolytic reactions (in the case of α-position and β-position in organic compounds), reactions of compounds with deuterium remoted from reaction centre, with deuterium in nonsaturated compounds, participation of neighbouring groups in the reaction, are considered. Besides, steric isotope effects and inductive isotope effects are considered

  11. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    Science.gov (United States)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (δ7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  12. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by

    NARCIS (Netherlands)

    Weiss, G.M.; Pfannerstill, E.Y.; Schouten, S.; Sinninghe Damsté, J.S.; van der Meer, M.T.J.

    2017-01-01

    Over the last decade, hydrogen isotopes of longchainalkenones have been shown to be a promising proxy forreconstructing paleo sea surface salinity due to a strong hydrogenisotope fractionation response to salinity across differentenvironmental conditions. However, to date, the decouplingof the

  13. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  14. Process for isotope separation

    International Nuclear Information System (INIS)

    Emile, B.F.M.

    1983-11-01

    A process is claimed for isotopic separation applied to isotopes of elements that can be placed in at least a physicochemical form in which the isotopic atoms or the molecules containing these atoms can be easily displaced and for which there are selective radiations preferentially absorbed by the isotopes of a certain type or by the molecules containing them, said absorption substantially increasing the probability of ionization of said atoms or molecules relative to the atoms or molecules that did not absorb the radiation. The process consists of placing the isotopic mixture in such a form, subjecting it in a separation zone to selective radiations and to an electrical field that produces migration of positive ions toward the negative electrodes and negative ions toward the positive electrodes, and withdrawing from certain such zones the fractions thus enriched in certain isotopes

  15. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  16. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  17. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 < Ca, Mg < 1,000; 1 < K, Br, Sr, Li, Fe, SO4 < 100; Mn, Zn, Al, I, HCO3, SiO2 < 1. Mean ionic concentrations of Ca, Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  18. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.

    1981-01-01

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential

  19. Laser isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re, and Tc. 9 claims, 1 drawing figure

  20. Isotope effects on nuclear shielding

    International Nuclear Information System (INIS)

    Hansen, P.E.

    1983-01-01

    This review concentrates upon empirical trends and practical uses of mostly secondary isotope effects, both of the intrinsic and equilibrium types. The text and the tables are arranged in the following fashion. The most 'popular' isotope effect is treated first, deuterium isotope effects on 13 C nuclear shielding, followed by deuterium on 1 H nuclear shieldings, etc. Focus is thus on the isotopes producing the effect rather than on the nuclei suffering the effect. After a brief treatment of each type of isotope effect, general trends are dealt with. Basic trends of intrinsic isotope effects such as additivity, solvent effects, temperature effects, steric effects, substituent effects and hyperconjugation are discussed. Uses of isotope effects for assignment purposes, in stereochemical studies, in hydrogen bonding and in isotopic tracer studies are dealt with. Kinetic studies, especially of phosphates, are frequently performed by utilizing isotope effects. In addition, equilibrium isotope effects are treated in great detail as these are felt to be new and very important and may lead to new uses of isotope effects. Techniques used to obtain isotope effects are briefly surveyed at the end of the chapter. (author)

  1. Isotope separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1978-11-01

    Separation of isotopes is treated in a general way, with special reference to the production of enriched uranium. Uses of separated isotopes are presented quickly. Then basic definitions and theoretical concepts are explained: isotopic effects, non statistical and statistical processes, reversible and irreversible processes, separation factor, enrichment, cascades, isotopic separative work, thermodynamics. Afterwards the main processes and productions are reviewed. Finally the economical and industrial aspects of uranium enrichment are resumed [fr

  2. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  3. Neutron-Rich Silver Isotopes Produced by a Chemically Selective Laser Ion-Source: Test of the R-Process " Waiting-Point " Concept

    CERN Multimedia

    2002-01-01

    The r-process is an important nucleosynthesis mechanism for several reasons: \\begin{enumerate} \\item It is crucial to an understanding of about half of the A>60 elemental composition of the Galaxy; \\item It is the mechanism that forms the long-lived Th-U-Pu nuclear chronometers which are used for cosmochronolgy; \\item It provides an important probe for the temperature (T$ _{9} $)-neutron density ($n_{n}$) conditions in explosive events; and last but not least \\item It may serve to provide useful clues to and constraints upon the nuclear properties of very neutron-rich heavy nuclei. \\end{enumerate} \\\\ \\\\With regard to nuclear-physics data, of particular interest are the T$ _{1/2} $ and P$_{n-} $ values of certain$\\,$ "waiting-point"$\\,$ isotopes in the regions of the A $ \\approx $ 80 and 130. r-abundance peaks. Previous studies of $^{130}_{\\phantom{1}48}$Cd$_{82}$ and $^{79}_{29}$Cu$_{50}$. $\\beta$-decay properties at ISOLDE using a hot plasma ion source were strongly complicated by isobar and molecular-ion c...

  4. Fundamental shift or temporary blip

    International Nuclear Information System (INIS)

    Millicer, Helen

    2012-01-01

    Australia's electricity industry and our patterns of energy use are in flux and there's every reason to expect it to continue. A recently released report by the Australian Energy Market Operator showed electricity consumption in Australia has failed to meet the anticipated annual increase of 3% across the National Electricity Market. Despite population growth the forecast is 5.7% lower than estimated for 2011-2012. A number of reasons have been cited, such as; milder temperatures, reduced production at industrial facilities, lower output across manufacturing sectors, energy efficiency measures and increased installation of rooftop PV and solar hot water. Energy efficiency has been both aided and hindered by the carbon price debate. The Australian Enrgy MArket Commission is underatking consultation on a rule change toressure is improve the process for connecting embedded generation to distribution networks.

  5. Penning-trap Q-value determination of the Ga-71(v, e(-))Ge-71 reaction using threshold charge breeding of on-line produced isotopes

    NARCIS (Netherlands)

    Frekers, D.; Simon, M.C.; Andreoiu, C.; Bale, J. C.; Brodeur, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Lopez-Urrutia, J. R. Crespo; Delheij, P.; Ejiri, H.; Ettenauer, S.; Gallant, A. T.; Gavrin, V.; Grossheim, A.; Harakeh, M. N.; Jang, F.; Kwiatkowski, A. A.; Lassen, J.; Lennarz, A.; Luichtl, M.; Ma, T.; Macdonald, T. D.; Mane, E.; Robertson, D.; Schultz, B. E.; Simon, V. V.; Teigelhoefer, A.; Dilling, J.

    2013-01-01

    We present a first direct Q-value measurement of the Ga-71(v, e(-))Ge-71 reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like Ga-71(21+) and Ge-71(22+) using isobar separation of the on-line produced mother and daughter

  6. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  7. Melatonin labeled with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1989-01-01

    A study has been made of isotope exchange between melatonin and deuterium (D 2 O) or tritium (HTO) oxide under different conditions. The ease of isotope exchange for the indole ring hydrogens of melatonin in an acidic medium decreases over the series H 4 > H 2 H 6 >> H 7 , enabling the authors to process a route for production of melatonin labeled with hydrogen isotopes at positions 4,6, and 2 of the indole ring. A method has been suggested for producing melatonin labeled with hydrogen isotopes at position 2 by desulfurization of 2-(2,4-dinitro-phenylsulfenyl)melatonin at Ni(Re) (D)

  8. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  9. Substitution of stable isotopes in Chlorella

    Science.gov (United States)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  10. Penning-trap Q-value determination of the 71Ga(ν,e−)71Ge reaction using threshold charge breeding of on-line produced isotopes

    International Nuclear Information System (INIS)

    Frekers, D.; Simon, M.C.; Andreoiu, C.; Bale, J.C.; Brodeur, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J.R.; Delheij, P.; Ejiri, H.; Ettenauer, S.; Gallant, A.T.; Gavrin, V.; Grossheim, A.; Harakeh, M.N.; Jang, F.; Kwiatkowski, A.A.

    2013-01-01

    We present a first direct Q-value measurement of the 71 Ga(ν,e − ) 71 Ge reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like 71 Ga 21+ and 71 Ge 22+ using isobar separation of the on-line produced mother and daughter nuclei through threshold charge breeding in an electron-beam ion trap. In addition, isoionic samples of 71 Ga 21+ and 71 Ge 21+ were stored concurrently in the Penning trap and provided a separate Q-value measurement. Both independent measurements result in a combined Q-value of 233.5±1.2 keV, which is in agreement with the previously accepted Q-value for the ν cross-section calculations. Together with a recent measurement of the ν-response from the excited states in 71 Ge, we conclude that there are no further uncertainties in the nuclear structure, which could remove the persistent discrepancy between the SAGE and GALLEX calibration measurements performed with neutrinos from reactor-produced 51 Cr and 37 Ar sources and the theoretical expectation

  11. Therapeutic use of radioactive isotopes

    CERN Multimedia

    Caroline Duc

    2013-01-01

    In December, researchers from ISOLDE-CERN, the Paul Scherrer Institute (PSI) and the Institut Laue-Langevin (ILL) published the results of an in vivo study which successfully proved the effectiveness of four terbium isotopes for diagnosing and treating cancerous tumours.   Four terbium isotopes suitable for clinical purposes. “ISOLDE is the only installation capable of supplying terbium isotopes of such purity and intensity in the case of three out of the four types used in this study,” explains Karl Johnson, a physicist at ISOLDE.  “Producing over a thousand different isotopes, our equipment offers the widest choice of isotopes in the world!” Initially intended for fundamental physics research, ISOLDE has diversified its activities over time to invest in various projects in the materials science, biochemistry and nuclear medicine fields. The proof-of-concept study has confirmed that the four terbium isotopes 149Tb, 152Tb, 155Tb produ...

  12. International Isotopes Markets

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available The paper studies world markets of stable and radioactive isotopes. Isotopes have found various applications in science, industry, agriculture and other sectors of the economy, but especially - in medicine. Nuclear medicine is developing intensively all over the world thanks to the success in the treatment of various diseases with the help of radioactive pharmaceuticals (radiopharmaceuticals. The article uses empirical data from a forecast study of the global radiopharmaceuticals market made in 2015 by a research company «Markets and Markets» for the European, North American and global markets. The paper also analyzes the statistical data on the global export and import of natural uranium, enriched and depleted uranium, plutonium, thorium and some stable isotopes of non-medical purposes, presented by a company «Trend economy» in 2014. Despite a unique industrial base for the production of isotopes created in the Soviet Union Russia occupies a modest position on the world market of nuclear medicine except for certain areas. More than 80% of isotopes, produced in USSR were consumed domestically, the export of the stable and radioactive isotopes was in equal proportions. Now the country's domestic radiopharmaceuticals market is poorly developed. To radically change the situation, it is necessary to carry out reforms that stimulate the development of nuclear medicine.

  13. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  14. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  15. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, J.H.; Marks, T.J.

    1981-01-01

    A process for separating uranium isotopes is described which includes: preparing a volatile compound U-T, in which U is a mixture of uranium isotopes and T is a chemical moiety containing at least one organic or deuterated borohydride group, and which exhibits for at least one isotopic species thereof a fundamental, overtone or combination vibrational absorption excitation energy level at a frequency between 900 and 1100 cm -1 ; and irradiating the compound in the vapour phase with energy emitted by a radiation source at a frequency between 900 and 1100 cm -1 (e.g. a CO 2 laser). (author)

  16. Chemical production of chondrule oxygen isotopic composition

    Science.gov (United States)

    Thiemens, M. H.

    1994-01-01

    Defining the source of observed meteoritic O isotopic anomalies remains a fundamental challenge. The O isotopic composition of chondrules are particularly striking. There are at least three types of chemical processes that produce the isotopic compositions observed in chondrules and Ca-Al-rich inclusions (CAI's). The processes are rather general, viz, they require no specialized processes and the processes associated with chondrule production are likely to produce the observed compositions.

  17. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  18. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  19. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  20. Distribution of isotopes produced in superconductor YBa2Cu3O7-x and ferroelectric PbZr0.54Ti0.46O3 under irradiation by high-energy charged particles

    International Nuclear Information System (INIS)

    Didik, V.A.; Malkovich, R.Sh.; Skoryatina, E.A.; Kozlovskij, V.V.

    1998-01-01

    The concentration profiles of transmutation radioactive isotopes, formed in the YBa 2 Cu 3 O 7-x superconductor and PbZr 0.54 Ti 0.46 O 3 ferroelectric under high-energy proton radiation (with 10 and 15 MeV energy), deuterons (4 MeV), the 3 He and 4 He nuclei (20 MeV), are studied. Two types of the concentration profiles: monotonous ones and profiles with the maximum are identified. It is shown that the isotope profile is determined by the character of energy dependence of the nuclear reaction cross section, leading to formation of the given isotope

  1. Isotopes and agriculture

    International Nuclear Information System (INIS)

    Malavolta, E.

    1988-01-01

    The agriculture is defined as the art of desturbing the ecosystems in economical terms with the minimum of irreversible damage. Man survival in the biosphere will depend on its ability of using four technologies - mechanization, fertilizers, irrigation and pest disease control. The isotopes are usefull to establish means of producing more food and to preserve it; and clains of unbearable damages to the ecosystems caused by fertilizers and pesticides are not true, are presented. (author) [pt

  2. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  3. Isotopes for medicine and the life sciences

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Manning, F.J.

    1995-01-01

    Both radioisotopes and enriched stable isotopes are essential to a wide variety of applications in medicine, where they are used in the diagnosis and treatment of illnesses. This report focuses primarily on those medical uses and those in allied life sciences. In addition, other applications of isotopes are discussed; isotopes also find wide parallel uses in research in chemistry, physics, biology, and geosciences, with additional needs existing in the commercial sector. Topic areas include the following: enriched stable isotopes; reactor-produced radionuclides; accelerator-produced radionuclides and a national biomedical tracer facility; public-private partnership models for NBTF; a national isotope policy: proposal for a new way to manage the nation's isotope resources

  4. Canada's isotope crisis : what next?

    International Nuclear Information System (INIS)

    Nathwani, J.; Wallace, D.

    2010-01-01

    Canada urgently requires a rigorous debate on the strategic options for ensuring a robust, reliable, and affordable supply of radioactive isotopes. Should the debate be confined to how Canada can best develop the necessary technologies solely for our own use or should Canada abandon the idea of producing its own isotope supply and any future aspirations to serve the global market? Canada's Isotope Crisis focuses on the central policy question: do we dare to try to shape the future or do we retreat into silence because we are not prepared to make the necessary investments for the future well-being of Canadians? This volume showcases pointed essays and analysis from members of the academy and individuals who have made contributions to the development of medical isotopes and pioneered their use in medical practice. It also includes commentary from those involved in the production, manufacturing, processing, and distribution of isotopes. Canada's Isotope Crisis is a multi-disciplinary effort that addresses the global dimension of isotope supply and combines expert opinions on the present and past with knowledge of the relevant government agencies and the basis for their decisions at critical junctures.

  5. Laser photochemical separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Fowler, M.C.

    1979-01-01

    A method of separating isotopes of hydrogen utilizing isotopically selective photodissociation of organic acid is disclosed. Specifically acetic or formic acid containing compounds of deuterated nd hydrogenated acid is irradiated by radiation having a wavelength in the infrared spectrum between 9.2 to 10.8 microns to produce deuterium hydroxide and deuterium hydride respectively. Maintaining the acid at an elevated temperature significantly improves the yield of isotope separation

  6. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  7. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, G.H.; Bett, R.; Cuninghame, J.G.; Sims, H.

    1982-01-01

    In the separation of short-lived isotopes for medical usage, a solution containing sup(195m)Hg is contacted with vicinal dithiol cellulose which adsorbs and retains the sup(195m)Hg. sup(195m)Au is eluted from the vicinal dithiol cellulose by using a suitable elutant. The sup(195m)Au arises from the radioactive decay of the sup(195m)Hg. The preferred elutant is a solution containing CN - ion. (author)

  8. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    The isotopic fractionation associated with photodissociation of N2O, OCS and CO2, at different altitudes in Earth’s atmosphere, is investigated theoretically using constructed quantum mechanical models of the dissociation processes (i.e. potential energy surfaces and relevant coupling elements......’s stratosphere is nearly mass dependent, and only a small fraction of the observed anomalous oxygen-17 excess can be attributed to N2O photolysis. In contrast, stratospheric photolysis produces a significant inverse clumped isotope effect.(ii) Stratospheric OCS photolysis significantly enrich the remaining OCS...... in heavy carbon. The sulfur fractionation is weak and photolysis of OCS in the stratosphere produces only a small and mass dependent enrichment of heavy sulfur isotopes in the remaining OCS. Sulfur fractionation from the two remaining chemical sinks (oxidation by O(3P) and OH, respectively) is weak...

  9. Isotopic study of Karst water

    International Nuclear Information System (INIS)

    Leskovsek-Sefman, H.

    1985-01-01

    Measurement of the isotopic composition of water formed part of an extended investigation of the water drainage system in the Slovenian Karst. These studies were planned to complement geological and speleological investigations which are already being performed in this area, with the knowledge of the mechanism of changes in the isotopic composition of water in the natural environment on some smaller locations, Planina cave near Postojna where the vertical percolation of meteoric water through the karstified carbonate ceiling was studied and the water catchment areas of some small rivers, Ljubljanica, Rizana and Idrijca. Mass spectrometric investigations of the isotopic composition of some elements ( 18 O, D, 13 C and T) in water and in dissolved carbonates, as well as the isotopic composition of 18 O and 13 C in cave carbonates were performed. The results allow to conclude that the waters in karst aquifers in spite of producing the homogenisation to a great extent, qualitative determination of the retention time and of the prevailing sources for some springs and surface and underground water flows is nevertheless possible. The isotopic composition of 18 O in water and of 18 O and 13 C in dissolved carbonates depends on climatic conditions and on denudation processes. The investigation of cave carbonates revealed that they have different isotopic compositions of 18 O and 13 C because of different locations and also different ages

  10. Method for production of an isotopically enriched compound

    Science.gov (United States)

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  11. Stable isotope separation

    International Nuclear Information System (INIS)

    Botter, F.; Molinari, Ph.; Dirian, G.

    1964-01-01

    Pure deuterium has been separated from gaseous mixtures of hydrogen and deuterium by band displacement chromatography, using columns of palladium on a support. The best results were obtained with columns of Pd on sintered α alumina. With a column of this type, of total capacity about 2 liters, a preparative apparatus of low dead volume has been built which produces 1 liter of pure D 2 from a 50 p. 100 D 2 , 50 p. 100 100 H 2 mixture in about 12 minutes. As a first approximation chromatography is likened theoretically to counter current fractionation, neglecting superficial resistance to the exchange. and also longitudinal diffusions. The number of theoretical plates required necessary for a certain enrichment of the gas phase is determined graphically or by calculation, enabling comparisons to be made between the efficiencies of columns containing different amounts of palladium. Thermal Diffusion: For the separation of hydrogen isotopes a thermal diffusion installation, made of stainless steel and entirely tele-commanded has been constructed. The separation cascade is made up of two identical pairs of hot wire columns. Each pair can work separately or they may be connected by a thermosyphon. The temperature of the hot wire is kept at around 1000 deg C by direct current. With this installation, hydrogen samples with a deuterium content lower than o,5 ppm were obtained from a gas originally containing 32 ppm. It was thus possible to prepare tritium of 99,3 p. 100 concentration from gas with an initial content of 6 p. 100. For quantitative separation of xenon enriched five time in 124 Xe by thermal diffusion, two identical cascades were constructed, each consisting of 5 columns, working in parallel and the two being connected by thermosyphon or by a capillary tube linked to a thermal gas oscillation. The central tungsten wire is heated to 1200 deg C. The columns are grouped like cluster of a heat exchanger, in shell of 30 cm diameter through which cooling water

  12. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    ’s stratosphere is nearly mass dependent, and only a small fraction of the observed anomalous oxygen-17 excess can be attributed to N2O photolysis. In contrast, stratospheric photolysis produces a significant inverse clumped isotope effect.(ii) Stratospheric OCS photolysis significantly enrich the remaining OCS...

  13. Radioactive isotopes on the Moon

    International Nuclear Information System (INIS)

    Davis, R. Jr.

    1975-01-01

    A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed

  14. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  15. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, A.

    1977-01-01

    In a method for the separation of isotopes of uranium in UF 6 , the UF 6 is subjected to ir radiation at a predetermined wavelength or set of wavelengths for less than 10 -3 sec in such a manner that at least 0.1% of the 235 UF 6 molecules absorb an energy of more than 2000 cm -1 . The excited UF 6 is then reacted with a gaseous reagent, F 2 , Cl 2 , or Br 2 , to produce a product which is then recovered by means known in the art

  16. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  17. Photoluminescence analysis of semiconductors using radioactive isotopes

    International Nuclear Information System (INIS)

    Henry, M.O.; Deicher, M.; Magerle, R.; McGlynn, E.; Stotzler, A.

    2000-01-01

    The combination of photoluminescence spectroscopy with the radioactive isotopes 7 Be, 71 As, 111 Ag, 111 In, 191 Pt, 193 Au and 197 Hg is shown to provide definitive proof of the chemical identity of impurities producing photoluminescence spectra in all classes of semiconductors. The isotope 71 As is used to show that radioactive isotopes can provide a powerful means of producing and studying a fundamental crystal defect such as an anti-site. Factors governing the luminescence intensities which can lead to apparently anomalous results are also discussed

  18. Isotope separation

    International Nuclear Information System (INIS)

    Bett, R.; Sims, H.E.; Cuninghame, J.G.

    1983-01-01

    sup(195m)Au is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg, wherein sup(195m)Au is generated by radioactive decay of the sup(195m)Hg, by contacting the solution with an adsorbing agent to adsorb the sup(195m)Hg as Hg ++ ions followed by elution of sup(195m)Au arising from said radioactive decay. The adsorbing agent is 3-thio-2-hydroxypropyl-ether-Sepharose (R.T.M.); sup(195m)Au may be prepared in this way in a medical isotope generator and is suitable for use in gamma-scan studies of heart action. (author)

  19. Natural isotopes

    International Nuclear Information System (INIS)

    Vogel, J.C.

    1986-01-01

    14 C dates between 600 and 900 AD were obtained for early Iron Age sites in Natal, and from 1300 to 1450 AD for rock engraving sites in Bushmanland. Palaeoenvironmental data derived from the dating of samples related to sedimentary and geomorphic features in the central and northern Namib Desert enabled the production of a tentative graph for the changes in humidity in the region over the past 40000 years. These results suggest that relatively humid conditions came to an end in the Namib at ±25000 BP (before present). The increased precision of the SIRA mass spectrometer enabled the remeasurement of 13 C and 18 O in the Cango stalagmite. This data confirmed that the environmental temperatures in the Southern Cape remained constant to within ±1 o C during the past 5500 years. Techniques and applications for environmental isotopes in hydrology were developed to determine the origin and movement of ground water. Isotopic fractionation effects in light elements in nature were investigated. The 15 N/ 14 N ratio in bones of animals and humans increases in proportion to the aridity of the environment. This suggests that 15 N in bone from dated archaeological sites could be used to detect changes in past climatic conditions as naturally formed nitrate minerals are higly soluble and are only preserved in special, very dry environments. The sources and sinks of CO 2 on the South African subcontinent were also determined. The 13 C/ 12 C ratios of air CO 2 obtained suggest that the vegetation provides the major proportion of respired CO 2 . 9 refs., 1 fig

  20. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  1. The isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    Cassignol, Ch.

    1959-01-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  2. Effects of isotope selection on solution convergence in HZE transport

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Kiefer, Richard L.; Thibeault, Sheila A.

    1994-01-01

    A fragmenting iron ion produces hundreds of isotopes during nuclear reactions. These isotopes are represented in the solution of the transport problem. A reduced set of isotopes is selected to minimize the computational burden but introduces error in the final result. A minimum list of 122 isotopes is required for adequate representation of the mass and charge distributions of the secondary radiation fields. A reduced set of 80 isotopes is sufficient to represent the charge distribution alone and represents reasonably well the linear energy transfer properties of the iron beam. Because iron fragmentation produces nearly every isotope lighter than iron, the resulting 122-isotope list should be adequate for ion beams with charges equal to or less than 26.

  3. Segmental isotopic labeling by asparaginyl endopeptidase-mediated protein ligation.

    Science.gov (United States)

    Mikula, Kornelia M; Krumwiede, Luisa; Plückthun, Andreas; Iwaï, Hideo

    2018-03-13

    Segmental isotopic labeling can facilitate NMR studies of large proteins, multi-domain proteins, and proteins with repetitive sequences by alleviating NMR signal overlaps. Segmental isotopic labeling also allows us to investigate an individual domain in the context of a full-length protein by NMR. Several established methods are available for segmental isotopic labeling such as intein-mediated ligation, but each has specific requirements and limitations. Here, we report an enzymatic approach using bacterially produced asparagine endopeptidase from Oldenlandia affinis for segmental isotopic labeling of a protein with repetitive sequences, a designed armadillo repeat protein, by overcoming some of the shortcomings of enzymatic ligation for segmental isotopic labeling.

  4. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  5. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  6. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  7. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1986-05-01

    A rotating fully ionized plasma column was produced in a vacuum-arc centrifuge. The apparatus is described and new results for the rotational velocity and isotope enrichment of carbon and metal plasmas are shown. The ion rotation velocity is derived from electrostatic probes measurents and from the azimuthal displacement of the material deposited behind of a narrow slit. The isotope enrichment is measured with a modified quadrupole mass spectrometer, which determines, in situ, the relative abundance of the isotopes at the end of the plasm column at various radil positions. (Author) [pt

  8. Radiogenic age and isotopic studies

    International Nuclear Information System (INIS)

    1992-01-01

    This is one of an annual collection of reports presenting data from the Geochronology Section of the Continental Geoscience Division of the Geological Survey of Canada (GSC). The main purpose of this collection is to make geochronological and other radiogenic isotope data produced by the section available promptly to the geological community. Reports make full presentation of the data, relate these to field settings and make comparatively short interpretations. Other geochronological and isotope data produced in the laboratory but published in outside journals or separate GSC publications are summarized at the end of this report. Report 5 contains 24 papers from most regions of Canada, but particularly from British Columbia. The Geochronology Laboratory has, over the years, provided substantial U-Pb dating for the Cordilleran Division of the Geological Survey of Canada in Vancouver, and the results of a number of these studies are presented this year. A compilation of K-Ar ages is given. (figs., tabs., refs.)

  9. Radiogenic age and isotopic studies

    International Nuclear Information System (INIS)

    1991-01-01

    This is one of an annual collection of reports presenting data from the Geochronology Section of the Continental Geoscience Division of the Geological Survey of Canada (GSC). The main purpose of this collection is to make geochronological and other radiogenic isotope data produced by the section available promptly to the geological community. Reports make full presentation of the data, relate these to field settings and make comparatively short interpretations. Other geochronological and isotope data produced in the laboratory but published in outside journals or separate GSC publications are summarized at the end of this report. Reports in this issue give U-Pb zircon ages for rocks in Newfoundland, Yukon Territory, Manitoba, Ontario, and the Northwest Territories; present a compilation of K-Ar ages; and discuss Precambrian activity in New Brunswick, the geochronology of rock from the Northwest Territories, and reconnaissance Nd studies of rocks from the Northwest Territories. (figs., tabs., refs.)

  10. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  11. SHELL ISOTOPE GEOCHEMISTRY

    African Journals Online (AJOL)

    THE LAND SNAIL LIMICOLARIA KAMBEUL CHUDEAUI GERMAIN. IN THE ETHIOPIAN RIFT VALLEY: HABITAT, ECOLOGY AND. SHELL ISOTOPE GEOCHEMISTRY. Melanie J. Lengl, Henry F. Lamb',. Mohammed Umer Mohammed''* and Elias Dadebo4. 'NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, ...

  12. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  13. Stable isotope deltas: tiny, yet robust signatures in nature.

    Science.gov (United States)

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  14. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  15. Statistical clumped isotope signatures

    NARCIS (Netherlands)

    Röckmann, T.; Popa, M.E.; Krol, M.C.; Hofmann, M.E.G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of

  16. Statistical clumped isotope signatures

    Science.gov (United States)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  17. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. For this reason the Cr isotope system is being developed as a potential tool for paleo-redox reconstruction. Dissolved Cr in seawater...

  18. Method of preparing mercury with an arbitrary isotopic distribution

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  19. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  20. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  1. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  2. Calcium isotopes in wine

    Science.gov (United States)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  3. Studies of control materials of isotope transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Tetsuji; Suzuki, Hiroshi; Araki, Hiroshi; Fujita, Mitsutane; Hirano, Toshiyuki; Abe, Fujio; Numazawa, Takenori [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1999-02-01

    To control wavelength of laser, the physical properties of control materials of molecular excitation and isotope should be studied. We carried out isotopic enrichment, Si thin film growth, and preparation of boron isotope crystal and to make a calculation code of nuclear transmutation simulation. A gas circulation system for developing isotope laser was produced in order to control of molecular vibration excitation. We developed a single straight system of silicon isotope enrichment and silicon thin film preparation by infrared laser. When laser irradiated Si{sub 2}F{sub 6}, unreacted Si{sub 2}F{sub 6} contained 99.72% of {sup 28}Si at about 956 cm{sup -1} wavelength. When SiF{sub 4} or Si{sub 2}F{sub 6} with enriched isotope were directly decomposed by the plasma CVD method at about from 350 to 450degC, the yield of silicon crystal was about 28%. A homogeneous crystal with 10 mm diameter was obtained as the control material of boron isotope. The computer code for simulation of nuclear transmutation was improved to calculate the displacement damage, change of composition, induced radioactivity and decay heat. (S.Y.)

  4. Isotope separation using tuned laser and electron beam

    International Nuclear Information System (INIS)

    Trajmar, S.

    1987-01-01

    The method for producing and separating a stream of a selected isotope from an atomic beam containing a mixture of isotopes is described comprising the steps of: (a) producing an atomic beam containing the isotope of interest and other isotopes; (b) producing a magnetic field to broaden the energy domain of the individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough; (c) producing a laser beam; (d) adjusting the polarization of the laser beam to further maximize the activation of only individual magnetic sublevels of the isotope of interest; (e) aiming the laser beam to strike the atomic beam within the magnetic field and traverse the path of the atomic beam; (f) producing a collimated and high intensity beam of electrons within the magnetic field aimed to strike the atomic beam; and, (g) disposing deflection means to have the atomic beam pass therethrough after being struck by the electron beam and deflect the ionized isotope from the remainder of the beam to form a separate stream composed only of the isotope of interest

  5. Radiogenic age and isotopic studies

    International Nuclear Information System (INIS)

    Parrish, R.R.

    1990-01-01

    This is one of an annual collection of reports presenting data from the Geochronology Section of the Continental Geoscience Division of the Geological Survey of Canada (GSC). The main purpose of this collection is to make geochronological and other radiogenic isotope data produced by the section available promptly to the geological community. Reports make full presentation of the data, relate these to field settings and make comparatively short interpretations. Other geochronological and isotope data produced in the laboratory but published in outside journals or separate GSC publications are summarized at the end of this report. Reports in this issue cover methods for Rb-Sr and Sm-Nd isotopic analyses; 40 Ar- 39 Ar ages for the New Quebec Crater and for basaltic rocks; U-Pb ages for a differentiated mafic sill in the Ogilvie Mountains, plutonic rocks in the Contwoyto-Nose Lakes are, zircons from the Anton Complex, the Clinton-Colden gabbro-anorthosite intrusion, the Himag plutonic suite, the Campbell granite, the Central Gneiss Belt, Silurian granites, a metarhyolite, plagiogranite and gabbro, and the Wage shear zone; Rb-Sr ages for granitic rocks; K-Ar and Rb-Sr geochronology of granites; a compilation of K-Ar ages; ages of archean and proterozoic mylonites and pre-Misi granitoid domes; and reconnaissance geochronology of Baffin Island

  6. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  7. Development of proliferation resistant isotope separation technology

    International Nuclear Information System (INIS)

    Jeong, Doyoung; Ko, Kwanghoon; Kim, Taeksoo; Park, Hyunmin; Lim, Gwon; Cha, Yongho; Han, Jaemin; Baik, Sunghoon; Cha, Hyungki

    2012-02-01

    This project was accomplished with an aim of establishing the industrial facilities for isotope separation in Korea. The experiment for the measurement of neutrino mass that has been an issue in physics, needs very much of enriched calcium-48 isotope. However, calcium-48 isotope can be produced only by the electro-magnetic method and, thus, its price is very expensive. Therefore, we expect that ALSIS can replace the electro-magnetic method for calcium-48 isotope production. In this research stage, the research was advanced systematically with core technologies, such as atomic vapor production, the measurement of vapor characteristics and stable and powerful laser development. These researches will be the basis of the next research stages. In addition, the international research trends and cooperation results are reported in this report

  8. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Position-specific carbon isotope analysis of trichloroacetic acid by gas chromatography/isotope ratio mass spectrometry.

    Science.gov (United States)

    Breider, Florian; Hunkeler, Daniel

    2011-12-30

    Trichloroacetic acid (TCAA) is an important environmental contaminant present in soils, water and plants. A method for determining the carbon isotope signature of the trichloromethyl position in TCAA using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was developed and tested with TCAA from different origins. Position-specific isotope analysis (PSIA) can provide direct information on the kinetic isotope effect for isotope substitution at a specific position in the molecule and/or help to distinguish different sources of a compound. The method is based on the degradation of TCAA into chloroform (CF) and CO₂ by thermal decarboxylation. Since thermal decarboxylation is associated with strong carbon isotope fractionation (ε = -34.6 ± 0.2‰) the reaction conditions were optimized to ensure full conversion. The combined isotope ratio of CF and CO₂ at the end of the reaction corresponded well to the isotope ratio of TCAA, confirming the reliability of the method. A method quantification limit (MQL) for TCAA of 18.6 µg/L was determined. Samples of TCAA produced by enzymatic and non-enzymatic chlorination of natural organic matter (NOM) and some industrially produced TCAA were used as exemplary sources. Significant different PSIA isotope ratios were observed between industrial TCAA and TCAA samples produced by chlorination of NOM. This highlights the potential of the method to study the origin and the fate of TCAA in the environment.

  10. Availability of enriched stable isotopes: present status and future prospects

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1986-01-01

    The Electromagnetic Isotope Enrichment Facility (EMIEF) is currently used to produce 225 enriched stable isotopes of 50 elements. Among these are included most of the known elements with stable isotopes except for the noble gases, certain light elements, monisotopic elements, etc. The EMIEF can also be used to produce enriched samples of radioactive species, most notably the isotopes of uranium and plutonium. These enriched materials are placed in either the Sales Inventory of in the Research Materials Collection (RMC). The materials in the Sales Inventory are for sale to anyone on a first come, first served basis. Prices in the most recent catalog range from $0.05/mg for 99.8% 140 Ce to $1,267/mg for 98.5% 176 Lu. The materials in the RMC are made available to US researchers (or groups that include a US investigator) on a loan basis for use in non-destructive experiments and applications. In addition, certain samples have been provided to European investigators for cross-section studies through the auspices of EURATOM and the European-American Nuclear Data Committee. The status of the enriched isotopes included in the Sales Inventory is tabulated where isotopes are listed that are either not available or are in insufficient quantity or quality to meet current requests, as of 6/30/86. These can be summarized in the following subcategories: isotopes with zero inventory (22), Isotopes of insufficient quantity (17), and isotopes with insufficient enrichment quality (10). Of these 49 species, the supplies of 10 will be replenished by the scheduled FY86 enrichments in process (isotopes of bromine, calcium, nickel, potassium, rubidium, and strontium). In Table 3 are listed isotopes where the current inventory is less than the average annual sales level for the past five years. There are 47 isotopes listed, representing 25 different elements. Thus, there exists considerable potential for a substantial increase in the number of isotopes with zero inventory

  11. Paths to lifelong learning. Education and training in isotope hydrology

    International Nuclear Information System (INIS)

    Aggarwal, Pradeep K.; Sood, Din D.

    2001-01-01

    This article highlights the IAEA activities in building strategies and mechanisms for training isotope hydrologists worldwide in the context of the needs of developing and industrialised countries. The new strategy is expected to result in continually producing a large number of hydrologists who have acquired some experience with isotope applications

  12. Stable Isotopes in Evaluation of Greenhouse Gas Emissions

    Science.gov (United States)

    Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...

  13. Isotope enrichment systems

    International Nuclear Information System (INIS)

    Spevak, J.S.

    1983-01-01

    This invention provides a system in which both phases of the countercurrent contact isotope exchange concentration process are recycled continuously and an isotope depleted liquid phase substance thereof has its prior content of the desired isotope of hydrogen and/or oxygen replenished in an isotope regenerator by direct contact isotope exchange with a flow of steam from a source external to the concentrating process, whereby such replenished liquid serves as the feed liquid for the concentration process. As the supply of steam is gaseous, all problems incident to mineral solids in solution in liquid water are eliminated. As the elevated temperature corresponds to that of the steam, the isotope replenishment of the process feed liquid may be conducted without materially altering the characteristics of the steam for use as an energy source in any system

  14. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1976-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. In one embodiment, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by selective dissociation of said excited molecules by the absorption of a single photon of visible or ultraviolet light. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 11 Claims, 2 Drawing Figures

  15. Neutron skin effect of some Mo isotopes in pre-equilibrium reactions

    Indian Academy of Sciences (India)

    The neutron skin effect has been investigated for even isotopes of molybdenum at 25.6. MeV 94−100Mo(p,xn) ... exciton numbers from different radii of even Mo isotopes were used to obtain the corresponding neutron ..... nical applications such as the isotope production alternatives (for producing medical ra- dioisotopes ...

  16. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  17. Discovery of the cadmium isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Thoennessen, M.

    2010-01-01

    Thirty-seven cadmium isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  18. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  19. Ion sources for solids isotopic analysis

    International Nuclear Information System (INIS)

    Tyrrell, A.C.

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material. (Auth.)

  20. Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-27

    The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

  1. Accelerator Production of Isotopes for Medical Use

    Science.gov (United States)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  2. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  3. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1979-01-01

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  4. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  5. Isotopic research in Antarctica

    International Nuclear Information System (INIS)

    Schuetze, H.

    1983-01-01

    Since 1978 scientists of the Central Institute of Isotope- and Radiation Research of the Academy of Sciences of the GDR have participated in antarctic research. Substantial results have been achieved in research on isotope ratios, on the dynamics of water resources, on concentration of deuterium in lichens, and on age determination of a mummified seal and a penguin colony

  6. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  7. ITER isotope separation system

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Sherman, R.H.; Anderson, J.L.

    1990-09-01

    This document presents the results of a study that examined the technical operating and economic viability of an alternative Isotope Separation System (ISS) design based on the distributed design concept. In the distributed design, the ISS is broken up into local independently operable subsystems matched to local processing requirements. The distributed design accepts the same feeds and produces essentially the same products as the reference design. The distributed design consists of two separate, independent subsystems. The first, called ISS-H, receives only protium-dominated streams and waste water from tritium extraction. It has two cryogenic distillation columns and can produce a 50 percent D, 50 percent T product since it lacks D/T separation capability. A final 80 percent T 2 concentration product can be obtained by blending the 50 percent T 2 stream from ISS-H with the more than 99 percent T 2 stream from the second subsystem, ISS-D. The second subsystem receives only deuterium-dominated feeds, which also contain some protium. ISS-D is as complex as the reference design, but smaller. Although each subsystem has some advantages, such as only two cryogenic distillation columns in ISS-H and better than 99 percent steady state T 2 product in ISS-D, the combined subsystems do not offer any real advantage compared to the reference IISS. The entire distributed ISS design has been simulated using Ontario Hydro's FLOSHEET steady state process simulator. Dynamic analysis has not been done for the distributed design. (10 refs., 3 figs., 8 tabs.)

  8. Production of isotopes using high power proton beams

    Science.gov (United States)

    Nolen, Jr., Jerry A.; Gomes, Itacil C.

    2015-12-01

    The invention provides for a method for producing isotopes using a beam of particles from an accelerator, whereby the beam is maintained at between about 70 to 2000 MeV; and contacting a thorium-containing target with the particles. The medically important isotope .sup.225Ac is produced via the nuclear reaction (p,2p6n), whereby an energetic proton causes the ejection of 2 protons and 6 neutrons from a .sup.232Th target nucleus. Another medically important isotope .sup.213Bi is then available as a decay product. The production of highly purified .sup.211At is also provided.

  9. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  10. The reactor and the production of isotopes

    International Nuclear Information System (INIS)

    Hevesy, G. de

    1962-01-01

    The construction of the cyclotron immensely advanced the availability of radioactive tracers, a few of which even today can be produced only with the aid of this device. But even this great advance was overshadowed by the fabulous production of isotopes by the reactors. Isotopes of almost any element and of almost unlimited activity became available. It now became possible to apply H 3 - discovered already in the 'thirties by Rutherford and Oliphant - and C 14 , and these were used in thousands of investigations

  11. Procedure for 40K isotope separation from beam of potassium atoms using optical orientation of atoms and radio-frequency excitation of target isotope

    International Nuclear Information System (INIS)

    Nikitin, A.I.; Velichko, A.M.; Vnukov, A.V.; Mal'tsev, K.K.; Nabiev, Sh.Sh.

    1999-01-01

    The procedure for potassium isotope separation, which is liable to reduce of the prise of the product as compared with the up-to-date prise of the 40 K isotope obtained by means of electromagnetic procedure for isotope separation, is proposed. The scheme assumes the increasing flow of the wanted isotope at the sacrifice of the increasing intensity of atomic beam and the increase of the selectivity of need isotope atoms at the sacrifice of the the reduction in the square of collector profile. The objective is achieved that provide of polarized state of the potassium atoms is produced by optic orientation with circular-polarized light [ru

  12. Isotopes and radiation technology - Indian scene

    International Nuclear Information System (INIS)

    Rao, S.M.

    1996-01-01

    India's isotope programme is today largely self-sustaining both in terms of availability of isotope products and the range of their applications in medicine, industry, hydrology, agriculture and research. Nuclear medicine is practised by over 200 medical institutions whereas 300 organisations offer radioimmunoassay service. Tracer technology, nucleonic gauging and isotope radiography are fairly well accepted by the Indian industry for troubleshooting, NDT and process control. There are three large radiation plants for sterilisation of medical products. Radiation chemical processing with both gamma and EB shows good promise. In agriculture, sixteen mutants of various crops have been produced using gamma-radiation and distributed for commercial cultivation. A strong programme of research on radiation preservation of food has finally resulted in the clearance of some irradiated foods by the Government of India. (author). 20 refs., 2 tabs

  13. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV {sup 208}Pb + p reaction; Etude de la production des fragments de fission issus de la reaction {sup 208}Pb + p a 500 AMeV

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Dominguez, B

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction {sup 208}Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z{sub fis}, A{sub fis}, E*{sub fis}). In addition, the number of post-fission neutrons emitted from the fission fragments, v{sub post}, has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  14. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    Science.gov (United States)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  15. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1980-01-01

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235 UF 6 from 238 UF 6 . (U.K.)

  16. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  17. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1977-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 15 claims, 1 figure

  18. Isotope separation process

    International Nuclear Information System (INIS)

    Thomas, W.R.L.

    1979-01-01

    The instant invention relates to an improved process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same element in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than non-excited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  19. Perchlorate isotope forensics

    Science.gov (United States)

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  20. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  1. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  2. UWIS isotope separator

    International Nuclear Information System (INIS)

    Wojtasiewicz, A.

    1997-01-01

    Since 1995 the University of Warsaw Isotope Separator group has participated in the ISOL/IGISOL project at the Heavy Ion Cyclotron. This project consists in installation of an isotope separator (on line with cyclotron heavy ion beam) with a hot plasma ion source (ISOL system) and/or with an ion guide source (IGISOL system). In the report the short description of the present status of the project is presented

  3. Isotope toolbox turns 10

    DEFF Research Database (Denmark)

    Wenander, Fredrik; Riisager, Karsten

    2012-01-01

    REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes.......REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes....

  4. Isotopes in environmental research

    International Nuclear Information System (INIS)

    Bowen, G.; Rozanski, K.; Vose, P.

    1990-01-01

    Radioactive and stable isotopes have long been considered a very efficient tool for studying physical and biological aspects of how the global ecosystem functions. Their applications in environmental research are numerous, embracing research at all levels. This article looks at only a few of the approaches to environmental problems that involve the use of isotopes. Special attention is given to studies of the Amazon Basin. Environmental isotopes are very efficient tools in water cycle studies. Tritium, a radioactive tracer, is especially useful in studying dynamics of water movement in different compartments of the hydrosphere, both on the local and global scales. Heavy stable isotopes of hydrogen and oxygen (deuterium and oxygen-18) provide information about steady-state characteristics of the water cycle. Isotope methods, some relatively new, have a major role in site-specific studies. Some indicative examples include: Studying turnover of organic matter. Changes in the carbon-13/carbon-12 isotopic ratio of organic matter were used to determine the respective contributions of organic carbon derived from forest and pasture. Studying biological nitrogen fixation. One of the ways nitrogen levels in soil can be maintained for productivity is by biological nitrogen fixation. Studying nitrogen availability and losses. The experimental use of nitrogen-15 is invaluable for defining losses of soil nitrogen to the atmosphere and to groundwater. Studies can similarly be done with stable and radioactive sulphur isotopes. This article indicates some potential uses of isotopes in environmental research. While the major problem of global climate change has not been specifically addressed here, the clearing of the Amazon forest, one focus of the IAEA's environmental programme, may have serious consequences for the global climate. These include substantial reduction of the amount of latent heat transported to the regions outside the tropics and acceleration of the greenhouse

  5. Isotopes in everyday life

    International Nuclear Information System (INIS)

    Seligman, H.; Gillen, V.A.

    1990-12-01

    Isotopes represent a tool which can do certain jobs better, easier, quicker, more simply and cheaper than competitive methods. Some measurements could not be done at all without the use of isotopes as there are no alternative methods available. A short review of these tools of science in their different fields is given: food and agriculture, human health applications, industry, hydrology, geology, geochemistry, geophysics and dating, environment, basic scientific research

  6. International Isotopes Markets

    OpenAIRE

    Stanislaw Z. Zhiznin; Vladimir M. Timohov

    2016-01-01

    The paper studies world markets of stable and radioactive isotopes. Isotopes have found various applications in science, industry, agriculture and other sectors of the economy, but especially - in medicine. Nuclear medicine is developing intensively all over the world thanks to the success in the treatment of various diseases with the help of radioactive pharmaceuticals (radiopharmaceuticals). The article uses empirical data from a forecast study of the global radiopharmaceuticals market made...

  7. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  8. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.

    2013-01-01

    Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce...... such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact...

  9. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs.

  10. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2014-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author)

  11. Stable isotope geochemistry: definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2015-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  12. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2012-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 89 refs., 12 figs., 2 tabs.

  13. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2008-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  14. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  15. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2016-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  16. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2013-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 91 refs., 12 figs., 2 tabs.

  17. Silicon isotopes in angrites and volatile loss in planetesimals.

    Science.gov (United States)

    Pringle, Emily A; Moynier, Frédéric; Savage, Paul S; Badro, James; Barrat, Jean-Alix

    2014-12-02

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium-aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50-100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal-silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion.

  18. Chromium isotope fractionation during oxidative weathering of the Antrim Basalts: An insight into the global Cr geochemical cycle

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Cr isotopes fractionate during oxidative weathering of the continents; the oxidation of Cr (III) bearing minerals produces soluble Cr (VI) which is enriched in the heavy isotope, Cr (VI) is lost to local rivers resulting in a Cr depleted, isotopically light residual soil [1] [2]. To date, research...

  19. Radioactive isotopes production in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Arzumanov, A.; Batishev, V.; Popov, Y.; Sychikov, G.; Hamidov, N.

    1996-01-01

    The purpose of the project - is to develop the regular production of Radioactive Isotopes to meet the needs of the Republic of Kazakstan.To reach the purpose of the Project the follow problems will be solved: Producing beams of accelerated ions with necessary parameters and develop methods of effective extraction of necessary radioactive isotopes from irradiated targets. During carrying out the Project there will be irradiation of internal targets also, when high beam current is needed. It is also necessary to increase reliability and accuracy of the beam diagnosis, to improve reliability of radiation shielding, radioisotopes transport system and others. There will be developed method for uniform irradiation of the target. Extraction of radioactive isotopes from irradiated targets and preparing ready to use isotopes products will be produced in separate radiochemical laboratory.Anticipated results: Beam of ions parameters necessary for isotopes production, it's diagnostics on the internal and external targets; effective and reliable target's head; yields of radioactive isotopes while irradiating targets by light particles in the reactions of (p, x n) type; radiochemical methods of radiochemical separation and extraction from irradiated targets; production of Co-57, Ga-67, Cd-109, Tl-201 radioactive isotopes at the necessary quantities; additionally it is planned also to carry out research on production of Iodine-123 (for medicine use), Polonium-209 and Plutonium-206 (for environment research)

  20. Isotope separation process

    International Nuclear Information System (INIS)

    Wexler, Sol; Young, C.E.

    1976-01-01

    Description is given of method for separating a specific isotope from a mixture of isotopes of an actinide element present as MF 6 , wherein M is the actinide element. It comprises: preparing a feed gas mixture of MF 6 in a propellant gas; passing the feed gas mixture under pressure through an expansion nozzle while heating the mixture to about 600 0 C; releasing the heated gas mixture from the nozzle into an exhaust chamber having a reduced pressure, whereby a gas jet of MF 6 molecules, MF 6 molecular clusters and propellant gas molecules is formed, the MF 6 molecules having a translational energy of about 3 eV; converting the MF 6 molecules to MF 6 ions by passing the jet through a cross jet of electron donor atoms so that an electron transfer takes place between the MF 6 - molecules and the electron donor atoms whereby the jet is now quasi-neutral, containing negative MF 6 - ions and positive donor ions; passing the quasi-neutral jet through a radiofrequency mass filter tuned to separate the MF 6 ions containing the specific isotope from the MF 6 - ions of the other isotopes and neutralizing and collecting the MF 6 molecules of the specific isotope [fr

  1. Transportation of medical isotopes

    International Nuclear Information System (INIS)

    Nielsen, D.L.

    1997-01-01

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document

  2. Transportation of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  3. Flood of new isotopes offers keys to stellar evolution

    International Nuclear Information System (INIS)

    Normile, D.

    1996-01-01

    Germany's heavy-ion accelerator laboratory, GSI, is renowned for giving researchers the tools needed to create the six heaviest elements in the periodic table. But the facility is also helping scientist fill gaps at an unprecedented rate in another important atomic listing - a chart of unstable isotopes. Measuring the mass and lifetimes of those isotopes, in turn, could help scientist confirm theories about how supernovae produce heavy elements and distribute them throughout the universe. This article describes both the research process and some of the isotopes

  4. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted...... and for more quantitative model of the magmatic processes producing enigmatic stable isotope compositions of rhyolitic and granite magmas....

  5. Separation of uranium isotopes by accelerated isotope exchange reactions

    International Nuclear Information System (INIS)

    Seko, M.; Miyake, T.; Inada, K.; Ochi, K.; Sakamoto, T.

    1977-01-01

    A novel catalyst for isotope exchange reaction between uranium(IV) and uranium(VI) compounds enables acceleration of the reaction rate as much as 3000 times to make industrial separation of uranium isotopes economically possible

  6. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    Science.gov (United States)

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. Copyright © 2015, American Association for the Advancement of Science.

  7. Sulfur isotope separation by dissociative electron attachment

    International Nuclear Information System (INIS)

    Allen, J.E. Jr.

    1976-01-01

    A new method is proposed for isotope separation in polyatomic molecules. In this method a laser is tuned to selectively excite a vibration mode of the molecules which contain the isotope to be removed. Before deactivation can occur, an electron is attached, resulting in an excited negative ion. Under the proper conditions this ion may dissociate, producing fragments which can be removed chemically. This technique is particularly suited to isotope separation in SF 6 . Potential energy curves are developed for this molecule to aid in explaining the mechanism of dissociative electron attachment. These curves incorporate much of the information known about attachment of electrons to SF 6 and represent an improvement over previously published curves. A rough estimate of the effectiveness of this method is made, based upon the temperature-dependent branching ratio for SF 5 - and SF 6 - . The calculations indicate that the fractional 34 S content in a sample of processed SF 6 may increase 4760 times the content in a natural sample. A kinetics model is presented to describe the attachment of electrons to SF 6 . Numerical solutions of the appropriate rate equations indicate that application of the proposed technique to SF 6 will require a low pressure environment and a large number of zero energy electrons. A simple theory is developed to determine threshold intensities for laser-induced dissociation on the basis of experimentally measurable quantities, the total laser power and the reaction volume. Using the focused beam method, a series of experiments performed to separate isotopes in SF 6 establishes a value of 6.0 MW/cm 2 for the threshold intensity. This eliminates dissociative electron attachment as an explanation of isotope separation by the focused beam method, but does not exclude it as a viable technique for separating isotopes

  8. Annual report 1982 of ZWO Laboratory of Isotope Geology

    International Nuclear Information System (INIS)

    1983-07-01

    This report gives a brief account of the activities of the ZWO Laboratory of Isotope Geology during 1982. The main point of interest is the research for new possible applications of gas-mass spectrometry in geology. Kr and Xe turn out to be produced at the spontaneous fission of 238 U present in zirconium crystals. Mass-spectrometric isotope analysis has been carried out, resulting in a tentative age estimation. (Auth.)

  9. Mass independent isotope effects and their observations in nature

    International Nuclear Information System (INIS)

    Thiemens, M.H.

    2002-01-01

    In 1983, Thiemens and Heidenreich reported the first chemically produced mass independent isotope effect. A significant feature of the fractionation was that it identically produced the isotopic relation observed in the calcium-aluminum inclusions in the Allende meteorite. This δ 17 O=δ 18 O composition had previously been thought to represent a nucleosynthetic component as no chemical process was capable of producing a mass independent isotopic composition. It now appears nearly certain that the meteoritic oxygen isotopic anomalies were produced by chemical, rather than nuclear, processes. Since oxygen is the major element in stony planets this represents a major event in the formation of the solar system. In a recent review (Thiemens, 1999), it has been shown that mass independent isotopic compositions are pervasive in the Earth's atmosphere. Molecules which have been demonstrated to possess mass independent isotopic compositions include: O 2 , O 3 , CO 2 , CO, and N 2 O. In each case, the specific nature of the mass independent isotopic composition has provided details of their atmospheric chemistry that could not have been obtained by any other measurement technique. Most recently, solid materials have been observed to possess mass independent isotopic composition. In this paper, these observations are briefly discussed. These solid reservoirs include: 1) carbonates and sulphates from Mars, 2) terrestrial aerosol sulphate, 3) sulphides and sulphates from the Earth, ranging in time from 3.8 to 2.2 billion years before present, 4) sulphates from the Namibian desert and 5) the Antartic Dry Valleys. The information obtained from these measurements is extraordinarily wide ranging, extending from understanding the history of Martian atmosphereregolith interaction to the evolution of the oxygen in the Earth's earliest atmosphere. As was the case for gas phase species, this information and insight could not have been obtained by any other measurement technique

  10. Decay studies of neutron deficient astatine isotopes, ch. 3

    International Nuclear Information System (INIS)

    Lingeman, E.W.A.

    1975-01-01

    The neutron deficient astatine isotopes were produced using 209 Bi( 3 He, xn) reactions; excitation functions were measured. Singles gamma-ray measurements and level schemes are presented for 207 At, 208 At and 209 At. Energies and relative intensities of gamma-rays belong to decays to Po isotopes are also reported. A special investigation on 206 Po decay was performed. (V.J.C.)

  11. Stable Isotope Group 1983 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1984-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and related fields, and mass spectrometer instrumentation, during 1983, is described

  12. Stable Isotope Group 1982 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1983-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences during 1982, in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation, is described

  13. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    the Arctic Ocean. A comprehensive database is created based on ice core and weather station data from Greenland within the period 1890-2014. Present day annual and seasonal mean values are computed for 326 locations in Greenland. Parameterization of the spatial distribution of temperature and δ18O are used...... to create the first observational-based gridded map of δ18O of precipitation for Greenland and the first gridded map of Greenland temperature, where ice core borehole temperatures are included. The database and gridded maps create a framework for conducting model-data comparison of isotope-enabled GCMs......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  14. A Canadian isotope success story

    International Nuclear Information System (INIS)

    Malkoske, G.

    1997-01-01

    This paper provides some historical background on the commercial production of radioisotopes in Canada, and the evolution of the present vendor, MDS Nordion. The chief isotopes are molybdenum 99, iodine 131, and cobalt 60. Cobalt 60 for medical sterilization and irradiation is considered to be a significant growing market. Food irradiation is believed to be a big marketing opportunity, although attempts to popularize it have so far met with limited success. Candu reactors supply the bulk of the world's 60 Co supply. Eighty percent of the world's 99 Mo supply for medical imaging comes from Canada, and is at present produced in NRU Reactor, which is to be replaced by two Maple reactors coming into production in 1999 and 2000

  15. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  16. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  17. Environmental isotope survey

    International Nuclear Information System (INIS)

    Jacovides, J.S.

    1979-03-01

    Work was initiated on the 1st of September 1971 with the objective of finding out how best to use environmental isotopes in the interpretation of the hydrology, particularly subsurface hydrology, of Cyprus through a sparse reconnaissance sampling of all the major aquifers and springs covering the whole island. The distribution of sampling was such that the survey in itself could assist in clarifying particular hydrogeologic problems, provide a better understanding of the water systems of the island, establish a general environmental isotope - framework of the hydrologic regimen of Cyprus as well as to provide the basis for specific, more detailed, studies to be undertaken subsequently

  18. Isotopes in Condensed Matter

    CERN Document Server

    G Plekhanov, Vladimir

    2013-01-01

    This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe  in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed.  The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.

  19. Isotope separation using lasers

    International Nuclear Information System (INIS)

    Guers, K.

    1976-01-01

    In laser isotope separation atoms or molecules of a specific isotopic species are selectively excited in a gaseous mixture by means of laser light and then separated from the mixture by physical or chemical methods. The methods of excitation and separation are described and compared in terms of their effectiveness. The use of molecules is investigated by analysing the possibility of the selective excitation of UF 6 . Finally, developments in this field are discussed together with the cost of research incurred in the United States and the economic benefit expected from this research. (author)

  20. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  1. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    2015-08-28

    Aug 28, 2015 ... Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  2. Isotope separation using tunable lasers

    International Nuclear Information System (INIS)

    Snavely, B.B.

    1975-01-01

    Various processes for laser isotope separation based upon the use of the spectroscopic isotope effect in atomic and molecular vapors are discussed. Emphasis is placed upon processes which are suitable for uranium enrichment. A demonstration process for the separation of uranium isotopes using selective photoionization is described. (U.S.)

  3. Molecular laser isotope separation programme at BARC

    International Nuclear Information System (INIS)

    Sarkar, Sisir K.; Parthasarathy, Venkatachari

    2007-09-01

    Little over thirty years ago, BARC ventured into a new frontier of scientific research: Molecular Laser Isotope Separation (MLIS) programme based on the interaction of lasers with molecules. The initial project was a scheme to produce enriched uranium. The idea was to use the intense, monochromatic light of lasers to break the chemical bonds of only those molecules containing the fissionable isotope uranium-235. At present the programme is evolving around separation of low and middle mass isotopes, namely sulphur 34/33/32, oxygen 17/18, carbon 13/12, hydrogen T/D/H to be followed by an advanced engineering programme designed to lead to a demonstration plant. The latest results have come very close to the design parameters specified for a full-scale separation of carbon isotopes. All these expertise provide an infra structure for future front line R and D activities in the general area of Laser Photochemical Technology which would include i) LIS of other useful elements ii) Material processing and iii) Fuel reprocessing/ waste management (author)

  4. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methanes

    International Nuclear Information System (INIS)

    Engelmann, U.

    1992-12-01

    Suitable analytical methods need to be developed and tested for process control and reliable tritium accountability within the fuel cycle of a fusion reactor. The analysis of all hydrogen isotopes and isotopically labelled methanes were taken as an example to examine the laser Raman spectroscopy combined with mass spectrometry using an Omegatron. The Omegatron is suitable for the analysis of all hydrogen isotopes and the stable helium isotopes. The limits of the applicability of this mass spectrometer were shown by the analysis of mixtures of deuterated methanes. The Omegatron was also used for experiments of the radiochemical 'Wilzbach' exchange reaction between tritium and methanes. A laser Raman spectrometer for the analysis of gaseous mixtures containing tritium was designed and build using the single components. A tritium compatible, metal sealed Raman cell with windows of high optical quality and additional measures to minimize stray light was successfully employed for the first time. The Raman spectra of the hydrogen isotopes were measured in the pure rotation and in the rotation vibration branches and used for calibration. The deuterated methanes (CH x D 4-x ) were investigated by Raman spectroscopy, the measured wavenumbers assigned to the corresponding normal vibrations and the wavenumbers of the rotational fine structure summarized in tables. The normal vibrations of the tritiated methanes (CH x T 4-x , CD x T 4-x ) produced via the 'Wilzbach' reaction were determined and assigned. The normal vibrations of the CD x T 4-x molecules were measured by Raman spectroscopy for the first time. (orig.)

  5. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  6. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  7. Isotopic geochemistry of calcretes

    International Nuclear Information System (INIS)

    Chiquet, A.

    1999-01-01

    Sr, C, O, U and Th isotopes have been studied in calcium carbonates accumulated in soils of semi-arid regions (calcretes). We have investigated 1) the role of in-situ weathering and climatic conditions in the genesis of calcretes from Central Spain (Toledo) and Atlantic Morocco (Sidi Ifni), 2) the origin of Ca, and 3) the age of these accumulations. Our results show that calcium carbonates replace the parent rock (granite) and preserve the bulk-volume. Sr isotopic data suggest that 90 % of Ca in the spanish calcretes is allochthonous and related to atmospheric input. O and C isotopic compositions of the carbonates are compatible with soil temperatures and respiration rates during the beginning of the summer season. U-series disequilibrium in the carbonates suggests ages ranging between 40 to 270 ky, commensurate with the climatic cycle. The Sr isotopic signatures of spanish and moroccan calcretes are similar to those of the Quaternary marine carbonates. Assuming that only Ca-rich aerosols have been the source for calcretes of the studied regions, we propose that the wide continental plateaus exposed during glacial periods (low sea level) provided a major part of the calcic input to the soils. Semi-arid conditions of Spain and Morocco allowed the percolation and precipitation in the soil profiles to form calcretes. (author)

  8. Isotopes in aquaculture research

    International Nuclear Information System (INIS)

    Ayyappan, S.; Dash, B.; Ghosh, A.S.

    1996-01-01

    The applications of isotopes in aquaculture research include areas like aquatic production process, nutrient cycles and food chain dynamics, fish nutrition, fish physiology, genetics and immunology. The radioisotopes commonly used are beta emitters. The use of different radioisotopes in aquaculture research are presented. 2 tabs

  9. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  10. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  11. Nuclear structure studies of rare francium isotopes using Collinear Resonance Ionization Spectroscopy (CRIS)

    CERN Document Server

    AUTHOR|(CDS)2084441

    It was known for many years that nuclei possessing certain numbers of protons (Z) and neutrons (N), called the magic numbers (8,20,28,50,82,126...), exhibit characteristic behavior and are in general more stable than their neighboring isotopes. As the capabilities of producing isotopes with more extreme values of Z and N increased, it was realized that those spherical nuclei only represent a small fraction of the total number of isotopes and that most isotopes are deformed. In order to study exotic isotopes and their deformation, it was necessary to develop new experimental techniques that would be powerful enough to be able to cope with very small production yields, but precise enough to measure the nuclear properties (such as radii and moments) with relatively small uncertainties. One technique that can measure nuclear properties of scarcely produced isotopes is in-source resonant ionization, but this technique does not allow for sufficient precision to deduce nuclear quadrupole moments. Furthermore, this t...

  12. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  13. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  14. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  15. Selective heating and separation of isotopes in a metallic plasma

    International Nuclear Information System (INIS)

    Moffa, P.; Cheshire, D.; Flanders, B.; Myer, R.; Robinette, W.; Thompson, J.; Young, S.

    1983-01-01

    Several types of metallic plasmas have been produced at the Plasma Separation Process facility of TRW. Selective heating and separation of specific isotopes in these plasmas have been achieved. In this presentation the authors concentrate on the modeling of the selective heating and separation of the isotope Ni 58 . Two models are currently used to describe the excitation process. In both, the electromagnetic fields in the plasma produced by the ICRH antenna are calculated self-consistently using a kinetic description of the warm plasma dielectric. In the Process Model Code, both the production of the plasma and the heating are calculated using a Monte Carlo approach. Only the excitation process is treated in the second simplified model. Test particles that sample an initial parallel velocity distribution are launched into the heating region and the equations of motion including collisional damping are calculated. For both models, the perpendicular energy for a number of particles with different initial conditions and representing the different isotopes is calculated. This information is then input into a code that models the performance of our isotope separation collector. The motion of the ions of each isotope through the electrically biased collector is followed. An accounting of where each particle is deposited is kept and hence the isotope separation performance of the collector is predicted

  16. Preparation of isotopes and sources of actinide elements

    International Nuclear Information System (INIS)

    Madic, C.; Bourges, J.; Koehly, G.

    1984-09-01

    As the C.E.A. possesses no isotopic separation facility, the productions of isotopes of actinide elements are performed: a) by neutron irradiation and chemical treatment of special targets, b) by milking decay products from stocks of aged actinide elements, c) by chemical treatment of alpha active wastes. These productions concern the following isotopes: 233 U, 238 Pu, 242 Pu, 243 Cm, 242 Cm, 244 Cm (a); 228 Th, 229 Th, 234 U, 237 U, 239 Np, 240 Pu, 241 Am, 248 Cm (b); 237 Np, 241 Am (c). These isotopes are produced to satisfy French and international needs and are sent to users in various forms: solutions, metals, oxides, fluorides, or in different sources forms. The preparation of the sources represents an important field of activities divided into two parts: 1/Industrial sources: production of large series of different sources, 2/ Scientific sources: production of sources suitable for a specific scientific problem. A large overview of these activities is given

  17. Clumped isotope effects during OH and Cl oxidation of methane

    DEFF Research Database (Denmark)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan Albrecht

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH...... was produced from the reaction of O(1D) (from O3 photolysis) with H2O, and Cl was from photolysis of Cl2. Samples were taken from the reaction cell and analyzed for methane (12CH4, 12CH3D, 13CH4, 13CH3D) isotopologue ratios using tunable infrared laser direct absorption spectroscopy. Measured kinetic isotope...... effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE...

  18. Fuel preparation for use in the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Policke, Timothy A.; Aase, Scott B.; Stagg, William R.

    2016-10-25

    The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, but not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.

  19. Measuring hydrogen-isotope distribution profiles

    International Nuclear Information System (INIS)

    Poppe, C.H.

    1977-01-01

    A new nondestructive technique was developed for measuring the depth distribution of hydrogen isotopes absorbed or implanted near the surface of any material. The method allows real-time study of the inventory and diffusion of hydrogen, deuterium, and tritium. Briefly, the technique involves bombarding the surface with a monoenergetic beam of ions chosen for their ability to react with the hydrogen isotope in question and produce fast neutrons. The energy distribution of the neutrons is a sensitive indicator of the energy of the bombarding particles at the instant of reaction, and hence of the depth of the reaction sites below he surface of the material. A sensitivity of one part per million was obtained for tritium in copper. The technique is applicable to several energy-related materials problems. 5 figures

  20. Isotope enrichment systems

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1984-01-01

    This patent provides a process for concentrating the heavy isotope of at least one element of the class consisting of hydrogen and oxygen by the dual temperature exchange of the heavy and light isotopes of the element between two separable fluids containing said element. One of the fluids is in the gaseous phase and the other in the liquid phase. The liquid phase is provided as a solution consisting essentially in minor molar proportion, of water and in major molar proportion, of material selected from the class consisting of the water miscible organic hydroxy and/or carboxy compounds which have a ratio of carbon atoms to their alcoholic and acidic hydroxyl groups not greater than 2

  1. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  2. Isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.; Rabinowitz, P.

    1979-01-01

    A method of separating the isotopes of an element is described, which comprises the steps of (i) subjecting molecules of a gaseous compound of the element simultaneously to two infrared radiations of different wavelengths, the first radiation having a wavelength which corresponds to an absorption band of the compound, which in turn corresponds to a mode of molecular motion in which there is participation by atoms of the element, and the second radiation having a power density greater than 10 6 watts per cm 2 , thereby exciting molecules of the compound in an isotopically selective manner, this step being conducted in such manner that the excited molecules either receive a level of energy sufficient to cause them to undergo conversion by unimolecular decomposition or receive a level of energy sufficient to cause them to undergo conversion by reaction with molecules of another gas present for that purpose; and (ii) separating and recovering converted molecules from unconverted molecules. (author)

  3. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  4. Tracing anthropogenic thallium in soil using stable isotope compositions.

    Science.gov (United States)

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.

  5. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  6. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  7. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  8. Infrared laser isotope separation

    International Nuclear Information System (INIS)

    Lyman, J.L.; Rockwood, S.D.

    1976-01-01

    An evaluation of isotope separation by selective molecular dissociation using CO 2 laser radiation is presented. Results of gaseous SF 6 irradiation in cylindrical cells are tabulated. The experiments were conducted using 25 percent SF 6 in H 2 irradiated by CO 2 laser pulses at 10.6 μm. Results show enhancements in reaction yield as high as 50, corresponding to a photon utilization efficiency of 0.5 percent

  9. Dual isotope assays

    International Nuclear Information System (INIS)

    Smith, G.F.W.; Stevens, R.A.J.; Jacoby, B.

    1980-01-01

    Dual isotope assays for thyroid function are performed by carrying out a radio-immunoassay for two of thyroxine (T4), tri-iodothyronine (T3), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG), by a method wherein a version of one of the thyroid components, preferably T4 or T3 is labelled with Selenium-75 and the version of the other thyroid component is labelled with a different radionuclide, preferably Iodine-125. (author)

  10. The isotope correlation experiment

    International Nuclear Information System (INIS)

    Koch, L.; Schoof, S.

    1983-01-01

    The ESARDA working group on Isotopic Correlation Techniques, ICT and Reprocessing Input Analysis performed an Isotope Correlation Experiment, ICE with the aim to check the feasibility of the new technique. Ten input batches of the reprocessing of the KWO fuel at the WAK plant were analysed by 4 laboratories. All information to compare ICT with the gravimetric and volumetric methods was available. ICT combined with simplified reactor physics calculation was included. The main objectives of the statistical data evaluation were detection of outliers, the estimation of random errors and of systematic errors of the measurements performed by the 4 laboratories. Different methods for outlier detection, analysis of variances, Grubbs' analysis for the constant-bias model and Jaech's non-constant-bias model were applied. Some of the results of the statistical analysis may seem inconsistent which is due to the following reasons. For the statistical evaluations isotope abundance data (weight percent) as well as nuclear concentration data (atoms/initial metal atoms) were subjected to different outlier criteria before being used for further statistical evaluations. None of the four data evaluation groups performed a complete statistical data analysis which would render possible a comparison of the different methods applied since no commonly agreed statistical evaluation procedure existed. The results prove that ICT is as accurate as conventional techniques which have to rely on costly mass spectrometric isotope dilution analysis. The potential of outlier detection by ICT on the basis of the results from a single laboratory is as good as outlier detection by costly interlaboratory comparison. The application of fission product or Cm-244 correlations would be more timely than remeasurements at safeguards laboratories

  11. Medical Isotopes Production Project: Molybdenum-99 and related isotopes: Environmental Impact Statement, Volume I

    International Nuclear Information System (INIS)

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related medical isotopes (iodine-131, xenon-133 and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition to the preferred alternative, three other reasonable alternatives and a no action alternative are analyzed in detail. The sites for the three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities, of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity

  12. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  13. Isotopically enriched structural materials in nuclear devices

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Shimwell, J.; Gilbert, M.R.

    2015-01-01

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  14. Isotope effects on chemical equilibria

    International Nuclear Information System (INIS)

    Golding, P.D.

    1974-01-01

    The thermodynamic equilibrium constants of three deuterated substituted acetic acids are reported. The calculation of secondary isotope effects of the second kind for the three isotopic acid pairs has been accomplished by the appropriate comparison of thermodynamic equilibrium constants, and by the comparison of isotopic slopes. The effect of substituent variation on the isotope effects reported here disqualifies the simple inductive model as a legitimate description of secondary isotope effects of the second kind. The correlation of diminishing isotope effect per deuterium atom with increasing acidity is also invalidated by the present results. The syntheses of 9-thia-9,10-dihydrophenanthrene-9-oxide and thioxanthene-10-oxide are described. These compounds have been partially deuterated at their respective methylene positions. Spectral evidence indicates stereoselectivity of the methylene protons in the exchange reactions of both compounds. (author)

  15. New neutron-deficient isotopes of barium and rare-earth elements

    CERN Document Server

    Bogdanov, D D; Karnaukhov, V A; Petrov, L A; Plochocki, A; Subbotin, V G; Voboril, J

    1976-01-01

    The authors present an investigation of the short-lived neutron- deficient isotopes of barium and rare-earth elements. By using the BEMS-2 isotope separator on a heavy ion beam, 19 new isotopes were produced with mass numbers ranging from 117 to 138. Five of these (/sup 117/Ba, /sup 129,131/Nd and /sup 133,135/Sm) turned out to be delayed proton emitters. The beta -decay probabilities for the new isotopes have been analyzed in terms of the beta -strength function. An analysis of the proton spectrum shape has been performed using the statistical model for delayed proton emission.

  16. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  17. Melatonin labelled by hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1988-01-01

    Isotope exchange of melatonin with deuterium (D 2 O) and tritium (HTO) oxides under different conditions is studied. Simplicity of isotope exchange of hydrogens of the indole ring of melatonin in the acidic medium decreases in series H 4 >H 2 >H 6 >>H 7 , that permits to suggest the way of melatonin preparation labelled by hydrogen isotopes in positions 4,6 and 2 of the indole ring. The way of melatonin preparation labelled by hydrogen isotopes in position 2 according to the reaction of desulfation 2-(2,4-dinitrophenylsulphenyl) melatonin at catalyst Ni(Re)(D) is suggested

  18. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  19. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  20. Electromagnetic Isotope Separator: Magnetic Measurement: Results; Le separateur electromagnetique d'isotopes: mesures magnetiques: resultats

    Energy Technology Data Exchange (ETDEWEB)

    Boge, M.; Baud, A. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The electromagnetic isotope separator of the University of Grenoble can produce isotope with a great purity. It has two magnets with non homogeneous field. The magnetic fields have been corrected with shims in order to obtain an accuracy of {+-}10{sup -4} in the useful region. These shims have been determined experimentally by measurements. The great enrichment factors obtained, prove the quality of this apparatus. (author) [French] Le separateur electromagnetique d'isotopes de la Faculte des Sciences de Grenoble a prouve qu'il etait capable de produire des isotopes de grande purete. Ceci a ete rendu possible en grande partie grace a la qualite des deux electro-aimants identiques a champ inhomogene places en cascade. Les champs magnetiques ont ete corriges par des shims afin d'obtenir dans la zone utile de l'entrefer une precision de champ de l'ordre de {+-}10{sup -4}. Ces shims ont ete determines experimentalement par des mesures magnetiques tres precises. Les coefficients d'enrichissement eleves obtenus font de cet appareil un precieux outil de travail. (auteur)

  1. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    Science.gov (United States)

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  2. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  3. Advanced isotope separation

    International Nuclear Information System (INIS)

    1982-01-01

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems

  4. Isotopic characteristics of canopies in simulated leaf assemblages

    Science.gov (United States)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.

    2014-11-01

    site where leaves were sampled. The model predicts a persistent ∼1‰ difference in δ13Clitter for the two sites which is consistent with higher water availability in the tropical forests. This work provides a new framework for linking contemporary ecological observations to the geochemical record using flux-weighted isotope data and lends insights to the effect of forest architecture on organic and isotopic records of ancient terrestrial ecosystems. How many leaves from a litter assemblage are necessary to distinguish the isotopic gradient characteristics of canopy closure? Are mean δ13Cleaf values for a litter assemblage diagnostic of a forest biome? Can we predict the δ13C values of cumulative litter, soil organic matter, and organic carbon in sedimentary archives using litter flux and isotope patterns in canopies? We determined the δ13C range and mean for different sized assemblages of leaves sampled from data for each forest. We re-sampled very high numbers of leaves in order to estimate the isotopic composition of cumulative carbon delivered to soils as litter, and compared these results to available data from forest soils. Modeled leaf and soil organic carbon isotope patterns in this study offer insights to how forest structure can be derived from carbon isotope measurements of fossil leaves, as well as secondary material - such as teeth, hair, paleosol carbonates, or organic soil carbon (van der Merwe and Medina, 1989; Koch, 1998; Secord et al., 2008; Levin et al., 2011).Distinct climate and seasonal difference in the Panamá and Maryland, USA forests are reflected in their canopy isotope gradients. In the tropical forest of Panamá, leaves are produced throughout the year within a canopy that is both extensively and persistently closed (Leigh, 1975; Lowman and Wittman, 1996). In the temperate forest of Maryland leaves are produced during the spring when canopy conditions are relatively open (Korner and Basler, 2010).

  5. Isotope determination of sulfur by mass spectrometry in soil samples

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2012-12-01

    Full Text Available Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-, which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2- concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms was carried out by isotope ratio mass spectrometry (IRMS. In this work, the labeled material (K2(34SO4 was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.

  6. Oxygen-isotope fractionation between marine biogenic silica and seawater

    Science.gov (United States)

    Matheney, Ronald K.; Knauth, L. Paul

    1989-12-01

    A stepwise fluorination technique has been used to selectively react away the water component of hydrous silica in order to better investigate the oxygen-isotope fractionation between biogenic opal and seawater, and to determine whether all taxa produce opal which is suitable for oxygen isotope paleothermometry. δ 18O of the tetrahedrally coordinated silicate oxygen of siliceous sponge spicules grown at a wide variety of temperatures varies independently of temperature. δ 18O from an Eocene radiolarian ooze sample is much more enriched than would be expected from any reasonable isotopic temperature curve, given the probable growing temperature of the sample. δ 18O of diatom samples seems to vary systematically with temperature and to conform approximately to the isotopic temperature curve for diatom frustules obtained by Labeyrie and coworkers using an entirely different analytical technique. Sponges appear to precipitate silica in isotopic disequilibrium with seawater oxygen, and old radiolarian silica may exchange readily with cold oceanic bottom water. Neither will apparently be useful for paleo-climate reconstructions. Diatoms may be useful in deducing ancient surface-water temperatures, but the systematic variation of α with temperature for diatoms may not be related to the quartz-H 2O equilibrium isotope fractionation.

  7. SIMS analysis of isotopic impurities in ion implants

    International Nuclear Information System (INIS)

    Sykes, D.E.; Blunt, R.T.

    1986-01-01

    The n-type dopant species Si and Se used for ion implantation in GaAs are multi-isotopic with the most abundant isotope not chosen because of potential interferences with residual gases. SIMS analysis of a range of 29 Si implants produced by several designs of ion implanter all showed significant 28 Si impurity with a different depth distribution from that of the deliberately implanted 29 Si isotope. This effect was observed to varying degrees with all fifteen implanters examined and in every 29 Si implant analysed to date 29 Si + , 29 Si ++ and 30 Si implants all show the same effect. In the case of Se implantation, poor mass resolution results in the implantation of all isotopes with the same implant distribution (i.e. energy), whilst implants carried out with good mass resolution show the implantation of all isotopes with the characteristic lower depth distribution of the impurity isotopes as found in the Si implants. This effect has also been observed in p-type implants into GaAs (Mg) and for Ga implanted in Si. A tentative explanation of the effect is proposed. (author)

  8. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  9. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  10. Oxygen isotopic ratios of primordial water in carbonaceous chondrites

    Science.gov (United States)

    Fujiya, Wataru

    2018-01-01

    In this work, I estimate the δ18 O and δ17 O values of primordial water in CM chondrites to be 55 ± 13 and 35 ± 9‰, respectively, based on whole-rock O and H data. Also, I found that the O and/or H data of Antarctic meteorites are biased, which is attributed to terrestrial weathering. This characteristic O isotopic ratio of water together with corresponding water abundances in CM chondrites are consistent with the origin of water as ice processed by photochemical reactions at the outer regions of the solar nebula, where mass-independent O isotopic fractionation and water destruction may have occurred. Another possible mechanism to produce the inferred O isotopic ratio of water would be O isotopic fractionation between water vapor and ice, which likely occurred near the condensation front of H2O (snow line) in the solar nebula. The inferred O isotopic ratio of water suggests that carbonate in CM chondrites formed at low temperatures of <150 °C. The O isotopic ratios of primordial water in chondrites other than CM chondrites are not well constrained.

  11. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  12. Tank waste isotope contributions

    International Nuclear Information System (INIS)

    VANKEUREN, J.C.

    1999-01-01

    This document presents the results of a calculation to determine the relative contribution of selected isotopes to the inhalation and ingestion doses for a postulated release of Hanford tank waste. The fraction of the dose due to 90 Sr, 90 Y, 137 Cs and the alpha emitters for single shell solids and liquids, double shell solids and liquids, aging waste solids and liquids and all solids and liquids. An effective dose conversion factor was also calculated for the alpha emitters for each composite of the tank waste

  13. Cold regions isotope applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids. (TFD)

  14. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1976-01-01

    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  15. Isotopic Thermionic Generator

    International Nuclear Information System (INIS)

    Clemot, M.; Devin, B.; Durand, J.P.

    1967-01-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [fr

  16. Mass-independent isotope effects.

    Science.gov (United States)

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  17. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  18. Multispectral dual isotope and NMR image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vannier, M.W.; Beihn, R.M.; Butterfield, R.L.; De Land, F.H.

    1985-05-01

    Dual isotope scintigraphy and nuclear magnetic resonance imaging produce image data that is intrinsically multispectral. That is multiple images of the same anatomic region are generated with different gray scale distribution and morphologic content that is largely redundant. Image processing technology, originally developed by NASA for satellite imaging, is available for multispectral analysis. These methods have been applied to provide tissue characterization. Tissue specific information encoded in the grapy scale data from dual isotope and NMR studies may be extracted using multispectral pattern recognition methods. The authors used table lookup minimum distance, maximum likelihood and cluster analysis techniques with data sets from Ga-67 / Tc-99m, 1-131 labeled antibodies / Tc-99m, Tc-99m perfusion / Xe-133 ventilation, and NMR studies. The results show; tissue characteristic signatures exist in dual isotope and NMR imaging, and these spectral signatures are identifiable using multispectral image analysis and provide tissue classification maps with scatter diagrams that facilitate interpretation and assist in elucidating subtle changes.

  19. CARBOHYDRATE USE AND ASSIMILATION BY LITTER AND SOIL FUNGI ASSESSED BY CARBON ISOTOPES AND BIOLOG ASSAYS

    Science.gov (United States)

    Soil fungi are integral to decomposition in forests, yet identification of probable functional roles of different taxa is problematic. Here, we compared carbohydrate assimilation patterns derived from stable isotope analyses on cultures with those produced from cultures on Biolo...

  20. A Test of Carbon and Oxygen Stable Isotope Ratio Process Models in Tree Rings.

    Science.gov (United States)

    Roden, J. S.; Farquhar, G. D.

    2008-12-01

    Stable isotopes ratios of carbon and oxygen in tree ring cellulose have been used to infer environmental change. Process-based models have been developed to clarify the potential of historic tree ring records for meaningful paleoclimatic reconstructions. However, isotopic variation can be influenced by multiple environmental factors making simplistic interpretations problematic. Recently, the dual isotope approach, where the variation in one stable isotope ratio (e.g. oxygen) is used to constrain the interpretation of variation in another (e.g. carbon), has been shown to have the potential to de-convolute isotopic analysis. However, this approach requires further testing to determine its applicability for paleo-reconstructions using tree-ring time series. We present a study where the information needed to parameterize mechanistic models for both carbon and oxygen stable isotope ratios were collected in controlled environment chambers for two species (Pinus radiata and Eucalyptus globulus). The seedlings were exposed to treatments designed to modify leaf temperature, transpiration rates, stomatal conductance and photosynthetic capacity. Both species were grown for over 100 days under two humidity regimes that differed by 20%. Stomatal conductance was significantly different between species and for seedlings under drought conditions but not between other treatments or humidity regimes. The treatments produced large differences in transpiration rate and photosynthesis. Treatments that effected photosynthetic rates but not stomatal conductance influenced carbon isotope discrimination more than those that influenced primarily conductance. The various treatments produced a range in oxygen isotope ratios of 7 ‰. Process models predicted greater oxygen isotope enrichment in tree ring cellulose than observed. The oxygen isotope ratios of bulk leaf water were reasonably well predicted by current steady-state models. However, the fractional difference between models that

  1. Isotopic effects on non-linearity, molecular radius and intermolecular ...

    Indian Academy of Sciences (India)

    study the isotopic effects on the non-linearity parameter and the physicochemical proper- ties of the liquids, which in turn has been used to study their effect on the intermolecular interactions produced thereof. Keywords. Non-linearity parameter; molecular radius; free length; intermolecular inter- actions. PACS Nos 43.25.

  2. 235U isotope enrichment in the metastable levels of UI

    International Nuclear Information System (INIS)

    Gagne, J.M.; Demers, Y.; Dreze, C.; Pianarosa, P.

    1983-01-01

    We have used optical pumping to produce a substantial 235 U enrichment in the metastable levels of UI in the discharge afterglow of a hollow-cathode vapor generator. The measured isotope-enrichment factor for the level at 3800 cm -1 is approximately 20

  3. 196Hg and 202Hg isotopic ratios in chondrites: revisited

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.

    1976-01-01

    Additional evidence for an isotopically anomalous Hg fraction in unequilibrated meteorites has been obtained using neutron activation to produce 196 Hg and 202 Hg followed by stepwise heating to extract the Hg. In the latest experiments Allende matrix samples released the anomalous Hg but various high-temperature inclusions did not. Nucleogenetic processes are suggested as the probable cause of the anomaly. (Auth.)

  4. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...

  5. Isotopic separation by centrifugation. Rotating plasma

    International Nuclear Information System (INIS)

    Perello, M.; Vigon, M. A.

    1972-01-01

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs

  6. Chemical behaviour of a few atoms of rutherfordium (Rf, Z= 104) and of dubnium (Db, Z= 105) produced at Orsay

    International Nuclear Information System (INIS)

    Trubert, D.; Hussonnois, M.; Le Naour, C.; Brillard, L.; Monroy Guzman, F.; Le Du, J.F.; Servajean, V.

    1998-01-01

    The isotopes 261 Rf and 262 Db were produced by irradiation of a 248 Cm target with respectively 18 O and 19 F ions, at the MP Tandem accelerator of Orsay (France). These isotopes were isolated in HF medium, using he RACHEL setup. Moreover, the radioisotope 262 DB was produced by a nuclear reaction. (authors)

  7. Overview on recent developments: alternative isotope production methods in Canada

    International Nuclear Information System (INIS)

    Huynh, K.

    2012-01-01

    The purpose of this paper is to provide an update on the Government of Canada's programs in alternative isotope production methods for securing supply of technetium 99m for Canadians. The supply disruptions of isotopes in 2007 and 2009/2010 caused by unplanned outages at AECL's National Research Universal (NRU) reactor highlighted the fragility of the supply chain that delivers medical isotopes, specifically Technetium 99m (Tc99m) to patients in Canada and globally. Tc99m, which is derived from its parent, molybdenum99 (Mo99) is the most widely used medical isotope for imaging, and accounts for 80 percent of nuclear medicine diagnostic procedures. Prior to the outage, nearly all the Mo99 produced for the world market came from five aging government owned research reactors in Canada, France, the Netherlands, Belgium and South Africa. The NRU, the largest of these, produced about 30 to 40 percent of the world supply of isotopes prior to 2009 - since its return to service in 2010, its world market share is estimated at 15 to 20%.

  8. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  9. Secondary reactions as a tool to produce exotic nuclei

    International Nuclear Information System (INIS)

    Dufour, J.P.; Fleury, A.; Bimbot, R.

    1980-01-01

    The possibility of using secondary reactions as tool to produce new isotopes is considered. This question is renewed with the emergence of intense beams of energetic heavy ions in the range of 20 to 100 MeV/nucleon. Three different methods are considered. They involve either the 'in situ' production of a secondary radioactive target, which interacts with the primary beam, or the production of a radioactive secondary beam by an inverse fusion or a fragmentation process. Very heavy or very neutron deficient isotopes can be produced by these methods

  10. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  11. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  12. Basic methods of isotope analysis

    International Nuclear Information System (INIS)

    Ochkin, A.V.; Rozenkevich, M.B.

    2000-01-01

    The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru

  13. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    also contributed to the discovery of new isotopes. More recently, most of the very neutron- rich isotopes have been discovered by projectile fission. After a brief summary of the discovery of fission process itself, these production mechanisms will be discussed. The paper concludes with an outlook on future discoveries of ...

  14. Method of separating boron isotopes

    Science.gov (United States)

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  15. Geochemistry and cosmochemistry of isotopes

    International Nuclear Information System (INIS)

    Vojtkevich, G.V.

    1983-01-01

    Main peculiarities of geochemistry of stable non-radiogenic isotopes are considered to ascertain conditions of rock and mineral deposit formation. Prevalence of radioactive isotopes in the Earth crust, Moon and Venus rocks and meteorites is characterized. Characteristics of modern methods of nuclear geochronology are presented in short along with their application to geochemical and geological problems

  16. Isotope techniques for hydrology

    International Nuclear Information System (INIS)

    1964-01-01

    In the body of the Panel's report specific conclusions and recommendations are presented in the context of each subject. The general consensus of the Panel is as follows: by the study of this report, the 1961 Panel report, the Proceedings of the March 1963 Tokyo Symposium and other reports of research and technological advances, isotope-technique applications to hydrologic problems have provided some useful avenues for understanding the nature of the hydrologic cycle and in the solution of specific engineering problems. Some techniques are developed thoroughly enough for fairly routine application as tools for use in the solution of practical problems, but further research and development is needed on other concepts to determined whether or not they can be beneficially applied to either research or engineering problems. A concerted effort is required on the part of both hydrologists and isotope specialists working as teams to assure that proper synthesis of scientific advances in the respective fields and translation of these advances into practical technology is achieved

  17. Hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    Jones, J.R.

    1980-01-01

    The two most widely used methods for following hydrogen isotope exchange reactions, namely dedeuteriation and detritiation, involve in the first place the synthesis of an appropriately labelled compound. Rates of dedeuteriation are usually followed by measuring changes in the 1 H n.m.r. spectrum of the substrate (examples are given); the method not only gives the rate but also the site(s) of exchange. It is limited to rather slow reactions and is not as accurate as some of the other methods. The development of deuterium n.m.r. spectroscopy means that changes in the 2 H n.m.r. spectrum can also be used to measure rates of dedeuteriation. The development of liquid scintillation counting greatly eased the problem of how to detect weak β emitters; the attractions of tritium as a tracer were thereby much enhanced. Nowadays the study of rates of detritiation constitutes one of the most versatile and accurate methods of following hydrogen isotope exchange. Examples of the technique are given. (U.K.)

  18. Isotopic geochemistry at Wairakei

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1985-12-01

    Deuterium measurements on geothermal water at Wairakei are consistent with the water being derived from rainfall which has percolated down from the surface. The oxygen-18 content, however, is enriched compared to average rainfall. This 18 O shift is due to isotopic exchange between water and rock at greater-than-explored depths. The magnitude of the shift implied that the mass ration (W/R) of water that has passed through the system (W) to the rock it has exchanged with (R) is about 1 assuming open (i.e. single-pass) conditions. (The ratio is about 2 if it has been a closed system, but this is thought to be less likely). The residence time of water underground cannot be determined from tritium and carbon-14 measurements at present, but arguments based on the argon isotope and deuterium contents suggest mean residence times of a few tens of thousand years. The water-rock ratio and large natural outflow of thermal water prior to exploitation are consistent with this. The 18 O content of the water has changed only slightly, and the D content not at all, during exploitation at Wairakei (measurements from 1963, 1974 and 1981). An initial tendency for the 18 O to increase because of steam loss (also shown more clearly by chloride), has been followed by decrease of 18 O (and chloride) because of dilution with infiltrating near-surface water in parts of the field

  19. Chlorine Isotope Ratios in M Giants and S Stars

    Science.gov (United States)

    Maas, Zachary; Pilachowski, C. A.

    2018-01-01

    Chlorine is an odd-Z, light element that has been poorly studied in stars. Recently, the first stellar abundance measurements of the isotopologue 35Cl were made and the 35Cl/37Cl ratio was derived in RZ Ari (Maas et al. 2016). Additional abundance measurements are necessary to understand the Galactic chemical evolution and complex nucleosynthesis of Cl. The Cl isotope ratio in particular is important in distinguishing contributions from different nucleosynthesis sites to the surface abundances of stars. For example, current nucloesynthesis models predict that both isotopes of Cl are produced primarily during core collapse supernovae (CCSNe) with the energy and progenitor mass impacting the isotopic ratio of the ejected material. In addition to CCSNe, 37Cl is formed by the s-process both in massive stars and in AGB stars, and 35Cl may be produced from neutrino spallation. Understanding the formation of the Cl isotopes is also important to studies of the interstellar medium (ISM). A range of Cl isotope ratios mainly between 2 - 3.5 have been measured in star forming regions, in the circumstellar envelopes of evolved stars, and in proto-stellar cores using Cl bearing molecules. Additional measurements of the Cl isotope ratio in nearby stars will test nucleosynthesis models and allow comparisons with the range of isotope ratios observed in the ISM.We build on the results of Maas et al. (2016) by measuring the Cl isotope ratio in six M giants and four S stars using R~50,000 resolution spectra from Phoenix on Gemini South. We find no significant difference between the average Cl isotope ratios in the M stars and S stars and our measurements are consistent with the range of values seen in the ISM. We also find the average Cl ratio to be larger than the predicted isotope ratio of 1.8 for the solar neighborhood. Finally, two S stars, GG Pup and WY Pyx, show anomalously strong HCl features with equivalent widths ~3-5 times larger than the HCl features of other stars of

  20. Isotope Production at the Hanford Site in Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Ammoniums

    1999-06-01

    This report was prepared in response to a request from the Nuclear Energy Research Advisory Committee (NERAC) subcommittee on ''Long-Term Isotope Research and Production Plans.'' The NERAC subcommittee has asked for a reply to a number of questions regarding (1) ''How well does the Department of Energy (DOE) infrastructure sme the need for commercial and medical isotopes?'' and (2) ''What should be the long-term role of the federal government in providing commercial and medical isotopes?' Our report addresses the questions raised by the NERAC subcommittee, and especially the 10 issues that were raised under the first of the above questions (see Appendix). These issues are related to the isotope products offered by the DOE Isotope Production Sites, the capabilities and condition of the facilities used to produce these products, the management of the isotope production programs at DOE laboratories, and the customer service record of the DOE Isotope Production sites. An important component of our report is a description of the Fast Flux Test Facility (FFTF) reactor at the Hbford Site and the future plans for its utilization as a source of radioisotopes needed by nuclear medicine physicians, by researchers, and by customers in the commercial sector. In response to the second question raised by the NERAC subcommittee, it is our firm belief that the supply of isotopes provided by DOE for medical, industrial, and research applications must be strengthened in the near future. Many of the radioisotopes currently used for medical diagnosis and therapy of cancer and other diseases are imported from Canada, Europe, and Asia. This situation places the control of isotope availability, quality, and pricing in the hands of non-U.S. suppliers. It is our opinion that the needs of the U.S. customers for isotopes and isotope products are not being adequately served, and that the DOE infrastructure and facilities devoted to the

  1. Multiple-sulfur isotope effects during photolysis of carbonyl sulfide

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2011-10-01

    Full Text Available Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS to carbon monoxide (CO and elemental sulfur (S0. The OCS gas at 3.7 to 501 mbar was irradiated with or without a N2 bath gas using a 150 W Xe arc lamp. Sulfur isotope ratios for the product S0 and residual OCS were analyzed by an isotope ratio mass-spectrometer with SF6 as the analyte gas. The isotope fractionation after correction for the reservoir effects is −6.8‰ for the ratio 34S/32S, where product S0 is depleted in heavy isotopes. The magnitude of the overall isotope effect is not sensitive to the addition of N2 but increases to −9.5‰ when radiation of λ > 285 nm is used. The measured isotope effect reflects that of photolysis as well as the subsequent sulfur abstraction (from OCS reaction. The magnitude of isotope effects for the abstraction reaction is estimated by transition state theory to be between −18.9 and −3.1‰ for 34S which gives the photolysis isotope effect as −10.5 to +5.3‰. The observed triple isotope coefficients are ln(δ34S + 1/ln(δ34S + 1 = 0.534 ± 0.005 and ln(δ36S + 1/ln(δ34S + 1 = 1.980 ± 0.021. These values differ from canonical values for mass-dependent fractionation of 0.515 and 1.90, respectively. The result demonstrates that the OCS photolysis does not produce large isotope effects of more than about 10‰ for 34S/32S, and can be the major source of background stratospheric sulfate aerosol (SSA during volcanic quiescence.

  2. The lack of potassium-isotopic fractionation in Bishunpur chondrules

    Science.gov (United States)

    Alexander, C.M. O'D.; Grossman, J.N.; Wang, Jingyuan; Zanda, B.; Bourot-Denise, M.; Hewins, R.H.

    2000-01-01

    In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K-isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s̀). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ∼12% loss of K. The range of L-chondrite-normalized K/Al ratios (a measure of the K-elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L-chondrite-like K abundances and the K loss occurred via Rayleigh fractionation, the most K-depleted chondrules would have had compositions of up to δ41K ≅ 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K-isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K-isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim-matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have

  3. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  4. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  5. Romanian wines characterization with CF-IRMS (Continuous Flow Isotope Ratio Mass Spectrometry) isotopic analysis

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stanciu, Vasile

    2007-01-01

    Wine growing has been known for centuries long in Romania. The country has been favored by its geographical position in south-eastern Europe, by its proximity to the Black Sea, as well as by the specificity of the local soil and climate. Alongside France, Italy, Spain, Germany, countries in this area like Romania could also be called 'a vine homeland' in Europe. High quality wines produced in this region were object of trade ever since ancient times. Under current EU research projects, it is necessary to develop new methods of evidencing wine adulteration and safety. The use of mass spectrometry (MS) to determine the ratios of stable isotopes in bio-molecules now provides the means to prove the botanical and geographical origin of a wide variety of foodstuffs - and therefore, to authenticate and eliminate fraud. Isotope analysis has been officially adopted by the EU as a means of controlling adulteration of wine. Adulteration of wine can happen in many ways, e.g. addition of non-grape ethanol, addition of non-grape sugar, water or other unauthorized substances, undeclared mixing of wines from different wards, geographical areas or countries, mislabelling of variety and age. The present paper emphasize the isotopic analysis for D/H, 18 O/ 16 O, 13 C/ 12 C from wines, using a new generation Isotope Ratio MS, Finnigan Delta V Plus, coupling with a three flexible continuous flow preparation device (GasBench II, TC Elemental Analyser and GC-C/TC). Therefore authentication of wines is an important problem to which isotopic analysis has made a significant contribution. (authors)

  6. Isotopes and innovation: Canadian success in a global market

    International Nuclear Information System (INIS)

    West, S.

    2012-01-01

    Canadian nuclear technology for the prevention, diagnosis and treatment of disease has a global presence. Innovation has as much to do with the way you take a product to market as with the product itself. Nordion targeted therapies are used in the treatment in a variety of cancers. TheraSphere fills a specific medical need for a targeted liver cancer treatment. Nordion is the world's leading supplier of Cobalt-60, the isotope producing gamma radiation required to destroy micro-organisms. Nordion is a world leader in medical isotope processing, packaging and delivery.

  7. Isotopes and innovation: Canadian success in a global market

    Energy Technology Data Exchange (ETDEWEB)

    West, S. [Nordion Inc., Kanata, Ontario (Canada)

    2012-07-01

    Canadian nuclear technology for the prevention, diagnosis and treatment of disease has a global presence. Innovation has as much to do with the way you take a product to market as with the product itself. Nordion targeted therapies are used in the treatment in a variety of cancers. TheraSphere fills a specific medical need for a targeted liver cancer treatment. Nordion is the world's leading supplier of Cobalt-60, the isotope producing gamma radiation required to destroy micro-organisms. Nordion is a world leader in medical isotope processing, packaging and delivery.

  8. Isotope records on computer

    International Nuclear Information System (INIS)

    Orchard, A.

    1983-01-01

    Users of unsealed sources are obliged to keep records of isotope acquisitions, stocks and disposals. The time spent on paper work can be quite high and the use of a computer program cuts this considerably. The following describes a system developed on a DEC-2060 for overall record keeping for a building of some 30 Departments each of which enters its disposal data independently. The individual Departments are obliged to keep records of the fate of each vial themselves. The program described is written in BASIC and could be translated into other dialects of that language with little difficulty. It is suitable for any computer able to support 'sub-directories' and can be made available on request. (author)

  9. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Gregg, C.T.

    1977-01-01

    Clinical applications include the galactose breath test which consists of oral administration of 13 C-labeled galactose and measurement of the 13 C content of respired CO 2 as a function of time in patients with cirrhotic livers for diagnosis of liver dysfunction. Another application was the breath test to study glucose metabolism in children. Respired 13 CO 2 from ingested glucose- 13 C was measured for normal and diabetic children. Studies on mice in which 60 percent of the body carbon was replaced with 13 C failed to show significant effects of the isotope. Studies on biochemical applications include nuclear magnetic resonance studies of 13 C-labeled amino acids from Chlorella pyrenoidosa; studies on 15 N nmr spectra of arginine-guanidino- 13 C-2,3-- 15 N 2 as a function of pH; and isolation of fatty acids from algae

  10. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  11. Container for hydrogen isotopes

    International Nuclear Information System (INIS)

    Solomon, D.E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable is described. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates

  12. Galilei-isotopic relativities

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-09-01

    In this note we further develop the proposal made in preceding works of constructing the infinite family of Lie-isotopic liftings of Galilei's relativity for closed-isolated systems of particles possessing local, potential and selfadjoint, as well as nonlocal, nonhamiltonian and non selfadjoint internal forces. In particular, we show that the nonlinear and nonlocal generalization of the Galilei transformations introduced in a preceding note do indeed represent motion of extended particles within resistive media, but in such a way to coincide with the conventional transformations at the abstract, realization-free level. This allows the preservation of the basic, physical and mathematical axioms of Galilei's relativity under our liftings, and their realization in the most general possible nonlinear, nonlocal and nonhamiltonian way. (author). 18 refs, 1 fig

  13. Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis.

    Science.gov (United States)

    Moran, James J; Newburn, Matt K; Alexander, M Lizabeth; Sams, Robert L; Kelly, James F; Kreuzer, Helen W

    2011-05-15

    Stable isotope analysis permits the tracking of physical, chemical, and biological reactions and source materials at a wide variety of spatial scales. We present a laser ablation isotope ratio mass spectrometry (LA-IRMS) method that enables δ(13)C measurement of solid samples at 50 µm spatial resolution. The method does not require sample pre-treatment to physically separate spatial zones. We use laser ablation of solid samples followed by quantitative combustion of the ablated particulates to convert sample carbon into CO(2). Cryofocusing of the resulting CO(2) coupled with modulation in the carrier flow rate permits coherent peak introduction into an isotope ratio mass spectrometer, with only 65 ng carbon required per measurement. We conclusively demonstrate that the measured CO(2) is produced by combustion of laser-ablated aerosols from the sample surface. We measured δ(13)C for a series of solid compounds using laser ablation and traditional solid sample analysis techniques. Both techniques produced consistent isotopic results but the laser ablation method required over two orders of magnitude less sample. We demonstrated that LA-IRMS sensitivity coupled with its 50 µm spatial resolution could be used to measure δ(13) C values along a length of hair, making multiple sample measurements over distances corresponding to a single day's growth. This method will be highly valuable in cases where the δ(13)C analysis of small samples over prescribed spatial distances is required. Suitable applications include forensic analysis of hair samples, investigations of tightly woven microbial systems, and cases of surface analysis where there is a sharp delineation between different components of a sample. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Isotope geochemists meet in Japan

    Science.gov (United States)

    Ito, E.; Harmon, R. S.; Elmore, D.; Nishiizumi, K.

    The Fifth International Conference on Geochronology, Cosmochronology, and Isotope Geology was held from June 27-July 2, 1982 in Nikko, Japan. These conferences are held every 4 years to review progress in geochronology and isotope geochemistry and to discuss results of the application of isotopic techniques to problems in the earth and space sciences. The first two, held in Canada in 1966 and Switzerland in 1970, were concerned with geochronology only. In 1974 the meeting in France expanded to include cosmochronology and stable isotopes. The subsequent 1978 meeting in the United States, and this year's meeting in Japan, followed that format. At the Nikko meeting the distribution of papers among the three general themes were: geochronology, 21%; cosmochronology, 23%; isotope geology, 56%, indicating a distinct trend toward the use of isotopes as tracers to solve geological and geochemical problems in both the earth and space sciences. The increasing tendency to consider coupled isotope-chemical systematics in such studies indicates that the next meeting, to be held in Cambridge, England in the summer of 1986, will probably formally integrate trace-element geochemistry.

  15. Isotopically labelled pyrimidines and purines

    International Nuclear Information System (INIS)

    Balaban, A.T.; Bally, I.

    1987-01-01

    Among the three diazines, pyrimidine is by far the most important one because its derivatives uracil, thymine and cytosine are constituents of the ubiquitous deoxynucleic acids (DNA) and ribonucleic acids (RNA). Other derivatives of pyrimidine without condensed rings include barbiturates, alloxan, orotic acid and thiamine or vitamin B 1 . From the polycyclic derivatives of pyrimidine such as pteridine, alloxazine, and purine, the latter, through its derivatives adenine and guanine complete the list of bases which occur in DNA and RNA: in addition, other purine derivatives such as hypoxanthine, xanthine, theobromine, theophylline, caffeine and uric acid are important natural products with biological activity. The paper presents methods for preparing isotopically labeled pyrimidines as well as purine derivatives. For convenience, the authors describe separately carbon-labeled with radioisotopes 11 C (T 1/2 = 20.3 min) and 14 C (T 1/2 = 5736 years) or the stable isotope 13 C (natural abundance 1.1%) and then hydrogen-labeled systems with the radioisotope 3 H ≡ T (T 1/2 = 12.346 years) or with the stable isotope 2 H ≡ D (natural abundance 0.015%). We do not separate stable from radioactive isotopes because the synthetic methods are identical for the same element; however, the introduction of hydrogen isotopes into organic molecules is often performed by reactions such as isotope exchange which cannot take place in the case of carbon isotopes

  16. A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation

    Directory of Open Access Journals (Sweden)

    M. C. Krol

    2009-11-01

    Full Text Available The isotopic composition of molecular hydrogen (H2 produced by photochemical oxidation of methane (CH4 and Volatile Organic Compounds (VOCs is a key quantity in the global isotope budget of (H2. The many individual reaction steps involved complicate its investigation. Here we present a simplified structure-activity approach to assign isotope effects to the individual elementary reaction steps in the oxidation sequence of CH4 and some other VOCs. The approach builds on and extends the work by Gerst and Quay (2001 and Feilberg et al. (2007b. The description is generalized and allows the application, in principle, also to other compounds. The idea is that the C-H and C-D bonds – seen as reactive sites – have similar relative reaction probabilities in isotopically substituted, but otherwise identical molecules. The limitations of this approach are discussed for the reaction CH4+Cl. The same approach is applied to VOCs, which are important precursors of H2 that need to be included into models. Unfortunately, quantitative information on VOC isotope effects and source isotope signatures is very limited and the isotope scheme at this time is limited to a strongly parameterized statistical approach, which neglects kinetic isotope effects. Using these concepts we implement a full hydrogen isotope scheme in a chemical box model and carry out a sensitivity study to identify those reaction steps and conditions that are most critical for the isotope composition of the final H2 product. The reaction scheme is directly applicable in global chemistry models, which can thus include the isotope pathway of H2 produced from CH4 and VOCs in a consistent way.

  17. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  18. Short-lived medical isotopes at Harwell

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1985-01-01

    This paper describes the small program of medical isotope commercial production and research and development on the Harwell Variable Energy Cyclotron. Because of its complexity, this nuclear research machine is extremely expensive to run, and so the program must be restricted to those isotopes which cannot be more cheaply produced elsewhere in the United Kingdom. At present these are 123 I (in full commercial production), the /sup 195m/Hg → /sup 195m/Au generator (about to go into commercial production), and 211 At (under development). Iodine-123 is produced once or twice a week at a level of 300 to 400 mCi per batch and is sold to an average of 30 customers all over the United Kingdom and Europe. The gold generator is being developed for first-pass heart angiography and is undergoing clinical trials at three U.K. hospitals. A research program in conjunction with the U.K. Medical Research Council is directed to the labeling of monoclonal antibodies with 211 At as a possible agent for cancer therapy

  19. Sources of Radioactive Isotopes for Dirty Bombs

    Science.gov (United States)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  20. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  1. TMI-2 isotopic inventory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schnitzler, B G; Briggs, J B

    1985-08-01

    Point isotopic depletion methods are used to develop spatially dependent fission product and heavy metal inventories for the TMI-2 core. Burnup data from 1239 fuel nodes (177 elements, 7 axial nodes per element) are utilized to preserve the core axial and radial power distributions. A full-core inventory is calculated utilizing 12 fuel groups (four burnup ranges for each of three initial enrichments). Calculated isotopic ratios are also presented as a function of burnup for selected nuclides. Specific applications of the isotopic ratio data include correlation of fuel debris samples with core location and estimates of fission product release fractions. 24 figs., 25 tabs.

  2. Compelling Research Opportunities using Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1

  3. Neodymium isotopic variations in seawater

    Science.gov (United States)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  4. Isotope effects in gas-phase chemistry

    International Nuclear Information System (INIS)

    Various aspects of isotope effects in chemical reactions and photochemical reactions are presented. Most studies consider kinetic isotope effects with emphasis on hydrogen, deuterium, and muonium containing molecules and atoms. Theoretical origins of kinetic isotope effects are considered in several papers. A few of the latter papers consider atmospheric chemistry with respect to isotope effects

  5. Use of Isotopes for Studying Reaction Mechanisms

    Indian Academy of Sciences (India)

    Use of Isotopes for Studying Reaction. Mechanisms. 3. Secondary Kinetic Isotope Effect. Uday Maitra and. J Chandrasekhar are members of the Organic. Chemistry faculty in. Indian Institute of. Science at Bangalore. The previous articles of this series were: 1. Isotopes as markers, May. 1997. 2. Primary kinetic isotope effect.

  6. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  7. Effect of Nutrient-limitation on the Microbial S-isotope Fractionation

    Science.gov (United States)

    Sim, M.; Bosak, T.; Ono, S.

    2011-12-01

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. This process controls much of the distribution of sulfur isotopes in sedimentary sulfides and sulfates, but the magnitude of S-isotope fractionations in natural environments often exceeds those in laboratory cultures. This difference may be due to many factors and environmental stresses, including the limitation by essential nutrients. However, none of the studies to date investigated the effect of nutrients such as nitrogen, iron, or phosphate, on sulfur isotope fractionation by sulfate reducing microbes. Here, we examine the influence of N and Fe limitation on multiple-S isotope fractionation by a marine sulfate reducing bacterium by reducing the concentrations of N and Fe in a defined medium by 10 to 1000 times. Nitrogen limitation reduces the growth rate and the cellular yield, but increases the respiration rate without altering the magnitude of isotope fractionation. In contrast, S-isotope fractionation was up to 40% larger in iron-limited than in iron-replete cultures. This increase in sulfur isotope fractionation is accompanied by a decrease in the growth rate, the cellular yield, the respiration rate, and the cytochrome c content. Thus, iron limitation increases the reversibility of microbial sulfate reduction pathway, possibly by affecting iron-containing respiratory complexes such as cytochromes and iron-sulfur proteins. The apparent influence of iron limitation on S-isotope fractionation is relevant to the interpretations of sulfur isotope data in modern and ancient environments. Some areas where iron limitation may lead to large observed S-isotope effects include iron-limited deep open ocean sediments, whereas smaller S-isotope effects would be expected where Fe is more bioavailable (e.g., in anoxic basins, where Fe enrichment occurs due to Fe shuttling).

  8. Evolution of triaxial shapes at large isospin: Rh isotopes

    Science.gov (United States)

    Navin, A.; Rejmund, M.; Bhattacharyya, S.; Palit, R.; Bhat, G. H.; Sheikh, J. A.; Lemasson, A.; Bhattacharya, S.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.

    2017-04-01

    The rotational response as a function of neutron-proton asymmetry for the very neutron-rich isotopes of Rh (116-119Rh) has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy ;signature; splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM) calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N ∼ 74 is not found.

  9. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  10. Evolution of triaxial shapes at large isospin: Rh isotopes

    Directory of Open Access Journals (Sweden)

    A. Navin

    2017-04-01

    Full Text Available The rotational response as a function of neutron–proton asymmetry for the very neutron-rich isotopes of Rh (116–119Rh has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy “signature” splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N∼74 is not found.

  11. Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes

    CERN Document Server

    Krainer, Alexander Michael

    2015-01-01

    This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...

  12. Demonstration of magnetically activated and guided isotope separation

    Science.gov (United States)

    Mazur, Thomas R.; Klappauf, Bruce; Raizen, Mark G.

    2014-08-01

    Enriched isotopes are widely used in medicine, basic science and energy production, and the need will only grow in the future. The main method for enriching stable isotopes today, the calutron, dates back over eighty years and has an uncertain future, creating an urgent need, especially in nuclear medicine. We report here the experimental realization of a general and efficient method for isotope separation that presents a viable alternative to the calutron. Combining optical pumping and a unique magnet geometry, we observe substantial depletion of Li-6 throughput in a lithium atomic beam produced by an evaporation source over a range of flux. These results demonstrate the viability of our method to yield large degrees of enrichment in a manner that is amenable to industrial scale-up and the production of commercially relevant quantities.

  13. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    Science.gov (United States)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  14. Lithium isotope fractionation by diffusion in minerals Part 2: Olivine

    Science.gov (United States)

    Richter, Frank; Chaussidon, Marc; Bruce Watson, E.; Mendybaev, Ruslan; Homolova, Veronika

    2017-12-01

    Recent experiments have shown that lithium isotopes can be significantly fractionated by diffusion in silicate liquids and in augite. Here we report new laboratory experiments that document similarly large lithium isotopic fractionation by diffusion in olivine. Two types of experiments were used. A powder-source method where lithium from finely ground spodumene (LiAlSi2O6) diffused into oriented San Carlos olivine, and piston cylinder annealing experiments where Kunlun clinopyroxene (∼30 ppm lithium) and oriented San Carlos olivine (∼2 ppm lithium) were juxtaposed. The lithium concentration along traverses across the run products was measured using both laser ablation as a source for a Varian 820-MS quadrupole mass spectrometer and a CAMECA 1270 secondary ion mass spectrometer. The CAMECA 1270 was also used to measure the lithium isotopic fractionation across olivine grains recovered from the experiments. The lithium isotopes were found to be fractionationed by many tens of permil in the diffusion boundary layer at the grain edges as a result of 6Li diffusing significantly faster than 7Li. The lithium concentration and isotopic fractionation data across the olivine recovered from the different experiments were modeled using calculations in which lithium was assumed to be of two distinct types - one being fast diffusing interstitial lithium, the other much less mobile lithium on a metal site. The two-site diffusion model involves a large number of independent parameters and we found that different choices of the parameters can produce very comparable fits to the lithium concentration profiles and associated isotopic fractionation. Because of this nonuniqueness we are able to determine only a range for the relative diffusivity of 6Li compared to 7Li. When the mass dependence of lithium diffusion is parameterized as D6Li /D7Li =(7 / 6) β , the isotope fractionation for diffusion along the a and c crystallographic direction of olivine can be fit by β = 0.4 ± 0

  15. IUPAC Periodic Table of Isotopes for the Educational Community

    Energy Technology Data Exchange (ETDEWEB)

    Holden N. E.; Holden,N.E.; Coplen,T.B.

    2012-07-15

    John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in this area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).

  16. Komatiites constrain molybdenum isotope composition of the Earth's mantle

    Science.gov (United States)

    Greber, Nicolas D.; Puchtel, Igor S.; Nägler, Thomas F.; Mezger, Klaus

    2015-07-01

    In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25 ± 3 to 66 ± 22 ng /g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17 ± 4 and 30 ± 12 ng /g, with an average value of 23 ± 7 ng /g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39 ± 16 ng /g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from δ98Mo = - 0.04 ± 0.28 to 0.11 ± 0.10 ‰, with an average of 0.04 ± 0.06 ‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.

  17. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    Science.gov (United States)

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  18. The Status and Trends of Isotopes Technology and Application——Based on NTR Printed by IAEA in Last Five Years

    Directory of Open Access Journals (Sweden)

    ZHANG Hua-ming

    2015-11-01

    Full Text Available Every year IAEA organizes experts to produce a review on nuclear technology and its application all over the world, namely NTR (Nuclear Technology Review, in which the status of isotopes technologies and applications are totally involved. From recent five years’ reports (2010-2014, the forward concerning isotope technology and applications were presented, such as radioisotopes produced by accelerator, stable- and radio- isotopes and their applications to environment, nuclear medicine, food and agriculture. etc.

  19. Boron Isotopes Enrichment via Continuous Annular Chromatography

    OpenAIRE

    Sağlam, Gonca

    2016-01-01

    ABSTRACT Boron has two stable isotopes namely 10B and 11B isotopes. The large cross section of 10B isotope for thermal neutrons is used for reactor control in nuclear fission reactors. The thermal neutrons absorption cross sections of pure 10B and 11B are 3837 and 0.005 barns respectively. In the literature, amongst others, batch elution chromatography techniques are reported for 10B isotope enrichment. This work focuses on continuous chromatographic 10B isotope separation system via continuo...

  20. Isotope separation by standing waves

    International Nuclear Information System (INIS)

    Altshuler, S.

    1984-01-01

    The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, the beam having in either case a desired isotope and at least one other. The particle beam is directed so as to impinge on the standing electromagnetic wave, which may be a light wave. The particles, that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the standing electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted. (author)

  1. Sulphur isotopic variations in nature

    International Nuclear Information System (INIS)

    Kusakabe, M.; Rafter, T.A.; Stout, J.D.; Collie, T.W.

    1976-01-01

    Sulphur isotope ratios for soluable and adsorbed sulphate from a number of New Zealand soils have ratios close to those of modern sea water or marine evaporites. The ratios for plants grown in the soils tend to be lighter, indicating a measure of fractionation by the growing plant, particularly marked for bracken fern (Pteridium aquilinum var. esculentum). Ratios for soil organic matter tend to be intermediate between those for the plant and those for the soluable and adsorbed soil sulphate. Oxygen isotopic ratios either show lighter values than marine sulphate, comparable to the fractionation of sulphur, or else heavier ratios, suggesting that the sulphate derives from the mineralisation of organic sulphur. Sulphur isotopic ratios of some plants grown in gypsum soils in Tunisia similarly show fractionation by the plant, the ratios being lighter than those for the gypsum. The oxygen isotopic ratios are heavier than sea-water oxygen, indicating that the sulphate is not derived directly from marine sources. (auth.)

  2. Isotope-based quantum information

    CERN Document Server

    G Plekhanov, Vladimir

    2012-01-01

    The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial...

  3. DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

    Directory of Open Access Journals (Sweden)

    YONGDEOK LEE

    2013-12-01

    Full Text Available A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI, the system involves a Sodium Fast Reactor (SFR linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS. The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

  4. Defining uncertainty and error in planktic foraminiferal oxygen isotope measurements

    Science.gov (United States)

    Fraass, A. J.; Lowery, C. M.

    2017-02-01

    Foraminifera are the backbone of paleoceanography. Planktic foraminifera are one of the leading tools for reconstructing water column structure. However, there are unconstrained variables when dealing with uncertainty in the reproducibility of oxygen isotope measurements. This study presents the first results from a simple model of foraminiferal calcification (Foraminiferal Isotope Reproducibility Model; FIRM), designed to estimate uncertainty in oxygen isotope measurements. FIRM uses parameters including location, depth habitat, season, number of individuals included in measurement, diagenesis, misidentification, size variation, and vital effects to produce synthetic isotope data in a manner reflecting natural processes. Reproducibility is then tested using Monte Carlo simulations. Importantly, this is not an attempt to fully model the entire complicated process of foraminiferal calcification; instead, we are trying to include only enough parameters to estimate the uncertainty in foraminiferal δ18O records. Two well-constrained empirical data sets are simulated successfully, demonstrating the validity of our model. The results from a series of experiments with the model show that reproducibility is not only largely controlled by the number of individuals in each measurement but also strongly a function of local oceanography if the number of individuals is held constant. Parameters like diagenesis or misidentification have an impact on both the precision and the accuracy of the data. FIRM is a tool to estimate isotopic uncertainty values and to explore the impact of myriad factors on the fidelity of paleoceanographic records, particularly for the Holocene.

  5. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  6. The use of carbon stable isotope ratios in drugs characterization

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro; Mirel, V., E-mail: gabriela.cristea@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  7. The use of carbon stable isotope ratios in drugs characterization

    International Nuclear Information System (INIS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-01-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ 13 C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures

  8. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  9. Design of LSDS for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yongdeok; Park, Changje; Kim, Hodong; Song, Kee Chan

    2013-01-01

    A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded

  10. Electric Dipole Moment Measurements with Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, Timothy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-11-11

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  11. Electric Dipole Moment Measurements with Rare Isotopes

    International Nuclear Information System (INIS)

    Chupp, Timothy

    2016-01-01

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  12. Medical Isotopes Production Project: Molybdenum-99 and related isotopes - environmental impact statement. Volume II, comment response document

    International Nuclear Information System (INIS)

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related isotopes (iodine-131, xenon-133, and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community as soon as practicable. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition, three other reasonable alternatives and a No Action alternative are analyzed in detail, The sites for these three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity. This document contains comments recieved from meetings held regarding the site selection for isotope production

  13. Isotopes and radiations in agriculture

    International Nuclear Information System (INIS)

    Sawant, A.G.

    1998-01-01

    Some of the spectacular advances in agriculture in developing nations have stimulated wide interest both in basic as well as adaptive research and in harnessing all the tools that science can offer for progress of agriculture. The nuclear tools are relevant in this respect and also offer particular promise in some areas. Ionising radiations and isotopes have immense applications in agriculture. Both radioisotopes and stable isotopes are being used

  14. Uranium determination by isotopic dilution

    International Nuclear Information System (INIS)

    Lucas, M.

    1978-01-01

    The method of determination by isotopic dilution is reviewed. The method principle is outlined with emphasis on sample preparation and on tracer solution preparation and calibration. The validity conditions of the method are defined for both high uranium concentrations and trace determination, the detection limit being around 0.1 ppb. The main advantages of the method are its selectivity, very high sensitivity and precision. The main fields of application are nuclear industry, geochronology and isotopic geochemistry [fr

  15. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  16. Isotope effects in photochemical rearrangements

    International Nuclear Information System (INIS)

    Sommer, F.

    1983-01-01

    Taking anthracene resp. 9-deuteroanthracene as the initial substance, different substitution products have been prepared. The products originating by direct photolysis have been characterized and their structure has been determined. By comparing the measured kinetic isotope effect and the quantum yield of the nondeuterated and the monodeuterated fluorenes formed it could been demonstrated that the isotope effect mainly is due to the reaction rates and the influence of the deuterium substitution upon the radiationless desactivation against that is small. (HBR) [de

  17. Phonon scattering by isotopic impurities

    International Nuclear Information System (INIS)

    Dacol, D.K.

    1974-06-01

    The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory

  18. Isotope-based quantum information

    International Nuclear Information System (INIS)

    Plekhanov, Vladimir G.

    2012-01-01

    The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

  19. Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation.

    Science.gov (United States)

    Chakraborty, Subrata; Yanchulova, Petia; Thiemens, Mark H

    2013-10-25

    Meteorites contain a wide range of oxygen isotopic compositions that are interpreted as heterogeneity in solar nebula. The anomalous oxygen isotopic compositions of refractory mineral phases may reflect a chemical fractionation process in the nebula, but there are no experiments to demonstrate this isotope effect during particle formation through gas-phase reactions. We report experimental results of gas-to-particle conversion during oxidation of silicon monoxide that define a mass-independent line (slope one) in oxygen three-isotope space of (18)O/(16)O versus (17)O/(16)O. This mass-independent chemical reaction is a potentially initiating step in nebular meteorite formation, which would be capable of producing silicate reservoirs with anomalous oxygen isotopic compositions.

  20. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  1. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  2. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling

    DEFF Research Database (Denmark)

    Pellerin, André; Bui, Thi Hao; Rough, Mikaella

    2015-01-01

    The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits the disti......The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits......, informed by the chemistry of sulfur intermediate compounds in Mangrove Lake, reveals that sulfate reduction produces a relatively small intrinsic fractionation and that an active reoxidative sulfur cycle increases the fractionation of the measured values. Based on the model results, the reoxidative cycle...... of Mangrove Lake appears to include sulfide oxidation to elemental sulfur followed by the disproportionation of the elemental sulfur to sulfate and sulfide. This model also indicates that the reoxidative sulfur cycle of Mangrove Lake turns over from 50 to 80% of the sulfide produced by microbial sulfate...

  3. Vacuum-arc plasma centrifuge applied to stable isotope separation

    International Nuclear Information System (INIS)

    Del Bosco, E.

    1989-09-01

    This work describes the results of a vacuum-arc plasma centrifuge experiment. A plasma centrifuge is an apparatus where a plasma column is produced due to the interaction of an electric current with an externally applied magnetic field, sup(→)J x sup(→)B. Among the applications of a rotating plasma, this work deals particularly with its utilization in an isotope enrichment device. The main characteristics of the plasma produced in this experiment are presented, with special attention to the plasma column rotation and the isotope enrichment. The analysis of the results is performed using a fluid model for a completely ionized rigid body rotating plasma column in steady state equilibrium. The main results are: a) rotation frequency of the plasma column in the range 2 x 10 sup(4) to 3 x 10 sup(5) rad/s; b) enrichment of 10 to 30% for the magnesium isotopes, and of 290 to 490% for the carbon 13 isotope; c) rigid body rotation of the plasma column only for radii smaller than the characteristic radius of the plasma column. re; d) linear dependence of the rotation frequency upon the magnetic field strength only for r < re; e) existence of an optimum value of the magnetic field for maximum enrichment; and f) dependence of the rotation frequency upon the inverse of the atomic mass. (author)

  4. Isotope analysis (δ13C of pulpy whole apple juice

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2011-09-01

    Full Text Available The objectives of this study were to develop the method of isotope analysis to quantify the carbon of C3 photosynthetic cycle in pulpy whole apple juice and to measure the legal limits based on Brazilian legislation in order to identify the beverages that do not conform to the Ministry of Agriculture, Livestock and Food Supply (MAPA. This beverage was produced in a laboratory according to the Brazilian law. Pulpy juices adulterated by the addition of sugarcane were also produced. The isotope analyses measured the relative isotope enrichment of the juices, their pulpy fractions (internal standard and purified sugar. From those results, the quantity of C3 source was estimated by means of the isotope dilution equation. To determine the existence of adulteration in commercial juices, it was necessary to create a legal limit according to the Brazilian law. Three brands of commercial juices were analyzed. One was classified as adulterated. The legal limit enabled to clearly identify the juice that was not in conformity with the Brazilian law. The methodology developed proved efficient for quantifying the carbon of C3 origin in commercial pulpy apple juices.

  5. Isotopic separation by centrifugation. Rotating plasma; Separacion Isotopic por Centrifugacion Plasma Rotante

    Energy Technology Data Exchange (ETDEWEB)

    Perello, M.; Vigon, M. A.

    1972-07-01

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs.

  6. Isotope chemistry and molecular structure. Carbon and oxygen isotope chemistry

    International Nuclear Information System (INIS)

    Bigeleisen, J.; Hom, R.C.; Ishida, T.

    1976-01-01

    The relationships between force constants and the isotope chemistry of carbon and oxygen are calculated for H 2 O, CO 2 , CH 2 O, CH 4 , C 2 H 4 , C 2 H 6 , and C 6 H 6 . Significant differences are found from the general features of protium--deuterium isotope chemistry. These are shown to be associated with a structural effect. Hydrogen is always an end atom except for hydrogen bonded moleules. Carbon is generally tetrahedrally bonded and its isotope chemistry shows significant contributions from the interaction between stretching and bending modes. These interactions lead to deviations in additivity of the total isotope effect from the contributions of the individual force constants. Stretching forces dominate the isotope chemistry of carbon and oxygen as they do in hydrogen. They account for 70%--90% of the reduced partition function ratios. Correlations are made between the stretching force contributions and molecular structure. It is shown that while significant differences exist between the specific contributions calculated from different force fields for methane, ethane, and benzene, the absolute value of ln(s/s') f is rather insensitive to the detailed structures of the F matrices studied

  7. Open System Models of Isotopic Evolution in Earth's Silicate Reservoirs

    Science.gov (United States)

    Kumari, S.; Paul, D.; Stracke, A.

    2016-12-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with an isolated reservoir-source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible model-derived solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, constrained from published data. Various crustal growth scenarios (continuous versus episodic and early versus late) and its effect on the evolution of isotope systematics in the silicate reservoirs have been evaluated. Modeling results suggest that a whole mantle that is compositionally similar to the present-day MORB source is not consistent with observational constraints. However, a heterogeneous mantle model, in which the present-day UM is 60% of the total mantle mass and a lower non-chondritic mantle, reproduces the estimated isotopic ratios and abundances in Earth's silicate reservoirs. Our results shows that mode of crustal growth strongly affects isotopic evolution of silicate Earth; only an exponential crustal growth pattern satisfactorily explains the chemical and isotopic evolution of the crust-mantle system. One notable feature of successful models is an early depletion of incompatible elements (and a rapid decrease in Th/U ratio, κ, in the UM) by the initial 500 Ma, as a result of early formation of continental crust. Assuming a slightly younger age of the Earth (4.45 Ga), our model better satisfies the Pb-isotope systematics in the respective silicate reservoirs, particularly in the UM, and explains the origin of several OIBs

  8. Models for Interpreting Tungsten Isotope Anomalies in the Earth's Crust

    Science.gov (United States)

    Humayun, M.; Brandon, A. D.; Righter, K.

    2012-12-01

    There have been several reports of positive tungsten isotope anomalies of about +15 ppm in rocks from Nuvvuagittuq (4.3 Ga), Isua (3.8 Ga) and Kostomuksha (2.8 Ga) that challenge models of differentiation and mantle mixing. Here, we employ constraints from experimental partitioning of W between metal and silicate, and from partial melting models, to evaluate the production and preservation of these W isotope anomalies in the Earth's earliest crust. We will also provide a revised interpretation of the Kostomuksha W isotope anomalies based on flow differentiation and metamorphism of komatiites. Two sets of models are produced. Model Set 1: Because D(metal-silicate) for W diminishes with increasing depth, the deep mantle has a higher W abundance, and a lower Hf/W ratio and consequently evolves a negative anomaly in W while the upper mantle evolves a complementary positive anomaly. Subsequent solid-state convection (4.55-2.8 Ga) mixes away the complementary W isotope anomalies to yield the modern mantle null value. This set of models predicts that the complementary negative anomalies in W should eventually be discovered in ancient magmatic rocks of deep mantle origin such as komatiites. Model Set 2: Tungsten is significantly more incompatible (like U, Th and Ba) than Hf, the latter being similar in compatibility to Sm. Our results show that extraction of low-degree partial melts (crust would result in negative anomalies in later plume lavas, while partitioning of W into an enriched "hidden reservoir" would not. Nd isotope anomalies indicate a melting event around 35-75 Ma after solar system formation, the upper end of which is consistent with our models of Hf/W fractionation, that also yield a depleted mantle composition consistent with DMM. Production of the anomalies is accompanied by the need to preserve the anomalies. We argue that the most effective means of preserving the W isotope anomalies is by crustal storage, and we hypothesize that W is efficiently recycled

  9. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    Science.gov (United States)

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  10. Producing Against Poverty

    NARCIS (Netherlands)

    Ypeij, Annelou

    2000-01-01

    Producing against Poverty is an anthropological research on micro-entrepreneurs in Lima, Peru. It analyses the way micro-producers accumulate capital. The anthropological approach of the book starts with an analysis of the daily lives of the micro-producers. Its gender approach makes a comparison

  11. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  12. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation

    Science.gov (United States)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl

    2017-04-01

    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (panalysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  13. Development of isotope hydrology technology in China

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    The development of isotope hydrology technology in China is described. The isotope technology provides an independent approach for solving hydrological problems. Isotope hydrology is applied in three ways: the use of change in environmental isotopic composition of water (especially used in water resources exploitation), the use of artificial radioactive tracers and the use of redioisotope instruments. Many important achievements have been obtained in application of isotopic hydrology technology. For the sake of promoting rapid development of isotope hydrology the topics on management, technology and others are commented

  14. Production of americium isotopes in France

    International Nuclear Information System (INIS)

    Koehly, G.; Bourges, J.; Madic, C.; Nguyen, T.H.; Lecomte, M.

    1984-12-01

    The program of productions of americium 241 and 243 isotopes is based respectively on the retreatment of aged plutonium alloys or plutonium dioxide and on the treatment of plutonium targets irradiated either in CELESTIN reactors for Pu-Al alloys or OSIRIS reactor for plutonium 242 dioxide. All the operations, including americium final purifications, are carried out in hot cells equipped with remote manipulators. The chemical processes are based on the use of extraction chromatography with hydrophobic SiO 2 impregnated with extracting agents. Plutonium targets and aged plutonium alloys are dissolved in nitric acid using conventional techniques while plutonium dioxide dissolutions are performed routine at 300 grams scale with electrogenerated silver II in 4M HNO 3 at room temperature. The separation between plutonium and americium is performed by extraction of Pu(IV) either on TBP/SiO 2 or TOAHNO 3 /SiO 2 column. Americium recovery from waste streams rid of plutonium is realized by chromatographic extraction of Am(III) using mainly TBP and episodically DHDECMP as extractant. The final purification of both americium isotopes uses the selective extraction of Am(VI) on HDDiBMP/SiO 2 column at 60 grams scale. Using the overall process a total amount of 1000 grams of americium 241 and 100 grams of americium 243 has been produced nowadays and the AmO 2 final product indicates a purity better than 98.5%

  15. Sandia National Laboratories Medical Isotope Reactor concept.

    Energy Technology Data Exchange (ETDEWEB)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  16. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  17. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  18. Ca isotopes in refractory inclusions

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.

    1984-01-01

    We report measurements of the absolute isotope abundance of Ca in Ca-Al-rich inclusions from the Allende and Leoville meteorites. Improved high precision measurements are reported also for 46 Ca. We find that nonlinear isotope effects in Ca are extremely rare in these inclusions. The absence of nonlinear effects in Ca, except for the effects in FUN inclusions, is in sharp contrast to the endemic effects in Ti. One fine-grained inclusion shows an excess of 46 Ca of (7 +- 1) per mille, which is consistent with addition of only 46 Ca or of an exotic (*) component with 46 Ca* approx. 48 Ca*. FUN inclusion EK-1-4-1 shows a small 46 Ca excess of (3.3 +- 1.0) per mille; this confirms that the exotic Ca components in EK-1-4-1 were even more deficient in 46 Ca relative to 48 Ca than is the case for normal Ca. The Ca in the Ca-Al-rich inclusions shows mass dependent isotope fractionation effects which have a range from -3.8 to +6.7 per mille per mass unit difference. This range is a factor of 20 wider than the range previously established for bulk meteorites and for terrestrial and lunar samples. Ca and Mg isotope fractionation effects in the Ca-Al-rich inclusions are common and attributed to kinetic isotope effects. (author)

  19. Isotopes a very short introduction

    CERN Document Server

    Ellam, Rob

    2016-01-01

    An isotope is a variant form of a chemical element, containing a different number of neutrons in its nucleus. Most elements exist as several isotopes. Many are stable while others are radioactive, and some may only exist fleetingly before decaying into other elements. In this Very Short Introduction, Rob Ellam explains how isotopes have proved enormously important across all the sciences and in archaeology. Radioactive isotopes may be familiar from their use in nuclear weapons, nuclear power, and in medicine, as well as in carbon dating. They have been central to establishing the age of the Earth and the origins of the solar system. Combining previous and new research, Ellam provides an overview of the nature of stable and radioactive isotopes, and considers their wide range of modern applications. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subjec...

  20. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  1. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  2. Isotopic study of the wear of sliding bearings with plastic friction surface

    International Nuclear Information System (INIS)

    Pandur, J.; Varkonyi, A.

    1978-01-01

    A new complex device has been elaborated for the investigation of the duration of bearings in the Institute of Isotopes of the Hungarian Academy of Sciences. The simultaneous determination of wear by an isotopic method the coefficient of friction by means of a Wheatstone bridge and the bearing temperature by means of a thermoresistor is described. Dynamic loading and variable revolution per minute are applied to produce a forced wear of the bearings. The isotopically labelled wear products are removed by oil and the collected sample is measured by a scintillation detector. Wear of a steel axle in plastic housing and plastic coated axle in cast iron housing was determined. (V.N.)

  3. High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose.

    Science.gov (United States)

    Woodley, Ewan J; Loader, Neil J; McCarroll, Danny; Young, Giles H F; Robertson, Iain; Heaton, Timothy H E; Gagen, Mary H; Warham, Joseph O

    2012-01-30

    Stable isotope analysis of cellulose is an increasingly important aspect of ecological and palaeoenvironmental research. Since these techniques are very costly, any methodological development which can provide simultaneous measurement of stable carbon and oxygen isotope ratios in cellulose deserves further exploration. A large number (3074) of tree-ring α-cellulose samples are used to compare the stable carbon isotope ratios (δ(13)C) produced by high-temperature (1400°C) pyrolysis/gas chromatography (GC)/isotope ratio mass spectrometry (IRMS) with those produced by combustion GC/IRMS. Although the two data sets are very strongly correlated, the pyrolysis results display reduced variance and are strongly biased towards the mean. The low carbon isotope ratios of tree-ring cellulose during the last century, reflecting anthropogenic disturbance of atmospheric carbon dioxide, are thus overestimated. The likely explanation is that a proportion of the oxygen atoms are bonding with residual carbon in the reaction chamber to form carbon monoxide. The 'pyrolysis adjustment', proposed here, is based on combusting a stratified sub-sample of the pyrolysis results, across the full range of carbon isotope ratios, and using the paired results to define a regression equation that can be used to adjust all the pyrolysis measurements. In this study, subsamples of 30 combustion measurements produced adjusted chronologies statistically indistinguishable from those produced by combusting every sample. This methodology allows simultaneous measurement of the stable isotopes of carbon and oxygen using high-temperature pyrolysis, reducing the amount of sample required and the analytical costs of measuring them separately. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Calibrating NIST SRM 683 as A New International Reference Standard for Zn Isotopes

    Science.gov (United States)

    Yang, Y.; Zhang, X.; Yu, H.; Huang, F.

    2017-12-01

    Zinc isotopes have been widely applied in the cosmochemical, geochemical, and environmental studies (Moynier et al. 2017). Obtaining precise Zn isotopic data for inter-laboratory comparison is a prerequisite to these applications. Currently, the JMC3-0749L is the primary reference standard for Zn isotopes (Albarède 2004), but it is not commercially available now. Thus, it is necessary to calibrate a new international primary reference standard for Zn isotopic analysis. Chen et al. (2016) showed that NIST SRM 683 (a pure Zn metal nugget of 140 grams) has a δ66ZnJMC of 0.12‰, which is falling within the range of natural Zn isotopic compositions, and it may a good candidate for the next generation of international reference standard (Chen et al. 2016). In order to further examine whether NIST SRM 683 has a homogeneous Zn isotopic composition, we measured more NIST SRM 683 by double-spike methods using MC-ICPMS (Conway et al. 2013). The metal nuggets of NIST SRM 683 were intensively sampled by micro-drilling. Zinc isotope analyses for two nuggets show that they have δ66Zn of 0.14 ± 0.02‰ (2SD, N = 32) and 0.13 ± 0.02‰ (2SD, N = 33), respectively. These values are similar to those of two Zn metal nuggets (0.11 ± 0.02‰ vs. 0.12 ± 0.02‰) reported previously by Chen et al. (2016). We fully dissolved one nugget, producing pure Zn solution with identical Zn isotopic composition with the drilling samples. All results strongly support that NIST SRM 683 is homogeneous in Zn isotopic compositions which could be an ideal candidate for the next reference for Zn isotopes. Tests on more metal nuggets will be performed in a few months for further confirming the Zn isotope compositions and homogeneity. Reference: Albarède et al., 2004. 'The stable isotope geochemistry of copper and zinc', Reviews in Mineralogy and Geochemistry, 55: 409-27. Chen et al., 2016. 'Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials', Geostandards and

  5. Atmospheric odd oxygen production due to the photodissociation of ordinary and isotopic molecular oxygen

    Science.gov (United States)

    Omidvar, K.; Frederick, J. E.

    1987-01-01

    Line-by-line calculations are performed to determine the contributions of the Schumann-Runge bands of ordinary and isotopic oxygen to the photodissociation of these molecules at different altitudes. The contributions to the dissociation rates of the satellite lines and of the first and higher vibrational states of the initial molecular states are found to be insignificant. At 70 km, (O-16)(O-18) is found to produce 10 times as much odd oxygen as would be produced if the isotope did not have selective absorption, and 6 percent of the odd oxygen produced is due to this isotope. It is noted that the excess odd oxygen produced is not enough to explain the excess quantity of ozone observed in the atmosphere, which cannot be accounted for in photochemical models. Comparison with previous results is made.

  6. Isotopic insights into microbial sulfur cycling in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Christopher G Hubbard

    2014-09-01

    Full Text Available Microbial sulfate reduction in oil reservoirs (biosouring is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters containing elevated concentrations of volatile fatty acids and injection water containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  7. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  8. Sample preparation device and its development of the sulfur isotope reactor for the sulfide and sulfate

    International Nuclear Information System (INIS)

    Li Zhentao; Liu Hanbin; Jin Guishan; Li Junjie; Zhong Fangwen

    2011-01-01

    A new type of sample preparation device and its reactor for sulfur isotope in sulfide and sulfate experiment is developed. The trial experiment proved that the sample preparation device and its reactor are characterized with good vacuum, easy to use, clean, high efficient and low cost to produce sulfur dioxide of high purity, and the analytical results are accurate and reliable. The device and reactor can fully meet for the analysis on the sulfur isotope in various sulfide and sulfate. (authors)

  9. Efigie: a computer program for calculating end-isotope accumulation by neutron irradiation and radioactive decay

    International Nuclear Information System (INIS)

    Ropero, M.

    1978-01-01

    Efigie is a program written in Fortran V which can calculate the concentration of radionuclides produced by neutron irradiation of a target made of either a single isotope or several isotopes. The program includes optimization criteria that can be applied when the goal is the production of a single nuclide. The effect of a cooling time before chemical processing of the target is also accounted for.(author) [es

  10. Stable isotope differences between sea lions (Zalophus) from the Gulf of California and Galapagos Islands

    OpenAIRE

    Koch, Paul L.; Salazar-Pico, Sandie; Newsome, Seth D.; Aurioles Gamboa, David

    2009-01-01

    Spatial or temporal isotopic variation, or both, in primary producers must be controlled for when investigating the foraging and trophic ecology of top consumers using isotopic data. Populations of the sister species Zalophus californianus and Z. wollebaeki are separated by approximately 3,350 km in the eastern tropical Pacific Ocean, which prevents contact and mixing between the 2 populations. To explore differences in trophic ecology between these species, as well as the impact of differenc...

  11. On-line laser spectroscopy of the very neutron deficient thallium isotopes

    International Nuclear Information System (INIS)

    Schuessler, H.A.; Benck, E.C.; Buchinger, F.

    1993-01-01

    Collinear fast beam laser spectroscopy has been carried out for the 186-192 Tl isotopes produced by the heavy ion fusion evaporation reaction 181 Ta( 16 O, xn) 197-x Tl. The nuclear moments as well as the changes in the mean square nuclear charge radii were evaluated from the observed hyperfine structure splitting, the isomer and isotope shifts. The data will be interpreted in the droplet, Structinski, and particle plus rotor models

  12. Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Maya, M.V.; Soares, M.A.; Agnihotri, R.; Pratihary, A.K.; Karapurkar, S.; Naik, H.; Naqvi, S.W.A.

    ) of suspended organic matter produced/transported during the monsoon and post-monsoon seasons of year 2007 provides a baseline dataset for future isotopic studies in such type of tropical estuaries...

  13. Research of catalysts for isotope enrichment of deuterium oxide in water - PX15-01/89 progress report

    International Nuclear Information System (INIS)

    1989-08-01

    The information about the development of research project for producing concentrate deuterium oxide by isotope enrichment in hydrogen-water contact systems combined with electrolysis are described. (C.G.C.)

  14. Research of catalysts for isotope enrichment of deuterium oxide in water - PX15-02/89 progress report

    International Nuclear Information System (INIS)

    1989-11-01

    The information about the development of research project for producing concentrate deuterium oxide by isotope enrichment in hydrogen-water contact systems combined with electrolysis are described. (C.G.C.)

  15. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  16. Isotope specific arbitrary material sorter

    Science.gov (United States)

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  17. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  18. Decay properties of some neutron-rich praseodymium isotopes

    International Nuclear Information System (INIS)

    Skarnemark, G.; Aronsson, P.O.; Stender, E.; Trautmann, N.; Kaffrell, N.; Bjoernstad, T.; Kvale, E.; Skarestad, M.

    1976-01-01

    Neutron-rich Pr isotopes produced in the thermal neutron-induced fission of 235 U have been investigated by means of γ-γ coincidence experiments. The nuclides have been separated from the fission product mixture, using the fast chemical separation system SISAK in connection with a gas jet recoil transport system. The results include assignments of several new γ-ray energies and partial decay schemes for 147 Pr, 148 Pr, 149 Pr and 150 Pr. (orig.) [de

  19. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    OpenAIRE

    Del Real, PG; Maher, K; Kluge, T; Bird, DK; Brown, GE; John, CM

    2016-01-01

    Magnesium carbonate minerals produced by reaction of H2O?CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic metho...

  20. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  1. Isotopic anomalies and the early history of the solar system

    International Nuclear Information System (INIS)

    Begemann, F.

    1981-01-01

    Three elements are discussed in some detail. Inclusions from carbonaceous chondrites contain quite normal minerals where the oxygen is enriched by up to 5% in 16 O. The oxygen is neither in isotopic equilibrium with that of the bulk meteorites nor are the different minerals of a single inclusion isotopically homogenized. The xenon in acid-insoluble residues from carbonaceous chondrites contains at least two distinct anomalous components. One consists essentially of the middle-weight isotopes only; the abundance pattern is as expected for Xe produced in the s-process of nucleosynthesis. The second type is to some extent complementary to this s-xenon; it is characterized by an overabundance of the light and the heavy isotopes by up to 100%. Its origin is controversial. Direct production in a supernova has been suggested as well as a superposition of strongly mass-fractionated xenon, favouring the light isotopes, and fission xenon from the decay of (a) superheavy element (s), which in turn would presumably have to be produced in a supernova as well. Neon being more than 99% pure 22 Ne is most convincingly accounted for by in situ-decay of 2.6a 22 Na which implies a condensation of Na-bearing host phases within 10 years or so of the production of 22 Na. It is not clear at present whether this condensation took place in the expanding envelope of an exploding star or within the solar system, with the onset of the collapse of the pre-solar nebula being triggered by such an explosion. (orig./WL)

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  3. Isotope applications in the environmental field

    International Nuclear Information System (INIS)

    DeWitt, R.

    1978-01-01

    Established uses of enriched isotopes in the environmental field were surveyed to determine future trends in isotope needs. Based on established isotope uses, on the projected increase in the pollution problem, and on the apparent social and economic pressure for pollution abatement, a significant demand for enriched isotopes appears to be developing for the assessment and control of air, water, and soil pollutants. Isotopic techniques will be used in combination with conventional methods of detection and measurement, such as gas chromatography, x-ray fluorescence, and atomic absorption. Recent advances in economical isotope separation methods, instrumentation, and methodology promise to place isotopic technology within the reach of most research and industrial institutions. Increased application of isotope techniques appears most likely to occur in areas where data are needed to characterize the movement, behavior, and fate of pollutants in the environment

  4. High mass isotope separation process and arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1978-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically identical but isotopically different molecules by either photon-induced pure rovibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically reactive agent to form a chemical compound containing primarily the atoms of isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically identical but isotopically different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope

  5. Natural fractionation of uranium isotopes

    International Nuclear Information System (INIS)

    Noordmann, Janine

    2015-01-01

    The topic of this thesis was the investigation of U (n( 238 U) / n( 235 U)) isotope variations in nature with a focus on samples (1) that represent the continental crust and its weathering products (i.e. granites, shales and river water) (2) that represent products of hydrothermal alteration on mid-ocean ridges (i.e. altered basalts, carbonate veins and hydrothermal water) and (3) from restricted euxinic basins (i.e. from the water column and respective sediments). The overall goal was to explore the environmental conditions and unravel the mechanisms that fractionate the two most abundant U isotopes, n( 238 U) and n( 235 U), on Earth.

  6. Prospects for improved understanding of isotopic reactor antineutrino fluxes

    Science.gov (United States)

    Gebre, Y.; Littlejohn, B. R.; Surukuchi, P. T.

    2018-01-01

    Predictions of antineutrino fluxes produced by fission isotopes in a nuclear reactor have recently received increased scrutiny due to observed differences in predicted and measured inverse beta decay (IBD) yields, referred to as the "reactor antineutrino flux anomaly." In this paper, global fits are applied to existing IBD yield measurements to produce constraints on antineutrino production by individual plutonium and uranium fission isotopes. We find that fits including measurements from highly U 235 -enriched cores and fits including Daya Bay's new fuel evolution result produce discrepant best-fit IBD yields for U 235 and Pu 239 . This discrepancy can be alleviated in a global analysis of all data sets through simultaneous fitting of Pu 239 , U 235 , and U 238 yields. The measured IBD yield of U 238 in this analysis is (7.02 ±1.65 )×10-43 cm2/fission , nearly two standard deviations below existing predictions. Future hypothetical IBD yield measurements by short-baseline reactor experiments are examined to determine their possible impact on the global understanding of isotopic IBD yields. It is found that future improved short-baseline IBD yield measurements at both high-enriched and low-enriched cores can significantly improve constraints for U 235 , U 238 , and Pu 239 , providing comparable or superior precision to existing conversion- and summation-based antineutrino flux predictions. Systematic and experimental requirements for these future measurements are also investigated.

  7. Isotope production and target preparation for nuclear astrophysics data

    Directory of Open Access Journals (Sweden)

    Schumann Dorothea

    2017-01-01

    Full Text Available Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN, Switzerland as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: “Determination of the half-life and experiments on neutron capture cross sections of 53Mn” and “32Si – a new chronometer for nuclear dating” are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  8. Isotope production and target preparation for nuclear astrophysics data

    Science.gov (United States)

    Schumann, Dorothea; Dressler, Rugard; Maugeri, Emilio Andrea; Heinitz, Stephan

    2017-09-01

    Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN), Switzerland) as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: "Determination of the half-life and experiments on neutron capture cross sections of 53Mn" and "32Si - a new chronometer for nuclear dating" are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  9. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  10. A level-playing field for medical isotope production - How to phase-out reliance on HEU

    International Nuclear Information System (INIS)

    Kuperman, A.J.

    1999-01-01

    Two decades ago, civilian commerce in highly enriched uranium (HEU) for use as targets in the production of medical isotopes was considered a relatively minor security concern for three reasons. First, the number of producers was small. Second, the amount of HEU involved was small. Third, the amount of HEU was dwarfed by the quantities of HEU in civilian commerce as fuel for nuclear research and test reactors. Now, however, all three variables have changed. First, as the use of medical isotopes has expanded rapidly, production programs are proliferating. Second, as the result of such new producers and the expansion of existing production facilities, the amounts of HEU involved are growing. Third, as the RERTR program has facilitated the phase-out of HEU as fuel in most research and test reactors, the quantities of HEU for isotope production have come to represent a significant percentage of global commerce in this weapons-usable material. Medical isotope producers in several states are cooperating with the RERTR program to convert to low-enriched uranium (LEU) targets within the next few years, and one already relies on LEU for isotope production. However, the three biggest isotope producers - in Canada and the European Union - continue to rely on HEU, creating a double-standard that endangers the goal of the RERTR program. Each of these three producers has expressed economic concerns about being put at a competitive disadvantage if it alone converts. This paper proposes forging a firmer international consensus that all present and future isotope producers should convert to LEU, and calls for codifying such a commitment in a statement of intent to be prepared by producers over the next year. With such a level playing field, no producer would need fear being put at a competitive disadvantage by conversion, or being stigmatized by pressure groups for continued reliance on HEU. The phase-out of all HEU commerce for isotope production could be achieved within about

  11. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    Science.gov (United States)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  12. Isotope mixtures of hydrogen in vanadium

    International Nuclear Information System (INIS)

    Mecking-Schloetensack, P.

    1982-03-01

    The properties of isotope-mixtures of Protium and Deuterium stored in Vanadium have been studied. Protium and Deuterium are existing as interstitial-atoms on tetrahedral sites as well as on octahedral sites in this system. This feature leads to large isotopic-effects between the two isotopes. The dependence of the thermodynamic functions like heat of solution, nonconfigurational entropy, specific heat and ordering temperatures from the composition of the isotope-mixture has been determined. (orig.)

  13. Dry phase reactor for generating medical isotopes

    Science.gov (United States)

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  14. ICP-MS for isotope ratio measurement

    Science.gov (United States)

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  15. Isotopes in day to day life

    Science.gov (United States)

    1984-06-01

    Developments are reported in the use of isotopic labeling and isotope irradiation in agriculture, medical science, hydrology, geochemistry, geophysics, environment pollution detection, and industries. Radioisotope instruments are described as well as techniques for gamma radiography, neutron radiography, and autoradiography. Isotope dating in geology and archaeology is covered. Basic scientific research topics in various areas are listed.

  16. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  17. Use of Isotopes for Studying Reaction Mechanisms

    Indian Academy of Sciences (India)

    Isotopes are generally distinguished by three analytical means. The first ofthem makes use of radioactive isotopes, such as tritium PH), 14C,. 32p etc. This is a highly sensitive technique, but special facilities are required to handle radioactive material. Mass spectroscopy can also be used to detect isotopes. This is also a.

  18. Isotope fingerprinting of precipitation associated with western ...

    Indian Academy of Sciences (India)

    67

    Records 1 - 36 ... Key words: Isotopes, precipitation, western disturbances, Indian summer monsoons,. 17. Himalayas. 18. 19. 1. Introduction. 20. The stable isotopes of oxygen and hydrogen have become an important tool not only in. 21 isotope hydrology but also in studies related to atmospheric circulation and paleoclimatic.

  19. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  20. Regional Comparisons of Oceanic Food Web Structure Using Stable Isotopes

    Science.gov (United States)

    Choy, A.; Drazen, J.; Popp, B. N.; Robison, B. H.

    2016-02-01

    Food chain length, or the number of trophic steps between primary producers and apex predators within an ecosystem, is a key determinant of ecosystem structure, including overall efficiency, stability, and productivity. Here, we quantitatively estimate food chain length for three pelagic ecosystems characterized by distinct biogeochemical and oceanographic regimes: the Northern California Current (NCC), the North Pacific Subtropical Gyre (NPSG), and the Gulf of California (GoC). From each region, ecologically equivalent organisms were selected from each of four successive trophic steps, including zooplankton (primary consumers), zooplanktivores (secondary consumers), piscivores (tertiary consumers), and higher order predators. Bulk tissue δ15N values of the organisms from all four trophic steps spanned ranges of approximately 9.8‰ (NCC), 1.4‰ (NPSG), and 2.1‰ (GoC). Regional variations in nitrogen biogeochemistry, however, can alter isotopic baselines and food web dynamics, ultimately complicating bulk isotope measurements across regions. Thus, we apply amino acid nitrogen isotope measurements to quantitatively measure and compare food chain length across consumers from the three regions, accounting for biogeochemical disparities in isotopic baseline. Implications for ecosystem production and efficiency are discussed, including the potential for these different ecosystems to withstand environmental change, including shifting oxygen levels and surface productivity.

  1. Preparation, characterization and certification of uranium isotope reference materials

    International Nuclear Information System (INIS)

    Oliveira Junior, Olivio Pereira de

    2006-01-01

    This work describes the preparation, characterization and certification of a set of uranium isotope reference materials ranging from 0.5 to 20.0 % of 235 U in mass. The most important concepts of metrology in chemical measurements were applied so that the certified quantities in these materials could be directly traceable to the International System of Units (SI). As a consequence of this approach, these materials can be used in the instruments calibration, estimation of measurement uncertainty, method validation, assessment of performance of analysts, quality control routines and interlaboratory comparison programmes. The most advanced methods and techniques in mass spectrometry, that is, gas source mass spectrometry (GSMS), thermal ionisation mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICPMS) were investigated to identify which are the dominant components in the uncertainty and to quantify its contribution to the final value of the measurement uncertainty of the isotopic ratio. The results obtained were then compared to verify which are the methods and techniques associated to the lowest measurement uncertainty values. The isotope amount ratio n( 235 U)/n( 238 U) was certified in the materials produced to expanded uncertainties ranging from 0.02 to 0.10 % and the ratios n( 234 U)/n( 238 U) and n( 236 U)/n( 238 U), to uncertainties ranging from 0.03 to 2.20 %. These values fully comply to the requirements of the isotopic characterization of nuclear fuel as well as the analysis of environmental samples for nuclear safeguards. (author)

  2. Forensic isotope ratio mass spectrometry of packaging tapes.

    Science.gov (United States)

    Carter, James F; Grundy, Polly L; Hill, Jenny C; Ronan, Neil C; Titterton, Emma L; Sleeman, Richard

    2004-12-01

    Pressure sensitive adhesive tape (brown parcel tape) is employed in a great many criminal activities such as the restraint of individuals during robbery and offences against the person, the enclosure of explosive devices and the packaging and concealment of controlled drugs. Packaging materials are ubiquitous in modern society and are produced in such vast quantities that it is increasingly difficult to distinguish between different products or to link materials to a common source. This study demonstrates the potential of stable isotope ratio mass spectrometry to characterise parcel tapes based on a number of properties. The carbon isotopic signature, derived from the substrate polymer, associated additives and adhesive is highly characteristic of a particular tape and allows samples from different sources to be readily distinguished. Further discrimination may be achieved by the incorporation of deuterium and oxygen isotopic data and by analysis of the isolated backing polymer. Recovery of intact tape from simulated forensic samples proved straightforward and the isotopic signature of the tape did not appear to be affected by adverse storage conditions.

  3. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  4. Consumers and Producers

    NARCIS (Netherlands)

    E. Maira (Elisa)

    2018-01-01

    markdownabstractIn the last few decades, advances in information and communication technology have dramatically changed the way consumers and producers interact in the marketplace. The Internet and social media have torn down the information barrier between producers and consumers, leading to

  5. Dual temperature isotope exchange system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1976-01-01

    Improvements in the method for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. In a preferred embodiment the first is a vaporizable liquid and the auxiliary fluid a gas, comprising steps for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations

  6. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past...

  7. The isotopic dating of crystals

    International Nuclear Information System (INIS)

    Giuliani, G.; Cheilletz, A.

    1995-01-01

    The first part of this work deals with the answer to the question : why are the crystals dated ? Then, some isotopic dating methods are described : U-Th-Pb, K-Ar, 40 Ar/ 39 Ar, Rb-Sr, Sm-Nd, fission traces, carbon 14 methods. Examples concerning emeralds and diamonds are given. (O.L.). 12 refs., 2 figs

  8. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  9. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    activities as the potential discovery of elements heavier than uranium [5]. He drew this conclusion ... alkaline earth metals in the irradiation of uranium by neutrons) Hahn and Strassmann did. 458. Pramana – J. ... the production of active barium isotopes from uranium and thorium by neutron irradiation;. Proof of further active ...

  10. Analytical chemistry and isotope technology

    International Nuclear Information System (INIS)

    Sen, B.K.; Venugopal, V.

    2007-01-01

    Isotopes both stable and radioactive, radiolabeled molecules and radiation sources are increasingly used in varied fields such as health care, industry, hydrology, agriculture, basic research and environmental studies. Analytical chemistry plays a major role in assay of the quantity as well as quality, thus enabling the characterization of the products

  11. Plutonium determination by isotope dilution

    International Nuclear Information System (INIS)

    Lucas, M.

    1980-01-01

    The principle is to add to a known amount of the analysed solution a known amount of a spike solution consisting of plutonium 242. The isotopic composition of the resulting mixture is then determined by surface ionization mass spectrometry, and the plutonium concentration in the solution is deduced, from this measurement. For irradiated fuels neutronic studies or for fissile materials balance measurements, requiring the knowledge of the ratio U/Pu or of concentration both uranium and plutonium, it is better to use the double spike isotope dilution method, with a spike solution of known 233 U- 242 Pu ratio. Using this method, the ratio of uranium to plutonium concentration in the irradiated fuel solution can be determined without any accurate measurement of the mixed amounts of sample and spike solutions. For fissile material balance measurements, the uranium concentration is determined by using single isotope dilution, and the plutonium concentration is deduced from the ratio Pu/U and U concentration. The main advantages of isotope dilution are its selectivity, accuracy and very high sensitivity. The recent improvements made to surface ionization mass spectrometers have considerably increased the precision of the measurements; a relative precision of about 0.2% to 0.3% is obtained currently, but it could be reduced to 0.1%, in the future, with a careful control of the experimental procedures. The detection limite is around 0.1 ppb [fr

  12. Isotope Fractionations Associated With Degassing of CO2 Aqueous Solutions and its Implications for Carbonate Clumped Isotope Thermometry

    Science.gov (United States)

    Guo, W.; Niles, P.; Daeron, M.; Eiler, J. M.

    2007-12-01

    Bicarbonate dehydration (HCO3-+H+→H2CO3→CO2+H2O) and dehydroxylation (HCO3-→CO2+OH-) are important reactions in solutions containing dissolved inorganic carbon (DIC) and are involved in multiple geologic processes, including cryogenic carbonate formation, speleothem deposition and air-sea CO2 exchange. Current understandings of the isotope fractionations that accompany these reactions are very limited. Here we present a model of the isotopic fractionations accompanying dehydration of carbonic acid in aqueous solution, using techniques from ab initio, transition state and statistical thermodynamic theory, and tests of this model based on measurements of experimental and natural carbonates produced by degassing of CO2 from aqueous solutions. Our model predicts that the isotopologues of carbonic acid containing heavy isotopes dehydrate more slowly than the normal isotopologues, such that fractionations between product CO2 and reactant H2CO3 are ~-25‰ for δ13C and ~-9‰ for δ18O at 300K. Expression of these isotope fractionations during degassing of CO2 from aqueous solutions should lead to increases in the δ13C and δ18O of residual DIC species, and in carbonate minerals that precipitate from that DIC; this phenomenon could explain the non-equilibrium isotopic compositions of some cryogenic carbonates and speleothems. The carbonate clumped isotope thermometer constrains carbonate formation temperatures based on the proportions of 13C-18O bonds in the carbonate mineral lattice [1]; the lower the formation temperature, the greater the proportion of 13C-18O bonds. By extending our above model to include the multiply- substituted isotopologues, we predict that isotope fractionations accompanying dehydration of carbonic acid decrease the proportion of 13C-18O bonds in the remaining DIC pool relative to their expected equilibrium abundances, and therefore lead to an apparent overestimation of carbonate formation temperatures as determined by the carbonate

  13. Can a sponge fractionate isotopes?

    Science.gov (United States)

    Patel, B; Patel, S; Balani, M C

    1985-03-22

    The study has unequivocally demonstrated that siliceous sponges Spirastrella cuspidifera and Prostylyssa foetida from the same microecological niche exhibit a high degree of species specificity, while accumulating a host of heavy metal ions (Ni, Cr, Cd, Sn, Ti, Mo, Zr). S. cuspidifera accumulated, in addition, 60Co and 63Ni, showing discrimination against other radionuclides, 137Cs and 131I, present in the ambient waters receiving controlled low level waste discharges from a B.W.R. nuclear power station. P. foetida, on the other hand, accumulated only 131I and showed discrimination against other radionuclides including 60Co, although the stable iodine concentrations in both the sponges were the same. The specific activity of 60Co (in becquerels per gram of 59Co) in S. cuspidifera and 131I (in becquerels per gram of 127I) in P. foetida were at least two orders of magnitude greater than in the ambient sea water. That of 63Ni (in becquerels per gram of 62Ni) in S. cuspidifera, on the other hand, was lower by two orders of magnitude than in either abiotic matrices from the same environment. Thus, not only did both the species show bioaccumulation of a specific element, but also preferential uptake of isotopes of the same element, though they were equally available for intake. Such differential uptake of isotopes can possibly be explained in terms of two quite different mechanisms operating, each applicable in a particular case. One is that the xenobiotic isotope enters the environment in a physicochemical form or as a complex different from that of its natural counterpart. If equilibration with the latter is slow, so that the organism acquires the xenobiotic in an unfamiliar chemical context, it may treat it as a chemically distinct entity so that its concentration factor differs from that of stable isotope, thus changing the specific activity. Alternatively, if the xenobiotic is present in the same chemical form as the stable isotope, the only way in which specific

  14. Fungi producing significant mycotoxins.

    Science.gov (United States)

    2012-01-01

    Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors

  15. Calcium isotope analysis by mass spectrometry.

    Science.gov (United States)

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  16. Inaccuracies in helium isotope measurements

    Science.gov (United States)

    Aruev, N. N.; Boltenkov, B. S.

    2012-08-01

    The results of mass-spectrometric measurements of the helium isotope content in aluminum samples obtained at different times and under different conditions and also of the helium isotope content in iron-manganese concretions are presented. The measurement accuracy of the helium isotope content in aluminum depends on various measuring-technique-related factors: vacuum conditions, gas inleakage and escape in the mass analyzer and/or gas extraction system, the device memory effect as applied to any of the helium isotopes, preparation accuracy of reference samples, their persistence, etc. In the given case, the statistical processing of measurement data with different criteria indicates that the variances diverge considerably but does not discover the sources of divergence. To measure the helium isotope content in iron-manganese concretions, a powdered sample is placed in a metallic capsule, which is then thrown into a heated crucible in vacuum, where gases to be tested liberate. Our statistical analysis of measuring data confirms the supposition that, if the capsule is made of low-melting aluminum and the capsule with a fine powder is thrown into a heated crucible, the variance grows and measuring data are underestimated. This seems to be associated with rapid melting of the capsule, emission of fine particles of the sample out of the hot zone of the reactor, and their loss. When the capsule is made of nickel, a much higher melting material than aluminum, it does not melt and the test material is not ejected from the hot zone. That is what follows from the results of the statistical analysis in our opinion.

  17. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  18. 2. Workshop 'Isotopes in Nature'. 1

    International Nuclear Information System (INIS)

    1979-11-01

    The workshop was aimed at discussing in detail the following problems: (1) distribution of stable and radioactive isotopes in nature, (2) theoretical and experimental studies of isotopic effects in natural processes, (3) problems of sample preparation and sample measurement in determining the relative abundance of stable isotopes or radioactive isotopes in nature, (4) age estimations of samples from different areas of the geosphere, (5) contributions to the specification of global and regional substance cycles in nature with the aid of isotopic and geochemical studies. 75 summaries are included

  19. Modelling stable water isotopes: Status and perspectives

    Directory of Open Access Journals (Sweden)

    Werner M.

    2010-12-01

    Full Text Available Modelling of stable water isotopes H2 18O and HDO within various parts of the Earth’s hydrological cycle has clearly improved our understanding of the interplay between climatic variations and related isotope fractionation processes. In this article key principles and major research results of stable water isotope modelling studies are described. Emphasis is put on research work using explicit isotope diagnostics within general circulation models as this highly complex model setup bears many resemblances with studies using simpler isotope modelling approaches.

  20. Unusual Atmospheric Processes: Implications for the Unusual Isotope Effect in Precipitation

    Science.gov (United States)

    Hurst, S.; Krishnamurthy, R. V.

    2016-12-01

    Several samples associated in particular with thunderstorms collected from Kalamazoo, Michigan reveal oxygen and hydrogen isotope ratios that are not compatible with known thermodynamic fractionation or the so-called Raleigh Distillation Effect. Data gathered from April 2014 to February 2016 can be separated into two categories: (1) samples with expected isotopic values based on previous work, (2) samples with unusually high δ18O and δ2H values. Values as high as 42‰ and 25‰ for δ2H and δ18O respectively are obtained. Recent studies suggest that precipitation produced by deep convection can produce moderately enriched oxygen isotopic values, although no hydrogen values for those precipitations are available. Moreover, no values have been recorded that are as high as some of those presented here. The unusual isotope values cannot be attributed to air mass contributions. It is argued that changes in atmospheric chemistry, most likely induced by lightning associated with thunderstorms are responsible. This is likely since temperatures associated with lightning can reach 40000°K. Several studies have indicated that lightning can significantly impact atmospheric chemistry producing, among other species, ozone and NOx. Atmospheric ozone has enriched isotopic values and likely contributes to enriched Oxygen-18 seen in precipitation. An explanation for enrichment in hydrogen is somewhat elusive, but a likely candidate is ion molecular reactions produced by extremely high temperatures in the corona of lightning.

  1. NOx and ammonium isotopic fingerprints of anammox in natural and engineered systems: Implications for N isotope budgets and the use of NOx isotopes to diagnose process stability in wastewater treatment

    Science.gov (United States)

    Lehmann, M. F.; Stöcklin, N.; Brunner, B.; Frame, C. H.; Joss, A.; Kipf, M.; Kuhn, T.; Wunderlin, P.

    2014-12-01

    The anaerobic oxidation of ammonium with nitrite (anammox) has been identified as a very important fixed nitrogen (N) sink, accounting for a large fraction of global fixed N loss in marine, freshwater, and semi-terrestrial environments. In engineered systems, combined nitritation-anammox is an efficient process to remove N from ammonium-rich wastewater, with nitrite as the central intermediate. During the anammox process, nitrate is being produced, providing reducing equivalents for carbon fixation. Measuring the N isotope ratios in fixed N species (i.e., ammonium, nitrite, nitrate) has proven to be a valuable tool to track N cycling in freshwater and marine ecosystems, yet its application in wastewater treatment as a tool to diagnose nitrate production pathways is novel. In this presentation we will elucidate, and compare, the N isotope effects associated with anammox 1) in vitro, 2) in a lacustrine setting, and 3) in a small-scale batch reactor for wastewater treatment. We demonstrate that the anammox nitrite/nitrate isotopic signatures are modulated by the superposition of strong kinetic (normal and inverse) and equilibrium (nitrite-nitrate) N isotope fractionation. The ammonium N isotope effect is driven by kinetic N isotope fractionation, and is similar to that of nitrification. We will discuss the possible controls on the expression of the anammox N isotope effects in the natural environment. We will also evaluate the use of nitrate/nitrite N (and O) isotope signatures to distinguish between nitrate production by anammox versus nitrite oxidation, which is important for optimizing process efficiency during wastewater treatment.

  2. The centenary of the discovery of isotopes

    International Nuclear Information System (INIS)

    Soulie, Edgar

    2013-01-01

    This article recalls works performed by different scientists (Marckwald and Keetman, Stromholm and Svedberg, Soddy, Thompson, Aston) which resulted in the observation and identification of the existence of isotopes. The author also recalls various works related to mechanisms of production of isotopes, the discovery of uranium fission and the principle of chain reaction. The author notably evokes French scientists involved in the development of mass spectroscopy and in the research and applications on isotopes within the CEA after the Second World War. A bibliography of article and books published by one of them, Etienne Roth, is provided. References deal with nuclear applications of chemical engineering (heavy water and its production, chemical processes in fission reactors, tritium extraction and enrichment), isotopic fractioning and physical-chemical processes, mass spectrometry and isotopic analysis, isotopic geochemistry (on 07;Earth, search for deuterium in moon rocks and their consequences), first dating and the Oklo phenomenon, radioactive dating, water and climate (isotopic hydrology, isotopes and hailstone formation, the atmosphere), and miscellaneous scientific fields (nuclear measurements and radioactivity, isotopic abundances and atomic weight, isotopic separation and use of steady isotopes)

  3. EBIS/T charge breeding for intense rare isotope beams at MSU

    CERN Document Server

    Schwarz, S; Marrs, R E; Kittimanapun, K; Lapierre, A; Mendez, A J; Ames, F; Beene, J R; Lindroos, M; Ahle, L E; Stracener, D W; Kester, O; Wenander, F; Lopez-Urrutia, J R Crespo; Dilling, J; Bollen, G

    2010-01-01

    Experiments with reaccelerated beams are an essential component of the science program of existing and future rare isotope beam facilities. NSCL is currently constructing ReA3, a reaccelerator for rare isotopes that have been produced by projectile fragmentation and in-flight fission and that have been thermalized in a gas stopper. The resulting low-energy beam will be brought to an Electron Beam Ion Source/Trap (EBIS/T) in order to obtain highly charged ions at an energy of 12 keV/u. This charge breeder is followed by a compact linear accelerator with a maximum beam energy of 3MeV/u for U-238 and higher energies for lighter isotopes. Next-generation rare isotope beam facilities like the Facility for Rare Isotope Beams FRIB, but also existing Isotope Separator On-line (ISOL) facilities are expected to provide rare-isotope beam rates in the order of 10(11) particles per second for reacceleration. At present the most promising scheme to efficiently start the reacceleration of these intense beams is the use of a...

  4. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  5. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    Science.gov (United States)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  6. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  7. Measuring SNM Isotopic Distributions using FRAM

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-02

    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  8. Silicon isotope fractionation by marine siliceous sponges

    Science.gov (United States)

    Hendry, K. R.; Maldonado, M.

    2016-02-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotope composition of spicules has been shown to relate to the silicic acid concentration of ambient water. However, existing calibrations do exhibit a degree of scatter in the relationship, and there are many open questions surrounding the mechanism behind isotopic fractionation during biosilicification. Here, we present a new study of silicon isotopes in siliceous sponges, covering a range of ancestral lineages, marine environments and geographical locations, and the impact of cleaning methods of silicon isotope compositions. We show that the cleaning method has minimal impact on silicon isotope composition of sponge spicules. Our results highlight the importance of environmental and biological factors on silicon isotope fractionation, and we discuss the implications of these results on the use of palaeoceanographic applications of sponge spicules.

  9. Agricultural Producer Certificates

    Data.gov (United States)

    Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...

  10. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    Science.gov (United States)

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.

  11. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.; Sessions, Alex L.; Lawson, Michael; Shuai, Yanhua; Bishop, Andrew; Podlaha, Olaf G.; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Niemann, Martin; Steen, Arne S.; Huang, Ling; Chimiak, Laura; Valentine, David L.; Fiebig, Jens; Luhmann, Andrew J.; Seyfried, William E.; Etiope, Giuseppe; Schoell, Martin; Inskeep, William P.; Moran, James J.; Kitchen, Nami

    2017-11-01

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.

  12. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  13. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  14. In-gas laser ionization and spectroscopy of actinium isotopes near the N =126 closed shell

    Science.gov (United States)

    Granados, C.; Creemers, P.; Ferrer, R.; Gaffney, L. P.; Gins, W.; de Groote, R.; Huyse, M.; Kudryavtsev, Yu.; Martínez, Y.; Raeder, S.; Sels, S.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wrzosek-Lipska, K.; Zadvornaya, A.; Barzakh, A. E.; Bastin, B.; Delahaye, P.; Hijazi, L.; Lecesne, N.; Luton, F.; Piot, J.; Savajols, H.; Thomas, J.-C.; Traykov, E.; Beerwerth, R.; Fritzsche, S.; Block, M.; Fléchard, X.; Franchoo, S.; Ghys, L.; Grawe, H.; Heinke, R.; Kron, T.; Naubereit, P.; Wendt, K.; Laatiaoui, M.; Moore, I.; Sonnenschein, V.; Loiselet, M.; Mogilevskiy, E.; Rothe, S.

    2017-11-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique was applied on the Ac-215212 isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the Ac-215212 isotopes, electric-quadrupole moments and nuclear spins for the Ac,215214 isotopes are presented and discussed. A good agreement is obtained with large-scale nuclear shell-model calculations by using a 208Pb core.

  15. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  16. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  17. ISOGEN: Interactive isotope generation and depletion code

    International Nuclear Information System (INIS)

    Venkata Subbaiah, Kamatam

    2016-01-01

    ISOGEN is an interactive code for solving first order coupled linear differential equations with constant coefficients for a large number of isotopes, which are produced or depleted by the processes of radioactive decay or through neutron transmutation or fission. These coupled equations can be written in a matrix notation involving radioactive decay constants and transmutation coefficients, and the eigenvalues of thus formed matrix vary widely (several tens of orders), and hence no single method of solution is suitable for obtaining precise estimate of concentrations of isotopes. Therefore, different methods of solutions are followed, namely, matrix exponential method, Bateman series method, and Gauss-Seidel iteration method, as was followed in the ORIGEN-2 code. ISOGEN code is written in a modern computer language, VB.NET version 2013 for Windows operating system version 7, which enables one to provide many interactive features between the user and the program. The output results depend on the input neutron database employed and the time step involved in the calculations. The present program can display the information about the database files, and the user has to select one which suits the current need. The program prints the 'WARNING' information if the time step is too large, which is decided based on the built-in convergence criterion. Other salient interactive features provided are (i) inspection of input data that goes into calculation, (ii) viewing of radioactive decay sequence of isotopes (daughters, precursors, photons emitted) in a graphical format, (iii) solution of parent and daughter products by direct Bateman series solution method, (iv) quick input method and context sensitive prompts for guiding the novice user, (v) view of output tables for any parameter of interest, and (vi) output file can be read to generate new information and can be viewed or printed since the program stores basic nuclide concentration unlike other batch jobs. The

  18. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples

    Science.gov (United States)

    Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.

    2018-02-01

    New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might

  19. NEA activities on medical isotope supply issues

    International Nuclear Information System (INIS)

    Westmacott, C.; Vance, R.

    2009-01-01

    Medical radioisotopes play a vital role in modern medical practices. One of their principal uses is for nuclear diagnostic imaging techniques. These techniques are powerful and non-invasive, allowing the identification of common diseases such as heart conditions and cancer at an early stage, tracking disease progression and providing predictive information about likely success of a therapy. Such techniques enable precise and accurate management of the disease and may significantly assist in the medical decision-making process, for example removing the need for surgical intervention to obtain diagnostic information. Every year, 46 million people are estimated to benefit globally from such nuclear medicine testing. However, over the last few years there have been a number of supply shortages of Molybdenum-99 (Mo-99) and its decay product, Technetium-99m (Tc-99m), the most widely used medical radioisotope. These isotopes decay within a matter of days; therefore they must be produced continually in order to meet demand. Most recently, the unexpected extended shutdown of Canada's NRU research reactor - which produces approximately 35 percent of world Mo-99 supply - has compounded existing concerns regarding the supply reliability of these medical radioisotopes. Currently, five reactors between 42 and 52 years old produce over 95 percent of the world's supply of Mo-99 and face challenges in maintaining a continuous supply to the health community. As outlined above, disruptions in this supply chain have affected the availability of vital medical testing for millions of patients around the world. On 29-30 January 2009, the NEA hosted a workshop on Security of Supply of Medical Radioisotopes at the request of the Government of Canada. The workshop assembled an international group of experts to identify challenges faced in providing a reliable supply of Mo-99 and Tc-99m and measures that should be taken to ensure such reliability. Workshop participants discussed a wide

  20. Isotopic Signature of the Ancient Biosphere

    Science.gov (United States)

    DesMarais, D. J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The age distribution of 261 field localities, sampled for their well-preserved Archean and Proterozoic sedimentary rocks, revealed a 500-700 Ma episodicity. Assuming that the numbers of sites are a proxy for mass of sediments, the record of well-preserved sediments is more abundant in the intervals 3.5-3.3, 2.8-2.5, 2.1-1.8, 1.5-1.3, and 1.0-0.54 Ga than in the intervening intervals. It is proposed that the crustal inventory of photosynthetic organic carbon was modulated by the volume of sedimentation in sites favorable for the burial and long-term preservation of organic carbon. Tectonic processes controlled this sediment volume. Episodic increases in the organic inventory led to stepwise increases in oxidized reservoirs (e.g., O2, SO4(2-), Fe(3+). The interval 2.9-2.5 Ga recorded a large rise in seawater Sr-87/Sr-86, the oldest-known extensive banded iron formations, and the first evidence (C-13-depleted kerogens) of O2 use by methylotrophic bacteria. The interval 2.2-1.8 Ga has both carbon isotopic evidence for a stepwise increase in the organic reservoir and also paleosol evidence for an O2 increase. The interval 1.1-0.6 Ga shows isotopic evidence for another organic carbon increase. The interval 1.5-1.3 Ga revealed no such increases as yet, perhaps because incomplete rifting of the mid-Proterozoic supercontinent was associated with extensive sedimentation in oxidized continental basins, producing redbeds, coarse clastics, etc. Such sedimentation did not promote the burial of reduced carbon.

  1. [Hyperfine structure and isotope shift measurements of short lived elements by laser spectroscopy

    International Nuclear Information System (INIS)

    Schuessler, H.A.

    1986-01-01

    The aim of this research is to determine nuclear moments and charge distributions of short-lived isotopes produced both on-line and off-line to a nuclear facility. These measurements give detailed information on the nuclear force and are used to test current nuclear models. The small amounts of nuclei which can be produced off stability constitute the challenge in these experiments. Presently mainly neutron-rich isotopes are being studied by three ultrasensitive high-resolution laser techniques. These are collinear fast ion-beam laser spectroscopy, stored-ion laser spectroscopy and fluorescence spectroscopy. 5 figs

  2. Isotope effects in photo dissociation of ozone with visible light

    Science.gov (United States)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  3. Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes

    International Nuclear Information System (INIS)

    Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    1998-01-01

    Two new isotopes, 145 Tm and 140 Ho and three isomers in previously known isotopes, 141m Ho, 150m Lu and 151m Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation

  4. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  5. Australis: AMS for ultra sensitive trace element and isotopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The accelerator mass spectrometer (AMS) at the CSIRO HIAF laboratory is being upgraded to enable in-situ measurements of ultratraces and isotopic-ratios in mineralogical applications. The upgraded system will include a microbeam Cs ion source which is designed to produce better than 50 micrometre diameter Cs beam to enable analyses of monomineralic grains. The Cs primary beam will be mass analysed in order to minimize contamination of the sample. The detection system will be upgraded to enable analyses of elements up to U, at 2 MV terminal voltage for charge states 4 and 5. The system will be known as AUSTRALIS: A.M.S. for Ultra Sensitive TRAce eLement and Isotopic Studies. An overview of the system and the anticipated applications in minerals exploration and mining research are presented. 4 refs., 1 fig.

  6. Nuclides and isotopes. Twelfth edition

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This explanatory booklet was designed to be used with the Chart of the Nuclides. It contains a brief history of the atomic theory of matter: ancient speculations, periodic properties of elements (Mendeleev table), radioactivity, early models of atomic structure, the Bohr atom, quantum numbers, nature of isotopes, artificial radioactivity, and neutron fission. Information on the pre-Fermi (natural) nuclear reactor at Oklo and the search for superheavy elements is given. The booklet also discusses information presented on the Chart and its coding: stable nuclides, metastable states, data display and color, isotopic abundances, neutron cross sections, spins and parities, fission yields, half-life variability, radioisotope power and production data, radioactive decay chains, and elements without names. The Periodic Table of the Elements is appended. 3 figures, 3 tables

  7. Laser traps for radioactive isotopes

    International Nuclear Information System (INIS)

    Voytas, P.A.; Behr, J.A.; Ghosh, A.; Gwinner, G.; Orozco, L.A.; Simsarian, J.E.; Sprouse, G.D.; Xu, F.

    1996-01-01

    The techniques of laser cooling and trapping now make it possible to observe large samples of stable atoms in a small volume at low temperature. This capability was recently extended to radioactive isotopes. This opens up new opportunities for the investigation of fundamental symmetries through measurements using radioactive atoms. In this paper we will discuss several fundamental measurements in atomic systems and how the ability to trap radioactive atoms will play an important role in improving the precision of such measurements. Measurements of the effects of the weak interaction are of particular note since they are becoming quite precise. In particular, we will describe in detail the system developed at Stony Brook to trap radioactive alkali atoms and measure weak interaction effects in francium isotopes. (orig.)

  8. Studying of isotope structure of uranium by alpha-spectrometric method

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Petukhov, O.F.; Petrenko, V.Z.

    2004-01-01

    Full text: The knowledge of isotope structure of uranium in waters, in minerals and in finished goods gives the helpful information on the radiation and nuclear-physical processes occurring in natural environments. Besides, customers put a question before uranium producing enterprises on the control of limiting concentration of an isotope 234 U in finished goods (uranium protoxide-oxide). For these reasons studying and development of techniques of definition of isotope structure of uranium is an actual task. In this connection for researches alpha - spectrometers 'PROGRESS-ALPHA' produced by R and D 'DOZE' Russia and firms 'Canberra' the USA were used. The isotope structure of uranium ( 234 U, 235 U, 238 U) was determined on a known ratio 234 U/ 238 U, which is equal to 53,41micrograms/gram. Identification of isotopes carried out by 4198 keV ( 235 U), 4395 keV ( 234 U) and 4773 keV ( 238 U). The technique of radiochemical preparation of samples to the analysis included: clearing of organic chemistry and preventing natural isotopes; drawing by a method electrolytic sedimentation on a metal substrate (d=24mm) an active stain, the area 4,5 cm 2 , with isotropy distribution of ions 234 U, 235 U, 238 U. As standards, the international and All-Russian standards with known contents 234 U were used. The isotope structure of uranium in uranium protoxide-oxide, chemical concentrates, technological solutions is determined. Infringements of isotope balance 234 U/ 238 U on separate sites of fulfilled uranium deposits and in technological products are found out

  9. Isotopic criteria in the characterization of aromatic molecules. 2. Influence of the chemical elaboration process.

    Science.gov (United States)

    Martin, Gerard J; Heck, Georg; Djamaris-Zainal, Risnayeti; Martin, Maryvonne L

    2006-12-27

    Most valued natural aromatic molecules can be substituted by their low-cost chemical counterparts. Isotopic methods, which offer the most powerful tool to infer the origin of a molecule, are applied to the characterization of a large number of chemical aromatic species. Isotopic affiliation between precursors and products is investigated in several types of reactions: oxidation of benzyl chloride and benzyl alcohol and hydrolysis of benzylidene chloride and cinnamaldehyde. The isotopic parameters strongly depend not only on the type of process but, for a given process, on the experimental conditions of the reaction. Kinetic isotope effects occurring in several formylation reactions are estimated. It is shown that, in the drastic experimental conditions of many industrial processes, the benzenic hydrogen atoms may be affected by exchange phenomena. Consequently, the site-specific isotopic parameters of the ring fragment of chemical species are usually much less stable than those of the corresponding natural molecules biosynthesized in mild environments. The isotope ratios of substituents such as CH3, CH2Cl, and CHO are more resistant to exchange and provide useful criteria for characterizing both the raw materials and the process. It is shown in particular that radical hydrogen abstraction in toluene to produce benzyl chloride induces relatively moderate fractionation effects. In contrast, oxidation reactions frequently produce strong fractionation effects. In particular, industrial direct oxidation of toluene into benzaldehyde is characterized by deuterium enrichments at the formyl site, which may exceed 900 ppm. Taking into account the large magnitude and high variability of many fractionation effects occurring in chemical reactions, the isotopic fingerprint may provide unambiguous criteria, not only for excluding a natural origin and characterizing the type of process, but also for differentiating molecules synthesized by a given process in different industrial

  10. Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples.

    Science.gov (United States)

    Piper, Thomas; Thevis, Mario

    2017-01-01

    The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail. © 2017 Elsevier Inc. All rights reserved.

  11. Stable isotope analysis of modern human hair collected from Asia (China, India, Mongolia, and Pakistan).

    Science.gov (United States)

    Thompson, A H; Chesson, L A; Podlesak, D W; Bowen, G J; Cerling, T E; Ehleringer, J R

    2010-03-01

    We report isotopic data (delta(2)H, delta(18)O n = 196; delta(13)C, delta(15)N n = 142; delta(34)S n = 85) from human hair and drinking water (delta(2)H, delta(18)O n = 67) collected across China, India, Mongolia, and Pakistan. Hair isotope ratios reflected the large environmental isotopic gradients and dietary differences. Geographic information was recorded in H and O and to a lesser extent, S isotopes. H and O data were entered into a recently developed model describing the relationship between the H and O isotope composition of human hair and drinking water in modern USA and pre-globalized populations. This has anthropological and forensic applications including reconstructing environment and diet in modern and ancient human hair. However, it has not been applied to a modern population outside of the USA, where we expect different diet. Relationships between H and O isotope ratios in drinking water and hair of modern human populations in Asia were different to both modern USA and pre-globalized populations. However, the Asian dataset was closer to the modern USA than to pre-globalized populations. Model parameters suggested slightly higher consumption of locally produced foods in our sampled population than modern USA residents, but lower than pre-globalized populations. The degree of in vivo amino acid synthesis was comparable to both the modern USA and pre-globalized populations. C isotope ratios reflected the predominantly C(3)-based regional agriculture and C(4) consumption in northern China. C, N, and S isotope ratios supported marine food consumption in some coastal locales. N isotope ratios suggested a relatively low consumption of animal-derived products compared to western populations.

  12. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    Science.gov (United States)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  13. Copper isotope signatures in modern marine sediments

    Science.gov (United States)

    Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke; Lyons, Timothy W.

    2017-09-01

    The development of metal stable isotopes as tools in paleoceanography requires a thorough understanding of their modern marine cycling. To date, no Cu isotope data has been published for modern sediments deposited under low oxygen conditions. We present data encompassing a broad spectrum of hydrographic and redox regimes, including continental margin and euxinic (sulphide-containing) settings. Taken together with previously published data from oxic settings, these data indicate that the modern oceanic sink for Cu has a surprisingly homogeneous isotopic composition of about +0.3‰ (δ65Cu, relative to NIST SRM976). We suggest that this signature reflects one of two specific water-column processes: (1) an equilibrium isotope fractionation between soluble, isotopically heavy, Cu complexed to strong organic ligands and an isotopically light pool sorbed to particles that deliver Cu to the sediment, or (2) an equilibrium isotope fractionation between the same isotopically heavy ligand-bound pool and the particle reactive free Cu2+ species, with the latter being scavenged by particulates and thereby delivered to the sediment. An output flux of about +0.3‰ into sediments is isotopically light relative to the known inputs to the ocean (at around +0.6‰) and the seawater value of +0.6 to +0.9‰, suggesting the presence of an as yet unidentified isotopically light source of Cu to the oceans. We hypothesize that this source may be hydrothermal, or may result from the partial dissolution of continentally derived particles.

  14. Strange Isotope Ratios in Jupiter

    Science.gov (United States)

    Manuel, O.; Ragland, D.; Windler, K.; Zirbel, J.; Johannes, L.; Nolte, A.

    1998-05-01

    At the January AAS meeting, Dr. Daniel Goldin ordered the release of isotopic data from the 1995 Galileo probe into Jupiter. This probe took mass readings for mass numbers 2-150, which includes all of the noble gas isotopes. A certain few noble gas isotopes, specifically those at mass/charge = 21, 40, 78, 124, and 126, are difficult to distinguish from background, while interference causes some variation in signals for noble gas isotopes at mass/charge = 20, 22, 36, 38, 40, 80, 82, 83, 84 and 86. Some contamination was caused by incomplete adsorption of low mass hydrocarbons by Carbosieve, the material used in the concentration cells [Space Sci. Rev. 60, 120 (1992)]. Thus, preliminary results are most reliable in the high mass region that includes xenon. The Galileo Probe provided the first direct measurements from a planet with a chemical composition drastically different from Earth. Our preliminary analyses indicate that Jupiter contains Xe-X [Nature 240, 99 (1972)], which differs significantly from Earth's xenon. Xe-X and primordial He are tightly coupled on the microscopic scale of meteorite minerals [Science 195, 208 (1977); Meteoritics 15, 117 (1980)]. The presence today of Xe-X in the He-rich atmosphere of Jupiter suggests that the primordial linkage of Xe-X with He extended across the protosolar nebula, on a planetary scale [Comments Astrophys. 18, 335 (1997)]. Contamination by hydrocarbons and other gases does not necessarily remove light noble gases from further consideration. Currently, isolation of signals of these elements from interference continues and may result in the presentation of many other interesting observations at the conference.

  15. Titanium isotopic anomalies in meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.; Lugmair, G.W.

    1984-01-01

    High-precision analyses of Ti are reported for samples from a variety of meteorite classes. The expanded data base for Allende inclusions still shows Ti isotope anomalies in every inclusion. All the coarse-grained inclusions give quite similar patterns, but fine-grained inclusions show more variable, and sometimes larger, anomalies. One inclusion, 3675A, was analyzed because others identified it as a possible 'FUN' inclusion due to its mass-fractionated Mg. This designation is supported by the significantly more complex Ti isotopic pattern for 3675A compared to all our other Allende inclusions. Available data fail to suggest that any particular Allende mineral phase, including a chromite-carbon fraction from an acid residue, is especially rich in anomalous Ti. We also find anomalous Ti in a bulk sample of a C1 chondrite and in matrix separates from C2 chondrites. The excesses of 50 Ti are smaller than for Allende inclusions, and subtle differences in Ti isotopic patterns tentatively suggest that parent materials for C1-C2 matrix and Allende inclusions are not directly related. Analyses of chondrules from unequilibrated ordinary chondrites did not yield clear evidence for anomalous Ti, but some 'larger than usual' deficits at 50/46 give encouragement for future work in this direction. (author)

  16. Isotope exchange process and device

    International Nuclear Information System (INIS)

    Delvalle, Pierre.

    1974-01-01

    A process for enriching uranium in one of its isotopes is described. To do so, cascade isotopic exchanges are made by contact between U(III) and U(IV) in conditions avoiding the oxidation of U(III) in U(IV). A liquid phase containing an uranium compound and free of other group III to VIII metals of the periodic classification, in which uranium is present at a first valence is placed in contact with a second valence uranium compound, protected from any contact with a conducting solid and with an agent bringing free or release oxygen. The second phase is organic. The process includes a counter current isotopic exchange between an aqueous phase containing a U +4 salting-out agent and the uranium as U +3 ions and an organic phase containing the uranium at valence IV. This is followed by the extraction of U(IV) from the organic phase into the previously spent aqueous phase and the reduction of uranium from valence IV to valence III; finally by oxidation of U(III) of the aqueous phase into U(IV) and the transfer of U(IV) into the previously exhausted organic phase [fr

  17. Neodymium isotopic variations in seawater

    International Nuclear Information System (INIS)

    Piepgras, D.J.; Wasserburg, G.J.

    1980-01-01

    New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average epsilonsub(N)sub(d)(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean, epsilonsub(N)sub(d)(0) approx. equal to - 12 +- 2; Indian Ocean, epsilonsub(N)sub(d)(0) approx. equal to - 8 +- 2; Pacific Ocean, epsilonsub(N)sub(d)(0) approx. equal to -3 +- 2. These values are considerably less than epsilonsub(N)sub(d)(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of 143 Nd between the Pacific and Atlantic Oceans corresponds to approx. 10 6 atoms 143 Nd per gram of seawater. The correspondence between the 143 Nd/ 144 Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography. (orig./HAE)

  18. Patterns in Stable Isotope Values of Nitrogen and Carbon in Particulate Matter from the Northwest Atlantic Continental Shelf, from the Gulf of Maine to Cape Hatteras

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is crit...

  19. Future trends in the application of isotopes and radiation

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1977-01-01

    Expected trends for the development of new methods and different applications of isotopes in agriculture, medicine and industrial production are discussed. In agriculture stable-isotope-labelled compounds can also be applied in field studies on the fate and metabolic processes of pesticide residues, as well as in long-lasting experiments on animal nutrition. Radioactive isotopes will continue to play a predominant role in trace element investigations, especially studies on the interaction and synergism of various trace elements in soil, plants and animals. The use of radioactive-labelled substrates and reagents will also become indispensable in enzyme research. Of the many other applications of isotopes in agriculture which might develop further, one item should be mentioned: the importance of non-radioactive labelling in ecology. Two areas of radiation application in agriculture may expect some progress from the use of neutron irradiation instead of gamma rays: plant breeding and the sterile insect technique (SIT). The advantage of sterilizing male insects by neutrons instead of gamma rays has become apparent with tsetse flies, which suffer less physiological harm when exposed to moderate neutron doses and, though sterile, remain fully competitive with wild tsetse fly males. There are also considerable further developments to be expected in the medical field. In vivo radionuclide imaging, if done by scanning, can only inform on local distribution of a radioactive-labelled pharmaceutical. Dynamic studies of function and physiologic processes have to be performed by using gamma-cameras which combine spatial localization with time variation. Short-lived radioisotopes, including cyclotron-produced positron emitters, are becoming more available, and the list of industrially manufactured radiopharmaceuticals is increasing. A most important development is tomography with positron emitters using annihilation gamma radiation. One of the most successful methods in clinical

  20. Producing superhydrophobic roof tiles

    International Nuclear Information System (INIS)

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-01-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic–inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie–Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol–gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie–Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. (paper)