WorldWideScience

Sample records for isotope probing electronic

  1. Electronic isotope shifts, muonic atoms, and electron scattering

    International Nuclear Information System (INIS)

    Shera, E.B.

    1982-01-01

    The roles of electronic isotope shift, muonic atom, and electron scattering experiments in studying the nuclear charge distribution are discussed in terms of the potentials of each probe. Barium isotope shift data are presented as an example of a combined muonic-optical analysis and the results are compared with droplet and IBA model predictions. A survey of muonic and (e,e) results is presented with emphasis on shell-structure related features

  2. Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E.; Hatzinger, Paul B.; Condee, Charles W.; Chu, Kung-Hui

    2015-01-01

    Highlights: • SIP characterized RDX-degrading communities under different e-accepting conditions. • Dominant RDX degradation pathways differed under different e-accepting conditions. • More complete detoxification of RDX occurred under methanogenic and sulfate-reducing conditions than under manganese(IV) and iron(III)-reducing conditions. - Abstract: This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using 13 C and 15 N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with 13 C 3 - or ring- 15 N 3 -, nitro- 15 N 3 -, or fully-labeled 15 N 6 -RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the 13 C-DNA fractions. A total of twenty seven sequences were derived from different 15 N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled 13 C or 15 N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that 13 C- and 15 N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions

  3. Probing of flowing electron plasmas

    International Nuclear Information System (INIS)

    Himura, H.; Nakashima, C.; Saito, H.; Yoshida, Z.

    2001-01-01

    Probing of streaming electron plasmas with finite temperature is studied. For the first time, a current-voltage characteristic of an electric probe is measured in electron plasmas. Due to the fast flow of the electron plasmas, the characteristic curve spreads out significantly and exhibits a long tail. This feature can be explained calculating the currents collected to the probe. In flowing electron plasmas, the distribution function observed in the laboratory frame is non-Maxwellian even if the plasmas come to a state of thermal equilibrium. Another significant feature of the characteristic is that it determines a floating potential where the current equals zero, despite there being very few ions in the electron plasma. A high impedance probe, which is popularly used to determine the space potential of electron plasmas, outputs the potential. The method is available only for plasmas with density much smaller than the Brillouin limit

  4. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  5. Protein-based stable isotope probing.

    Science.gov (United States)

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  6. Electron scattering off palladium isotopes

    International Nuclear Information System (INIS)

    Laan, J.B. van der.

    1986-01-01

    The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm -1 . (Auth.)

  7. Probing new light force-mediators by isotope shift spectroscopy

    International Nuclear Information System (INIS)

    Berengut, Julian C.; Budker, Dmitry; California Univ., Berkeley, CA; Lawrence Berkeley National Laboratory, Berkeley, CA; Delaunay, Cedric

    2017-04-01

    In this Letter we explore the potential of probing new light force-carriers, with spin-independent couplings to the electron and the neutron, using precision isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the Standard Model nuclear effects. We apply our method to existing Ca"+ data and project its sensitivity to possibly existing new bosons using narrow transitions in other atoms and ions (specifically, Sr and Yb). Future measurements are expected to improve the relative precision by five orders of magnitude, and can potentially lead to an unprecedented sensitivity for bosons within the 10 keV to 10 MeV mass range.

  8. Probing new light force-mediators by isotope shift spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berengut, Julian C. [New South Wales Univ., Sydney, NSW (Australia). School of Physics; Budker, Dmitry [Mainz Univ. (Germany). Helmholtz-Inst. Mainz; California Univ., Berkeley, CA (United States). Physics Dept.; Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Delaunay, Cedric [Savoie Mont Blanc Univ., Annecy-le-Vieux (France). Laboratoire d' Annecy-le-Vieux de Physique Theorique LAPTh; and others

    2017-04-15

    In this Letter we explore the potential of probing new light force-carriers, with spin-independent couplings to the electron and the neutron, using precision isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the Standard Model nuclear effects. We apply our method to existing Ca{sup +} data and project its sensitivity to possibly existing new bosons using narrow transitions in other atoms and ions (specifically, Sr and Yb). Future measurements are expected to improve the relative precision by five orders of magnitude, and can potentially lead to an unprecedented sensitivity for bosons within the 10 keV to 10 MeV mass range.

  9. Isotope separation by photoselective dissociative electron

    International Nuclear Information System (INIS)

    Stevens, C.G.

    1978-01-01

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule is described. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, 235 UF 6 is separated from a UF 6 mixture by selective excitation followed by dissociative electron capture into 235 UF 5 - and F

  10. Data mining for isotope discrimination in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Scott R. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Bryden, Aaron [Ames National Laboratory, Ames, IA 50011-2230 (United States); Suram, Santosh K. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States)

    2013-09-15

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified.

  11. Applications of DNA-Stable Isotope Probing in Bioremediation Studies

    Science.gov (United States)

    Chen, Yin; Vohra, Jyotsna; Murrell, J. Colin

    DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.

  12. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive cha...

  13. Titanium pigmentation. An electron probe microanalysis study

    International Nuclear Information System (INIS)

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-01-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis

  14. Electron capture isotopes as cosmic ray 'hydrometers'

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Comstock, G.; Perron, C.; Yiou, F.

    1975-01-01

    Following our earlier work, a computer program has been developed to investigate in detail the survival of pure electron capture isotopes in cosmic rays as a function of their propagation conditions. It is found that this survival is very insensitive to certain parameters such as the type of path length distribution, but very sensitive to the density of the medium in which they are formed. Observation of these isotopes may thus provide clues as to this density. (orig.) [de

  15. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  16. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  17. Developments in quantitative electron probe microanalysis

    International Nuclear Information System (INIS)

    Tixier, R.

    1977-01-01

    A study of the range of validity of the formulae for corrections used with massive specimen analysis is made. The method used is original; we have shown that it was possible to use a property of invariability of corrected intensity ratios for standards. This invariance property provides a test for the self consistency of the theory. The theoretical and experimental conditions required for quantitative electron probe microanalysis of thin transmission electron microscope specimens are examined. The correction formulae for atomic number, absorption and fluorescence effects are calculated. Several examples of experimental results are given, relative to the quantitative analysis of intermetallic precipitates and carbides in steels. Advances in applications of electron probe instruments related to the use of computer and the present development of fully automated instruments are reviewed. The necessary statistics for measurements of X ray count data are studied. Estimation procedure and tests are developed. These methods are used to perform a statistical check of electron probe microanalysis measurements and to reject rogue values. An estimator of the confidence interval of the apparent concentration is derived. Formulae were also obtained to optimize the counting time in order to obtain the best precision in a minimum amount of time [fr

  18. Electronic system for Langmuir probe measurements

    Czech Academy of Sciences Publication Activity Database

    Mitov, M.; Bankova, A.; Dimitrova, M.; Ivanova, P.; Tutulkov, K.; Djermanova, N.; Dejarnac, Renaud; Stöckel, Jan; Popov, Tsv.K.

    2012-01-01

    Roč. 356, č. 1 (2012), s. 012008 ISSN 1742-6588. [InternationalSummerSchoolonVacuum,Electron, and IonTechnologies(VEIT2011)/17./. Sunny Beach, 19.09.2011-23.09.2011] Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma * tokamak * diagnostics * electric probe Subject RIV: BL - Plasma and Gas Discharge Physics http://iopscience.iop.org/1742-6596/356/1/012008/pdf/1742-6596_356_1_012008.pdf

  19. Electronic probe microanalyzer. Annual report 1963

    International Nuclear Information System (INIS)

    Kirianenko, Alexis; Maurice, Francoise; Seguin, Remy; Zemskoff, Anne; Adda, Yves

    1964-09-01

    This annual report presents the highlights of the fifth year of operation of the CEA Saclay's electronic probe microanalyzer. It provides a list of the analyses performed during the year with some illustrations and mentions the improvements given to the apparatus and its new analysing possibilities (crystallographic analysis using divergent X beams, 'electronic' image formation with respect to the atomic number). Highlights in the development of this analytical technique are presented as well as a new device designed by R. Castaing: the secondary ion emission microanalyser. A list of all laboratories equipped with the French microanalyser is provided

  20. Scanning probe methods applied to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlicek, Niko

    2013-08-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. An STM head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individual molecules in the future. Combined STM/AFM studies revealed a reversible molecular switch based on two stable configurations of DBTH molecules on ultrathin NaCl films. AFM experiments visualize the molecular structure in both states. Our experiments allowed to unambiguously determine the pathway of the switch. Finally, tunneling into and out of the frontier molecular orbitals of pentacene molecules has been investigated on different insulating films. These experiments show that the local symmetry of initial and final electron wave function are decisive for the ratio between elastic and vibration-assisted tunneling. The results can be generalized to electron transport in organic materials.

  1. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  2. Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate using stable isotope probing in contaminated subsurface sediments

    International Nuclear Information System (INIS)

    Akob, Denise M.; Kerkhof, Lee; Kusel, Kirsten; Watson, David B.; Palumbo, Anthony Vito; Kostka, Joel

    2011-01-01

    Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [ 13 C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.

  3. Standardless quantification methods in electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Trincavelli, Jorge, E-mail: trincavelli@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Limandri, Silvina, E-mail: s.limandri@conicet.gov.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Bonetto, Rita, E-mail: bonetto@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Facultad de Ciencias Exactas, de la Universidad Nacional de La Plata, Calle 47 N° 257, 1900 La Plata (Argentina)

    2014-11-01

    The elemental composition of a solid sample can be determined by electron probe microanalysis with or without the use of standards. The standardless algorithms are quite faster than the methods that require standards; they are useful when a suitable set of standards is not available or for rough samples, and also they help to solve the problem of current variation, for example, in equipments with cold field emission gun. Due to significant advances in the accuracy achieved during the last years, product of the successive efforts made to improve the description of generation, absorption and detection of X-rays, the standardless methods have increasingly become an interesting option for the user. Nevertheless, up to now, algorithms that use standards are still more precise than standardless methods. It is important to remark, that care must be taken with results provided by standardless methods that normalize the calculated concentration values to 100%, unless an estimate of the errors is reported. In this work, a comprehensive discussion of the key features of the main standardless quantification methods, as well as the level of accuracy achieved by them is presented. - Highlights: • Standardless methods are a good alternative when no suitable standards are available. • Their accuracy reaches 10% for 95% of the analyses when traces are excluded. • Some of them are suitable for the analysis of rough samples.

  4. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  5. Isotope yield ratios as a probe of the reaction dynamics

    International Nuclear Information System (INIS)

    Trautmann, W.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Trockel, R.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Eckert, E.M.; Pochodzalla, J.; Bock, I.; Pelte, D.

    1987-04-01

    Isotopically resolved yields of particles and complex fragments from 12 C and 18 O induced reactions on 53 Ni, 54 Ni, Ag, and 197 Au in the intermediate range of bombarding energies 30 MeV ≤ E/A ≤ 84 MeV were measured. The systematic variation of the deduced isotope yield ratios with projectile and target is used to determine the degree of N/Z equilibration achieved and to establish time scales for the reaction process. A quantum statistical model is employed in order to derive entropies of the emitting systems from the measured isotope yield ratios. (orig.)

  6. Remote operation of a fully shielded electron probe microanalyser

    International Nuclear Information System (INIS)

    Rowe, J.; Sparry, R.P.

    1977-11-01

    A 'Microscan 5' Cambridge Instrument Company electron probe micro-analyser has been equipped with full shielding to enable high radioactive materials to be examined. The transfer of controls for remote operation are described. (author)

  7. Visualizing Microbial Biogeochemistry: NanoSIMS and Stable Isotope Probing (Invited)

    Science.gov (United States)

    Pett-Ridge, J.; Weber, P. K.

    2009-12-01

    Linking phylogenetic information to function in microbial communities is a key challenge for microbial ecology. Isotope-labeling experiments provide a useful means to investigate the ecophysiology of microbial populations and cells in the environment and allow measurement of nutrient transfers between cell types, symbionts and consortia. The combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis, in situ labeling and high resolution microscopy allows isotopic analysis to be linked to phylogeny and morphology and holds great promise for fine-scale studies of microbial systems. In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio ‘map’ can then be generated for the analyzed area. NanoSIMS images of 13C, 15N and Mo (a nitrogenase co-factor) localization in diazotrophic cyanobacteria show how cells differentially allocate resources within filaments and allow calculation of nutrient uptake rates on a cell by cell basis. Images of AM fungal hyphae-root and cyanobacteria-rhizobia associations indicate the mobilization and sharing (stealing?) of newly fixed C and N. In a related technique, “El-FISH”, stable isotope labeled biomass is probed with oligonucleotide-elemental labels and then imaged by NanoSIMS. In microbial consortia and cyanobacterial mats, this technique helps link microbial structure and function simultaneously even in systems with unknown and uncultivated microbes. Finally, the combination of re-engineered universal 16S oligonucleotide microarrays with NanoSIMS analyses may allow microbial identity to be linked to functional roles in complex systems such as mats and cellulose degrading hindgut communities. These newly developed methods provide correlated

  8. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  9. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  10. Pygmy resonances probed with electron scattering

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    2007-01-01

    Pygmy resonances in light nuclei excited in electron scattering are discussed. These collective modes will be explored in future electron-ion colliders such as ELISe/FAIR (spokesperson: Haik Simon - GSI). Response functions for direct breakup are explored with few-body and hydrodynamical models, including the dependence upon final state interactions

  11. Electronic control system for irradiation probes

    International Nuclear Information System (INIS)

    Gluza, E.; Neumann, J.; Zahalka, F.

    1980-01-01

    The EROS-78 system for the supply and power control of six heating sections of the irradiation probe of the CHOUCA type placed in the reactor vessel is described. The system allows temperature control at the location of the heat sensor with an accuracy of +-1% of the rated value within the region of 100 to 1000 degC. The equipment is provided with its own quartz controlled clock. The temperature is picked up by a chromel-alumel jacket thermocouple. The power input of the heating elements is thyristor controlled. (J.B.)

  12. Probing Xe electronic structure by two-color HHG

    International Nuclear Information System (INIS)

    Faccialà, D; Ciriolo, A G; De Silvestri, S; Devetta, M; Negro, M; Stagira, S; Vozzi, C; Pabst, S; Bruner, B D; Dudovich, N; Soifer, H

    2015-01-01

    The aim of this study is probing the multi-electron behavior in xenon by two-color driven high harmonic generation. By changing the relative polarization of the two colors we were able to study different aspects of the multi-electron response. (paper)

  13. Collision dynamics probed by convoy electron emission

    International Nuclear Information System (INIS)

    Seliger, M.; Burgdoerfer, J.; Toekesi, K.; Reinhold, C.O.; Takabayashi, Y.; Ito, T.; Komaki, K.; Azuma, T.; Yamazaki, Y.; RIKEN, Saitama

    2002-01-01

    The description of the collision mechanisms was examined by the emission of convoy electrons as a result of the transport of an Ar 17+ ion with an energy of 390 MeV/amu through self-supporting amorphous carbon foils of thickness varying from 25 to 9190 μg/cm 2 . A classical trajectory Monte Carlo (CTMC) simulation of the random walk of the electron initially attached to the relativistic hydrogenic Argon ion was performed. Measurements were made of the final kinetic energy of the emitted convoy electrons at the Heavy Ion Medical Accelerator in Chiba (HIMAC). (R.P.)

  14. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong

  15. DNA-based stable isotope probing: a link between community structure and function

    Czech Academy of Sciences Publication Activity Database

    Uhlík, Ondřej; Ječná, K.; Leigh, M. B.; Macková, Martina; Macek, Tomáš

    2009-01-01

    Roč. 407, č. 12 (2009), s. 3611-3619 ISSN 0048-9697 Grant - others:GA MŠk(CZ) 2B08031 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA-based stable isotope probing * microbial diversity * bioremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.905, year: 2009

  16. Probing the magnetsophere with artificial electron beams

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection

  17. Statistics techniques applied to electron probe microanalysis

    International Nuclear Information System (INIS)

    Brizuela, H.; Del Giorgio, M.; Budde, C.; Briozzo, C.; Riveros, J.

    1987-01-01

    A description of Montroll-West's general theory for a tridimensional random walk of a particle with internal degrees of freedom is given, connecting this problem with the master equation solution. The possibility of its application to EPMA is discussed. Numerical solutions are given for thick or collimated beams at several energies interacting with samples of different shape and size. Spatial distribution of particles within the sample -for a stationary state- is analized, as well as the electron backscattering coefficient. (Author) [es

  18. Probing new intra-atomic force with isotope shifts

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Kyoko; Tanaka, Minoru [Osaka University, Department of Physics, Graduate School of Science, Toyonaka, Osaka (Japan); Yamamoto, Yasuhiro [Yonsei University, Department of Physics and IPAP, Seoul (Korea, Republic of)

    2017-12-15

    In the development of atomic clocks, some atomic transition frequencies are measured with remarkable precision. These measured spectra may include the effects of a new force mediated by a weakly interacting boson. Such effects might be distilled out from possible violation of a linear relation in isotope shifts between two transitions, as known as King's linearity, with relatively suppressed theoretical uncertainties. We discuss the experimental sensitivity to a new force in the test of the linearity as well as the linearity violation owing to higher-order effects within the Standard Model. The sensitivity to new physics is limited by such effects. We have found that, for Yb{sup +}, the higher-order effect is in the reach of future experiments. The sensitivity to a heavy mediator is also discussed. It is analytically clarified that the sensitivity becomes weaker than that in the literature. Our numerical results of the sensitivity are compared with other weak force search experiments. (orig.)

  19. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  20. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  1. Using electron irradiation to probe iron-based superconductors

    Science.gov (United States)

    Cho, Kyuil; Kończykowski, M.; Teknowijoyo, S.; Tanatar, M. A.; Prozorov, R.

    2018-06-01

    High-energy electron irradiation at low temperatures is an efficient and controlled way to create vacancy–interstitial Frenkel pairs in a crystal lattice, thereby inducing nonmagnetic point-like scattering centers. In combination with London penetration depth and resistivity measurements, the electron irradiation was used as a phase-sensitive probe to study the superconducting order parameter in iron-based superconductors (FeSCs), lending strong support to sign-changing s ± pairing. Here, we review the key results of the effect of electron irradiation in FeSCs.

  2. A versatile atomic number correction for electron-probe microanalysis

    International Nuclear Information System (INIS)

    Love, G.; Cox, M.G.; Scott, V.D.

    1978-01-01

    A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)

  3. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    Science.gov (United States)

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  4. Single isotopic probe for gastro-esophageal reflux diagnosis in children

    Energy Technology Data Exchange (ETDEWEB)

    Maurel, G.; Le Moing, G.; Mensch, B.

    1987-03-01

    Gastro-esophageal reflux (GER) in children has been implicated in various recurring respiratory diseases. Several techniques including oesophageal pH testing and scintigraphy have been devised to detect and quantify GER Limitations have been found for each test: short duration with gamma-camera and restricted acceptability of the pH probe by children. A single isotopic probe was designed for a non-invasive screening test of GER in infants. This device was checked by comparison with oesophageal scintigraphy using a gamma camera. Only 1 discrepancy was detected in 19 reflux episodes. This method, using a relatively inexpensive detector and data acquisition module, seems to be well accepted by children, and may be associated with a pH probe for GER diagnosis.

  5. Single isotopic probe for gastro-esophageal reflux diagnosis in children

    International Nuclear Information System (INIS)

    Maurel, G.; Le Moing, G.; Mensch, B.

    1987-01-01

    Gastro-esophageal reflux (G.E.R.) in children has been implicated in various recurring respiratory diseases. Several techniques including oesophageal pH testing and scintigraphy have been devised to detect and quantify G.E.R. Limitations have been found for each test: short duration with gamma-camera and restricted acceptability of the pH probe by children. A single isotopic probe was designed for a non-invasive screening test of G.E.R. in infants. This device was checked by comparison with oesophageal scintigraphy using a gamma camera. Only 1 discrepancy was detected in 19 reflux episodes. This method, using a relatively inexpensive detector and data acquisition module, seems to be well accepted by children, and may be associated with a pH probe for GER diagnosis. (orig.)

  6. Chloride ingress profiles measured by electron probe micro analysis

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Coats, Alison M.; Glasser, Fred P.

    1996-01-01

    Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA is demonst......Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA...... is demonstated to determine chloride ingress in cement paste on a micrometer scale. Potential chloride ingress routes such as cracks or the paste-aggregate interface may also be characterized by EPMA. Copyright (C) 1996 Elsevier Science Ltd...

  7. A new sniffer probe for the determination of hydrogen isotope ratios in the W7-AS stellarator

    Science.gov (United States)

    Zebisch, P.; Taglauer, E.

    1999-07-01

    An improved sniffer probe was constructed for measurements of the hydrogen isotope ratio and impurities in the plasma edge of the W7-AS stellarator. Details of the new design and the probe performance are presented. The new design allows changing the head without breaking the vacuum in the torus. It has a high mechanical stability, effective screening of the magnetic field and high sensitivity. The gas dynamic properties of the probe are analyzed using transmission line calculus, resulting in a rise time of 114 ms for hydrogen. During the 1997 spring measurement campaign, H/D isotope ratio measurements were carried through showing considerable outgassing of the walls during and after the discharge. He glow discharges reduce the isotope ratio drastically. Results from a typical experiment day are presented together with the analytic procedure for determining the isotope ratio in both the plasma edge and in the neutral gas region between the plasma and the vessel walls.

  8. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation

    Science.gov (United States)

    Uhlik, Ondrej; Leewis, Mary-Cathrine; Strejcek, Michal; Musilova, Lucie; Mackova, Martina; Leigh, Mary Beth; Macek, Tomas

    2012-01-01

    Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provides researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation. PMID:23022353

  9. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  10. Quantification of multielement-multilayer-samples in electron probe analysis

    International Nuclear Information System (INIS)

    Pfeiffer, A.

    1995-03-01

    The following dissertation presents the theoretical basis of analytical correction models and Monte Carlo simulations in the field of electron probe microanalysis to describe the excitation conditions of x-rays in a multilayer-multielement-sample. In this connection analyzing programs have been developed to make a quantitative investigation of heterogeneous samples possible. In the work the mathematical methods and formulas, which are mainly based on empirical and semiempirical findings, are described and their validity is discussed in detail. Especially the improvements of the 'multiple reflections'-model by August are compared with the Φ(ρz)-models by Pouchou, Merlet and Bastin. The calculations of depth distribution functions for characteristics and continuous fluorescence excitation result in a consistent and completeΦ(ρz)-model. This allows to analyze layered structures in great detail. Because of the increasing importance in electron probe microanalysis and as a reference method a Monte Carlo model is described. With this model electron trajectories and excitation conditions in arbitrary two dimensional geometries can be calculated. The validity of the analytical model is proven with a comprehensive comparison of results of new calculations to published data. To show an application of the programs and models in routine use in the industrial research and development, a quantitative analysis of a Co/Si system is made. In the conclusion of this dissertation some reflections upon investigations, which are based on this work and which should be made in future are outlined. (author)

  11. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  12. Optimization of Actinide Quantification by Electron Probe Microanalysis

    International Nuclear Information System (INIS)

    Moy, A.; Merlet, C.; Llovet, X.; Dugne, O.

    2013-06-01

    Conventional quantitative electron probe microanalysis of actinides requires the use of reference standard samples. However, for such elements, standards are generally not available. To overcome this difficulty, standard-less methods of analysis are used, in which the x-ray intensity emitted by the standard is calculated. To be reliable, such calculations require accurate knowledge of physical data such as the x-ray production cross section. However, experimental data of this quantity are not always available for actinide elements. In the present work, experimental L and M x-ray production cross sections were measured for elements uranium and lead. Measurements were performed with two electron microprobes using wavelength-dispersive spectrometers using thin self-supporting targets. Experimental results are compared with calculated cross sections obtained from different analytical formulae, and, whenever possible, with experimental data obtained from the literature. (authors)

  13. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  14. Electron probe analysis of biological fluids: Possibilities and limitations

    International Nuclear Information System (INIS)

    Roinel, N.

    1984-01-01

    Physical methods of investigation have become essential to investigations at the cellular or subcellular level. Nuclear magnetic resonance is the most recent and striking example, since it is not only a tool for fundamental physicists and organic chemists, but also an extraordinary powerful imaging tool for physicians. The absorption properties of X rays were used immediately after their discovery to image the bones of skeletons. Later, X rays were also found to be extremely efficient in the measurement of the elemental content of microvolumes irradiated by electron probes. The electron probe analyzer (EPA) was immediately adopted by numerous laboratories of metallurgy, geology, and mineral sciences. In the last fifteen years, since the use of this instrument was suggested for liquid analysis, and a preparative technique was developed, the EPA has been used by an increasing number of biological laboratories for measuring the concentrations of the elements contained in subnanoliter volumes of biological fluids. The so-called microdroplet technique has become a routine laboratory method, the only one able to measure the concentrations of an unlimited number of elements in a single 0.1-nl sample. This explains its use in fields as various as renal, reproductive, digestive, and plant physiology, zoology, etc. Several review papers discuss these applications. The possibilities and limitations of the technique are discussed below

  15. Standardless quantification by parameter optimization in electron probe microanalysis

    International Nuclear Information System (INIS)

    Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.

    2012-01-01

    A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively. - Highlights: ► A method for standardless quantification in EPMA is presented. ► It gives better results than the commercial software GENESIS Spectrum. ► It gives better results than the software DTSA. ► It allows the determination of the conductive coating thickness. ► It gives an estimation for the concentration uncertainties.

  16. ProbeZT: Simulation of transport coefficients of molecular electronic junctions under environmental effects using Büttiker's probes

    Science.gov (United States)

    Korol, Roman; Kilgour, Michael; Segal, Dvira

    2018-03-01

    We present our in-house quantum transport package, ProbeZT. This program provides linear response coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular junctions in which electrons interact with the surrounding thermal environment. Calculations are performed based on the Büttiker probe method, which introduces decoherence, energy exchange and dissipation effects phenomenologically using virtual electrode terminals called probes. The program can realize different types of probes, each introducing various environmental effects, including elastic and inelastic scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian, allowing the study of different geometries beyond simple one-dimensional wires. Applications of the program to study the thermoelectric performance of molecular junctions are illustrated. The program also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based on a tight-binding (ladder) description of the junction.

  17. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing

    OpenAIRE

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-01-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to ...

  18. Standardless quantification by parameter optimization in electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Limandri, Silvina P. [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina); Bonetto, Rita D. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco (CINDECA), CONICET, 47 Street 257, (1900) La Plata (Argentina); Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1 and 47 Streets (1900) La Plata (Argentina); Josa, Victor Galvan; Carreras, Alejo C. [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina); Trincavelli, Jorge C., E-mail: trincavelli@famaf.unc.edu.ar [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina)

    2012-11-15

    A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum Registered-Sign for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively. - Highlights: Black-Right-Pointing-Pointer A method for standardless quantification in EPMA is presented. Black-Right-Pointing-Pointer It gives better results than the commercial software GENESIS Spectrum. Black-Right-Pointing-Pointer It gives better results than the software DTSA. Black-Right-Pointing-Pointer It allows the determination of the conductive coating thickness. Black-Right-Pointing-Pointer It gives an estimation for the concentration uncertainties.

  19. Characteristics of short distance field of a source radiating at electronic frequencies in a ionospheric plasma. Applications to density and electron temperature measurement by mutual impedance probe

    International Nuclear Information System (INIS)

    Debrie, R.

    1983-06-01

    Realization of a new type of radio-frequency probe, the mutual-impedance probe (or the quadrupole probe) is developed. Theoretical results obtained with a cold plasma description of the ionized medium with static magnetic field. Transfer impedance between two dipoles in an homogeneous hot and isotope plasma is then calculated. In equatorial ionosphere, measurements made by the H.F. quadrupole probe, in the Veronique rocket, during the Cisaspe experiment, have been interpreted with this hot plasma theory. The influence of a plasma drift with respect to the emitter dipole is analyzed. The influence of a static magnetic field in hot and homogeneous plasma, on the frequency response curve of the mutual impedance is studied. For, in ionospheric plasmas of auroral and polar zones, the earth magnetic field is no more negligible and gives to the plasma dielectric, strongly anisotropic, properties well described by the microscopic theory in hot magnetoplasma. The space time fast evolution of characteristics of plasma encountered in space experiments has been shown up with a new method of measurement the self-oscillating quadrupole probe. The work synthesis is put in a concrete form on the polar satellite Aureol-3 the first results of which are presented. This satellite allows a precise study of ionosphere auroral zones. At last, it is shown that methods developed for electron density and temperature measurements can be transposed in low frequency. In this case, measurements with quadrupole probe allow to get the ion average mass by lower hybrid frequency excitation [fr

  20. Measurement of the activity of electron capturing isotopes

    International Nuclear Information System (INIS)

    Szoerenyi, A.

    1980-01-01

    In order to measure precisely the activity of electron capturing isotopes, an equipment was constructed for the detection the X-photons, the Auger- and the conversing electrons by a high-pressure, gas-flow 4π proportional counter. The proportional counter and the NaI(Tl) scintillation counter are placed in a common lead-shielding, thus, the equipment is suited for the measurement of radioisotopes decaying in coincidence. The structure of the proportional counter and of the pressure-control system are detailed. As an example, the energy spectra of a 109 Cd solution, taken at different pressures, are published. At a pressure of 1.1 MPa the 3 peaks are well separated. The results of an international test, in which the radioactivity of a 57 Co sample was determined, are published, too. (L.E.)

  1. Sample Preparation for Electron Probe Microanalysis—Pushing the Limits

    Science.gov (United States)

    Geller, Joseph D.; Engle, Paul D.

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  2. Sample Preparation for Electron Probe Microanalysis-Pushing the Limits.

    Science.gov (United States)

    Geller, Joseph D; Engle, Paul D

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the "k-ratios," to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  3. Stable isotope probing to study functional components of complex microbial ecosystems.

    Science.gov (United States)

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  4. HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP experiments.

    Directory of Open Access Journals (Sweden)

    Nicholas D Youngblut

    Full Text Available Combining high throughput sequencing with stable isotope probing (HTS-SIP is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP, multi-window high-resolution stable isotope probing (MW-HR-SIP, quantitative stable isotope probing (qSIP, and ΔBD. Currently, there is no publicly available software designed specifically for analyzing HTS-SIP data. To address this shortfall, we have developed the HTSSIP R package, an open-source, cross-platform toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/buckleylab/HTSSIP.

  5. Isotopic enrichments via altered first and second solution electron affinities

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Espe, M.P.; Reiter, R.C.

    1986-01-01

    Electron spin resonance experiments have been utilized to show that the solution electron affinity of benzene- 13 C 6 is less than that of benzene by 0.24 kcal/mol and that the solution EA of benzene-d 6 is less than that of benzene by 0.44 kcal/mol. Perdeuteration of naphthalene, anthracene, or perylene results in a very similar lowering of the solution EA of the hydrocarbon as evidenced by the fact that the equilibrium constant for the electron transfer between the hydrocarbon anion radical, X/sup .-/, and the perdeuterated hydrocarbon, Xd (X/sup .-/ + Xd = Xd/sup .-/ + X), is less than unity. Likewise the second EAs of perdeuterated perylene and anthracene are lower than those of the unsubstituted hydrocarbons (K/sub eq/ for X 2- + Xd/sup .-/ = X/sup .-/ + Xd 2- is less than unity). The free energy and enthalpy of electron transfer from the anthracene anion radical to perdeuterated anthracene is 0.41 kcal/mol and that from the anthracene dianion to the perdeuterated anion radical is 0.10 kcal/mol. The fact that these equilibrium constants are not equal to 1 enables one to use the difference in the chemical reactivity of the ions and neutral molecules to selectively isotopically enrich the hydrocarbons involved

  6. Reproducibility of the cutoff probe for the measurement of electron density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Oh, W. Y. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J., E-mail: sjyou@cnu.ac.kr [Department of Physics, Chungnam National University, Daejeon 305-701 (Korea, Republic of); Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of); Yoon, J.-S. [Plasma Technology Research Center, National Fusion Research Institute, Gunsan 573-540 (Korea, Republic of)

    2016-06-15

    Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.

  7. Reproducibility of the cutoff probe for the measurement of electron density

    International Nuclear Information System (INIS)

    Kim, D. W.; Oh, W. Y.; You, S. J.; Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H.; Yoon, J.-S.

    2016-01-01

    Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.

  8. Quantitative electron probe microanalysis of boron in binary borides

    International Nuclear Information System (INIS)

    Bastin, G.F.; Heijligers, H.J.M.

    1986-01-01

    Quantitative electron probe microanalysis has been performed in 27 binary borides in the range of 4-30 keV, both for the metals as well as for Boron. The procedures along which accurate intensity measurements for B-K α must be carried out are discussed in detail. A total of 196 k-ratios with respect to elemental standards for the metal X-ray lines and 180 k-ratios for B-K α relative to elemental Boron have been obtained. These data have been used to arrive at an improved parameterization for the φ(ρz) approach in matrix correction. The resulting new program (BAS861) was compared to 5 other current correction programs. At the same occasion the available set of mass absorption coefficients for Boron was tested on its consistency and better values suggested where necessary. Finally it is shown that the modified version of the Gaussian φ(ρz) approach (BAS861 program) is highly successful in the matrix correction for B-K α : a relative root-mean-square value of 6.30% was obtained. (Auth.)

  9. Compound specific stable isotopes as probes for distinguishing the sources of biomolecules in terrestrial and extraterrestrial materials

    Science.gov (United States)

    Engel, M. H.; Macko, S. A.

    2003-04-01

    Life on Earth consists of orderly arrangements of several key types of organic compounds (amino acids, sugars, fatty acids, nucleic bases) that are the building blocks of proteins, carbohydrates, lipids and nucleotides. Subsequent to death, macromolecules are commonly broken down to their molecular constituents or other similar scale components. Thus, in ancient terrestrial and extraterrestrial materials, it is far more likely to expect the presence of simple compounds such as amino acids rather than the proteins from which they were possibly derived. Given that amino acids, for example, are common components of all extinct and extant organisms, the challenge has been to develop methods for distinguishing their sources. Stable isotopes are powerful probes for determining the origins of organic matter. Amino acid constituents of all organisms on Earth exhibit characteristic stable isotope compositions owing to fractionations associated with their biosynthesis. These fractionations are distinct from those observed for amino acids formed by abiotic processes. Thus it should be possible to use isotopes as probes for determining whether amino acids in ancient rocks on Earth are biotic or abiotic, based on their relative isotopic compositions. Also, owing to differences in the isotope compositions of precursors, amino acids in extraterrestrial materials such as carbonaceous meteorites are moderately to substantially enriched in the heavy isotopes of C, N and H relative to terrestrial amino acids. Assuming that the isotope compositions of the gaseous components of, for example, the Martian atmosphere were distinct from Earth at such time when organic molecules may have formed, it should be possible to distinguish these components from terrestrial contaminants by determining their isotope compositions and/or those of their respective enantiomers. Also, if life as we know it existed on another planet such as Mars, fractionations characteristic of biosynthesis should be

  10. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myung-Geun, E-mail: mghan@bnl.gov [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Garlow, Joseph A. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States); Marshall, Matthew S.J.; Tiano, Amanda L. [Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Wong, Stanislaus S. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Cheong, Sang-Wook [Department of Physics and Astronomy, Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ 08854 (United States); Walker, Frederick J.; Ahn, Charles H. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06520 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520 (United States); Zhu, Yimei [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2017-05-15

    Highlights: • Electron-beam-induced-current (EBIC) and active secondary-electron voltage-contrast (SE-VC) are demonstrated in STEM mode combined with in situ electrical biasing in a TEM. • Electrostatic potential maps in ferroelectric thin films, multiferroic nanowires, and single crystals obtained by off-axis electron holography were compared with EBIC and SE-VC data. • Simultaneous EBIC and active SE-VC performed with atomic resolution STEM are demonstrated. - Abstract: The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fields and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.

  11. Isotopic and stereochemical probes of the mechanism of bovine plasma amine oxidase

    International Nuclear Information System (INIS)

    Farnum, M.F.

    1986-01-01

    Isotopic and stereochemical probes have been employed to investigate the mechanisms of bovine plasma amine oxidase (BPAO). The pH dependence of isotope effects on steady-state parameters for benzylamine oxidation indicate that the C-H bond breaking step is fully rate-limiting on k/sub cat//K/sub m/ over the experimental pH range. The rate of enzyme reoxidation appears to be partially rate-limiting on k/sub cat/ as values of /sup D/k/sub cat/ are reduced relative to /sup D/k/sub cat//K/sub m/ from pH 5.5 - 10.0. Two microscopic ionizations on k/sub cat//K/sub m/, pK 1 = 8.0 +/- 0.10 and pK/sub s/ = 9.0 +/- 0.16, are ascribed to an active site residue which must be unprotonated for catalysis, and to substrate binding in the unionized form to the enzyme, respectively. EF 1 undergoes a pK/sub a/ perturbation from 8.0 to 5.6 in the E x S complex as a result of charge from the protonated imine nitrogen of the enzyme substrate Schiff's base. A pK/sub a/ of 5.5 +/- 0.1 is observed in the pH profile for exchange of tritium from C-2 during oxidation of [2- 3 H]-dopamine. These data support the conclusion that EB 1 catalyzes both imine exchange at C-2 of phenethylamine substrates as well as substrate oxidation at C-1

  12. Secondary mineralization in carious lesions of human dentin. Electron-probe, electron microscope, and electron diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, H [Tokyo Dental Coll. (Japan)

    1975-02-01

    Dentinal carious lesions having a remineralized surface layer were studied by means electron-probe microanalysis, electron microscopy, electron diffraction. As the results of electron-probe study, F, Mg, and Na were found to be distributed mainly in the remineralized surface layer and S in the decalcified region where decreases in Ca, P, and Mg concentration were usually observed. The decrease in Mg concentration always started earlier than that of Ca and P concentration. Electron microscope and electron diffraction studies revealed that apatic crystals in the remineralized surface layer were much larger than those in the intact dentin. Although they were less conspicuous, crystals in the decalcified region also were larger than those in the intact region. Dentinal tubules, occluded by many crystals, were frequently seen during the observations. Crystals in the tubules varied in morphology, showing granular, needle, rhomboid, and tabular shapes. By means of electron diffraction, the granular- or needle-shaped crystals were identified as apatite and the rhomboid-shaped crystals as whitlockite. Some of the tabular-shaped crystals appeared to be cotacalcium phosphate.

  13. Plasma potential measurements in the edge region of the ISTTOK plasma, using electron emissive probes

    International Nuclear Information System (INIS)

    Ionita, C.; Balan, P.; Schrittwieser, R.; Cabral, J.A.; Fernandes, H.; Figueiredo, H. F.C.; Varandas, C.

    2001-01-01

    We have recently started to use electron-emissive probes for direct measurements of the plasma potential and its fluctuations in the edge region of the plasma ring in the tokamak ISTTOK in Lisbon, Portugal. This method is based on the fact that the electron emission current of such a probe is able to compensate electron temperature variations and electron drifts, which can occur in the edge plasma region of magnetized fusion devices, and which are making measurements with cold probes prone to errors. In this contribution we present some of the first results of our investigations in ISTTOK.(author)

  14. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  15. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    Science.gov (United States)

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  16. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    Science.gov (United States)

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  18. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  20. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  1. Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Roh, HyungKeun; Fuller, Mark E.; Hatzinger, Paul B.; Chu, Kung-Hui

    2013-01-01

    We employed stable isotope probing (SIP) with 13 C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving 13 C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. Highlights: •SIP identified sixteen groundwater bacteria capable of using RDX and/or its metabolites as a carbon source. •The RDX degraders in groundwater are phylogenetically diverse and different from known RDX degraders. •Cheese whey induced community shift and altered diversity of the RDX-degrading microorganisms over time. -- RDX-degrading bacteria in contaminated groundwater, identified by SIP with 13 C-labeled RDX, are phylogenetically diverse and different from known RDX degraders

  2. Identification of active dehalorespiring microbial populations in anoxic river sediment by RNA-based stable isotope probing

    Science.gov (United States)

    Kittelmann, S.; Friedrich, M. W.

    2005-12-01

    Tetrachloroethene (perchloroethylene, PCE), a persistent contaminant in aquifers, soils and sediments, can be reductively dechlorinated by anaerobic microorganisms in a process referred to as dehalorespiration. However, the biodiversity of dehalorespiring microorganisms and their distribution especially in pristine environments is largely unexplored. Therefore, the aim of this study was to detect potentially novel PCE-dehalorespiring microorganisms by using stable isotope probing (SIP), a technique that allows to directly identify the function of uncultivated microbial populations. We simulated a PCE contamination by incubating pristine river sediment in the presence of PCE at a steady, low aqueous concentration (20 μM). Dehalogenation activity in microcosms (20 nmol cis-dichloroethene per ml slurry per day formed) was detected already after 4 weeks at 20°C with sediment indigenous electron donors. The microbial community in sediment incubations was probed with 13C-labelled acetate (0.5 mM) as electron donor and carbon source at 15°C for 3 days. After RNA extraction, "heavy" 13C-rRNA and light 12C-rRNA were separated by isopycnic centrifugation, and Bacteria-related populations in gradient fractions were characterised by terminal restriction fragment length polymorphism analysis and cloning. In heavy gradient fractions from the microcosm with PCE, we detected a prominent 506-bp terminal restriction fragment (T-RF) and a few minor T-RFs only. In contrast, in the control without PCE, Bacteria-specific rRNA was restricted to light gradient fractions, and the prominent T-RFs found in the PCE-dechlorinating microcosm were of minor importance. Apparently, 13C-acetate was incorporated into bacterial rRNA more effectively in PCE-respiring microcosms. Thus, rRNA-SIP provides strong evidence for the presence of PCE-dehalorespiring, 13C-acetate-utilising populations in river sediment microcosms. Cloning/sequencing analysis identified the prominent members of the heavy

  3. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-01-01

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y_4). A peptide whereby Y_4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH_2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY_4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  4. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Shinohara, Hiroki; Kadoya, Toshihiko [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y{sub 4}). A peptide whereby Y{sub 4}C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH{sub 2}) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY{sub 4}C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  5. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    OpenAIRE

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned meta...

  6. Electronic properites of electron-doped cuprate superconductors probed by high-field magnetotransport

    International Nuclear Information System (INIS)

    Helm, Toni

    2013-01-01

    In the present work the normal-state properties of the electron-doped cuprate superconductor Nd 2-x Ce x CuO 4 (NCCO) are investigated for a broad doping range, covering almost the whole phase diagram of this material. Magnetotransport measurements in the world's highest non-destructive magnetic fields were used as a spectroscopic tool for probing the electronic structure of single-crystalline NCCO as a function of the carrier concentration x. Quantum and semiclassical oscillations in the magnetoresistance provided new insights into various properties of the Fermi surface and the nature of the ground state in the system. The detailed investigations of the field- and temperature-dependent transport and its dependence on the field orientation have revealed a close correlation between symmetry-breaking ordering instabilities and the superconducting state.

  7. Electronic properites of electron-doped cuprate superconductors probed by high-field magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Toni

    2013-09-18

    In the present work the normal-state properties of the electron-doped cuprate superconductor Nd{sub 2-x}Ce{sub x}CuO{sub 4} (NCCO) are investigated for a broad doping range, covering almost the whole phase diagram of this material. Magnetotransport measurements in the world's highest non-destructive magnetic fields were used as a spectroscopic tool for probing the electronic structure of single-crystalline NCCO as a function of the carrier concentration x. Quantum and semiclassical oscillations in the magnetoresistance provided new insights into various properties of the Fermi surface and the nature of the ground state in the system. The detailed investigations of the field- and temperature-dependent transport and its dependence on the field orientation have revealed a close correlation between symmetry-breaking ordering instabilities and the superconducting state.

  8. Electronic properites of electron-doped cuprate superconductors probed by high-field magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Toni

    2013-09-18

    In the present work the normal-state properties of the electron-doped cuprate superconductor Nd{sub 2-x}Ce{sub x}CuO{sub 4} (NCCO) are investigated for a broad doping range, covering almost the whole phase diagram of this material. Magnetotransport measurements in the world's highest non-destructive magnetic fields were used as a spectroscopic tool for probing the electronic structure of single-crystalline NCCO as a function of the carrier concentration x. Quantum and semiclassical oscillations in the magnetoresistance provided new insights into various properties of the Fermi surface and the nature of the ground state in the system. The detailed investigations of the field- and temperature-dependent transport and its dependence on the field orientation have revealed a close correlation between symmetry-breaking ordering instabilities and the superconducting state.

  9. Measurement of plasma potential and electron temperature by ball-pen probes in RFX-MOD

    International Nuclear Information System (INIS)

    Brotankova, J.; Adamek, J.; Stockel, J.; Martines, E.; Spolaore, M.; Cavazzana, R.; Serianni, G.; Vianello, N.; Zuin, M.

    2009-01-01

    The ball-pen probe (BPP) is an innovative electric probe for direct measurements of the plasma potential. This probe was developed in IPP Prague and it is based on the Katsumata probe concept. Combined measurements of the plasma potential by a BPP and floating potential by a Langmuir probe provide also the value of the electron temperature. First test of the BPP on the RFX-mod reversed field pinch in Padova has been performed in November 2006. The BPP head, made of boron nitride, is equipped with four graphite collectors, which are positioned at four different radial positions h inside four shafts hollow into the probe head. The radial profile of the plasma potential and also the electron temperature were measured

  10. Blinded Comparison between an In-Air Reverberation Method and an Electronic Probe Tester in the Detection of Ultrasound Probe Faults.

    Science.gov (United States)

    Dudley, Nicholas J; Woolley, Darren J

    2017-12-01

    The aim of this study was to perform a blinded trial, comparing the results of a visual inspection of the in-air reverberation pattern with the results of an electronic probe tester in detecting ultrasound probe faults. Sixty-two probes were tested. A total of 28 faults were found, 3 only by in-air reverberation assessment and 2 only by the electronic probe tester. The electronic probe tester provided additional information regarding the location of the fault in 74% of the cases in which both methods detected a fault. It is possible to detect the majority of probe faults by visual inspection and in-air reverberation assessment. The latter provides an excellent first-line test, easily performed on a daily basis by equipment users. An electronic probe tester is required if detailed evaluation of faults is necessary. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. All rights reserved.

  11. Probing the transition from non-localization to localization by K-shell photoemission from isotope-substituted N2

    International Nuclear Information System (INIS)

    Rolles, Daniel; Braune, Markus; Cvejanovic, Slobodan; Gessner, Oliver; Hentges, Rainer; Korica, Sanja; Langer, Burkhard; Lischke, Toralf; Pruemper, Georg; Reinkoester, Axel; Viefhaus, Jens; Zimmermann, Bjoern; McKoy, Vince; Becker, Uwe

    2006-01-01

    In homonuclear diatomic molecules such as N 2 , the inversion symmetry of the system causes non-local, coherent behavior of the otherwise localized core holes. The non-locality of the electron emission and the remaining core hole changes in a continuous way into partially localized behaviour if a gradual breakdown of the inversion symmetry is induced by isotope substitution. This is reflected by a loss of interference and a parity mixing of the outgoing photoelectron waves. Our results represent the first experimentally observed isotope effect on the electronic structure of a diatomic molecule

  12. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...

  13. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    Energy Technology Data Exchange (ETDEWEB)

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie [Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse (France); Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse, France and Fondation STAE, 4 allee Emile Monso, BP 84234-31432, Toulouse Cedex 4 (France); Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse (France)

    2010-09-15

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40{+-}1 eV.

  14. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    International Nuclear Information System (INIS)

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie

    2010-01-01

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40±1 eV.

  15. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Christine eSharp

    2012-08-01

    Full Text Available Genomic analysis of the methanotrophic verrucomicrobium Methylacidiphilum infernorum strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo, ‘universal’ pmoA polymerase chain reaction (PCR primers do not target these bacteria. Unlike proteobacterial methanotrophs, Methylacidiphilum fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic verrucomicrobia in the environment by labelling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in M. infernorum strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs via 13CO2-SIP, a quantitative PCR (qPCR assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labelling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems.

  16. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Stott, Matthew B; Dunfield, Peter F

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium "Methylacidiphilum infernorum" strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), "universal" pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, "Methylacidiphilum" fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as (13)CH(4)-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with (13)CO(2) and (13)CH(4), individually and in combination. Testing the protocol in "M. infernorum" strain V4 resulted in assimilation of (13)CO(2) but not (13)CH(4), verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via (13)CO(2)-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with (13)CH(4) + (12)CO(2) caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with (13)CO(2) in combination with (12)CH(4) or (13)CH(4) induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs

  17. NMR Probe for Electrons in Semiconductor Mesoscopic Structures

    Indian Academy of Sciences (India)

    2009-11-14

    Nov 14, 2009 ... Strongly correlated electron systems: Overview ... Mutual interaction of electrons dominates their kinetic energies giving rise to ... transport properties. .... Low energy spin-flip excitations of a spin chain with lattice constant 1/n ...

  18. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208 (United States); Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd St., Philadelphia, Pennsylvania 19104 (United States)

    2016-01-15

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  19. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    Science.gov (United States)

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Studies of isotopic effects in the excited electronic states of molecular systems

    International Nuclear Information System (INIS)

    1982-01-01

    Rare gas halogen (RGH) lasers serve as convenient tools for a range of photophysical processes which exhibit isotope effects. This document summarizes progress in the production of molecular systems in their electronic excited states with the aid of RGH lasers, and the various isotopic effects one can study under these conditions. We conclude that the basic physical mechanisms involved in the isotopically sensitive characteristics of excited molecular electronic states are sufficiently selective to be useful in both the detection and separation of many atomic materials

  1. Computational study of substrate isotope effect probes of transition state structure for acetylcholinesterase catalysis

    International Nuclear Information System (INIS)

    Sikorski, R.S.; Malany, S.; Seravalli, J.; Quinn, D.M.

    2002-01-01

    Secondary isotope effects for carbonyl addition reactions of methyl thioacetate, acetone and acetaldehyde have been calculated by ab initio quantum mechanical methods in an effect to interpret measured β-deuterium isotope effects on acetylcholinesterase-catalysed hydrolysis of acetylthiocholine. The calculated β-deuterium isotope effect for equilibrium addition of methanol to methyl thioacetate is D3 K eq = 0.965, and the corresponding effect for addition of methoxide ion to methyl thioacetate wherein three waters are hydrogen bonded to the carbonyl oxyanion is D3 K eq = 1.086. Neither of these calculated isotope effects is an inverse as the experimental β-deuterium isotope effect for acetylcholinesterase-catalysed hydrolysis of acetylthiocholine, D3 K eq = 0.90±0.03. Structural comparisons show that the water-solvated methoxide adduct of methyl thioacetate is more expanded than is the natural methanol addition adduct, and suggest that the degree of which the isotope effect is inverse (i.e. less than) is inversely correlated to the degree of expansion of the adduct. A similar correlation of α-deuterium and β-deuterium secondary isotope effects with the degree of expansion of the adducts is found for equilibrium additions of methanol and methoxide ion to acetylaldehyde. These computational results suggest that the markedly inverse β-deuterium isotope effect for the acetylcholinesterase reaction arises from enzymatic compression of the transition state. (author)

  2. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing.

    Science.gov (United States)

    Radajewski, Stefan; Webster, Gordon; Reay, David S; Morris, Samantha A; Ineson, Philip; Nedwell, David B; Prosser, James I; Murrell, J Colin

    2002-08-01

    Stable-isotope probing (SIP) is a culture-independent technique that enables the isolation of DNA from micro-organisms that are actively involved in a specific metabolic process. In this study, SIP was used to characterize the active methylotroph populations in forest soil (pH 3.5) microcosms that were exposed to (13)CH(3)OH or (13)CH(4). Distinct (13)C-labelled DNA ((13)C-DNA) fractions were resolved from total community DNA by CsCl density-gradient centrifugation. Analysis of 16S rDNA sequences amplified from the (13)C-DNA revealed that bacteria related to the genera Methylocella, Methylocapsa, Methylocystis and Rhodoblastus had assimilated the (13)C-labelled substrates, which suggested that moderately acidophilic methylotroph populations were active in the microcosms. Enrichments targeted towards the active proteobacterial CH(3)OH utilizers were successful, although none of these bacteria were isolated into pure culture. A parallel analysis of genes encoding the key enzymes methanol dehydrogenase and particulate methane monooxygenase reflected the 16S rDNA analysis, but unexpectedly revealed sequences related to the ammonia monooxygenase of ammonia-oxidizing bacteria (AOB) from the beta-subclass of the PROTEOBACTERIA: Analysis of AOB-selective 16S rDNA amplification products identified Nitrosomonas and Nitrosospira sequences in the (13)C-DNA fractions, suggesting certain AOB assimilated a significant proportion of (13)CO(2), possibly through a close physical and/or nutritional association with the active methylotrophs. Other sequences retrieved from the (13)C-DNA were related to the 16S rDNA sequences of members of the Acidobacterium division, the beta-Proteobacteria and the order Cytophagales, which implicated these bacteria in the assimilation of reduced one-carbon compounds or in the assimilation of the by-products of methylotrophic carbon metabolism. Results from the (13)CH(3)OH and (13)CH(4) SIP experiments thus provide a rational basis for further

  3. Electron ring diagnostics with magnetic probes during roll-out and acceleration

    International Nuclear Information System (INIS)

    Schumacher, U.; Ulrich, M.

    1976-03-01

    Different methods using magnetic field probes to determine the properties of electron rings during their compression, roll-out and acceleration are presented. The results of the measurements of the electron number and the axial velocity and acceleration of the rings, as obtained with the various diagnostic devices, are discussed and compared. (orig.) [de

  4. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  5. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  6. High dynamic range isotope ratio measurements using an analog electron multiplier

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Lorinčík, Jan; Franzreb, K.; Herwig, R.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 549-552 ISSN 0142-2421 R&D Projects: GA MŠk ME 894 Institutional support: RVO:67985882 Keywords : Isotope ratios * electron multiplier * dynamic range Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.393, year: 2013

  7. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  8. The coupling of condensed matter excitations to electron probes

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs

  9. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  10. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  11. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    Science.gov (United States)

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Novel probe for determining the size and position of a relativistic electron beam

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.

    1984-01-01

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed

  13. Subsystem for control of isotope production with linear electron accelerator

    CERN Document Server

    Karasyov, S P; Uvarov, V L

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels.

  14. Subsystem for control of isotope production with linear electron accelerator

    International Nuclear Information System (INIS)

    Karasyov, S.P.; Pomatsalyuk, R.I.; Uvarov, V.L.

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels

  15. A new Langmuir probe concept for rapid sampling of space plasma electron density

    International Nuclear Information System (INIS)

    Jacobsen, K S; Pedersen, A; Moen, J I; Bekkeng, T A

    2010-01-01

    In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution

  16. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    Science.gov (United States)

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  17. Single electron probes of fractional quantum hall states

    Science.gov (United States)

    Venkatachalam, Vivek

    When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an

  18. Alternate substrates and isotope effects as a probe of the malic enzyme reaction

    International Nuclear Information System (INIS)

    Gavva, S.R.

    1988-01-01

    Dissociation constants for alternative dinucleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg 2+ to Mn 2+ or Cd 2+ results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and 13 C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. For the native enzyme, primary deuterium isotope effects increase with a concomitant decrease in the 13 C effects when NAD is replaced by an alternate dinucleotide substrate different in redox potential

  19. Probing supersymmetry with parity-violating electron scattering

    OpenAIRE

    Kurylov, A.; Ramsey-Musolf, M. J.; Su, Shufang

    2003-01-01

    We compute the one-loop supersymmetric (SUSY) contributions to the weak charges of the electron ($Q_W^e$), proton ($Q_W^p$), and cesium nucleus ($Q_W^{\\rm Cs}$) in the Minimal Supersymmetric Standard Model (MSSM). Such contributions can generate several percent corrections to the corresponding Standard Model values. The magnitudes of the SUSY loop corrections to $Q_W^e$ and $Q_W^p$ are correlated over nearly all of the MSSM parameter space and result in an increase in the magnitudes of these ...

  20. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell......, dimer with nanometer-sized gaps, core-shell nanowire with ultrathin metal shell, and a thin metal film. In all cases we compare the nonlocal models with the local-response approximation. Below the plasma frequency, we find that the distance between the induced positive and negative surface charges...

  1. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  2. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin

    DEFF Research Database (Denmark)

    Farver, O.; Zhang, Jingdong; Chi, Qijin

    2001-01-01

    rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H2O than in D2O (0.001 nm K-1) is sufficient both to account for the activation......Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K-1 mol(-1...

  3. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    Science.gov (United States)

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  4. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  5. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.; Konečná , Andrea; Chuvilin, Andrey; Vé lez, Saü l; Dolado, Irene; Nikitin, Alexey Y.; Lopatin, Sergei; Casanova, Fè lix; Hueso, Luis E.; Aizpurua, Javier; Hillenbrand, Rainer

    2017-01-01

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  6. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kajen, Rasanayagam Sivasayan; Chandrasekhar, Natarajan [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Feng Xinliang; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-55021 Mainz (Germany); Su Haibin, E-mail: n-chandra@imre.a-star.edu.sg, E-mail: muellen@mpip-mainz.mpg.de, E-mail: hbsu@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-28

    We demonstrate the information on molecular vibrational modes via the second derivative (d{sup 2}I{sub B}/dV{sup 2}) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d{sup 2}I{sub B}/dV{sup 2} spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  7. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  8. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  9. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  10. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  11. Electron transfer reactions to probe the electrode/solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry

    2008-07-01

    The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.

  12. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Das, Gobind; Wang, Zhenwei; He, Xin; Alshareef, Husam N.; Di Fabrizio, Enzo M.

    2017-01-01

    for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details

  13. Diagnosis of early human myocardial ischemic damage with electron probe microanalysis

    International Nuclear Information System (INIS)

    Singh, S.; Abraham, J.L.; Raasch, F.; Wolf, P.; Bloor, C.M.

    1983-01-01

    We determined the Na/K x-ray intensity ratio in frozen sections of myocardial tissues obtained at autopsy from patients who died from various causes, using electron probe analysis. We have been able to distinguish between the ischemically injured and normal cells. The method is simple, fast, and dependable even when the duration of ischemia is only 30 minutes

  14. Mach probe interpretation in the presence of supra-thermal electrons

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Gunn, J. P.

    2007-01-01

    Roč. 14, č. 3 (2007), 032501-1 ISSN 1070-664X R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : Mach probes * supra -thermal electrons * quasi-neutral PIC codes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.325, year: 2007

  15. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  16. Combining metagenomics with metaproteomics and stable isotope probing reveals metabolic pathways used by a naturally occurring marine methylotroph

    DEFF Research Database (Denmark)

    Grob, Carolina; Taubert, Martin; Howat, Alexandra M.

    2015-01-01

    A variety of culture-independent techniques have been developed that can be used in conjunction with culture-dependent physiological and metabolic studies of key microbial organisms in order to better understand how the activity of natural populations influences and regulates all major......, we retrieved virtually the whole genome of this bacterium and determined its metabolic potential. Through protein-stable isotope probing, the RuMP cycle was established as the main carbon assimilation pathway, and the classical methanol dehydrogenase-encoding gene mxaF, as well as three out of four...... identified xoxF homologues were found to be expressed. This proof-of-concept study is the first in which the culture-independent techniques of DNA-SIP and protein-SIP have been used to characterize the metabolism of a naturally occurring Methylophaga-like bacterium in the marine environment (i...

  17. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    Science.gov (United States)

    Adamek, J.; Seidl, J.; Horacek, J.; Komm, M.; Eich, T.; Panek, R.; Cavalier, J.; Devitre, A.; Peterka, M.; Vondracek, P.; Stöckel, J.; Sestak, D.; Grover, O.; Bilkova, P.; Böhm, P.; Varju, J.; Havranek, A.; Weinzettl, V.; Lovell, J.; Dimitrova, M.; Mitosinkova, K.; Dejarnac, R.; Hron, M.; The COMPASS Team; The EUROfusion MST1 Team

    2017-11-01

    A new system of probes was recently installed in the divertor of tokamak COMPASS in order to investigate the ELM energy density with high spatial and temporal resolution. The new system consists of two arrays of rooftop-shaped Langmuir probes (LPs) used to measure the floating potential or the ion saturation current density and one array of Ball-pen probes (BPPs) used to measure the plasma potential with a spatial resolution of ~3.5 mm. The combination of floating BPPs and LPs yields the electron temperature with microsecond temporal resolution. We report on the design of the new divertor probe arrays and first results of electron temperature profile measurements in ELMy H-mode and L-mode. We also present comparative measurements of the parallel heat flux using the new probe arrays and fast infrared termography (IR) data during L-mode with excellent agreement between both techniques using a heat power transmission coefficient γ  =  7. The ELM energy density {{\\varepsilon }\\parallel } was measured during a set of NBI assisted ELMy H-mode discharges. The peak values of {{\\varepsilon }\\parallel } were compared with those predicted by model and with experimental data from JET, AUG and MAST with a good agreement.

  18. Lattice Location of Radioactive Probes in Semiconductors and Metals by Electron and Positron Channelling

    CERN Multimedia

    2002-01-01

    The channelling effect of decay-electrons and positrons is used for the localization of radioactive impurities implanted into single crystals. Because of the low implantation doses and the variety of different isotopes available at ISOLDE, this technique is especially suited for applications in semiconducting materials. \\\\ \\\\ Channelling measurements in Si, GaAs and GaP implanted with In-, Cd- and Xe-isotopes have demonstrated that impurity lattice sites can be studied directly after implantation without any annealing. The electron-channelling technique can be ideally combined with hyperfine interaction techniques like Moessbauer s This was shown for the formation of In-vacancy complexes in ion-implanted Ni. \\\\ \\\\ We intend to continue the lattice location measurements in semiconductors implanted with various radioactive impurities of Cd, In, Sn, Sb and Te.

  19. Conversion electron spectrometry of Pu isotopes with a silicon drift detector

    OpenAIRE

    Pommé, S.; Paepen, J.; Peräjärvi, K.; Turunen, J.; Pöllänen, R.

    2016-01-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5 keV for electrons of 30 keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. 238Pu, 239Pu, 240P...

  20. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  1. Identification of metabolically active methanogens in anaerobic digester by DNA Stable-Isotope Probing using 13C-acetate

    Directory of Open Access Journals (Sweden)

    V. Gowdaman

    2015-04-01

    Full Text Available Anaerobic digestion is gaining enormous attention due to the ability to covert organic wastes into biogas, an alternative sustainable energy. Methanogenic community plays a significant role in biogas production and also for proficient functioning of the anaerobic digester. Therefore, this study was carried out to investigate the methanogen diversity of a food waste anaerobic digester. After endogenous respiration, the digester samples were supplemented with isotopes of acetate to enrich methanogen population, and were analyzed using DNA-SIP (Stable-Isotope Probing. Following separation and fractionation of heavy (13C and light (12C DNA, PCR amplification was carried out using archaeal 16S rRNA gene followed by DGGE analysis. Sequencing of the prominent DGGE bands revealed the dominance of Methanocorpusculum labreanum species belonging to hydrogenotrophic Methanomicrobiales, which can produce methane in the presence of H2/CO2 and requires acetate for its growth. This is the first instance where Methanocorpusculum labreanum is being reported as a dominant species in an anaerobic digester operative on food waste.

  2. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.

    Science.gov (United States)

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-09-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.

  3. RNA–Stable-Isotope Probing Shows Utilization of Carbon from Inulin by Specific Bacterial Populations in the Rat Large Bowel

    Science.gov (United States)

    Lawley, Blair; Munro, Karen; Sims, Ian M.; Lee, Julian; Butts, Christine A.; Roy, Nicole

    2014-01-01

    Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope (13C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [13C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect 13C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the 13C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA–stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism. PMID:24487527

  4. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-03-01

    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  5. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Lone, M A; Wong, P Y [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD`s are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD`s to electrons and {gamma}-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of {gamma}-ray sensitivity of an SPD placed in a mixed electron and {gamma}-ray field. (author). 30 refs., 1 tab., 8 figs.

  6. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    International Nuclear Information System (INIS)

    Lone, M.A.; Wong, P.Y.

    1995-01-01

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD's are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD's to electrons and γ-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of γ-ray sensitivity of an SPD placed in a mixed electron and γ-ray field. (author). 30 refs., 1 tab., 8 figs

  7. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  8. Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.; Graaf, A.A. de; Maathuis, A.; Waard, P. de; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, W.M. de; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  9. Identification of glucose-fermenting bacteria present in an in-vitro model of the human inetstine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.G.G.; Graaf, de A.A.; Maathuis, A.; Waard, de P.; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, de W.M.; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  10. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing

    NARCIS (Netherlands)

    Kovatcheva-Datchary, P.; Egert, M.; Maathuis, A.; Rajilić-Stojanović, M.; Graaf, A.A.de; Smidt, H.; Vos, W.M.de; Venema, K.

    2009-01-01

    Summary Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP),

  11. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.

    2016-01-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  12. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  13. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation

    Science.gov (United States)

    Schennach, Moritz; Breuker, Kathrin

    2015-07-01

    The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.

  14. A new standardless quantitative electron probe microanalysis technique applied to III-V compound semiconductors

    International Nuclear Information System (INIS)

    Zangalis, K.P.; Christou, A.

    1982-01-01

    The present paper introduces a new standardless quantitative scheme for off-line electron microprobe analysis applications. The analysis is based on standard equations of the type Isub(i)=Csub(i)fsub(ZAF)βsub(i) and is specifically suitable for compound semiconductors. The roots to the resultant nth-degree polynomial are the unknown concentrations. Methods for computing Csub(i) when coefficients βsub(i) are unknown are also outlined. Applications of standardless analysis to GaAs and InP specimens are compared with results obtained by Auger electron spectroscopy and quantitative electron probe analysis with standards. (Auth.)

  15. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  16. Cross section for electronic energy transfer between mercury isotopes

    International Nuclear Information System (INIS)

    Lagushenko, R.; Grossman, M.W.; Maya, J.

    1984-01-01

    Previous estimates of the cross section (sigma) for the process 1 Hg(6 3 P 1 )+ /sup J/ Hg(6 1 S /sub o/ )→ 1 Hg(6 1 S /sub o/ )+ /sup J/ Hg(6 3 P 1 ), where i and j are any one of the six stable Hg isotopes, are no better than a factor of ten. We have recently measured the hyperfine structure of the 253.7nm Hg resonance line in low pressure Hg-Ar discharge for natural Hg as well as Hg enriched in 196 Hg by 2-4%, as a function of temperature. Using our previously developed resonance radiation transport model in a low pressure Hg+Ar plasma we calculated the exact shape of the hyperfine structure and found a high degree of sensitivity to the value of (sigma). By varying (sigma) we were able to obtain a best fit to the measured hyperfine structure as a function of temperature. This fit determined the value of (sigma). We believe the accuracy of this determination is about 30%

  17. Plasma diagnostics by electron guns and electric field probes on ISEE-1

    International Nuclear Information System (INIS)

    Pedersen, A.

    1982-01-01

    The use of electron guns to control the potential of a satellite with conductive surfaces is discussed with reference to the results of the ISEE-1 satellite experiment. The two electron guns carried by the satellite can emit electrons with energies up to 48 eV, and the emitted electron current has a maximum value of 0.5-1.0 mA. The satellite potential, with or without gun operation, can be measured with reference to one or two spherical electric field probes positioned on booms at a distance of 36 m from the satellite. The probes are biased with a negative current from a high-impedance source to be slightly positive (0.5-1.0 V) relative to the plasma, and the spacecraft is normally several volts more positive and can be further positively charged by operating the electron gun. Plasma diagnostics can be carried out by appropriate sweeps of gun currents and energy of emitted electrons to obtain information about density and characteristic energy of ambient electrons. 9 references

  18. Electron magnetic chiral dichroism in CrO2 thin films using monochromatic probe illumination in a transmission electron microscope

    International Nuclear Information System (INIS)

    Loukya, B.; Zhang, X.; Gupta, A.; Datta, R.

    2012-01-01

    Electron magnetic chiral dichroism (EMCD) has been studied in CrO 2 thin films (with (100) and (110) growth orientations on TiO 2 substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution ∼10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8–9 min in energy filtered imaging mode for a given Cr L 2,3 energy scan (energy range ∼35 eV). We compared the EMCD signal obtained by extracting the Cr L 2,3 spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO 2 are compared and discussed with XMCD theoretical spectra. - Highlights: ► Electron magnetic circular dichroism (EMCD) of CrO 2 thin film with two different orientations. ► Improved EMCD signal with Gun monochromator illumination. ► Improved EMCD signal with higher g vector.

  19. Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions

    International Nuclear Information System (INIS)

    Wang, Xue-Bin; Wang, Lai-Sheng

    2000-01-01

    An experimental technique capable of directly determining the intrinsic reorganization energies of bimolecular electron transfer reactions is described. Appropriate solution phase redox species are prepared in the gas phase using electrospray ionization and probed using photodetachment spectroscopy. Five metal complex anions involved in the Fe 2+ -Fe 3+ redox couple are investigated and the intramolecular reorganization energies are measured directly from spectral features due to removing the most loosely bound 3d electron from the Fe(II)-complexes. The photodetachment spectra also yield electronic structure information about the Fe 2+ -Fe 3+ redox couple and provide a common electronic structure origin for the reducing capability of the Fe(II)-complexes, the most common redox reagents. (c) 2000 American Institute of Physics

  20. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms.

    Science.gov (United States)

    Jameson, Eleanor; Taubert, Martin; Coyotzi, Sara; Chen, Yin; Eyice, Özge; Schäfer, Hendrik; Murrell, J Colin; Neufeld, Josh D; Dumont, Marc G

    2017-01-01

    Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13 C, 18 O, or 15 N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies

  1. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    Science.gov (United States)

    Herrmann, Elena; Young, Wayne; Rosendale, Douglas; Conrad, Ralf; Riedel, Christian U.; Egert, Markus

    2017-01-01

    The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA

  2. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Elena Herrmann

    2017-07-01

    Full Text Available The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS. In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the

  3. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  4. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  5. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  6. Quantitative analysis of biological fluids by electron probe and X ray spectrometry

    International Nuclear Information System (INIS)

    Girod, Chantal

    1986-01-01

    In order to know the kidney normal operation and to have an insight on cellular transport mechanisms and hormonal regulations at the nephron level, a technique based on the use of an electron probe has been developed for the elemental analysis of micro-volumes of biological fluids. This academic document reports applications of this technique on animals on which such fluids have been sampled at different levels of the nephron. As these samples are available in too small volumes to be dosed by conventional methods, they have been quantitatively analysed by using an electronic probe based analyser in order to determine concentrations of all elements with an atomic number greater than that of carbon. After a presentation of the implemented method and hardware, the author thus describes how an analysis is performed, and reports and discusses an example (analysis conditions, data acquisition, data processing, minimum detectable concentration, reasons for measurement scattering)

  7. New measurements in plutonium L X ray emission spectrum using an electron probe micro-analyser

    International Nuclear Information System (INIS)

    Bobin, J.L.; Despres, J.

    1966-01-01

    Further studies by means of an electron-probe micro-analyser, allowed report CEA-R--1798 authors to set up a larger plutonium X ray spectrum table. Measurements of plutonium L II and L III levels excitation potentials have also been achieved. Some remarks about apparatus performance data (such as spectrograph sensibility, resolving power and accuracy) will be found in the appendix. (authors) [fr

  8. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  9. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Mingsen [Department of Physics, Guizhou University, Guiyang, 550025 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, 550018 (China); Ye, Gui; Jiang, Jun, E-mail: jiangj1@ustc.edu.cn [Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 (China); Cai, Shaohong, E-mail: caish@mail.gufe.edu.cn [Department of Physics, Guizhou University, Guiyang, 550025 (China); Guizhou Key Laboratory of Economic System Simulation, Guizhou University of Finance and Economics, Guiyang, 550004 (China); Sun, Guangyu [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, 550018 (China)

    2015-01-15

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  10. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    Science.gov (United States)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  11. Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models

    Science.gov (United States)

    Benyamin, David; Shaviv, Nir J.; Piran, Tsvi

    2017-12-01

    Electron capture (EC) isotopes are known to provide constraints on the low-energy behavior of cosmic rays (CRs), such as reacceleration. Here, we study the EC isotopes within the framework of the dynamic spiral-arms CR propagation model in which most of the CR sources reside in the galactic spiral arms. The model was previously used to explain the B/C and sub-Fe/Fe ratios. We show that the known inconsistency between the 49Ti/49V and 51V/51Cr ratios remains also in the spiral-arms model. On the other hand, unlike the general wisdom that says the isotope ratios depend primarily on reacceleration, we find here that the ratio also depends on the halo size (Z h) and, in spiral-arms models, also on the time since the last spiral-arm passage ({τ }{arm}). Namely, EC isotopes can, in principle, provide interesting constraints on the diffusion geometry. However, with the present uncertainties in the lab measurements of both the electron attachment rate and the fragmentation cross sections, no meaningful constraint can be placed.

  12. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  13. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    Science.gov (United States)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  14. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2012-05-01

    Full Text Available More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container have been analyzed for molecular hydrogen (H2 mixing ratios (χ(H2 and H2 isotopic composition (deuterium content, δD.

    More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS. These show that χ(H2 does not vary appreciably with O3-derived height above the thermal tropopause (TP, whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D; the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4 and nitrous oxide (χ(N2O, as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=−0.35 · χ(CH4[ppb]+768 and δD[‰]=−1.90· χ(N2O[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS.

    Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2, but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4 increase in these samples. The significant correlation with χ(CH4 and the absence of a perceptible χ(H2 increase that accompanies the δD decrease indicates that microbial production of

  15. Detection of an electron beam in a high density plasma via an electrostatic probe

    Science.gov (United States)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.

  16. Th-U-Pb{sub T} dating by electron probe microanalysis, Part I. Monazite: analytical procedures and data treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vlach, Silvio Roberto Farias [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica], e-mail: srfvlach@usp.br

    2010-03-15

    Dating methodology by the electron probe microanalyser (EPMA) of (Th, U)-bearing minerals, highlighting monazite, acquired greater than ever importance in literature, particularly due to its superior spatial resolution, as well as versatility, which allow correlating petrological processes at times registered only in micro-scales in minerals and rocks with absolute ages. Although the accuracy is inferior to the one achieved with conventional isotopic methods in up to an order of magnitude, EPMA is the instrument that allows the best spatial resolution, reaching a few {mu}m{sup 3} in some conditions. Quantification of minor and trace elements with suitable precision and accuracy involves the own instrumental and analytical set-ups and data treatment strategies, significantly more rigorous when compared with those applied in conventional analyses. Th-U-Pb{sub T} dating is an example of these cases. Each EPMA is a unique machine as for its instrumental characteristics and respective automation system. In such a way, analytical procedures ought to be adjusted for laboratory specific cities. The analytical strategies and data treatment adopted in the Electronic Microprobe Laboratory from Instituto de Geociencias of Universidade de Sao Paulo, Brazil, with a JEOL JXA8600S EPMA, and a ThermoNoran-Voyager 4.3 automation system, are presented and compared with the ones used in other laboratories. The influence of instrumental factors and spectral overlaps on Th, U, and Pb quantification is discussed. Applied procedures to interference correction, error propagation, data treatment, and final chemical age presentation as well as to sampling and analyses are emphasized. Some typical applications are discussed, drawing attention to the most relevant aspects of electron microprobe dating. (author)

  17. Th-U-PbT dating by Electron Probe Microanalysis, Part I. Monazite: analytical procedures and data treatment

    International Nuclear Information System (INIS)

    Vlach, Silvio Roberto Farias

    2010-01-01

    Dating methodology by the electron probe microanalyser (EPMA) of (Th, U)-bearing minerals, highlighting monazite, acquired greater than ever importance in literature, particularly due to its superior spatial resolution, as well as versatility, which allow correlating petrological processes at times registered only in micro-scales in minerals and rocks with absolute ages. Although the accuracy is inferior to the one achieved with conventional isotopic methods in up to an order of magnitude, EPMA is the instrument that allows the best spatial resolution, reaching a few μm 3 in some conditions. Quantification of minor and trace elements with suitable precision and accuracy involves the own instrumental and analytical set-ups and data treatment strategies, significantly more rigorous when compared with those applied in conventional analyses. Th-U-Pb T dating is an example of these cases. Each EPMA is a unique machine as for its instrumental characteristics and respective automation system. In such a way, analytical procedures ought to be adjusted for laboratory specificities. The analytical strategies and data treatment adopted in the Electronic Microprobe Laboratory from Instituto de Geociencias of Universidade de Sao Paulo, Brazil, with a JEOL JXA8600S EPMA, and a ThermoNoran-Voyager 4.3 automation system, are presented and compared with the ones used in other laboratories. The influence of instrumental factors and spectral overlaps on Th, U, and Pb quantification is discussed. Applied procedures to interference correction, error propagation, data treatment, and fi nal chemical age presentation as well as to sampling and analyses are emphasized. Some typical applications are discussed, drawing attention to the most relevant aspects of electron microprobe dating. (author)

  18. Probing the collectivity in neutron-rich Cd isotopes via γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, Farheen

    2011-01-01

    The spin and configurational structure of excited states of 127 Cd, 125 Cd and 129 Cd, having two proton and three, five and one neutron holes, respectively in the doubly magic 132 Sn core have been studied. The isomeric states in Cd isotopes were populated in the fragmentation of a 136 Xe beam at an energy of 750 MeV/u on a 9 Be target of 4 g/cm 2 . The experiment was performed at GSI Darmstadt. The neutron-rich Cd isotopes were selected using the Bρ - ΔE - Bρ method at the FRagment Separator (FRS). Event by event identification of fragments in terms of their A (mass) and Z (charge) was provided by the standard FRS detectors. The reaction residues were implanted in a plastic stopper surrounded by 15 Ge cluster detectors from the RISING array to detect the γ decays. In 127 Cd, an isomeric state with a half-life of 17.5(3) μs has been detected. This yrast (19/2) + isomer is proposed to have mixed proton-neutron configurations and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone 129 Sn. In 125 Cd, apart from the previously observed (19/2) + isomer, two new metastable states at 3896 keV and 2141 keV have been detected. A half-life of 13.6(2) μs was measured for the (19/2) + isomer, having a decay structure similar to the corresponding isomeric state in 127 Cd. The higher lying isomers have a half-life of 3.1(1) μs and 2.5(15) ns, respectively. Time distributions of delayed γ transitions and γγ-coincidence relations were exploited to construct decay schemes for the two nuclei. Comparison of the experimental data with shell-model calculations is also discussed. The new information provides input for the proton-neutron interaction in nuclei around the doubly magic 132 Sn core. The γ decays of the isomeric states in 129 Cd were not observed experimentally. The reasons for the non-observation of delayed γ rays for 129 Cd are either an isomeric half-life of less than 93 ns based on the experimentally

  19. Probing the Milky Way electron density using multi-messenger astronomy

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  20. Measurement of Wake fields in Plasma by a Probing Electron Beam

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2006-01-01

    The device for measuring intensity of wakefield, excited in plasma by a sequence of bunches of relativistic electrons is presented. Field amplitude is determined by measuring deflection of a probing electron beam (10 keV, 50 μA, of 1 mm diameter), which is injected perpendicularly to a direction of bunches movement. Results of measurement of focusing radial wakefield excited in plasma of density 5 x 10 11 cm - 3 by a sequence of needle electron bunches (each bunch of length 10 mm, diameter 1.5 mm, energy 14 MeV, 2 x 10 9 electrons in bunch, number of bunches 1500) are given. The measured radial wakefield strength was 2.5 kV/cm

  1. Isotope separation by ion waves

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  2. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  3. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  4. Pressure dependence of electron temperature using rf-floated electrostatic probes in rf plasmas

    International Nuclear Information System (INIS)

    Cantin, A.; Gagne, R.R.J.

    1977-01-01

    A new technique, which eliminates ac between probe and plasma by means of a ''follower'', permits electrostatic probes to be used in rf plasmas with a degree of confidence and accuracy which is equal, if not better, to that for a dc discharge. Measurements in argon, using this technique, have shown that electron temperature (T/sub e/) in an rf discharge is not higher than in dc discharge. Moreover the values of T/sub e/ do not agree with von Engel's law, but are in close agreement with a theory based on free diffusion and extrapolated up to values of pR=20 Torr cm (pressure times tube radius). These results are in contradiction with published electrostatic probe results for a positive column, but agree with published results as determined by microwave radiometry and optical spectroscopy. The hypothesis is made that the supporting evidence in favor of von Engel's law, afforded by published electrostatic probe results, could be due to an artifact

  5. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  6. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  7. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    International Nuclear Information System (INIS)

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-01-01

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  8. Intraclade heterogeneity in nitrogen utilization by marine prokaryotes revealed using stable isotope probing coupled with tag sequencing (Tag-SIP

    Directory of Open Access Journals (Sweden)

    Michael Morando

    2016-12-01

    Full Text Available Nitrogen can greatly influence the structure and productivity of microbial communities through its relative availability and form. However, roles of specific organisms in the uptake of different nitrogen species remain poorly characterized. Most studies seeking to identify agents of assimilation have been correlative, indirectly linking activity measurements (e.g., nitrate uptake with the presence or absence of biological markers, particularly functional genes and their transcripts. Evidence is accumulating of previously underappreciated functional diversity in major microbial subpopulations, which may confer physiological advantages under certain environmental conditions leading to ecotype divergence. This microdiversity further complicates our view of genetic variation in environmental samples requiring the development of more targeted approaches. Here, next-generation tag sequencing was successfully coupled with stable isotope probing (Tag-SIP to assess the ability of individual phylotypes to assimilate a particular N source. Our results provide the first direct evidence of nitrate utilization by organisms thought to lack the genes required for this process including the heterotrophic clades SAR11 and the Archaeal Marine Group II (MG-II. We also provide new direct evidence of in situ nitrate utilization by the cyanobacterium Prochlorococcus in support of recent findings. Furthermore, these results revealed widespread functional heterogeneity, i.e. different levels of N assimilation within clades, likely reflecting niche partitioning by ecotypes. The addition of nitrate utilization to ecosystem and ecosystem models by these globally dominant clades will likely improve the mechanistic accuracy of these models.

  9. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing

    International Nuclear Information System (INIS)

    Tong, Hui; Liu, Chengshuai; Li, Fangbai; Luo, Chunling; Chen, Manjia; Hu, Min

    2015-01-01

    Highlights: • SIP suggested that Dechloromonas can mineralize PCP in soil. • Methanosaeta and Methanocella acquired PCP-derived carbon. • Lactate enhanced microbial degradation of PCP in soil. - Abstract: Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of 13 CH 4 and 13 CO 2 indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil

  10. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Hui [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Chengshuai [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Li, Fangbai, E-mail: cefbli@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Luo, Chunling [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Manjia; Hu, Min [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2015-11-15

    Highlights: • SIP suggested that Dechloromonas can mineralize PCP in soil. • Methanosaeta and Methanocella acquired PCP-derived carbon. • Lactate enhanced microbial degradation of PCP in soil. - Abstract: Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of {sup 13}CH{sub 4} and {sup 13}CO{sub 2} indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil.

  11. Application of GelGreen™ in Cesium Chloride Density Gradients for DNA-Stable Isotope Probing Experiments.

    Directory of Open Access Journals (Sweden)

    Jingfeng Gao

    Full Text Available In this study, GelGreen™ was investigated as a replacement for SYBR® Safe to stain DNA in cesium chloride (CsCl density gradients for DNA-stable isotope probing (SIP experiments. Using environmental DNA, the usage of GelGreen™ was optimized for sensitivity compared to SYBR® Safe, its optimal concentration, detection limit for environmental DNA and its application in environmental DNA-SIP assay. Results showed that GelGreen™ was more sensitive than SYBR® Safe, while the optimal dosage (15X concentration needed was approximately one-third of SYBR® Safe, suggesting that its sensitivity was three times more superior than SYBR® Safe. At these optimal parameters, the detection limit of GelGreen™-stained environmental DNA was as low as 0.2 μg, but the usage of 0.5 μg environmental DNA was recommended to produce a more consistent DNA band. In addition, a modified needle extraction procedure was developed to withdraw DNA effectively by fractionating CsCl density gradients into four or five fractions. The successful application of GelGreen™ staining with 13C-labeled DNA from enriched activated sludge suggests that this stain was an excellent alternative of SYBR® Safe in CsCl density gradients for DNA-SIP assays.

  12. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing.

    Science.gov (United States)

    Kowalczyk, Agnieszka; Eyice, Özge; Schäfer, Hendrik; Price, Oliver R; Finnegan, Christopher J; van Egmond, Roger A; Shaw, Liz J; Barrett, Glyn; Bending, Gary D

    2015-10-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics.

    Science.gov (United States)

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-10-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.

  14. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  15. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    Science.gov (United States)

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  16. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    Science.gov (United States)

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of 13C-labeled CO2 and CH4 were detected immediately following incubation with [U-13C]acetate, indicating high turnover rate of acetate. The identified 13C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways. PMID:27128991

  17. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  18. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    , Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...... inhomogeneously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom...... samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution...

  19. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... quantities are extracted, such as conductivity, carrier density and carrier mobility. • A method to insulate electrically epitaxial graphene grown on metals, based on a stepwise intercalation methodology, is developed and transport measurements are performed in order to test the insulation. • We show...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  20. Fiber optic probe of free electron evanescent fields in the optical frequency range

    Energy Technology Data Exchange (ETDEWEB)

    So, Jin-Kyu, E-mail: js1m10@orc.soton.ac.uk; MacDonald, Kevin F. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  1. Defects in electron irradiated vitreous SiO2 probed by positron annihiliation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao; Itoh, Hisayoshi

    1994-01-01

    Defects in 3 MeV electron irradiated vitreous SiO 2 (v-SiO 2 ) were probed by the positron annihilation technique. For unirradiated v-SiO 2 specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author)

  2. Defects in electron irradiated vitreous SiO[sub 2] probed by positron annihiliation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro (Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science); Kawano, Takao (Tsukuba Univ., Ibaraki (Japan). Radioisotope Centre); Itoh, Hisayoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-10-10

    Defects in 3 MeV electron irradiated vitreous SiO[sub 2] (v-SiO[sub 2]) were probed by the positron annihilation technique. For unirradiated v-SiO[sub 2] specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author).

  3. Probing a molecular electronic transition by two-colour sum-frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Dreesen, L.; Nihonyanagi, S.; Masuda, T.; Kondo, T.; Mani, A.A.; Uosaki, K.; Thiry, P.A.; Peremans, A.

    2003-01-01

    We demonstrate that a new emerging technique, two-colour sum-frequency generation (SFG) spectroscopy, can be used to probe the molecular electronic properties of self-assembled monolayers (SAMs). In the CH spectral range (2800-3200 cm -1 ), we show that the sum-frequency generation signal of a porphyrin alkanethiol derivative adsorbed on Pt(1 1 1) reaches a maximum intensity at ∼435 nm SFG wavelength. This wavelength corresponds to the porphyrin moiety specific π-π* molecular electronic transition which is called the Soret or B band. This resonant behaviour is not observed for 1-dodecanethiol SAMs, which are devoid of molecular electronic transition in the investigated visible spectral range

  4. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    Science.gov (United States)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  5. Transport of electrons in the tunnel of an ion sensitive probe

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Adámek, Jiří; Dejarnac, Renaud; Gunn, J. P.; Pekárek, Z.

    2011-01-01

    Roč. 53, č. 1 (2011), 015005-015005 ISSN 0741-3335 R&D Projects: GA AV ČR KJB100430901; GA MŠk 7G09042; GA MŠk LA08048 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * plasma * katsumata probe * ExB drift * ion temperature * tunnel * electron Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.425, year: 2011 http://iopscience.iop.org/0741-3335/53/1/015005/pdf/0741-3335_53_1_015005.pdf

  6. A novel probe of intrinsic electronic structure: hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Takata, Y.; Tamasaku, K.; Nishino, Y.; Miwa, D.; Yabashi, M.; Ikenaga, E.; Horiba, K.; Arita, M.; Shimada, K.; Namatame, H.; Nohira, H.; Hattori, T.; Soedergren, S.; Wannberg, B.; Taniguchi, M.; Shin, S.; Ishikawa, T.; Kobayashi, K.

    2005-01-01

    We have realized hard X-ray (HX) photoemission spectroscopy (PES) with high throughput and high-energy resolution for core level and valence band studies using high-energy and high-brilliance synchrotron radiation at SPring-8. This is a brand new method because large escape depth of high-energy photoelectrons enables us to probe intrinsic bulk states free from surface condition. By use of a newly developed electron energy analyzer and well-focused X-rays, high-energy resolution of 75 meV (E/ΔE 79,000) was realized for 5.95 keV photoelectrons

  7. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Seidl, Jakub; Horáček, Jan; Komm, Michael; Eich, T.; Pánek, Radomír; Cavalier, J.; Devitre, A.; Peterka, Matěj; Vondráček, Petr; Stöckel, Jan; Šesták, David; Grover, Ondřej; Bílková, Petra; Böhm, Petr; Varju, Jozef; Havránek, Aleš; Weinzettl, Vladimír; Lovell, J.; Dimitrova, Miglena; Mitošinková, Klára; Dejarnac, Renaud; Hron, Martin

    2017-01-01

    Roč. 57, č. 11 (2017), č. článku 116017. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GA16-14228S; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : COMPASS * divertor * heat load * ELM * electron temperature * Ball-pen probe Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa7e09

  8. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  9. Chemical analysis of minerals in granitic rocks by electron probe micro analyser

    International Nuclear Information System (INIS)

    Hiraoka, Yoshihiro

    1994-01-01

    The chemical compositions of minerals in a few granitic rocks were determined by electron probe micro analyser (EPMA). The accurate analytical data for standard feldspar groups were obtained by correcting the low analytical values of sodium and potassium that were arised from the damage in EPMA analysis. Using this method, feldspar groups and biotites in three granitic rocks gathered from Hiei, Hira and Kurama areas respectively, were analyzed. As the results, the local characteristics were observed in the kinds of feldspar groups and the chemical compositions of biotites that were contained in granitic rocks. (author)

  10. Detection of beryllium in oxides and silicates by electron-probe microanalysis

    Directory of Open Access Journals (Sweden)

    V. V. Khiller

    2017-12-01

    Full Text Available The author developed the technique of electron-probe microanalysis for quantitative determination of beryllium content, providing the example of studying natural minerals (aluminosilicates and oxides. This technique allowed to obtain a quantitative content of beryllium (in combination with other elements in the emeralds of the Mariinsky beryllium deposit and in zonal mariinskite-chrysoberyl from the chromitites of the Bazhenov ophiolite complex. All analyzes of minerals were performed on a CAMECA SX 100 electron probe microanalyzer with five wave spectrometers (IGG UB RAS. The pressure in the sample chamber was 2 × 10–4 Pa, in the electron gun region – 4 × 10–6 Pa, in wave spectrometers – 7 Pa. Accelerating voltage was 10 kV, the current of absorbed electrons on the Faraday cylinder (beam current was 100–150 nA. Diameter of the electron beam focused on the sample was 2 μm, the angle of x-ray extraction was 40°. The spectra were obtained on wave spectrometers with TAP crystal analyzers (2d = 25.745 Å, LPET (2d = 8.75 Å, LiF (2d = 4.0226 Å, and PC3 (2d = 211.4 Å, a specialized crystal for determining the content of beryllium and boron; the author carried out all the elements measurements along the Kα-lines. To determine position of the analytical peak and the background from two sides with the minimum possible spectral overlap, the author preliminarily recorded spectra on wave spectrometers. The obtained microprobe analyzes of minerals with quantitative determination of beryllium converge well with the available theoretical compositions of beryl and chrysoberyl, which indicates the high efficiency of the developed technique. By using this technique, we can relatively quickly and reliably determine the quantitative content of beryllium in natural silicates and oxides, which is an acute need for geological researchers studying the mineralogy of beryllium deposits.

  11. Isotope shifts and electronic configurations of some of the energy levels of the neutral gadolinium atom

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Venugopalan, A.; Saksena, G.D.

    1982-01-01

    Isotope shift ΔT (156-160) have been evaluated for 52 odd and 90 even energy levels of the neutral gadolinium atom from the measurements carried out on 166 lines of the first spectrum in the region 4535 to 4975 A on a photoelectric recording Fabry-Perot Spectrometer and enriched samples of 156 Gd and 160 Gd. Earlier studies provide data for just two lines in this region. Assignment of electronic configurations to some of the energy levels have been either confirmed or revised; some unassigned levels have been assigned probable configurations. The present study provides, for the first time, isotope shift of the two levels of 4f 7 6s 2 7s configuration of Gd I. (author)

  12. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2012-01-01

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  13. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  14. The usage of electron beam to produce radio isotopes through the uranium fission by γ-rays and neutrons

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.V.

    2010-01-01

    We treat the production of desirable radio isotopes due to the 238 U photo-fission by the bremsstrahlung induced in converter by an initial electron beam provided by a linear electron accelerator. We consider as well the radio isotope production through the 238 U fission by the neutrons that stem in the 238 U sample irradiated by that bremsstrahlung. The yield of the most applicable radio isotope 99 Mo is calculated. We correlate the findings acquired in the work presented with those obtained by treating the nuclear photo-neutron reaction. Menace of the plutonium contamination of an irradiated uranium sample because of the neutron capture by 238 U is considered. As we get convinced, the photo-neutron production of radio isotopes proves to be more practicable than the production by the uranium photo- and neutron-fission. Both methods are certain to be brought into action due to usage of the electron beam provided by modern linear accelerators

  15. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  16. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  17. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    International Nuclear Information System (INIS)

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  18. Compensation of aberrations of deflected electron probe by means of dynamical focusing with stigmator

    International Nuclear Information System (INIS)

    Baba, Norio; Ebe, Toyoe; Ikehata, Koichi; Ito, Yasuhiro; Terada, Hiroshi

    1979-01-01

    Electron beam passing through a deflecting field is in general, subjected to aberrations such as distortion, astigmatism and coma in accordance with the deflecting angle. Accordingly the aberration defect of deflected beam is the most serious limiting factor in the performances of micromachining, microminiaturization and high resolution scanning electron microscopes. From many investigators' results, it is obvious that three important compensation methods to aberrations exist in principle, i.e., double deflection system, dynamical focusing, and the dynamical correction using a stigmator. In this paper, based on the aberration formula derived from the eikonal or the path method, the practical data of the aberration constants of deflected electron beam for the sequential deflection system with parallel plates are calculated, and using its result, the distorted spot patterns of an electron probe deflected in two-dimensional directions for various defocusings are graphically displayed by the aid of a computer. Further, by means of the dynamical focusing with a stigmator, the conditions to completely compensate the second order astigmatic aberration are derived, and spot patterns and the electron density distributions within the spots in the case when the compensating conditions are satisfied are also graphically displayed. (Wakatsuki, Y.)

  19. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, D.J. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-10-15

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed. - Highlights: • Measuring electric fields by on-axis electron diffraction is explored by simulation. • Electron channelling reduces deflection predicted by the phase object approximation. • First moment measurements cannot distinguish electric fields from specimen mistilt. • Segmented detector estimates are fairly insensitive to camera length and orientation.

  20. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site.

    Science.gov (United States)

    Jayamani, Indumathy; Cupples, Alison M

    2015-07-01

    This study investigated the microorganisms involved in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation from a detonation area at a Navy base. Using Illumina sequencing, microbial communities were compared between the initial sample, samples following RDX degradation, and controls not amended with RDX to determine which phylotypes increased in abundance following RDX degradation. The effect of glucose on these communities was also examined. In addition, stable isotope probing (SIP) using labeled ((13)C3, (15)N3-ring) RDX was performed. Illumina sequencing revealed that several phylotypes were more abundant following RDX degradation compared to the initial soil and the no-RDX controls. For the glucose-amended samples, this trend was strong for an unclassified Pseudomonadaceae phylotype and for Comamonas. Without glucose, Acinetobacter exhibited the greatest increase following RDX degradation compared to the initial soil and no-RDX controls. Rhodococcus, a known RDX degrader, also increased in abundance following RDX degradation. For the SIP study, unclassified Pseudomonadaceae was the most abundant phylotype in the heavy fractions in both the presence and absence of glucose. In the glucose-amended heavy fractions, the 16S ribosomal RNA (rRNA) genes of Comamonas and Anaeromxyobacter were also present. Without glucose, the heavy fractions also contained the 16S rRNA genes of Azohydromonas and Rhodococcus. However, all four phylotypes were present at a much lower level compared to unclassified Pseudomonadaceae. Overall, these data indicate that unclassified Pseudomonadaceae was primarily responsible for label uptake in both treatments. This study indicates, for the first time, the importance of Comamonas for RDX removal.

  1. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    Science.gov (United States)

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  2. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    Science.gov (United States)

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  3. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    Science.gov (United States)

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  4. Electron-muon correlation as a new probe of strongly interacting quark-gluon plasma

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-01-01

    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon that originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  5. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    Science.gov (United States)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  6. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea

    2017-06-09

    This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

  7. Correlated microradiography, X-ray microbeam diffraction and electron probe microanalysis of calcifications in an odontoma

    International Nuclear Information System (INIS)

    Aoba, T.; Yoshioka, C.; Yagi, T.

    1980-01-01

    Using microradiography, X-ray microbeam diffraction and electron probe microanalysis, a correlated morphologic and crystallographic study was performed on dysplastic enamel in a compound odontoma. The tumor was found in the lateral incisor-canine region of the left mandible of a 36-year-old woman. A conspicuous feature was the presence of hypomineralized areas, which were situated in the proximity of enamel surface and distinctly demarcated from the adjacent enamel. X-ray microbeam diffraction and electron microanalysis showed that these lesions have a lower crystallinity and a higher concentration of magnesium as compared with the adjacent enamel. In addition, the present study revealed the presence of two other types of calcifications: 1) calcified structures within the fissure or on the enamel surface, which include lacunae of varying size and which resemble a form of coronal cementum, and 2) spherical calcifications which may be an epithelial product. (author)

  8. Method and apparatus for suppressing electron generation in a vapor source for isotope separation

    International Nuclear Information System (INIS)

    Janes, G.S.

    1979-01-01

    A system for applying accelerating forces to ionized particles of a vapor in a manner to suppress the flow of electron current from the vapor source. The accelerating forces are applied as an electric field in a configuration orthogonal to a magnetic field. The electric field is applied between one or more anodes in the plasma and one or more cathodes operated as electron emitting surfaces. The circuit for applying the electric field floats the cathodes with respect to the vapor source, thereby removing the vapor source from the circuit of electron flow through the plasma and suppressing the flow of electrons from the vapor source. The potential of other conducting structures contacting the plasma is controlled at or permitted to seek a level which further suppresses the flow of electron currents from the vapor source. Reducing the flow of electrons from the vapor source is particularly useful where the vapor is ionized with isotopic selectivity because it avoids superenergization of the vapor by the electron current

  9. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    Science.gov (United States)

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for

  10. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    Science.gov (United States)

    Pivovarova, Natalia B; Andrews, S Brian

    2013-11-20

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  11. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function {Phi}(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  12. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2011-01-01

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function Φ(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  13. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    Science.gov (United States)

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  14. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    Science.gov (United States)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  15. Electron probe microanalysis for clinical investigations: Microdrop and soft tissue analysis

    International Nuclear Information System (INIS)

    Ingram, M.J.; Ingram, F.D.

    1984-01-01

    The most important advantage offered by electron probe microanalysis (EPA) for clinical investigations is the ability to analyze smaller volumes of tissue than is possible with conventional techniques. The sample can be a biological soft tissue specimen, which involves subcellular localization, or a picoliter fluid droplet. In either case, the analysis can be nondestructive and permit multiple analyses for a number of elements in a given sample. The most highly developed electron microprobe analytical technique is fluid drop analysis, popularly referred to as microdrop analysis. This method provides the investigator with an analytic capability that has an accuracy of measurement often 1% or better on 20 to 30 picoliter fluid droplets. Electron microprobe techniques have been used for studies of animal hard tissue and for studies that involve insoluble inclusions. However, the development of techniques for studies of labile constituents in animal soft tissue has been much slower. It has been necessary not only to develop appropriate methods of tissue preparation, but also to establish sound techniques for tissue collection. Although there are adequate methods for collection of most types of tissue from laboratory animals, many of these methods are not suitable for human subjects. In order to provide the reader with a better understanding of the capabilities and potential for the application of electron microprobe methodology to problems in clinical medicine, the authors discuss some of their experiences with liquid droplet analysis and quantitative electrolyte distribution measurements in animal soft tissue

  16. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    Energy Technology Data Exchange (ETDEWEB)

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  17. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.

    Science.gov (United States)

    Liu, Qianlang; March, Katia; Crozier, Peter A

    2017-07-01

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO 2 anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO 2 showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1eV above the MgO valence band. At the surfaces of TiO 2 nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Isotopes and the Electron Configuration of the Blocks in the Periodic Table of Elements, upto the Last Element No.155

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2011-04-01

    Full Text Available This is a theoretical study, which first manifests which connexion exists between isotopes and the electron blocks, and how the electron blocks are located in the version of the Periodic Table of Elements which ends with element No.155.

  19. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  20. Electronically tuned sulfonamide-based probes with ultra-sensitivity for Ga"3"+ or Al"3"+ detection in aqueous solution

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Chae, Pil Seok

    2017-01-01

    Three electronically tuned fluorescent probes (1–3) were synthesized by conjugating a fluorescent unit to N,N-bis-(hydroxyethyl)ethylenediamine. Probe 1 bearing an electron-deficient naphthalenedimide unit did not give a fluorescence response to the presence of various metal ions including monovalent metal ions (Na"+, K"+, and Ag"+), divalent metal ions (Ca"2"+, Cd"2"+, Co"2"+, Ni"2"+, Cu"2"+, Hg"2"+, Pb"2"+, and Zn"2"+) and trivalent metal ions (Al"3"+, Ga"3"+, Fe"3"+, and Cr"3"+) in an aqueous solution. By contrast, probes 2 and 3 possessing 1,8-naphthalimide and pyrene fluorophores, respectively, exhibited selective fluorescent “OFF-ON” behaviors as a result of Ga"3"+/Al"3"+ binding among the diverse metal ions, suggesting the importance of fluorophore electronic character with regard to metal ion sensing. The ethylenediamine analog of probe 3, corresponding to probe 4, was unable to yield a significant change in fluorescence intensity in the presence of any metal ions tested here, revealing the essential role of two hydroxyl groups for metal ion binding. A high association constant of K_a = 2.99 × 10"5 M"−"1 was obtained for probe 3 with Ga"3"+, with a limit of detection (LOD) of 10 nM. This LOD is the lowest value known for Ga"3"+ detection using chemical sensors. Along with an increase in aggregate sizes, PET suppression of probes upon metal ion binding was the primary contributor to the enhancement in fluorescence emission necessary for the sensitive detection of the target ions. The probe-metal ion complexes were fully characterized via TEM, FE-SEM, "1H NMR, fluorescence spectroscopy techniques and DFT calculations. - Highlights: • Three electronically tuned sulfonamide-based probes (probes 1, 2, and 3) were developed for metal ion-sensing. • Probes 2 and 3 exhibited AIE behavior with increasing water-content. • Probes 2 and 3 displayed a selective fluorescence “OFF-ON“ behavior for Ga"3"+ detection with the LOD of 10 nM. • PET

  1. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    Science.gov (United States)

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  2. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    Science.gov (United States)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  3. Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi

    International Nuclear Information System (INIS)

    LeGeros, R.Z.; Orly, I.; LeGeros, J.P.; Gomez, C.; Kazimiroff, J.; Tarpley, T.; Kerebel, B.

    1988-01-01

    A review of the use of scanning electron microscopy (SEM) and electron probe microanalyses in the study of dental calculus showed that such studies provided confirmatory and supplementary data on the morphological features of human dental calculi but gave only limited information on the identity of the crystalline or inorganic components. This study aimed to explore the potential of combined SEM and microanalyses in the identification of the crystalline components of the human and animal dental calculi. Human and animal calculi were analyzed. Identification of the crystalline components were made based on the combined information of the morphology (SEM) and Ca/P molar ratios of the crystals with the morphology and Ca/P molar ratio of synthetic calcium phosphates (brushite or DCPD; octacalcium phosphate, OCP; Mg-substituted whitlockite, beta-TCMP; CO 3 -substituted apatite, (CHA); and calcite. SEM showed similarities in morphological features of human and animal dental calculi but differences in the forms of crystals present. Microanalyses and crystal morphology data suggested the presence of CaCO 3 (calcite) and CHA in the animal (cat, dog, tiger) and of OCP, beta-TCMP and CHA in human dental calculi. X-ray diffraction and infrared (IR) absorption analyses confirmed these results. This exploratory study demonstrated that by taking into consideration what is known about the crystalline components of human and animal dental calculi, combined SEM and microanalyses can provide qualitative identification

  4. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    Science.gov (United States)

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  5. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States); March, Katia [Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, 91405 Orsay Cedex (France); Crozier, Peter A., E-mail: CROZIER@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States)

    2017-07-15

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO{sub 2} anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO{sub 2} showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60 nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1 eV above the MgO valence band. At the surfaces of TiO{sub 2} nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. - Highlights: • Bandgap states detected with aloof beam monochromated EELS on oxide nanoparticle surfaces. • Dielectric theory applied to simulate the spectra and interpret surface structure. • Density of states models also be employed to understand the surface electronic structure. • In MgO, one states associate with water species was found close to the valence band edge. • In anatase, two mid-gap states associated with point defects were found.

  6. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Richter, Johannes M; Branchi, Federico; Valduga de Almeida Camargo, Franco; Zhao, Baodan; Friend, Richard H; Cerullo, Giulio; Deschler, Felix

    2017-08-29

    In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm 2  V -1  s -1 at carrier densities lower than 2 × 10 19  cm -3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.

  7. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Titov, I.S.; Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Vorob' evy Gory, 11999l Moscow (Russian Federation)

    2016-06-01

    Shape memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 12}Si{sub 3} is investigated with electron spin resonance (ESR) technique in a temperature range of 200–300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: T{sub c}{sup A} (271 K), T{sub M} (247 K) and T{sub c}{sup M} (212 K), where T{sub c}{sup A} is the Curie temperature of austenitic phase, T{sub M} and T{sub c}{sup M} are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200–300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations. - Highlights: • Electron spin resonance study on magnetocaloric Heusler alloy within 200–300 K. • Magnetic phase separation below and above the structural transition temperature. • Phase competing is in association with different types of lattice distortions. • Electron spin resonance results are complementary to the magnetization data.

  8. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Chi, Li-Feng, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  9. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    International Nuclear Information System (INIS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-01-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process

  10. Local probe studies on lattice distortions and electronic correlations in manganites

    CERN Document Server

    lopes, Armandina; Correia, João Guilherme

    This thesis presents an experimental study on lattice distortions and electronic correlations in colossal magnetoresistive magnetic oxides. The Perturbed Angular Correlation local probe technique is used to study selected manganite systems in order to obtain relevant insight into microscopic phenomena responsible for their macroscopic pr operties. Complementary structural, magnetic and electric characterization was performed. The work is focused on the following aspects: \\\\Lattice distortions and polaron clusters in LaMnO$_{3+ \\Delta}$ system. A study of the electric field gradi ent and magnetic hyperfine field was performed in representative samples of the LaMnO$_{3+ \\Delta}$ system, and correlated with macroscopic information obtained in the same samples. Particular attention was given to the LaMnO$_{3.12}$ sample since this compound is a prototype of a ferromagnetic-insulat or manganite, presenting a rhombohedric- orthorhombic structural phase transition near room temperature. We found that random distribu...

  11. A study of back-trap mottle in coated papers using electron probe microanalysis

    International Nuclear Information System (INIS)

    Eby, T.; Whalen-Shaw, M.

    1991-01-01

    In this paper methodology is been developed for analyzing both the surface and cross-sectional distributions for coating components using electron probe microanalysis and image analysis technology. Actual light and dark areas of print mottle are physically separated and analyzed to provide an unequivocal relationship between the distribution of coating components and the physical structure of the coating in areas of print mottle. Areas of low ink density were found to have higher surface latex concentration, greater mean coating thickness, and greater mean rawstock roughness. Furthermore, the difference in surface concentration of CaCO 3 within areas of, low and high ink density was established as a new and additional probable cause of back-trap mottle

  12. On the over-collection of electrons by high voltage probes in space

    International Nuclear Information System (INIS)

    Cooke, D.L.; Katz, I.; Jongeward, G.; Mandell, M.

    1988-01-01

    It has been two decades since Parker and Murphy proposed a theory to place a rigorous upper bound on the current to an electron collecting probe in space, due to the influence of the geomagnetic field. Any greater current is then thought to involve some form of anomalous cross field transport to explain over-collection. Over-collection is commonly observed and is usually explained by invoking turbulence as a source of collisions. Although the turbulence hypothesis has some theoretical basis, no compelling kinetic theory or model has been put forth. Another possible explanation for over-collection is the ionization of the neutral gas within the charge sheath. Recently, in support of the SPEAR I rocket experiment, the three dimensional code POLAR has been used to model electron collection in a low earth orbit plasma. SPEAR I was a sounding rocket experiment that exposed to the space plasma, a pair of 10cm spherical probes biased to 44kV positive. The POLAR runs included single sphere, two sphere, and two sphere plus rocket modes. The single sphere model did not predict collection in excess of the Parker-Murphy limit. Models of two sphere collection, and of the entire experiment do however show that increased collection is possible as a result of asymetries introduced by geometry and a negative rocket body potential. These models were in close agreement with the experiment. In addition to the symmetry factor, sheath ionization is reviewed. A discussion of the role and kinetic nature of collisionless turbulence is presented

  13. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  14. Stable isotope probing and dynamic loading experiments provide insight into the ecophysiology of novel ammonia oxidizers in rapid gravity sand filters

    DEFF Research Database (Denmark)

    Fowler, Jane; Palomo, Alejandro; Gülay, Arda

    to elucidate the differences in ecophysiology between the ammonia oxidizing clades that enable them to co-exist in this unique environment. Experiments were conducted using sand columns designed and operated to mimic the conditions in the full-scale parent RSF. RNA and DNA stable isotope probing based on 13C......-bicarbonate incorporation during continuous feeding with either ammonium or nitrite as sole energy source implicated Nitrospira spp. and certain ‘heterotrophic’ bacteria in addition to Nitrosomonas spp. in autotrophy during ammonium oxidation in RSFs. Further experimentation aimed to elucidate the ecophysiology of each...

  15. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  16. Self-powered detector probes for electron and gamma-ray beam monitoring in high-power industrial accelerators

    International Nuclear Information System (INIS)

    Lone, M.A.

    1992-08-01

    A self-powered detector (SPD) is a simple passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors for monitoring neutron and gamma ray fields. Responses of various SPDs to electron and gamma ray beams from industrial accelerators were investigated with Monte Carlo simulations. By judicious choice of transmission filters, threshold SPD probes were investigated for on-line monitoring of the beam energy spectrum of the high-power IMPELA industrial electron accelerator. (Author) (14 figs, 16 refs.)

  17. Electron exchange reaction in anion exchangers as observed in uranium isotope separation

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Takeda, Kunihiko; Seko, Maomi

    1991-01-01

    The mechanism of electron exchange in an ion exchanger, as occurring between U 4+ and UO 2 2+ in uranium isotope separation, was investigated. The height of the separation unit (H q ) in the presence of metal ion catalysts, as obtained from the separation experiments, was found to be almost coincident with the theoretical value of H q as calculated on the basis of the intrasolution acceleration mechanism of the metal ion, suggesting that the electron exchange mechanism in the ion-exchanger is essentially the same as that in the solution when metal ion catalysts are present. Separation experiments with no metal ion catalyst, on the other hand, showed the electron exchange reaction in the ion exchanger to be substantially higher than that in the solution, suggesting an acceleration of the electron exchange reaction by the ion-exchanger which is due to the close existence of higher order Cl - complexes of UO 2 2+ and U 4+ in the vicinity of the ion-exchange group. (author)

  18. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  19. Kinetic α-deuterium isotope effect as a probe of transition state structure and reaction mechanism in nucleoside hydrolysis

    International Nuclear Information System (INIS)

    Stein, R.L.

    1978-01-01

    Theoretical equilibrium α-deuterium isotope effects were calculated for systems modeling nucleoside and glycoside hydrolyses using a computer program (Burton, G.W., Sims, L.B., Wilson, J.C., and Fry, A.J., J. Amer. Chem. Soc., 99, 3374(1977)) which computes isotope effects directly from the expression of Biegeleisen and Mayer (Biegeleisen, J. and Mayer, M.G., J. Chem. Phys., 17, 675(1949)). For nucleoside hydrolysis proceeding through an oxocarbonium ion intermediate, KH/KD = 1.21 to 1.25; while for nucleoside hydrolysis proceeding through an oxocarbonium ion intermediate KH/KD = 1.15 to 1.19. The models used in the calculations were generated systematically and involved a minimum of subjectivity in the selection of molecular parameters. The isotope effects calculated formed the basis for the interpretation of experimental kinetic α-deuterium isotope effects for nucleoside and glycoside hydrolysis

  20. Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser

    Science.gov (United States)

    Kubo, Y.

    2018-01-01

    Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.

  1. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  2. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  3. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  4. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  5. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...

  6. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    Science.gov (United States)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dstwaves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  7. Ultra-Broadband Two-Dimensional Electronic Spectroscopy and Pump-Probe Microscopy of Molecular Systems

    Science.gov (United States)

    Spokoyny, Boris M.

    Ultrafast spectroscopy offers an unprecedented view on the dynamic nature of chemical reactions. From charge transfer in semiconductors to folding and isomerization of proteins, these all important processes can now be monitored and in some instances even controlled on real, physical timescales. One of the biggest challenges of ultrafast science is the incredible energetic complexity of most systems. It is not uncommon to encounter macromolecules or materials with absorption spectra spanning significant portions of the visible spectrum. Monitoring a multitude of electronic and vibrational transitions, all dynamically interacting with each other on femtosecond timescales poses a truly daunting experimental task. The first part of this thesis deals with the development of a novel Two-Dimensional Electronic Spectroscopy (2DES) and its associated, advanced detection methodologies. Owing to its ultra-broadband implementation, this technique enables us to monitor femtosecond chemical dynamics that span the energetic landscape of the entire visible spectrum. In order to demonstrate the utility of our method, we apply it to two laser dye molecules, IR-144 and Cresyl Violet. Variation of photophysical properties on a microscopic scale in either man-made or naturally occurring systems can have profound implications on how we understand their macroscopic properties. Recently, inorganic hybrid perovskites have been tapped as the next generation solar energy harvesting materials. Their remarkable properties include low exciton binding energy, low exciton recombination rates and long carrier diffusion lengths. Nevertheless, considerable variability in device properties made with nearly identical preparation methods has puzzled the community. In the second part of this thesis we use non-linear pump probe microscopy to study the heterogeneous nature of femtosecond carrier dynamics in thin film perovskites. We show that the local morphology of the perovskite thin films has a

  8. Development of remote controlled electron probe micro analyzer with crystal orientation analyzer

    International Nuclear Information System (INIS)

    Honda, Junichi; Matsui, Hiroki; Harada, Akio; Obata, Hiroki; Tomita, Takeshi

    2012-07-01

    The advanced utilization of Light Water Reactor (LWR) fuel is progressed in Japan to save the power generating cost and the volume of nuclear wastes. The electric power companies have continued the approach to the burnup extension and to rise up the thermal power increase of the commercial fuel. The government should be accumulating the detailed information on the newest technologies to make the regulations and guidelines for the safety of the advanced nuclear fuels. The remote controlled Electron Probe Micro Analyzer (EPMA) attached with crystal orientation analyzer has been developed in Japan Atomic Energy Agency (JAEA) to study the fuel behavior of the high burnup fuels under the accident condition. The effects of the cladding microstructure on the fuel behavior will be evaluated more conveniently and quantitatively by this EPMA. The commercial model of EPMA has been modified to have the performance of airtight and earthquake resistant in compliance with the safety regulation by the government for handling the high radioactive elements. This paper describes the specifications of EPMA which were specialised for post irradiation examination and the test results of the cold mock-up to confirm their performances and reliabilities. (author)

  9. Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2017-10-01

    Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.

  10. Electron probe X-ray microanalysis of boar and inobuta testes after the Fukushima accident

    International Nuclear Information System (INIS)

    Yamashiro, Hideaki; Abe, Yasuyuki; Hayashi, Gohei; Urushihara, Yusuke; Kuwahara, Yoshikazu; Suzuki, Masatoshi; Kobayashi, Jin; Kino, Yasuyuki; Fukuda, Tomokazu; Tong, Bin; Takino, Sachio; Sugano, Yukou; Sugimura, Satoshi; Yamada, Takahisa; Isogai, Emiko; Fukumoto, Manabu

    2015-01-01

    We aimed to investigate the effect of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on the testes of boar and inobuta (a hybrid of Sus scrofa and Sus scrofa domestica). This study examined the contamination levels of radioactive caesium (Cs), especially 134 Cs and 137 Cs, in the testis of both boar and inobuta during 2012, after the Fukushima accident. Morphological analysis and electron-probe X-ray microanalysis (EPMA) were also undertaken on the testes. The 134 Cs and 137 Cs levels were 6430 ± 23 and 6820 ± 32 Bq/kg in the boar testes, and 755 ± 13 and 747 ± 17 Bq/kg in the inobuta testes, respectively. The internal and external exposure of total 134 Cs and 137 Cs in the boar testes were 47.1 mGy and 176.2 mGy, respectively, whereas in the inobuta testes, these levels were 6.09 mGy and 59.8 mGy, respectively. Defective spermatogenesis was not detected by the histochemical analysis of radiation-exposed testes for either animal. In neither animal were Cs molecules detected, using EPMA. In conclusion, we showed that adverse radiation-induced effects were not detected in the examined boar and inobuta testes following the chronic radiation exposure associated with the FNPP accident

  11. Picosecond electron probe for direct investigation of lattice temperature and structural phase transition

    International Nuclear Information System (INIS)

    Mourou, G.; Williamson, S.

    1985-01-01

    The authors have directly observed the laser-induced melt metamorphosis of thin aluminum films. The time required for the melt to evolve is dependent on the degree to which the Al specimen is superheated. The temperature of this superheated state can also be monitored on the picosecond time scale. The picosecond electron probe not only reveals information about the structure of a material but also about the lattice temperature. The change in lattice parameter that is observed as a shift in diffracted ring diameter is directly related to the thermal expansion coefficient. Also, based on the Debye-Waller effect, a reduction in the intensity of the diffraction rings can be observed due to increased lattice vibration. Presently, a 1-kHz-1-mJ/pulse Nd:YAG laser is being used to measure the temperature overshoot of laser-induced Al films. The high repetition rate permits signal averaging to be employed thereby increasing the sensitivity of the thermometric technique

  12. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    Science.gov (United States)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  13. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  14. Electron probe micro-analysis of irradiated Triso-coated UO2 particles, (1)

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo; Fukuda, Kosaku; Ikawa, Katsuichi

    1983-11-01

    The Triso-coated low-enriched UO 2 particles were subjected to the post-irradiation electron probe micro-analysis. Observations and analyses on the amoeba effect, inclusions and solutes in the UO 2 matrix were made. In the cooler side of the particle which suffered extensive kernel migration, two significant features were observed: (1) the wake of minute particles, presumably UO 2 , left by the moving kernel in the carbon phase and (2) carbon precipitation in the pores and along the grain boundaries of the UO 2 kernel. Both features could be hardly explained by the gas-phase mechanism of carbon transport and rather suggest the solid state mechanism. Two-types of 4d-transition metal inclusions were observed: the one which was predominantly Mo with a fraction of Tc and another which was enriched with Ru and containing significant amount of Si. The Mo and Si were also found in the UO 2 matrix; the observation led to the discussion of the oxygen potential in the irradiated Triso-coated UO 2 particle. (author)

  15. Probing Nitrosyl Ligation of Surface-Confined Metalloporphyrins by Inelastic Electron Tunneling Spectroscopy

    Science.gov (United States)

    2013-01-01

    Complexes obtained by the ligation of nitric oxide (NO) to metalloporphyrins represent important model systems with biological relevance. Herein we report a molecular-level investigation of surface-confined cobalt tetraphenyl porphyrin (Co-TPP) species and their interaction with NO under ultrahigh vacuum conditions. It is demonstrated that individual NO adducts can be desorbed using the atomically sharp tip of a scanning tunneling microscope, whereby a writing process is implemented for fully saturated regular metalloporphyrin arrays. The low-energy vibrational characteristics of individual Co-TPP-nitrosyl complexes probed by inelastic electron tunneling spectroscopy (IETS) reveal a prominent signature at an energy of ≃31 meV. Using density functional theory-based IETS simulations—the first to be performed on such an extensive interfacial nanosystem—we succeed to reproduce the low-frequency spectrum for the NO-ligated complex and explain the absence of IETS activity for bare Co-TPP. Moreover, we can conclusively assign the IETS peak of NO-Co-TPP to a unique vibration mode involving the NO complexation site, namely, the in-plane Co–N–O rocking mode. In addition, we verify that the propensity rules previously designed on small aromatic systems and molecular fragments hold true for a metal–organic entity. This work notably permits one to envisage IETS spectroscopy as a sensitive tool to chemically characterize hybrid interfaces formed by complex metal–organic units and gaseous adducts. PMID:23718257

  16. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: vvandreev@mail.ru; Vasileska, I., E-mail: ivonavasileska@yahoo.com; Korneeva, M. A., E-mail: korneevama@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-07-15

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10{sup –4} to 4 × 10{sup –3} Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  17. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak.

    Czech Academy of Sciences Publication Activity Database

    Dimitrova, Miglena; Popov, Tsv.K.; Adámek, Jiří; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, Jakub; Vondráček, Petr; Dejarnac, Renaud; Stöckel, Jan; Imríšek, Martin; Pánek, Radomír

    2017-01-01

    Roč. 59, č. 12 (2017), č. článku 125001. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA15-10723S; GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : Plasma potential * electron temperature * bi-Maxwellian EEDF * ball-pen probe * Langmuir probe * COMPASS tokamak * last closed flux surface Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  18. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  19. Solvent effects and secondary isotope effects for probing diradical character in the thermal decarboxylation of β-peroxylactones

    International Nuclear Information System (INIS)

    Adam, W.; Cueto, O.; Guedes, L.N.; Rodriguez, L.O.

    1978-01-01

    The lack of solvent effects in the activation parameters and product distribution and the lack of secondary deuterium isotope effects at the α-carbon and β-alkyl migrant substantiates that the thermal decarboxylation of β-peroxy lactones proceeds via a 1,5-diradical

  20. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    Science.gov (United States)

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  1. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  2. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    International Nuclear Information System (INIS)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-01-01

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  3. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    Science.gov (United States)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  4. Laser spectroscopy of cadmium isotopes: probing the nuclear structure between the neutron 50 and 82 shell closures

    CERN Multimedia

    Blaum, K; Stroke, H H; Krieger, A R

    We propose to study the isotopic chain of cadmium with high-resolution laser spectroscopy for the first time. Our goal is to determine nuclear spins, moments and root-mean-square charge radii of ground and isomeric states between the neutron 50 and 82 shell closures, contributing decisively to a better understanding of the nuclear structure in the vicinity of the doubly-magic $^{100}$Sn and $^{132}$Sn. On the neutron-rich side this is expected to shed light on a shell-quenching hypothesis and consequently on the duration of the r-process along the waiting-point nuclei below $^{130}$Cd. On the neutron-deficient side it may elucidate the role of the cadmium isotopes in the rp-process for rapidly accreting neutron stars.

  5. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  6. Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Jeffrey S.; Fansler, Sarah J.; Majors, Paul D.; Mcateer, Kathleen; Allen, Lisa Z.; Shirtliff, Mark E.; Lux, Renate; Shi, Wenyuan

    2012-03-05

    Many human microbial infectious diseases including dental caries are polymicrobial in nature and how these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral microbes have been characterized in vitro, their physiology in vivo in the presence of the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these oral species remain uncultivated to date and little is known except their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated microorganisms will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a novel combination of in vivo Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for temporal monitoring of carbohydrate utilization, organic acid production and identification of metabolically active and inactive bacterial species.

  7. In vitro study on dental erosion provoked by various beverages using electron probe microanalysis.

    Science.gov (United States)

    Willershausen, B; Schulz-Dobrick, B

    2004-09-29

    Tooth erosion is often based on chemical processes, among others the use of soft drinks or diverse beverages. The aim of this in vitro study was to analyse the erosive potential of different acidic beverages. Over a time span of 6 hours, dental slices (n=6 slices per tooth) from fully retained wisdom teeth were incubated with different beverages (coca cola, ice tea with lemon, apple juice and white wine). The controls were incubated with a 0.9% sodium chloride solution under the same conditions (37 degrees C, humidified atmosphere of 5% CO2 and 95% air). The quantitative elementary analysis for calcium, phosphorus, oxygen and other trace elements in the dental slices in various depths ranging from 5 to 50 microm was carried out using an electron probe micro-analyser (Jeol JXA 8900RL). A beverage-induced loss of minerals, particularly of the 2 main components calcium and phosphorus, especially in the uppermost layers of the enamel down to a depth of 30 microm could be observed. In the depth of 10 microm, the following total mineral loss could be determined: white wine (16%), coca cola (14.5%), apple juice (6.5%) and ice tea with lemon (6.5%). A direct correlation between the loss of minerals and the pH value of the beverages was not observed, because of the buffering effect of the drinks. The conversion of the weight percentages from the chemical analysis of Ca and P to their atomic percentages showed that during erosion the 2 main components were not dissolved in significantly different percentages. In this study the erosive potential of the tested soft drinks and other beverages could be demonstrated. However, it must be considered that numerous modifying factors influence the enamel surface, so an extrapolation from the in vitro study to an in vivo situation can only be applied with caution.

  8. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    Science.gov (United States)

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  9. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  10. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  11. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Neufeld, Josh D; Bodrossy, Levente; Stralis-Pavese, Nancy; McNamara, Niall P; Ostle, Nick; Briones, Maria J I; Murrell, J Colin

    2008-10-01

    Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.

  12. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Luis [Univ. of Massachusetts, Amherst, MA (United States)

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  13. Isotopic Anomalies in Organic Nanoglobules from Comet 81P/Wild 2: Comparison to Murchison Nanoglobules and Isotopic Anomalies Induced in Terrestrial Organics by Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, B.; Stroud, R; Nittler, L; Alexander, C; Kilcoyne, A; Zega, T

    2010-01-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with {sup 15}N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large {sup 15}N anomaly ({delta}{sup 15}N = 1120{per_thousand}). Associated, non-globular, organic matter from this track is less enriched in {sup 15}N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ({single_bond}C{triple_bond}N) and carboxyl ({single_bond}COOH) functional groups. It is significantly enriched in D ({delta}D = 1000{per_thousand}) but has a terrestrial {sup 15}N/{sup 14}N ratio. Experiments indicate that similar D enrichments, unaccompanied by {sup 15}N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large {sup 15}N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in {sup 15}N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K

  14. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation

    Science.gov (United States)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O.'D.; Kilcoyne, A. L. David; Zega, Thomas J.

    2010-08-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ 15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ( sbnd C tbnd N) and carboxyl ( sbnd COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/ 14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other

  15. RNA-Based Stable Isotope Probing Suggests Allobaculum spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro

    Directory of Open Access Journals (Sweden)

    Elena Herrmann

    2017-01-01

    Full Text Available RNA-based stable isotope probing (RNA-SIP and metabolic profiling were used to detect actively glucose-consuming bacteria in a complex microbial community obtained from a murine model system. A faeces-derived microbiota was incubated under anaerobic conditions for 0, 2, and 4 h with 40 mM [U13C]glucose. Isopycnic density gradient ultracentrifugation and fractionation of isolated RNA into labeled and unlabeled fractions followed by 16S rRNA sequencing showed a quick adaptation of the bacterial community in response to the added sugar, which was dominated by unclassified Lachnospiraceae species. Inspection of distinct fractions of isotope-labeled RNA revealed Allobaculum spp. as particularly active glucose utilizers in the system, as the corresponding RNA showed significantly higher proportions among the labeled RNA. With time, the labeled sugar was used by a wider spectrum of faecal bacteria. Metabolic profiling indicated rapid fermentation of [U13C]glucose, with lactate, acetate, and propionate being the principal 13C-labeled fermentation products, and suggested that “cross-feeding” occurred in the system. RNA-SIP combined with metabolic profiling of 13C-labeled products allowed insights into the microbial assimilation of a general model substrate, demonstrating the appropriateness of this technology to study assimilation processes of nutritionally more relevant substrates, for example, prebiotic carbohydrates, in the gut microbiota of mice as a model system.

  16. Van Allen Probes, THEMIS, GOES, and Cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout

    Czech Academy of Sciences Publication Activity Database

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; MacDowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; Carr, C.; Santolík, Ondřej

    2016-01-01

    Roč. 121, č. 3 (2016), s. 1990-2008 ISSN 2169-9380 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : EMIC waves * ULF pulsations * electron flux dropouts * Dst effect * magnetopause shadowing * Van Allen Probes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020877/full

  17. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    International Nuclear Information System (INIS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-01-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz

  18. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects.

    Science.gov (United States)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-04

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.

  19. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  20. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

    Energy Technology Data Exchange (ETDEWEB)

    Khadka, Nimesh [Department of Chemistry; Milton, Ross D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Shaw, Sudipta [Department of Chemistry; Lukoyanov, Dmitriy [Department; Dean, Dennis R. [Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States; Minteer, Shelley D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Raugei, Simone [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Hoffman, Brian M. [Department; Seefeldt, Lance C. [Department of Chemistry

    2017-09-15

    Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.

  1. Use of Langmuir probe for analysis of charged particles in metal vapour generated by electron beam heating

    International Nuclear Information System (INIS)

    Dikshit, B; Bhatia, M S

    2008-01-01

    During electron beam evaporation of metal, a certain fraction of the vapor is ionized due to various processes such as Saha ionization and electron impact. These charge particles constitute a plasma which expands along with the vapour. To know about parameters of this plasma viz. electron temperature, electron density, plasma potential, we have used a disc type Langmuir probe inside the plasma. The measured electron temperature was found to be about ∼0.15eV (1740K) and measured plasma potential was ∼1V. The low value of electron temperature as compared to the source temperature, established that plasma cools significantly while traversing the distance between the source and the point of measurement. Again as the electron temperature was approximately same as the ion temperature of the vapor (expected to be same as kinetic temperature of vapor for collisional flow), we concluded that a kind of equilibrium had been established in the plasma. Finally, various processes responsible for ionization of the vapor are discussed and it was found that both Saha ionization and electron impact processes play important role in ionization of the uranium vapor generated by electron beam heating

  2. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-01-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core

  3. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  4. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    Science.gov (United States)

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  5. Charged ion source with a polarizable probe and with a cyclotron electronic resonance

    International Nuclear Information System (INIS)

    Briand, P.

    1992-01-01

    This invention is about ion sources with a polarizable probe able to produce, from neutral atoms, highly charged ions. This source is composed of an hyperfrequency cavity, production means of an axial magnetic field in the cavity, production means of a multipolar radial magnetic field in this cavity, a high frequency inlet, gas input in the cavity, ion extraction means and a polarizable probe in tension to improve gas ionization

  6. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  7. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  8. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results

  9. Contribution to the physical modeling of the actinide characterization by electron probe microanalysis

    International Nuclear Information System (INIS)

    Moy, Aurelien

    2014-01-01

    Electron probe microanalysis (EPMA) is used to quantify with a high accuracy the amount of different elements present on a sample of unknown composition. EPMA is largely used to quantify the amount of actinides present in fresh and irradiated fuels, to manage waste disposal and to date rocks. However, quantitative EPMA is not always possible to achieve for these materials due to the lack of suitable reference standards for the radionuclides. To overcome this difficulty, standard-less methods of analysis are employed with mean of virtual calculated standards. These calculated standards are generally obtained from empirical formulae based on experimental extrapolations or from theoretical calculations that require physical parameters which are poorly known as it is the case for the X-ray production cross section. The accurate knowledge of these cross sections is required in many applications such as in particle transport code and in Monte Carlo simulations. The computer simulations are widely used in the medical field and particularly in medical imaging and in electron beam therapy. In the field of astronomy, these data are used to perform simulations that predict the compositions of stars and galactic clouds, and the formation of planetary systems. In the present work, L- and M-shell absolute x-ray production cross sections were determined experimentally for elements lead, thorium and uranium by electron impact using ultrathin self-supporting targets with thickness varying from 0.2 to 8 nm. The measured cross sections have been compared, with the distorted-wave Born approximation (DWBA) calculated by Bote et al. and with the predictions of analytical formulae widely used in practical applications. For the conversion of inner-shell ionization cross sections into x-ray production cross sections, atomic relaxation parameters were extracted from the literature. The predictions of the DWBA calculations are in excellent agreement with our measured x-ray production cross

  10. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    Science.gov (United States)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  11. Decay properties of 68,69,70Mn: Probing collectivity up to N=44 in Fe isotopic chain

    Directory of Open Access Journals (Sweden)

    G. Benzoni

    2015-12-01

    Full Text Available The β decays Mn68→Fe68, Mn69→Fe69 and Mn70→Fe70 have been measured at the RIBF facility at RIKEN using the EURICA γ spectrometer combined with an active stopper consisting of a stack of Si detectors. The nuclei were produced as fission fragments from a beam of 238U at a bombarding energy of 345 MeV/nucleon impinging on a Be target and selected using the BigRIPS separator. Half-lives and β-delayed neutron emission probabilities have been extracted for these decays, together with first experimental information on excited states populated in 69,70Fe. The data indicate a continuously increasing deformation for Fe isotopes up to A=70. This is interpreted, as for Cr isotopes, in terms of the interplay between the quadrupole correlations of the ν1d5/2 and ν0g9/2 orbitals and the monopole component of the π0f7/2–ν0f5/2 interaction.

  12. Source Apportionment of Atmospheric Particles by Electron Probe X-Ray Microanalysis and Receptor Models.

    Science.gov (United States)

    van Borm, Werner August

    Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles

  13. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  14. REPLY: Reply to 'Comment on "Electron-phonon scattering in Sn-doped In2O3 FET nanowires probed by temperature-dependent measurements"'

    Science.gov (United States)

    Berengue, Olivia M.; Chiquito, Adenilson J.; Pozzi, Livia P.; Lanfredi, Alexandre J. C.; Leite, Edson R.

    2009-11-01

    In this reply we discuss the use of two and four-probe methods in the resistivity measurements of ITO nanowires. We pointed out that the results obtained by using two or four probe methods are indistinguishable in our case. Additionally we present the correct values for resistivity and consequently for the density of electrons.

  15. Mass spectrometric determination of magnesium isotopic ratios and its corrections for electron multiplier discrimination and mass fractionation

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1989-01-01

    The mass spectrometric determination of magnesium isotopic ratios by the use of uranyl nitrate added to magnesium samples to act as a binding agent is reported. Prebaking empty filaments and preheating filaments with deposited magnesium samples on its surface in a vacuum are employed to reduce the Na signal from the thenium-ribbon. Methods for correcting magnesium isotopic ratios for electron multiplier discrimination and mass fractionation are described in detail. The results of the determination of natural magnesium isotopic ratios are 25 Mg/ 24 Mg = 0.12660 (1±0.01%) and 26 Mg/ 24 Mg = 0.13938 (1±0.10%). The magnesium isotopic ratios of rich - 26 Mg-2 sample and rich- 25 Mg-1 sample are 24 Mg/ 26 Mg = 0.003463 (1±0.2%), 25 Mg/ 26 Mg = 0.001656 (±0.2%) and 24 Mg/ 25 Mg = 0.006716 (1±0.2%), 26 Mg/ 25 Mg = 0.007264 (1±0.2%) respectively

  16. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    International Nuclear Information System (INIS)

    Hopkins, Mark A.; King, Lyon B.

    2014-01-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations

  17. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  18. Decay characteristics of electronic charged states of Si quantum dots as evaluated by an AFM/Kelvin probe technique

    International Nuclear Information System (INIS)

    Nishitani, Junichiro; Makihara, Katsunori; Ikeda, Mitsuhisa; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2006-01-01

    Si quantum dots (Si-QDs) with an areal dot density of 8 x 10 11 cm -2 on SiO 2 have been prepared by the thermal decomposition of monosilane to characterize charged states of Si-QDs using AFM/Kelvin probe force microscopy (KFM). The temporal changes in the surface potential induced by electron charging and discharging at Si-QDs covered with a ∼ 2-nm-thick oxide layer have been measured. In electron charging and discharging at Si-QDs, a Rh-coated AFM tip was electrically biased in the range of - 5 to 5 V and scanned on the sample surface in a tapping mode. The surface potential changes on Si-QDs by electron injection and extraction were observable, while no potential change was detected elsewhere. The surface potential of charged Si-QDs decays with time at rates depending on charge injection conditions. The observed decay characteristics can be interpreted in terms of discharging of stored electrons in Si-QDs due to electron tunneling through the bottom oxide to the substrate and neutralization of stored holes due to recombination with electrons tunneling from the substrates. The defect generation in oxide is likely to be responsible for a fairly slow decay as observed in the case of electron extraction by the tip bias as high as + 4.8 V with respect to p-Si(100)

  19. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  20. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  1. Probing ultrafast dynamics in electronic structure of epitaxial Gd(0 0 0 1) on W(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, Nathan [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France); Malinowski, Gregory [Laboratoire de Physique des Solides, Université Paris Sud, Orsay (France); Bendounan, Azzedine; Silly, Mathieu G.; Chauvet, Christian [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France); Krizmancic, Damjan [Instituto Officina dei Materiali (IOM)-CNR Laboratorio TASC, in Area Science Park S.S.14, Km 163.5, I-34149 Trieste (Italy); Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2013-08-15

    Highlights: •Study of the magnetism of epitaxial Gd(0 0 0 1)/W(1 1 0). •Study of Gd(0 0 0 1) band structure as a function of the temperature. •Study of the Gd magnetism dynamics probing the M5 edge. -- Abstract: The electronic and magnetic properties of Gd have been studied using time- and angle-resolved photoelectron spectroscopy employing laser pump and synchrotron radiation probe pulses. The static temperature evolution of the valence band and more precisely, the 5d6s exchange splitting is reported. Ultrafast demagnetization is measured using dichroic resonant Auger spectroscopy. Remarkably, a complete demagnetization is observed followed up by a non-monotonic recovery that could be associated to magnetization oscillations.

  2. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    International Nuclear Information System (INIS)

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; Schirmel, Nora; Redlin, Harald

    2017-01-01

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6 H 3 F 2 I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the origin of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.

  3. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Brian -Tinh Van [Univ. of California, Davis, CA (United States)

    1994-02-01

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (104-106K) and high density plasmas (1022-1024cm-3) produced by irradiating a transparent solid target with high intensity (1013 - 1015W/cm2) and subpicosecond (10-12-10-13s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature (~40eV) super-critical density (~1023/cm3) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical (~1018/cm3) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  4. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    International Nuclear Information System (INIS)

    Vu, B.T.V.

    1994-02-01

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10 4 -10 6 K) and high density plasmas (10 22 -10 24 cm -3 ) produced by irradiating a transparent solid target with high intensity (10 13 - 10 15 W/cm 2 ) and subpicosecond (10 -12 -10 -13 s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature (∼40eV) super-critical density (∼10 23 /cm 3 ) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical (∼10 18 /cm 3 ) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films

  5. Low-Power Receive-Electronics for a Miniature 3D Ultrasound Probe

    NARCIS (Netherlands)

    Yu, Z.

    2012-01-01

    This thesis describes the design of a front-end application-specific integrated circuit (ASIC), which will be put into the tip of a miniature ultrasound probe for 3D Trans-Esophageal Echocardiography (TEE). To enable 3D TEE, a matrix piezoelectric ultrasound transducer with more than 2000 elements

  6. A hand-held row-column addressed CMUT probe with integrated electronics for volumetric imaging

    DEFF Research Database (Denmark)

    Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher

    2015-01-01

    A 3 MHz, λ / 2-pitch 62+62 channel row-column addressed 2-D CMUT array designed to be mounted in a probe handle and connected to a commercial BK Medical scanner for real-time volumetric imaging is presented. It is mounted and wire-bonded on a flexible PCB, which is connected to two rigid PCBs...

  7. Stable isotope probing of acetate fed anaerobic batch incubations shows a partial resistance of acetoclastic methanogenesis catalyzed by Methanosarcina to sudden increase of ammonia level.

    Science.gov (United States)

    Hao, Liping; Lü, Fan; Mazéas, Laurent; Desmond-Le Quéméner, Elie; Madigou, Céline; Guenne, Angéline; Shao, Liming; Bouchez, Théodore; He, Pinjing

    2015-02-01

    Ammonia inhibition represents a major operational issue for anaerobic digestion. In order to refine our understanding of the terminal catabolic steps in thermophilic anaerobic digestion under ammonia stress, we studied batch thermophilic acetate fed experiments at low (0.26 g L(-1)) and high (7.00 g L(-1)) Total Ammonia Nitrogen concentrations (TAN). Although methane production started immediately for all incubations and resulted in methane yields close to stoichiometric expectations, a 62-72% decrease of methanogenic rate was observed throughout the incubation at 7.00 g L(-1) of TAN compared to 0.26 g L(-1). Stable Isotope Probing analysis of active microbial communities in (13)C-acetate fed experiments coupled to automated ribosomal intergenic spacer analysis and 16S rDNA pyrotag sequencing confirmed that microbial communities were similar for both TAN conditions. At both TAN levels, the (13)C-labeled bacterial community was mainly affiliated to Clostridia-relatives, with OPB54 bacteria being the most abundant sequence in the heavy DNA 16S rDNA pyrotag library. Sequences closely related to Methanosarcina thermophila were also abundantly retrieved in the heavy DNA fractions, showing that this methanogen was still actively assimilating labeled carbon from acetate at free ammonia nitrogen concentrations up to 916 mg L(-1). Stable isotopic signature analysis of biogas, measured in unlabeled acetate fed experiments that were conducted in parallel, confirmed that acetoclastic methanogenic pathway was dominant at both ammonia concentrations. Our work demonstrates that, besides the syntrophic acetate oxidation pathway, acetoclastic methanogenesis catalyzed by Methanosarcina can also play a major role in methane production at high ammonia levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Multiple element isotope probes, NanoSIMS, and the functional genomics of microbial carbon cycling in soils in response to chronic climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Hungate, Bruce; Pett-Ridge, Jennifer; Blazewicz, Steven; Blazewicz, Steven; Schwartz, Egbert; Dijkstra, Paul

    2018-03-24

    In this project, we developed an innovative and ground-breaking technique, quantitative stable isotope probing, a technique that uses density separation of nucleic acids as a quantitative measurement technique. This work is substantial because it advances SIP beyond the qualitative technique that has dominate the field for years. The first methods paper was published in Applied and Environmental Microbiology (Hungate et al. 2015), and this paper describes the mathematical model underlying the quantitative interpretation. A second methods paper (Schwartz et al. 2015) provides a conceptual overview of the method and its application to research problems. A third methods paper was just published (Koch et al. 2018), in which we develop the quantitative model combining sequencing and isotope data to estimate actual rates of microbial growth and death in natural populations. This work has met much enthusiasm in scientific presentations around the world. It has met with equally enthusiastic resistance in the peer-review process, though our record of publication to date argues that people are accepting the merits of the approach. The skepticism and resistance are also potentially signs that this technique is pushing the field forward, albeit with some of the discomfort that accompanies extrapolation. Part of this is a cultural element in the field – the field of microbiology is not accustomed to the assumptions of ecosystem science. Research conducted in this project has pushed the philosophical perspective that major advances can occur when we advocate a sound merger between the traditions of strong inference in microbiology with those of grounded scaling in ecosystem science.

  9. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  10. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  11. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae was identified as dominant benzene degrader by Stable Isotope Probing (SIP)

    NARCIS (Netherlands)

    Zaan, van der B.M.; Talarico Saia, F.; Plugge, C.M.; Vos, de W.M.; Smidt, H.; Stams, A.J.M.; Langenhoff, A.A.M.; Gerritse, J.

    2012-01-01

    An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a

  12. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Azima, Armin

    2009-07-15

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  13. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    International Nuclear Information System (INIS)

    Azima, Armin

    2009-07-01

    Femtosecond pump-probe experiments have extensively been used to follow atomic and molecular motion in time. The very intense extreme ultraviolet XUV light of the Free electron LASer in Hamburg FLASH facility allows to investigate fundamental processes such as direct one or few photon inner shell ionizations. A supplementary Ti:Sapphire near infrared femtosecond laser system allows to perform two-color pump-probe experiments with FLASH involving intense laser fields of hugely different photon energies. Within this work a bunch arrival measurement system has been built, which assists these two-color pump-probe experiments to reduce the temporal jitter of FLASH and to increase the temporal resolution. The diagnostic is based upon an electro-optical detection scheme and measures the relative arrival time between the Ti:Sapphire femtosecond pulse and the electron bunch, which generates the self-amplified by stimulated emission SASE XUV pulse in the undulator section of FLASH. Key feature of the diagnostic is a 150 m long glass fiber pulse transport line, which inflicts non-linear dispersion. A dispersion control system to compensate for this higher order dispersion has been developed including the control and programming of a spatial light phase modulator. It was possible to transport a 90 fs FWHM short near infrared femtosecond laser pulse Fourier limited by the dispersion compensated glass fiber. The electro-optical signal induced by the FLASH electron bunch was generated, characterized and optimized. The signal features beside the designated bunch arrival timing capability the additional possibility to measure the longitudinal electron bunch density distribution of an arbitrary bunch of FLASH in a single shot with a temporal resolution of below 100 fs RMS. Timing and bunch analysis capabilities of the developed diagnostic have been cross-checked with other comparable diagnostics at FLASH like the transversal deflecting cavity structure named LOLA. Finally, the

  14. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    Science.gov (United States)

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-11-13

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The

  15. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia

    2013-01-01

    in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio...... between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  16. Mass determination based on electron scattering in electron probe X-ray microanalysis of thin biological specimens

    International Nuclear Information System (INIS)

    Linders, P.W.J.

    1984-01-01

    This thesis describes the development of a method for mass determination of thin biological objects by quantitative electron microscopy. The practical realization of the mass determination consists of photographical recording with subsequent densitometry. (Auth.)

  17. Secondary electrons as probe of preequilibrium stopping power of ions penetrating solids

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Groeneveld, K.O.; Clouvas, A.; Veje, E.; Kemmler, J.

    1990-01-01

    The passage of ions through solid media is accompanied by the emission of low energy secondary electrons. At high ion velocities v p (i.e. v p > 10 7 cm/s) the kinetic emission of electrons as a result of direct Coulomb interaction between the ion and the target electron is the dominant initial production mechanism. The energy lost by the ion and, thus, transferred to the electrons is known as electronic stopping power in the solid. Elastic and inelastic interactions of primary, liberated electrons on their way through the bulk and the surface of the solid modify strongly their original energy and angular distribution and, in particular, leads to the transfer of their energy to further, i.e. secondary electrons (SE), such that the main part of the deposited energy of the ion is eventually over transferred to SE. It is, therefore, suggestive to assume a proportionality between the electronic stopping power S sm-bullet of the ion and the total SE yield g, i.e. the number of electrons ejected per ion. Following Sternglass the authors consider schematically for kinetic SE emission contributions from two extreme cases: (a) SEs produced mostly isotropically with large impact parameter, associated with an escape depth L SE from the solid; (b) SEs produced mostly unisotropically in forward direction with small impact parameter (δ-electrons), associated with a transport length L δ

  18. Present and prospective situation in laser isotope separation: will the free electron laser be needed

    International Nuclear Information System (INIS)

    Rigny, P.

    1984-09-01

    The need for enriched isotopes, as it appears to day will be recalled for the foreseeable future, this need, in quantitative terms, will be confined to isotopes for nuclear energy. The interest of laser isotope separation will finally depend on our ability to fulfil a number of requirements as to the laser output light characteristics. These will be recalled for the most common laser processes (molecular photodissociation and atomic photoionisation). At this point a comparison with expectations from the FEL can already be attempted. Less common laser isotope separation schemes can gain interest from the possibilities opened by the FEL, especially by access to new wavelengths ranges. Some schemes implying UV or VUV photons will be discussed, as well as some possibilities involving IR photons. Attention will be paid to the problems that arise when considering scaled-up isotope separation installations. A large scale process results in more constraints on the laser parameters. Estimation of FEL capacity in this respect will be attempted

  19. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  20. Probing collective oscillation of d-orbital electrons at the nanoscale

    Science.gov (United States)

    Dhall, Rohan; Vigil-Fowler, Derek; Houston Dycus, J.; Kirste, Ronny; Mita, Seiji; Sitar, Zlatko; Collazo, Ramon; LeBeau, James M.

    2018-02-01

    Here, we demonstrate that high energy electrons can be used to explore the collective oscillation of s, p, and d orbital electrons at the nanometer length scale. Using epitaxial AlGaN/AlN quantum wells as a test system, we observe the emergence of additional features in the loss spectrum with the increasing Ga content. A comparison of the observed spectra with ab-initio theory reveals that the origin of these spectral features lies in excitations of 3d-electrons contributed by Ga. We find that these modes differ in energy from the valence electron plasmons in Al1-xGaxN due to the different polarizabilities of the d electrons. Finally, we study the dependence of observed spectral features on the Ga content, lending insights into the origin of these spectral features, and their coupling with electron-hole excitations.

  1. Probing collective oscillation of d -orbital electrons at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Dhall, Rohan [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; Vigil-Fowler, Derek [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Houston Dycus, J. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; Kirste, Ronny [Adroit Materials, Inc., Cary, North Carolina 27518, USA; Mita, Seiji [Adroit Materials, Inc., Cary, North Carolina 27518, USA; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; Collazo, Ramon [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; LeBeau, James M. [Adroit Materials, Inc., Cary, North Carolina 27518, USA

    2018-02-05

    Here, we demonstrate that high energy electrons can be used to explore the collective oscillation of s, p, and d orbital electrons at the nanometer length scale. Using epitaxial AlGaN/AlN quantum wells as a test system, we observe the emergence of additional features in the loss spectrum with the increasing Ga content. A comparison of the observed spectra with ab-initio theory reveals that the origin of these spectral features lies in excitations of 3d-electrons contributed by Ga. We find that these modes differ in energy from the valence electron plasmons in Al1-xGaxN due to the different polarizabilities of the d electrons. Finally, we study the dependence of observed spectral features on the Ga content, lending insights into the origin of these spectral features, and their coupling with electron-hole excitations.

  2. Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2.

    Science.gov (United States)

    Ajay, Jayanth S; Komarova, Ksenia G; Remacle, Francoise; Levine, R D

    2018-05-21

    Isotopic fractionation in the photodissociation of N 2 could explain the considerable variation in the 14 N/ 15 N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N 2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.

  3. Athermal electron distribution probed by femtosecond multiphoton photoemission from image potential states

    International Nuclear Information System (INIS)

    Ferrini, Gabriele; Giannetti, Claudio; Pagliara, Stefania; Banfi, Francesco; Galimberti, Gianluca; Parmigiani, Fulvio

    2005-01-01

    Image potential states are populated through indirect, scattering-mediated multiphoton absorption induced by femtosecond laser pulses and revealed by single-photon photoemission. The measured effective mass is significantly different from that obtained with direct, resonant population. These features reveal a strong coupling of the electrons residing in the image potential state, outside the solid, with the underlying hot electron population created by the laser pulse. The coupling is mediated by a many-body scattering interaction between the image potential state electrons and bulk electrons in highly excited states

  4. Coulomb drag: a probe of electron interactions in coupled quantum wells

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    1996-01-01

    As semiconductor devices shrink in size and in dimensionality, interactions between charge carriers become more and more important. There is a simple physical reason behind this behavior: fewer carriers lead to less effective screening, and hence stronger effective interactions. A point in case...... are one-dimensional systems (quantum wires): there electron-electron interactions may lead to a behavior, which is qualitatively different from the standard Fermi liquid picture (Luttinger liquids). Electron-electron interactions also play a central role in the fractional quantum Hall effect, which...... be the study of quantum wires: there the interactions may lead to even more dramatic effects...

  5. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing.

    Science.gov (United States)

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-10-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.

  6. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jiang, Longfei [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Yan [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Yu, Zhiqiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yin, Hua [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2016-05-05

    Highlights: • Investigate PAHs degraders in forest carbon-rich soils via DNA-SIP. • Rhodanobacter is identified to metabolite anthracene for the first time. • The first fluoranthene degrader belongs to Acidobacteria. • Different functions of PAHs degraders in forest soils from contaminated soils. - Abstract: Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually {sup 13}C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota.

  7. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    Science.gov (United States)

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  9. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    Science.gov (United States)

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  10. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Science.gov (United States)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  11. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.

    Science.gov (United States)

    Koide, Yuichiro; Urano, Yasuteru; Hanaoka, Kenjiro; Terai, Takuya; Nagano, Tetsuo

    2011-06-17

    The absorption and emission wavelengths of group 14 pyronines and rhodamines, which contain silicon, germanium, or tin at the 10 position of the xanthene chromophore, showed large bathochromic shifts compared to the original rhodamines, owing to stabilization of the LUMO energy levels by σ*-π* conjugation between group 14 atom-C (methyl) σ* orbitals and a π* orbital of the fluorophore. These group 14 pyronines and rhodamines retain the advantages of the original rhodamines, including high quantum efficiency in aqueous media (Φ(fl) = 0.3-0.45), tolerance to photobleaching, and high water solubility. Group 14 rhodamines have higher values of reduction potential than other NIR light-emitting original rhodamines, and therefore, we speculated their NIR fluorescence could be controlled through the photoinduced electron transfer (PeT) mechanism. Indeed, we found that the fluorescence quantum yield (Φ(fl)) of Si-rhodamine (SiR) and Ge-rhodamine (GeR) could be made nearly equal to zero, and the threshold level for fluorescence on/off switching lies at around 1.3-1.5 V for the SiRs. This is about 0.1 V lower than in the case of TokyoGreens, in which the fluorophore is well established to be effective for PeT-based probes. That is to say, the fluorescence of SiR and GeR can be drastically activated by more than 100-fold through a PeT strategy. To confirm the validity of this strategy for developing NIR fluorescence probes, we employed this approach to design two kinds of novel fluorescence probes emitting in the far-red to NIR region, i.e., a series of pH-sensors for use in acidic environments and a Zn(2+) sensor. We synthesized these probes and confirmed that they work well.

  12. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope

    International Nuclear Information System (INIS)

    Golberg, D.; Mitome, M.; Kurashima, K.; Zhi, C.Y.; Tang, C.C.; Bando, Y.; Lourie, O.

    2006-01-01

    Boron nitride nanotubes filled with magnesium oxides [MgO, MgO 2 ] and/or hydroxide [Mg(OH) 2 ] are electrically probed and delicately manipulated inside a 300 kV JEOL-3000F high-resolution transmission analytical electron microscope equipped with a side-entry 'Nanofactory Instruments' piezoholder. At a low bias the nanotubes demonstrate truly insulating behavior. At a high bias of ±30 V they show reversible breakdown current of several dozens of nA. Under 300 kV electron beam irradiation the nanotubes are positively charged that allows us to perform on-demand manipulation with them through tuning of polarity and/or value of a bias voltage on a gold counterelectrode from -140 to +140 V, owing to the prominent electrostatic nanotube-electrode interactions

  13. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  14. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair

    International Nuclear Information System (INIS)

    Okazaki, M.; Shiga, T.; Sakata, S.; Konaka, R.; Toriyama, K.

    1988-01-01

    Microwave effects on the spin adduct yield were observed in the photoreduction of menadione in micellar solutions with ordinary sodium dodecyl sulfate (SDS), deuterium-labeled SDS, and a mixture of them. A large isotope effect was found in the microwave modulation of the spin adduct yield, which is due to the ESR transitions of the transient radical pair in the reaction. It is demonstrated for the first time that the microwave field can be used to enrich one of the isotopes which coexist in the system

  15. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  16. Extensive Turnover of Compatible Solutes in Cyanobacteria Revealed by Deuterium Oxide (D_2O) Stable Isotope Probing

    International Nuclear Information System (INIS)

    Baran, Richard; Lau, Rebecca; Bowen, Benjamin P.; Diamond, Spencer; Jose, Nick

    2017-01-01

    O probing is a powerful method for analysis of cyanobacterial metabolism including discovery of novel metabolic processes

  17. Electronic properties of dioctylterthiophene-based organic thin-film transistors: A Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    Afsharimani, N.; Nysten, B.

    2013-01-01

    It appeared in the past decades that semi-conducting organic liquid crystals could be used as the active layer in organic thin film transistors (OTFTs). They can be processed by simple methods such as inkjet printing, which paves the way to applications for cheap plastic electronics such as electronic tags, biosensors, and flexible screens. However, the measured field-effect mobility in these OTFTs is relatively low compared to inorganic devices. Generally, such low field-effect mobility values result from extrinsic effects such as grain boundaries or imperfect interfaces with source and drain electrodes. It has been shown that reducing the number of grain boundaries between the source and drain electrodes improves the field effect mobility. Therefore, it is important to understand the transport mechanisms by studying the local structure and electronic properties of organic thin films within the channel and at the interfaces with source and drain electrodes in order to improve the field-effect mobility in OTFTs. Kelvin probe force microscopy (KPFM) is an ideal tool for that purpose since it allows to simultaneously investigate the local structure and the electrical potential distribution in electronic devices. In this work, the structure and the electrical properties of OTFTs based on dioctylterthiophene (DOTT) were studied. The transistors were fabricated by spin-coating DOTT on the transistor structures with untreated and treated (silanized) channel silicon oxide. The potential profiles across the channel and at the metal-electrode interfaces were measured by KPFM. The effect of surface treatment on the electrical properties, charge trapping phenomenon and hysteresis effects is demonstrated and analyzed. - Highlights: • Kelvin probe force microscopy study of organic thin film transistors. • Cost and time savings by using solution processable molecules as active layers. • Smaller crystals and less charge trapping effects in silanized devices. • Decrement

  18. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  19. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  20. Fundamental insights into the radium uptake into barite by atom probe tomography and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Juliane

    2017-10-01

    -of-the-art high-resolution microscopy techniques was used to answer the questions regarding (1) the internal microstructure of the initial barite (2) the role of this internal microstructure during the Ra uptake and (3) t he changes in the Ra distribution within the barite. This study comprises the first characterization of barite by atom probe tomography (APT). By combining APT and transmission electron microscopy (TEM) methods, pores covering the size range from a few nanometers to a few micrometers were identified in the SL barite. The pores were organized in layers parallel to the outer crystal faces. High resolution chemical analysis indicated that the pores contain a solution of water and sodium chloride. By focused ion beam (FIB) tomography, it was revealed that open macropores of several micrometers size are present as well within the SL barite. These partially connected macropores are distributed within the complete barite particles. Therefore, the macropores provide a direct pathway for Ra-containing aqueous fluid to enter the SL barite particles by diffusion within the aqueous solution. In addition, pores were also identified in the AL barite by TEM characterization. The entrapment of solution during mineral precipitation is known for several minerals at high supersaturation. As barite only precipitates at high supersaturation, nanoscale fluid inclusions as well as macropores probably were entrapped during the particle growth by precipitation. A microstructure similar to the one of the barite type used in this study was previously reported for other barites. In Ra-free reference experiment, no microstructural changes were noted over recrystallization times of up to 898 days. In prior studies, three different stages of Ra uptake were described based on macroscopic results. Ra-containing barite samples from all three stages were characterized to understand the role of the internal barite microstructure. At the beginning, the nano-scale fluid inclusions disappeared

  1. Fundamental insights into the radium uptake into barite by atom probe tomography and electron microscopy

    International Nuclear Information System (INIS)

    Weber, Juliane

    2017-01-01

    used to answer the questions regarding (1) the internal microstructure of the initial barite (2) the role of this internal microstructure during the Ra uptake and (3) t he changes in the Ra distribution within the barite. This study comprises the first characterization of barite by atom probe tomography (APT). By combining APT and transmission electron microscopy (TEM) methods, pores covering the size range from a few nanometers to a few micrometers were identified in the SL barite. The pores were organized in layers parallel to the outer crystal faces. High resolution chemical analysis indicated that the pores contain a solution of water and sodium chloride. By focused ion beam (FIB) tomography, it was revealed that open macropores of several micrometers size are present as well within the SL barite. These partially connected macropores are distributed within the complete barite particles. Therefore, the macropores provide a direct pathway for Ra-containing aqueous fluid to enter the SL barite particles by diffusion within the aqueous solution. In addition, pores were also identified in the AL barite by TEM characterization. The entrapment of solution during mineral precipitation is known for several minerals at high supersaturation. As barite only precipitates at high supersaturation, nanoscale fluid inclusions as well as macropores probably were entrapped during the particle growth by precipitation. A microstructure similar to the one of the barite type used in this study was previously reported for other barites. In Ra-free reference experiment, no microstructural changes were noted over recrystallization times of up to 898 days. In prior studies, three different stages of Ra uptake were described based on macroscopic results. Ra-containing barite samples from all three stages were characterized to understand the role of the internal barite microstructure. At the beginning, the nano-scale fluid inclusions disappeared, probably due to coalescing to new macropores

  2. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    Science.gov (United States)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying

  3. Momentum mapping spectrometer for probing the fragmentation dynamics of molecules induced by keV electrons

    International Nuclear Information System (INIS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R

    2011-01-01

    We describe a new experimental setup for studying the fragmentation dynamics of molecules induced by the impact of keV electrons using the well-known technique of recoil ion momentum spectroscopy. The apparatus consists of mainly a time- and position-sensitive multi-hit particle detector for ion analysis and a channel electron multiplier detector for detecting the ejected electrons. Different components of the setup and the relevant electronics for data acquisition are described in detail with their working principles. In order to verify the reliable performance of the setup, we have recorded the collision-induced ionic spectra of the CO 2 molecule by the impact of keV electrons. Information about the ion pairs of CO + :O + , C + :O + and O + :O + resulting from dissociative ionizing collisions of 20 and 26 keV electrons with a dilute gaseous target of CO 2 molecules has been obtained. Under conditions of the present experiment, the momentum resolutions of the spectrometer for the combined momenta of CO + and O + ions in the direction of the time-of-flight axis and perpendicular to the direction of an electron beam are found to be 10.0 ± 0.2 and 15.0 ± 0.3 au, respectively

  4. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  5. Polarization dependence in ELNES: Influence of probe convergence, collector aperture and electron beam incidence angle

    International Nuclear Information System (INIS)

    Le Bosse, J.C.; Epicier, T.; Jouffrey, B.

    2006-01-01

    The differential scattering cross section in electron energy loss near edge spectroscopy (ELNES) generally depends on the orientation of the Q wave vector transferred from the incident electron to an atomic core electron. In the case where the excited atom belongs to a threefold, fourfold or sixfold main rotation axis, the dipole cross section depends on the angle of Q with respect to this axis. In this paper, we restrict to this situation called dichroism. Furthermore, if we take into account the relativistic effects due to the high incident electron velocity, this dipole cross section also depends on the angle of Q with respect to the electron beam axis. It is due to these dependences that the shape of measured electron energy loss spectra varies with the electron beam incidence, the collector aperture, the incident beam convergence and the incident electron energy. The existence of a particular beam incidence angle for which the scattering cross section becomes independent of collection and beam convergence semi-angles is clearly underscored. Conversely, it is shown that EELS spectra do not depend on the beam incidence angle for a set of particular values of collection and convergence semi-angles. Particularly, in the case of a parallel incident beam, there is a collection semi-angle (often called magic angle) for which the cross section becomes independent of the beam orientation. This magic angle depends on the incident beam kinetic energy. If the incident electron velocity V is small compared with the light velocity c, this magic angle is about 3.975θ E (θ E is the scattering angle). It decreases to 0 when V approaches c. These results are illustrated in the case of the K boron edge in the boron nitride

  6. Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy.

    Science.gov (United States)

    Berleb, Stefan; Brütting, Wolfgang

    2002-12-31

    Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.

  7. Probing the 4p electron-spin polarization in NiO

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Bergevin, F. de; Yakhou, F.; Mannix, D.; Bengone, O.; Alouani, M.; Barbier, A.

    2001-01-01

    K-edge resonant x-ray magnetic scattering experiments have been performed on antiferromagnetic NiO. The observation of two resonances at the K edge allows the construction of models to compare the electronic properties of NiO and the observed resonant magnetic x-ray scattering. From the polarization analysis of the scattered beam, a quadrupolar transition (1s-3d) and a dipolar transition (1s-4p) are identified. While the quadrupolar transition can be modeled using an atomic picture for the 3d electrons, the dipolar transition is associated to a broadband structure of p electrons and its energy profile is compared to electronic band-structure calculations

  8. Characterization of electronic charged states of P-doped Si quantum dots using AFM/Kelvin probe

    International Nuclear Information System (INIS)

    Makihara, Katsunori; Xu, Jun; Ikeda, Mitsuhisa; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2006-01-01

    Phosphorous doping to Si quantum dots was performed by a pulse injection of 1% PH 3 diluted with He during the dot formation on thermally grown SiO 2 from thermal decomposition of pure SiH 4 , and electron charging to and discharging from P-doped Si dots were studied to characterize their electronic charged states using a Kelvin probe technique in atomic force microscopy (AFM). The potential change corresponding to the extraction of one electron from each of the P-doped Si dots was observed after applying a tip bias as low as + 0.2 V while for undoped Si dots, with almost the same size as P-doped Si dots, almost the same amount of the potential change was detectable only when the tip bias was increased to ∼ 1 V. It is likely that, for P-doped Si dots, the electron extraction from the conduction band occurs and results in a positively charged state with ionized P donor

  9. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  10. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  11. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    Science.gov (United States)

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.

    Science.gov (United States)

    Botta, F; Mairani, A; Battistoni, G; Cremonesi, M; Di Dia, A; Fassò, A; Ferrari, A; Ferrari, M; Paganelli, G; Pedroli, G; Valente, M

    2011-07-01

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. FLUKA outcomes have been compared to PENELOPE v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (ETRAN, GEANT4, MCNPX) has been done. Maximum percentage differences within 0.8.RCSDA and 0.9.RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8.X90 and 0.9.X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9.RCSDA and 0.9.X90 for electrons and isotopes, respectively. Concerning monoenergetic electrons, within 0.8.RCSDA (where 90%-97% of the particle energy is deposed), FLUKA and PENELOPE agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The

  13. Electron screening effects in (p,α) reactions induced on boron isotopes studied via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Lamia, L; Spitaleri, C; Cherubini, S; Gulino, M; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Carlin, N; Gameiro Munhoz, M; Gimenez Del Santo, M; Kiss, G G; Somorjai, E; Kroha, V; Kubono, S; La Cognata, M; Pizzone, R G; Li, C; Wen, Qungang; Mukhamedzhanov, A

    2013-01-01

    The Trojan Horse Method is a powerful indirect technique allowing one to measure the bare nucleus S(E)-factor and the electron screening potential for astrophysically relevant reactions without the needs of extrapolations. The case of the (p,α) reactions induced on the two boron isotopes 10,11 B is here discussed in view of the recent Trojan Horse (TH) applications to the quasi-free 10,11 B+ 2 H reactions. The comparison between the TH and the low-energy direct data allowed us to determine the electron screening potential for the 11 B(p,α) reaction, while preliminary results on the 10 B(p,α) reaction have been extracted.

  14. Probing the Highly Efficient Electron Transfer Dynamics between Zinc Protoporphyrin IX and Sodium Titanate Nanosheets.

    Science.gov (United States)

    Biswas, Sudipta; Mukherjee, Debdyuti; De, Swati; Kathiravan, Arunkumar

    2016-09-15

    Sodium titanate nanosheets (NaTiO2 NS) have been prepared by a new method and completely characterized by TEM, SEM, XRD, EDX, and XPS techniques. The sensitization of nanosheets is carried out with Zn protoporphyrin IX (ZnPPIX). The emission intensity of ZnPPIX is quenched by NaTiO2 NS, and the dominant process for this quenching has been attributed to the process of photoinduced electron injection from excited ZnPPIX to the nanosheets. Time resolved fluorescence measurement was used to elucidate the process of electron injection from the singlet state of ZnPPIX to the conduction band of NaTiO2 NS. Electron injection from the dye to the semiconductor is very fast (ket ≈ 10(11) s(-1)), much faster than previously reported rates. The large two-dimensional surface offered by the NaTiO2 NS for interaction with the dye and the favorable driving force for electron injection from ZnPPIX to NaTiO2 NS (ΔGinj = -0.66 V) are the two important factors responsible for such efficient electron injection. Thus, NaTiO2 NS can serve as an effective alternative to the use of TiO2 nanoparticles in dye sensitized solar cells (DSSCs).

  15. Time-resolved probing of electron thermal conduction in femtosecond-laser-pulse-produced plasmas

    International Nuclear Information System (INIS)

    Vue, B.T.V.

    1993-06-01

    We present time-resolved measurements of reflectivity, transmissivity and frequency shifts of probe light interacting with the rear of a disk-like plasma produced by irradiation of a transparent solid target with 0.1ps FWHM laser pulses at peak intensity 5 x 10 l4 W/CM 2 . Experimental results show a large increase in reflection, revealing rapid formation of a steep gradient and overdense surface plasma layer during the first picosecond after irradiation. Frequency shifts due to a moving ionization created by thermal conduction into the solid target are recorded. Calculations using a nonlinear thermal heat wave model show good agreement with the measured frequency shifts, further confining the strong thermal transport effect

  16. Kilo-electron-volt neutron capture cross sections of the krypton isotopes

    International Nuclear Information System (INIS)

    Walter, G.; Leugers, B.; Kappeler; Bao, Z.Y.; Reffo, G.; Fabbri, F.

    1986-01-01

    The neutron capture cross sections of the stable krypton isotopes were determined in the energy interval from 4 to 250 keV using a C/sub 6/D/sub 6/-detector system in conjunction with the time-of-flight technique. The energy resolution of the measurement was 4% at 20 keV and 6% at 100 keV, and the experimental uncertainties were typically 6 to 10%. The measurements were complemented by statistical model calculations of all krypton isotopes in the mass range 78 < A < 86 to also obtain reliable cross sections for the unstable nuclei /sup 79,81,85/Kr. These calculations were based on local systematics for all relevant parameters, and the results were estimated to show uncertainties of 20 to 25%. Maxwellian average cross sections were calculated for kT=30 keV

  17. The use of electron beams as probes of the distant magnetosphere

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1982-01-01

    This chapter reports on experiments in which electron beams have been injected into the magnetosphere in order to diagnose plasma processes at a great distance by measurements made in the ionosphere. Topics considered include the beam injecting rocket system in the ionosphere; beam detection and analysis; echo detection by particle counters; echo analysis; the structure of echoes; the atmosphere as a detector; radio and radar methods; perturbation of the distant magnetosphere by beam injection; changes in the injected beam in the near-rocket region; some observations of the distant magnetosphere by beams; the comparison of distant and local electric fields; electron diffusion; the distant magnetic field; and future possibilities. Conjugate locations, field line lengths, electric and magnetic drifts, field fluctuations, and electron scattering and diffusion are analyzed. Echo detection by particle counters on some of the ECHO rocket series is discussed in detail

  18. Electronically tuned sulfonamide-based probes with ultra-sensitivity for Ga{sup 3+} or Al{sup 3+} detection in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani, E-mail: ashwanirubal@gmail.com; Chae, Pil Seok, E-mail: pchae@hanyang.ac.kr

    2017-03-15

    Three electronically tuned fluorescent probes (1–3) were synthesized by conjugating a fluorescent unit to N,N-bis-(hydroxyethyl)ethylenediamine. Probe 1 bearing an electron-deficient naphthalenedimide unit did not give a fluorescence response to the presence of various metal ions including monovalent metal ions (Na{sup +}, K{sup +}, and Ag{sup +}), divalent metal ions (Ca{sup 2+}, Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, Hg{sup 2+}, Pb{sup 2+}, and Zn{sup 2+}) and trivalent metal ions (Al{sup 3+}, Ga{sup 3+}, Fe{sup 3+}, and Cr{sup 3+}) in an aqueous solution. By contrast, probes 2 and 3 possessing 1,8-naphthalimide and pyrene fluorophores, respectively, exhibited selective fluorescent “OFF-ON” behaviors as a result of Ga{sup 3+}/Al{sup 3+} binding among the diverse metal ions, suggesting the importance of fluorophore electronic character with regard to metal ion sensing. The ethylenediamine analog of probe 3, corresponding to probe 4, was unable to yield a significant change in fluorescence intensity in the presence of any metal ions tested here, revealing the essential role of two hydroxyl groups for metal ion binding. A high association constant of K{sub a} = 2.99 × 10{sup 5} M{sup −1} was obtained for probe 3 with Ga{sup 3+}, with a limit of detection (LOD) of 10 nM. This LOD is the lowest value known for Ga{sup 3+} detection using chemical sensors. Along with an increase in aggregate sizes, PET suppression of probes upon metal ion binding was the primary contributor to the enhancement in fluorescence emission necessary for the sensitive detection of the target ions. The probe-metal ion complexes were fully characterized via TEM, FE-SEM, {sup 1}H NMR, fluorescence spectroscopy techniques and DFT calculations. - Highlights: • Three electronically tuned sulfonamide-based probes (probes 1, 2, and 3) were developed for metal ion-sensing. • Probes 2 and 3 exhibited AIE behavior with increasing water-content. • Probes 2 and 3 displayed a

  19. Probing sea quarks and gluons: the electron-ion collider project

    International Nuclear Information System (INIS)

    Horn, T.

    2014-01-01

    A future Electron-Ion Collider (EIC) would be the world's first polarized electron-proton collider, and the world's first e-A collider, and would seek the QCD foundation of nucleons and nuclei in terms of the sea quarks and gluons, matching to these valence quark studies. The EIC will provide a versatile range of kinematics and beam polarization, as well as beam species, to allow for mapping the spin and spatial structure of the quark sea and gluons, to discover the collective effects of gluons in atomic nuclei, and to understand the emergence of hadronic matter from color charge. (authors)

  20. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    Science.gov (United States)

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  1. Application of RNA Stable Isotope Probing (SIP) to Link Community Activity with Microorganisms Responsible for Autotrophy in the Subseafloor at Axial Seamount

    Science.gov (United States)

    Huber, J. A.; Fortunato, C. S.

    2014-12-01

    The global ocean comprises the Earth's largest biome, with microorganisms playing a dominant biogeochemical role. However, the potential for production of new microbial biomass within the subseafloor is rarely considered in traditional oceanographic paradigms of carbon cycling or microbial food webs. In this study, we used RNA Stable Isotope Probing (RNA SIP) to determine the microbial community composition and genetic repertoire of active subseafloor autotrophs in warm venting fluids from Axial Seamount. RNA is a responsive biomarker because it is a reflection of cellular activity independent of replication, and RNA SIP thus provides access to both the function of a microbial community and the phylogeny of the organisms accountable for key functions. Diffuse fluids were incubated shipboard at 30°C, 55°C, and 80°C with 13DIC and H2. Metatranscriptomic sequencing of both the enriched and non-enriched RNA was carried out from 13C and 12C controls. In addition, filtered fluid samples were preserved in situ for comparative meta -transcriptomic and -genomic analyses. Diverse lineages of bacteria and archaea and accompanying metabolisms were detected in situ, but RNA SIP results show dominance of three different groups of autotrophs active under each experimental condition. At 30°C, members of the Sulfurimonas genus dominated, with genes for hydrogen oxidation, nitrate reduction, and carbon fixation via the rTCA cycle highly expressed. At 55°C, both Caminibacter and Nautilia transcripts were detected for rTCA cycle, hydrogen oxidation, and nitrate reduction. At 80°C, transcripts for hydrogenotrophic methanogenesis mediated by members of Methanocaldococcus were detected. These results suggest the subseafloor hosts various anaerobic chemolithoautotrophs that span a wide temperature range, with hydrogen playing a key role in microbial metabolism. Complementary experiments are currently being carried out on the seafloor with a novel in situ incubator unit to provide

  2. The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing.

    Science.gov (United States)

    Kruse, Myriam; Zumbrägel, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André

    2013-10-01

    Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing.

    Science.gov (United States)

    Kovatcheva-Datchary, Petia; Egert, Markus; Maathuis, Annet; Rajilić-Stojanović, Mirjana; de Graaf, Albert A; Smidt, Hauke; de Vos, Willem M; Venema, Koen

    2009-04-01

    Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP), we identified starch-fermenting bacteria under human colon-like conditions. To the microbiota of the TIM-2 in vitro model of the human colon 7.4 g l(-1) of [U-(13)C]-starch was added. RNA extracted from lumen samples after 0 (control), 2, 4 and 8 h was subjected to density-gradient ultracentrifugation. Terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting and phylogenetic analyses of the labelled and unlabelled 16S rRNA suggested populations related to Ruminococcus bromii, Prevotella spp. and Eubacterium rectale to be involved in starch metabolism. Additionally, 16S rRNA related to that of Bifidobacterium adolescentis was abundant in all analysed fractions. While this might be due to the enrichment of high-GC RNA in high-density fractions, it could also indicate an active role in starch fermentation. Comparison of the T-RFLP fingerprints of experiments performed with labelled and unlabelled starch revealed Ruminococcus bromii as the primary degrader in starch fermentation in the studied model, as it was found to solely predominate in the labelled fractions. LC-MS analyses of the lumen and dialysate samples showed that, for both experiments, starch fermentation primarily yielded acetate, butyrate and propionate. Integration of molecular and metabolite data suggests metabolic cross-feeding in the system, where populations related to Ruminococcus bromii are the primary starch degrader, while those related to Prevotella spp., Bifidobacterium adolescentis and Eubacterium rectale might be further involved in the trophic chain.

  4. Probing Electron-Induced Bond Cleavage at the Single-Molecule Level Using DNA Origami Templates

    DEFF Research Database (Denmark)

    Keller, Adrian Clemens; Bald, Ilko; Rotaru, Alexandru

    2012-01-01

    Low-energy electrons (LEEs) play an important role in nanolithography, atmospheric chemistry, and DNA radiation damage. Previously, the cleavage of specific chemical bonds triggered by LEEs has been demonstrated in a variety of small organic molecules such as halogenated benzenes and DNA nucleoba...

  5. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  6. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  7. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    NARCIS (Netherlands)

    Frisenda, R.; Perrin, M.L.; Van der Zant, H.S.J.

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from

  8. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  9. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit

    DEFF Research Database (Denmark)

    N. Pfeiffer, Adrian; Cirelli, Claudio; S. Landsman, Alexandra

    2012-01-01

    We present an ellipticity resolved study of momentum distributions arising from strong-field ionization of Helium at constant intensity. The influence of the ion potential on the departing electron is considered within a semi-classical model consisting of an initial tunneling step and subsequent...

  10. Spatial characterization of relativistic electron enhancements in the Earth's outer radiation belt during the Van Allen Probes era

    Science.gov (United States)

    Pinto, V. A.; Bortnik, J.; Moya, P. S.; Lyons, L. R.; Sibeck, D. G.; Kanekal, S. G.

    2017-12-01

    Using Van Allen Probes Relativistic Electron-Proton Telescope (REPT) instrument we have identified 73 relativistic electron enhancement events in the outer radiation belt that occurred at different L values between L = 2.5 and L = 6.0. To determine an enhancement, we have used three different identification methods. We then determine the radial location, MLT location, timing and strength of those enhancements. We discuss the differences of each of the methods and test them to pinpoint the origin and spatial propagation of each enhancement. We have classified the events based on the radial propagation, speed of enhancement and intensity of fluxes and response for energy channels ranging from 1.8 MeV to 6.3 MeV. In addition, we have used OMNI data to study the statistical properties of the solar wind during each event and have classified similarities and differences that might be relevant for each group of enhancements and help us determine the physical process responsible for different types of enhancements. Additionally, we have used >2 MeV electron fluxes at geostationary orbit as measured by the GOES 13 and 15 Energetic Particle Sensor (EPS) instrument to compare our results with the geostationary orbit. Our results suggest that under certain conditions GOES data can be used to predict fluxes at the core of the radiation belt and vice-versa.

  11. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  12. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  13. Assessment of homogeneity of candidate reference material at the nanogram level and investigation on representativeness of single particle analysis using electron probe X ray microanalysis

    International Nuclear Information System (INIS)

    Ro, Chul-Un; Hoornaerta, S.; Griekena, R. van

    2002-01-01

    Particulate samples of a candidate reference material are evaluated on their homogeneity from bottle to bottle using electron probe X ray microanalysis technique. The evaluation on the homogeneity is done by the utilization of the Kolmogorov-Smirnov statistics to the processing of the quantitative electron probe X ray microanalysis data. Due to a limitation, existing even in computer controlled electron probe X ray microanalysis, in terms of analysis time and expenses, the number of particles analyzed is much smaller compared to that in the sample. Therefore, it is investigated whether this technique provides representative analysis results for the characteristics of the sample, even though a very small portion of the sample is really analyzed. Furthermore, the required number of particles for the analysis, to insure a certain level of reproducibility, e.g. 5% relative standard deviation, is determined by the application of the Ingamells sampling theory. (author)

  14. Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy

    International Nuclear Information System (INIS)

    Siqueira, Kisla P. F.; Dias, Anderson

    2011-01-01

    Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2–5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature–time–pressure conditions.

  15. Mobility-electron density relation probed via controlled oxygen vacancy doping in epitaxial BaSnO3

    Directory of Open Access Journals (Sweden)

    Koustav Ganguly

    2017-05-01

    Full Text Available The recently discovered high room temperature mobility in wide band gap semiconducting BaSnO3 is of exceptional interest for perovskite oxide heterostructures. Critical open issues with epitaxial films include determination of the optimal dopant and understanding the mobility-electron density (μ-n relation. These are addressed here through a transport study of BaSnO3(001 films with oxygen vacancy doping controlled via variable temperature vacuum annealing. Room temperature n can be tuned from 5 × 1019 cm−3 to as low as 2 × 1017 cm−3, which is shown to drive a weak- to strong-localization transition, a 104-fold increase in resistivity, and a factor of 28 change in μ. The data reveal μ ∝ n0.65 scaling over the entire n range probed, important information for understanding mobility-limiting scattering mechanisms.

  16. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. An electronic probe micro-analyser. A linear scan device; Microanalyseur a sonde electronique. Dispositif de balayage lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Kirianenko, A; Maurice, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The Castaing electronic probe micro-analyser makes possible static analysis at successive points. For two years this apparatus has been equipped by its constructor with an automatic device for surface scanning. In order to increase the micro-analyser's efficiency a 'linear' scan device has been incorporated making it possible to obtain semi-quantitative analyses very rapidly. (authors) [French] Le microanalyseur a sonde electronique de Castaing permet l'analyse statique en des points successifs. Depuis deux ans, cet appareil a ete equipe par son constructeur d'un dispositif de balayage automatique 'surface'. Afin d'augmenter l'efficacite du microanalyaeur, on a adapte un dispositif de balayage 'lineaire' qui permet d'obtenir tres rapidement des analyses semi-quantitative. (auteurs)

  18. Positron probing of electron momentum density in GaAs-AlAs superlattices and related materials

    International Nuclear Information System (INIS)

    Arutyunov, N.Y.; Sekkal, N.

    2008-08-01

    The band structure calculations based on the method proposed by Jaros et al. (Phys. Rev. B 31, 1205 (1985)) have been performed for the defect-free GaAs-AlAs superlattice and related AlAs and GaAs single crystals; the electron-positron momentum density distributions have been computed and analyzed. The results of calculations are in good agreement with the experimental data obtained ad hoc for GaAs and AlAs bulk materials by measuring the angular correlation of the annihilation radiation (ACAR). Small (but marked) features of the electron-positron momentum density of the valence band have been revealed both for constituent materials and GaAs-AlAs superlattice. The delocalization of positron in 'perfect' defect-'free' AlAs and GaAs single crystals to be observed experimentally is borne out by the results of pseudo-potential band calculations performed on the basis of method proposed by Sekkal et al. (Superlattices and Microstructures, 33, 63 (2003)). The prediction of the possibility of a certain confinement of positron in the interstitial area of GaAs- AlAs superlattice is confirmed by the agreement between the results of calculations and relevant experimental data obtained for GaAs and AlAs single crystals. No considerable effect of the enhancement of the annihilation rate (due to electron-positron interaction) upon the electron-positron momentum density distribution both in the superlattice and its constituent bulk materials has been found. The results of ACAR measurements and calculations performed suggest that a tangible improvement of the sensitivity of existing positron annihilation techniques is necessary for studying details of the electron-positron momentum density distributions in defect-'free' superlattices to be created on the basis of the diamond-like semiconductors possessing close values of the electron momentum densities. On the contrary, the positron-sensitive vacancy-type defects of various types in the superlattice may become a source of the

  19. Optical afterburner for an x-ray free electron laser as a tool for pump-probe experiments

    Directory of Open Access Journals (Sweden)

    E. L. Saldin

    2010-03-01

    Full Text Available We propose a new scheme for two-color operation of an x-ray self-amplified spontaneous emission free electron laser (SASE FEL. The scheme is based on an intrinsic feature of such a device: chaotic modulations of electron beam energy and energy spread on the scale of FEL coherence length are converted into large density modulations on the same scale with the help of a dispersion section, installed behind the x-ray undulator. Powerful radiation is then generated with the help of a dedicated radiator (like an undulator that selects a narrow spectral line, or one can simply use, for instance, broadband edge radiation. A typical radiation wavelength can be as short as a FEL coherence length, and can be redshifted by increasing the dispersion section strength. In practice it means the wavelength ranges from vacuum ultraviolet to infrared. The long-wavelength radiation pulse is naturally synchronized with the x-ray pulse and can be either directly used in pump-probe experiments or cross correlated with a high-power pulse from a conventional laser system. In this way experimenters overcome jitter problems and can perform pump-probe experiments with femtosecond resolution. Additional possibilities like on-line monitoring of x-ray pulse duration (making “optical replica” of an x-ray pulse are also discussed in the paper. The proposed scheme is very simple, cheap, and robust, and therefore can be easily realized in facilities like FLASH, European XFEL, LCLS, and SCSS.

  20. The NMR probe of high-Tc materials and correlated electron systems. 2. ed.

    International Nuclear Information System (INIS)

    Walstedt, Russell E.

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-T c materials, heavy fermion systems and actinide oxides are presented. The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-T c materials, especially the advances in the area of pseudogap studies are reviewed. An in depth overview of heavy fermion systems is presented in the second part, notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are manifold. First, it reviews NMR methodology as it has been applied to the different studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data.

  1. The NMR probe of high-Tc materials and correlated electron systems

    CERN Document Server

    Walstedt, Russell E

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-Tc materials, heavy fermion systems and actinide oxides are presented.  The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-Tc materials, especially the advances in the area of pseudogap studies are reviewed.  An in depth overview of heavy fermion systems is presented in the second part,  notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth o...

  2. The NMR probe of high-T{sub c} materials and correlated electron systems. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Walstedt, Russell E. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

    2018-03-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-T{sub c} materials, heavy fermion systems and actinide oxides are presented. The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-T{sub c} materials, especially the advances in the area of pseudogap studies are reviewed. An in depth overview of heavy fermion systems is presented in the second part, notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are manifold. First, it reviews NMR methodology as it has been applied to the different studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data.

  3. Electron probe micro-analysis of gas bubbles in solids: a novel approach

    International Nuclear Information System (INIS)

    Verwerft, M.; Vos, B.

    1999-01-01

    The local analysis of retained noble gas in nuclear fuel is inherently difficult since the physical form under which it is stored varies from atomically dispersed to bubbles with a diameter of several hundreds of nanometers. One of the techniques that has been applied since pore than twenty years is EPMA. Although many important results have been obtained with this technique, its application to the analysis of highly inhomogeneous materials is limited. The EPMA technique is indeed difficult to apply to samples that are not homogeneous on the scale of the electron-solid interaction volume. The paper discusses the development of a method to analyse a system of as bubbles distributed in a solid matrix. This method has been based on a multiple voltage EPMA measurement combined with a scanning Electron Microscopic analysis of the bubble size distribution

  4. Hybridized electronic states in potassium-doped picene probed by soft x-ray spectroscopies

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamane

    2012-12-01

    Full Text Available The electronic structure of the unoccupied and occupied states of potassium (K-doped and undoped picene crystalline films has been investigated by using the element-selective and bulk-sensitive photon-detection methods of X-ray absorption and emission spectroscopies. We observed the formation of the doping-induced unoccupied and occupied electronic states in K-doped picene. By applying the inner-shell resonant-excitation experiments, we observed the evidence for the orbital hybridization between K and picene near the Fermi energy. Furthermore, the resonant X-ray emission experiment suggests the presence of the Raman-active vibronic interaction in K-doped picene. These experimental evidences play a crucial role in the superconductivity of K-doped picene.

  5. Probing the electronic structure of liquid water with many-body perturbation theory

    Science.gov (United States)

    Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia

    2014-03-01

    We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.

  6. Detection of defects in electron-irradiated synthetic silica quartz probed by positron annihilation

    International Nuclear Information System (INIS)

    Watauchi, Satoshi; Uedono, Akira; Ujihira, Yusuke; Yoda, Osamu.

    1994-01-01

    Defects in amorphous SiO 2 films, formed on MOS(metal/oxide/semiconductor) devices as gates, perturb its operation. The positron annihilation techniques, were applied to the study of the annealing behavior of the defects, introduced in the high purity synthetic quartz glass by the irradiation of 3-MeV electrons up to the 1x10 18 e - /cm 2 dosage. It was proved that the positron annihilation techniques were sufficiently sensitive to detect the defects in the electron-irradiated silica glasses. Three types of open-space defects were detected by the positron lifetime measurements. These can be attributed to monovacancy or divacancy type defects, vacancy clusters, and open-volume defects. A high formation probability (∼90%) of positroniums(Ps) was found in unirradiated specimens. These Ps were considered to be formed in open-volume defects. The formation probability of Ps was drastically decreased by the electron irradiation. But the size of open-volume defects was kept unchanged by the irradiation. These facts suggest that vacancy-type defects were introduced by the electron irradiation and that positrons were trapped in these defects. By the isochronal annealing in nitrogen atmosphere, the lifetime component (τ 2 ) and its relative intensity (I 2 ), attributed to positrons trapped in monovacancy or divacancy type defects and annihilated there, changed remarkably. τ 2 was constant in the temperature range up to 300degC, getting slightly shorter between 300degC and 700degC, and constant above 700degC. I 2 decreased gradually up to 300degC, constant between 300degC and 550degC, decreased above 550degC, and constant above 700degC. This revealed that the behavior of the defects, in which positrons were trapped, change by the elevation of the annealing temperature. (author)

  7. Tunnel probes for measurements of the electron and ion temperature in fusion plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Schrittwieser, R.; Balan, P.; Ionita, C.; Stöckel, Jan; Adámek, Jiří; Ďuran, Ivan; Hron, Martin; Pánek, Radomír; Bařina, O.; Hrach, R.; Vicher, M.; Van Oost, G.; Van Rompuy, T.; Martines, E.

    2004-01-01

    Roč. 75, č. 10 (2004), s. 4328-4330 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/15th./. San Diego, 19.04.2004-22.04.2004] R&D Projects: GA ČR GA202/03/0786 Institutional research plan: CEZ:AV0Z2043910 Keywords : Tokamak * electron temperature * ion temperature * plasma diagnostics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.226, year: 2004

  8. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Alon; Goh, M. Cynthia [Department of Chemistry and Institute for Optical Sciences, University of Toronto, 80 St. George Street, Toronto M5S 3H6 (Canada)

    2012-03-15

    A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.

  9. Directed evolution of the periodic table: probing the electronic structure of late actinides.

    Science.gov (United States)

    Marsh, M L; Albrecht-Schmitt, T E

    2017-07-25

    Recent investigations of the coordination chemistry and physical properties of berkelium (Z = 97) and californium (Z = 98) have revealed fundamental differences between post-curium elements and lighter members of the actinide series. This review highlights these developments and chronicles key findings and concepts from the last half-century that have helped usher in a new understanding of the evolution of electronic structure in the periodic table.

  10. Probing mesoscopic crystals with electrons: One-step simultaneous inelastic and elastic scattering theory

    Science.gov (United States)

    Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.

    2017-12-01

    Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.

  11. Reaction (γ,2e) and (e,3e) as probe of electron correlation in atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    Cross sections of the (γ,2e) and (e,3e) reactions contain information about the two vacancy-energy spectrum and electron-pair correlations in initial and final states of the target atom. Physical pictures of these processes are presented for two- and many-electron atoms. The simplest mechanisms are discussed, demonstrating some features which await experimental confirmation. Attention is given to high photon energy and the relativistic energy region of these reactions. The energy distribution of outgoing relativistic electrons is qualitatively different from the nonrelativistic case. The origin and types of corrections to the simplest mechanisms, and possible means of their detection, are discussed. In addition, the role of different resonances: shape, giant, autoionizational, and Feshbach-type are considered. Results of calculations are compared with experimental data, mainly on double photoionization cross sections. Different possible objects as targets for the reactions are considered, including negative ions, excited atoms, molecules, and clusters. The modification of these reactions due to photon emission is discussed. The future of the domain is outlined

  12. Reactions (γ,2e) and (e,3e) as probes of electronic correlations in atoms

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1993-01-01

    Cross sections of the (γ,2e) and (e,3e) reactions carry information on two vacancy energy spectrum and on electron pair correlations in initial and final states of the target atom. Physical pictures of these processes are presented for two- and many-electron atoms. Simplest mechanisms of them are discussed, demonstrating some features which are waiting for experimental confirmation. Attention is given to high photon energy and even to relativistic energy region of these reactions. The energy distribution of outgoing relativistic electrons is qualitatively different from what it is for the nonrelativistic case. Origin and types of corrections to the simplest mechanisms and possible means of their detection are discussed. Role of different resonances: shape, giant, autoionizational, and Feschbach-type are considered. Results of calculations are compared with experimental data, mainly on double photoionization cross sections. Different possible objects as targets for the reactions are mentioned, including negative ions, excited atoms, molecules and clusters. Modification of the type of these reactions due to rather probable emission of the photon is discussed. Future of the domain is outlined. (orig.)

  13. Characteristics of electron-ion whistlers and their application to ionospheric probing

    International Nuclear Information System (INIS)

    Singh, S.N.; Tiwari, S.; Tolpadi, S.K.

    1976-01-01

    In this communication the effect of ion temperature on the propagation of electron-ion whistlers in the ionosphere is investigated. A general expression including the effect of ion temperature is derived for the group travel time for the electron-ion whistler as it travels from the base of the ionosphere to the satellite. A study of the dependence of the group travel time for the proton whislters. Further, from the expression for the group travel time including the effect of the ion temperature in conjunction with the generalized dispersion relation a relation for the cyclotron damping rate (both temporal and spatial) has been obtained. A detailed study if the cyclotron damping rate with travel time and ion temperature leads to the conclusion that the observed amplitude cutoff characteristics for the proton whistler can be explained on the basis of the mechanism of cyclotron damping. It is also shown that the knowledge of the group travel time of an electron-ion whistler can be used to estimate the ion temperature at the satellite

  14. Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge

    Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron...... isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able...

  15. Limitation of secondary electron multiplier non-linearity on accurate U-Th isotopic determination by MC-ICP-MS

    Science.gov (United States)

    Shen, C.; Wu, C.; Gallet, S.; Cheng, H.; Edwards, R.; Hsieh, Y.; Lin, K.

    2008-12-01

    Contemporary multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) with discrete dynode secondary electron multipliers (SEMs) can offer U-Th isotopic determinations with subpermil-permil- level precision in femtogram quantities. However, accurate isotopic measurement requires fully understanding SEM mass and intensity biases. In additional to dead-time effect, Richter et al (2001, Int. J. Mass Spectrom., 206, 105-127) reported a nonlinearity on SEMs produced by ETP and MasCom for count rates > 20 thousand counts per second (cps). We evaluated the possible biases for ion beams of 500- 1,600,000 cps on a latest MasCom SEM, SEV TE-Z/17, with more effective ion optical acceptance area (>50%) and better peak shape than previous models, used in a MC-ICP-MS, Thermo Fisher NEPTUNE. With the retarding potential quadruple lens (RPQ) turned off, ion beam intensity can be biased by only dead- time effect, which can be precisely corrected online or offline. With the RPQ on, two additional biases, an exponential-like increase of ion beam intensity from 100-100,000 s cps and an apparent dead-time effect (-2 to 2 ns) at high count rates, are observed. They are likely caused by the slightly defocused ions with a wide kinetic energy spread of ~5 eV, 10 times worse than that with thermal source, passing through the RPQ lens to the SEM, which is installed behind the focal plane. Fortunately, the two biases, which are stable during the daily measurements with the same settings of inlet system, source lenses, zoom optics, and RPQ, can be corrected effectively offline to earn accurate U-Th isotopic measurement.

  16. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  17. Probing new physics in the neutrinoless double beta decay using electron angular correlation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Borisov, A.V.; Zhuridov, D.V. [Moscow State Univ. (Russian Federation). Faculty of Physics

    2007-06-15

    The angular correlation of the electrons emitted in the neutrinoless double beta decay (0{nu}2{beta}) is presented using a general Lorentz invariant effective Lagrangian for the leptonic and hadronic charged weak currents. We show that the coefficient K in the angular correlation d{gamma}/dcos {theta} {proportional_to}(1-K cos {theta}) is essentially independent of the nuclear matrix element models and present its numerical values for the five nuclei of interest ({sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 130}Te, and {sup 136}Xe), assuming that the 0{nu}2{beta}-decays in these nuclei are induced solely by a light Majorana neutrino, {nu}{sub M}. This coefficient varies between K=0.82 (for the {sup 76}Ge nucleus) and K=0.88 (for the {sup 82}Se and {sup 100}Mo nuclei), calculated taking into account the effects from the nucleon recoil, the S and P-waves for the outgoing electrons and the electron mass. Deviation of K from its values derived here would indicate the presence of New Physics (NP) in addition to a light Majorana neutrino, and we work out the angular coefficients in several {nu}{sub M}+NP scenarios for the {sup 76}Ge nucleus. As an illustration of the correlations among the 0{nu}2{beta} observables (half-life T{sub 1/2}, the coefficient K, and the effective Majorana neutrino mass vertical stroke left angle m right angle vertical stroke) and the parameters of the underlying NP model, we analyze the left-right symmetric models, taking into account current phenomenological bounds on the right-handed W{sub R}-boson mass and the left-right mixing parameter {zeta}. (orig.)

  18. Proton probe measurement of fast advection of magnetic fields by hot electrons

    International Nuclear Information System (INIS)

    Willingale, L; Thomas, A G R; Nilson, P M; Kaluza, M C; Dangor, A E; Evans, R G; Fernandes, P; Haines, M G; Kamperidis, C; Kingham, R J; Ridgers, C P; Sherlock, M; Wei, M S; Najmudin, Z; Krushelnick, K; Bandyopadhyay, S; Notley, M; Minardi, S; Rozmus, W; Tatarakis, M

    2011-01-01

    A laser generated proton beam was used to measure the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target. At intensities of 10 15 W cm −2 , the significant hot electron production and strong heat fluxes result in non-local transport becoming important to describe the magnetic field dynamics. Two-dimensional implicit Vlasov–Fokker–Planck modeling shows that fast advection of the magnetic field from the focal region occurs via the Nernst effect at significantly higher velocities than the sound speed, v N /c s ≈ 10.

  19. EPR probes with well-defined, long distances between two or three unpaired electrons

    Science.gov (United States)

    Godt; Franzen; Veit; Enkelmann; Pannier; Jeschke

    2000-11-03

    The synthesis of rod- and star-shaped compounds carrying two or three spin labels as end groups is described. The unpaired electrons are 2.8-5.1 nm apart from each other. The shape-persistent scaffolds were obtained through Pd-Cu-catalyzed alkynyl-aryl coupling and Pd-Cu-catalyzed alkyne dimerization in the presence of oxygen using p-phenyleneethynylene as the basic shape-persistent building block. The spin label 1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxylic acid (4) was attached through esterification of the terminal phenolic OH groups of the scaffold.

  20. Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

    Czech Academy of Sciences Publication Activity Database

    Breneman, A. W.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D. L.; Santolík, Ondřej; Wygant, J. R.; Cattell, C. A.; Thaller, S. A.; Blake, B.; Spence, H.; Kletzing, C. A.

    2017-01-01

    Roč. 44, č. 22 (2017), s. 11265-11272 ISSN 0094-8276 R&D Projects: GA ČR GA17-07027S Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : VLF-CHORUS * RADIATION BELT * ZONE ELECTRONS * SOURCE REGION * AURORAL-ZONE * GEM STORMS * PRECIPITATION * ASSOCIATION * RESOLUTION * EMISSIONS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017GL075001/epdf

  1. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom

    2009-11-11

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces. © 2009 American Chemical Society.

  2. Nuclear moments as a probe of electronic structure in material, exotic nuclear structure and fundamental symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Minamisono, T.; Mihara, M.; Fukuda, M. [Osaka Univ., Dept. of Physics (Japan); Zhu, Shengyun [CIAE (China); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka Univ., RCNP (Japan); Yuan Daqing; Zheng Yongnan; Zuo Yi; Fang Ping; Zhou Dongmei [CIAE (China); Ohtsubo, T. [Niigata Univ., Dept. of Physics (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Technology (Japan); Nishimura, D. [Tokyo Univ. of Science (Japan); Matsumiya, R. [Osaka Univ., RCNP (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M. [Nat. Inst. Radiological Sciences (Japan); Collaboration: Osaka-CIAE-NIRS-Niigata-Kochi-LBL Collaboration; and others

    2013-05-15

    We report our studies in various fields of Physics through nuclear moments utilizing the {beta}-NMR technique, including material sciences, nuclear structures and fundamental symmetries. Especially, we focus on the recent progress in the studies on the electronic structure in Pt through Knight shifts of various impurities, lattice locations of impurities, electric field gradients, the analysis of nuclear spin in terms of its components, anomaly in the spin expectation value for {sup 9}C-{sup 9}Li mirror pair, the G-parity conservation law, and the Ramsey resonance on UCN for future neutron EDM measurements.

  3. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  4. Kinetics of cyclopropane formation by 1,3-deoxystannylation. A kinetic isotope effect as a probe for the mechanism of neighboring group participation

    International Nuclear Information System (INIS)

    McWilliam, D.C.; Balasubramanian, T.R.; Kuivila, H.G.

    1978-01-01

    1-Aryl-3-trimethylstannyl 3,5-dinitrobenzoates, Me 3 SnCH 2 CH 2 CHAr(ODNB), 4H, undergo solvolysis in 2,2,2-trifluoroethanol to form arylcyclopropanes and trimethylstannyl dinitrobenzoate. The rates for nine substituents on Ar are correlated by sigma + with a rho value of -3.63 at 100 0 C. The rates for a series of model compounds, Me 3 CCH 2 CH 2 CHAr(ODNB), 5H (six substituents), are also correlated by sigma + with a rho value of -4.90. In each case the rate for a given 4H is greater than that for the corresponding 5H. The Winstein-Grunwald m values for 4H and 5H in aqueous acetic acid at 100 0 C are 0.41 and 0.46, respectively. Measurements of the rates of solvolyses in trifluoroethanol of the 2.2-d 2 analogues of 4H and 5H revealed kinetic isotope effects of 0.94 and 1.08, respectively. These results are taken as evidence that the mechanism for the rate acceleration observed in the 4H series is due to direct participation of the C--Sn sigma electrons in the transition state of the rate-determining step of the 1,3-elimination reaction

  5. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  6. Electron phonon couplings in 2D perovskite probed by ultrafast photoinduced absorption spectroscopy

    Science.gov (United States)

    Huynh, Uyen; Ni, Limeng; Rao, Akshay

    We use the time-resolved photoinduced absorption (PIA) spectroscopy with 20fs time resolution to investigate the electron phonon coupling in the self-assembled hybrid organic layered perovskite, the hexyl ammonium lead iodide compound (C6H13NH3)2 (PbI4) . The coupling results in the broadening and asymmetry of its temperature-dependence photoluminescence spectra. The exact time scale of this coupling, however, wasn't reported experimentally. Here we show that using an ultrashort excitation pulse allows us to resolve from PIA kinetics the oscillation of coherent longitudinal optical phonons that relaxes and self-traps electrons to lower energy states within 200 fs. The 200fs relaxation time is equivalent to a coupling strength of 40meV. Two coupled phonon modes are also identified as about 100 cm-1 and 300 cm-1 from the FFT spectrum of the PIA kinetics. The lower energy mode is consistent with previous reports and Raman spectrum but the higher energy one hasn't been observed before.

  7. How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?

    Science.gov (United States)

    Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.

    We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  8. Ultra-fast pump-probe determination of electron-phonon coupling in cuprate superconductors

    Science.gov (United States)

    Mihailovic, Dragan

    2010-03-01

    Fresh femtosecond spectroscopy experiments show the electron-phonon interaction strength λ to be 0.7 and 1.4 for YBCO and LSCO respectively and not around 0.2 as previously reported [1]. The revised estimates arise primarily from improved time-resolution, and also partly from improved modeling. Comparison with classical superconductors and pnictides shows non-monotonic correlation of λ with Tc. Systematic new measurements of the condensate vaporization energy (Uv) in cuprates [2] and pnictides reveals a power-law dependence on Tc with exponent 2. However, Uc is 16-18 times greater than the BCS condensation energy Uc, implying that a significant heat capacity of the ``bosonic glue.'' In contrast, charge-density wave systems with electronically driven ordering transitions have Uv˜Uc. The data suggest BCS and Eliashberg-based models to be inappropriate for describing the physics of high-temperature superconductors, and point towards polaron models which consider strong or intermediate λ.[4pt] [1] C.Gadermeier et al., arXiv:0902.1636[0pt] [2] P.Kusar et al., Phys. Rev. Lett. 101, 227001 (2008)

  9. Probe specificity

    International Nuclear Information System (INIS)

    Laget, J.M.

    1986-11-01

    Specificity and complementarity of hadron and electron probes must be systematically developed to answer three questions currently asked in intermediate energy nuclear physics: what is nucleus structure at short distances, what is nature of short range correlations, what is three body force nature [fr

  10. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    Science.gov (United States)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  11. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    Directory of Open Access Journals (Sweden)

    J. Konki

    2017-01-01

    Full Text Available The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n240Es. Half-lives of 6(2s and 22−6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα=8.19(3MeV and 8.09(3MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6 and 0.04(2 were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  12. Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts

    Science.gov (United States)

    Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.

    2005-12-01

    We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.

  13. Decontamination in the Electron Probe Microanalysis with a Peltier-Cooled Cold Finger.

    Science.gov (United States)

    Buse, Ben; Kearns, Stuart; Clapham, Charles; Hawley, Donovan

    2016-10-01

    A prototype Peltier thermoelectric cooling unit has been constructed to cool a cold finger on an electron microprobe. The Peltier unit was tested at 15 and 96 W, achieving cold finger temperatures of -10 and -27°C, respectively. The Peltier unit did not adversely affect the analytical stability of the instrument. Heat conduction between the Peltier unit mounted outside the vacuum and the cold finger was found to be very efficient. Under Peltier cooling, the vacuum improvement associated with water vapor deposition was not achieved; this has the advantage of avoiding severe degradation of the vacuum observed when warming up a cold finger from liquid nitrogen (LN2) temperatures. Carbon contamination rates were reduced as cooling commenced; by -27°C contamination rates were found to be comparable with LN2-cooled devices. Peltier cooling, therefore, provides a viable alternative to LN2-cooled cold fingers, with few of their associated disadvantages.

  14. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy.

    Science.gov (United States)

    Frisenda, Riccardo; Perrin, Mickael L; van der Zant, Herre S J

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule-electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.

  15. $^{80m}$Br/$^{80}$Br a new electron-$\\gamma$ - PAC Probe

    CERN Document Server

    Correia, J G; Araújo, J P; Marques, J G; Soares, J C; Melo, A A

    2001-01-01

    Conversion electron-$\\gamma$ PAC measurements of the 49 keV - 37 keV cascade in $^{80}$Br through the intermediate 2$^{-}$ state with T$_{1/2}$=7.4 ns were performed with a system of two magnetic lens spectrometers and two BaF$_{2}$ scintillation detectors. The parent $^{80m}$Br activity with half-life of 4.4 hrs was implanted into Ni, Zn and graphite at the ISOLDE separator at CERN. The observed interaction frequency in the nickel matrix is in good agreement with the known value of the hyperfine field for Br in Ni and the magnetic moment of the 2$^{-}$ state. From the measured quadrupole interaction in Zn and graphite the electric field gradients at Br were obtained.

  16. $^{80}$Br $^{80}$Br-a new electron-gamma PAC probe

    CERN Document Server

    Correia, J G; Araújo, J P; Marques, J G; Soares, J C; Melo, A A

    2001-01-01

    Conversion electron-gamma PAC measurements of the 49-37 keV cascade in /sup 80/Br through the intermediate 2/sup -/ state with T/sub 1/2 /=7.4 ns were performed with a system of two magnetic lens spectrometers and two BaF/sub 2/ scintillation detectors. The parent /sup 80m/Br activity with a halflife of 4.4 hrs was implanted into Ni, Zn and graphite at the ISOLDE separator at CERN. The observed interaction frequency in the nickel matrix is in good agreement with the known value of the hyperfine field for Br in Ni and the magnetic moment of the 2/sup -/ state. From the measured quadrupole interaction in Zn and graphite the electric field gradients at Br were obtained. (7 refs).

  17. Oceans circulation and electron cyclotron resonance sources: Measurement of the AR-39 isotopic ratio in Seawater

    International Nuclear Information System (INIS)

    Gaelens, M.; Loiselet, M.; Ryckewaert, G.; Pardo, R.C.; Scott, R.H.; Vondrasek, R.; Collon, Ph.; Kutchera, W.

    2004-01-01

    The radionuclide 39 Ar is produced in the atmosphere by cosmic rays and has an isotopic abundance of 8.1x10 -16 . Because its half life (T 1/2 =269 years) is well matched to the time periods involved in the oceanic currents around the Earth, the measurement of the 39 Ar isotopic ratio is an ideal tool to date ocean water from different depths. It would complement the information gained by the 14 C measurements (T 1/2 =5730 years). However, the measurement of the isotopic ratio 39 Ar/ 40 Ar is a technical challenge: 1 L of modern ocean water contains ∼6500 atoms of 39 Ar, and produces ∼17 decays per year. Although it has been possible to detect the 39 Ar decays in large volumes of sea water by using the low level counting technique, the possibility of measuring the number of 39 Ar atoms faster and in smaller samples using the accelerator mass spectrometry (AMS) technique would be a major breakthrough for this type of measurement. The development of a viable AMS method for 39 Ar has been underway for several years at Argonne National Laboratory, and is presently hampered by the presence of stable 39 K ions coming from the ion source. Although the intensity of this isobaric contaminant is low (∼pA extracted from the source), it has to be compared with the 39 Ar beam intensity (atoms per minutes). In order to separate these two beams (whose mass difference is only 1.6x10 -5 ), the intensity of the 39 K beam coming from the ion source has to be reduced by several orders of magnitude. This reduction has been investigated both at Argonne National Laboratory and at Louvain-la-Neuve. Two techniques have been tried out. In the first, a quartz liner is used to provide a clean surface, while in the second these impurities are buried in a SiO 2 layer formed in situ by running the source with a mixture of silane and oxygen. The 39 K background has been reduced by a factor of 100 with these treatments. These techniques and their results obtained both at Argonne and Louvain

  18. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  19. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump–probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Scoby, Cheyne M., E-mail: scoby@physics.ucla.edu [UCLA Department of Physics, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Li, R.K.; Musumeci, P. [UCLA Department of Physics, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2013-04-15

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ∼1ps precision.

  20. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump–probe experiments

    International Nuclear Information System (INIS)

    Scoby, Cheyne M.; Li, R.K.; Musumeci, P.

    2013-01-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ∼1ps precision

  1. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  2. Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping

    Science.gov (United States)

    Hogan, Thomas C.

    Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.

  3. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  4. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    Science.gov (United States)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  5. On the usage of electron beam as a tool to produce radioactive isotopes in photonuclear reactions

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2009-01-01

    We treat the Bremsstrahlung, induced by initial electron beam in converter, and the production of a desirable radioisotope due to the photonuclear reaction caused by this Bremsstrahlung. By way of illustration, the yield of a number of some, the most applicable in practice, radioisotopes is evaluated. The acquired findings persuade us that usage of modern electron accelerators offers a practicable way to produce the radioisotopes needful nowadays for various valuable applications in the nuclear medicine

  6. PROBING THE STANDARD MODEL AND NUCLEON STRUCTURE VIA PARITY VIOLATING ELECTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Humensky, T

    2003-10-28

    Parity-violating electron scattering has developed over the last 25 years into a tool to study both the structure of electroweak interactions and the structure of nucleons. Work on two parity-violation experiments is reported in this thesis. They are the Hall A Proton Parity EXperiment (HAPPEX), which ran at Jefferson Laboratory in 1998-1999, and SLAC E-158, which had its first physics running in 2002. HAPPEX measured the parity-violating asymmetry in elastic e-p scattering at a momentum transfer squared of Q{sup 2} = 0.477 GeV{sup 2} and a scattering angle of 12{sup o}. This asymmetry is sensitive to the presence of strange sea quarks in the proton. In particular, it is sensitive to the proton's strange elastic form factors. An asymmetry of A{sub LR}{sup ep} = -15.05 {+-} 0.98 {+-} 0.56 ppm was measured, where the first error is statistical and the second error is systematic. Combining this asymmetry measurement with existing measurements of the electromagnetic form factors of the proton and neutron allowed HAPPEX to set new constraints on the strange elastic form factors of the proton G{sub E}{sup s} + 0.392G{sub M}{sup s} = 0.025 {+-} 0.020 {+-} 0.014, where G{sub E}{sup s} and G{sub M}{sup s} are the strange electric and magnetic form factors of the proton, respectively. The first error is the quadrature sum of the experimental errors and the second error is due to uncertainty in the electromagnetic form factors. This result is consistent with the absence of a contribution from strange quarks. This thesis reports an analysis of the 1999 data set, with a particular focus on the determination of the raw asymmetry and the corrections to the raw asymmetry to account for helicity-correlated asymmetries in properties of the electron beam.

  7. Effect of isotopic substitution upon the gas phase and solution electron affinities of nitrobenzene

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Reiter, R.C.; Espe, M.E.; Bartmess, J.E.

    1987-01-01

    Ion cyclotron resonance and electron spin resonance have been utilized to determine the equilibrium constant for the electron transfer from the nitrobenzene anion radical to 15 N labeled nitrobenzene (Ph 14 NO 2 - + Ph 15 NO 2 ↔ Ph 14 NO 2 + Ph 15 NO 2 9 . It was found that the equilibrium constant is within experimental error of unity at 305 K. Molecular orbital calculations indicate that this might be accounted for by the shortening of the C-N bond and a counterbalancing lengthening of the N-O bonds upon electron attachment to nitrobenzene. An equilibrium constant that is much larger than unity can be observed in liquid ammonia at 208 K when K + serves as the gegenion (K/sub eq/ = 2.1). However, when Na + serves as the gegenion, the solution electron affinity of Ph 14 NO 2 is greater than that of Ph 15 NO 2 (K/sub eq/ = 0.4). These results are explained in terms of ion association. When the hydrogen atoms are replaced with deuteriums, the gas phase electron affinity is decreased. A similar decrease is observed in liquid ammonia. In the gas phase this is attributed to the slight lengthening of all the C-H bonds upon electron attachment

  8. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    Science.gov (United States)

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  9. Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH)

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, P; Rouzee, A; Siu, W; Huismans, Y; Vrakking, M J J [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 113, 1098 XG Amsterdam (Netherlands); Lepine, F [Universite Lyon 1, CNRS, LASIM, UMR 5579, 43 bvd. du 11 novembre 1918, F-69622 Villeurbanne (France); Marchenko, T [Laboratoire d' Optique Applique, ENSTA/Ecole Polytechnique, Chemin de la Huniere, 91761 Palaiseau (France); Duesterer, S; Tavella, F; Stojanovic, N; Azima, A; Treusch, R [Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) Notkestrasse 85, D-22607 Hamburg (Germany); Kling, M F [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany)], E-mail: per.johnsson@fysik.lth.se

    2009-07-14

    High flux extreme ultraviolet (XUV) sources like the free electron laser (FEL) in Hamburg (FLASH) offer the possibility of diffractive imaging of small objects. Irrespective of whether the diffraction is based on the detection of photons or photoelectrons, it is required that the measurement is done in the reference frame of the molecule meaning that, for a sample of several molecules, it is necessary to pre-align the molecules in the sample. As a step towards performing molecular frame diffraction experiments, we report experiments on field-free molecular alignment performed at FLASH. The impulsive alignment induced by a 100 fs near-infrared laser pulse in a rotationally cold CO{sub 2} sample is characterized by ionizing and dissociating the molecules with a time-delayed XUV-FEL pulse. The time-dependent angular distributions of ionic fragments measured by a velocity map imaging spectrometer exhibit rapid changes associated with the induced rotational dynamics. The experimental results show hints of a dissociation process that depends nonlinearly on the XUV intensity.

  10. Probing the molecular and electronic structure of the lichen metabolite usnic acid: A DFT study

    International Nuclear Information System (INIS)

    Galasso, V.

    2010-01-01

    Graphical abstract: DFT calculations of structural preferences, acidic properties, carbonyl vibrations, 13 C NMR chemical shifts, and absorption spectrum account for the unique structural backbone, chemical behaviour, and spectroscopic properties of usnic acid, the cortical pigment and potent reactive of lichens. - Abstract: The molecular structure of usnic acid was investigated by the density functional theory (DFT). Two keto-enol tautomers are nearly isoenergetic and more stable than other tautomers. Noteworthy is the energy difference among the three intramolecular O-H...O hydrogen bonds. The DFT/PCM calculated dissociation constants account for the acidic sequence of the three OH-groups. The electronic structure was also studied by calculating IR/Raman, NMR, and absorption features. A reliable assignment of the 'fingerprint' carbonyl stretching modes was supported by calculations on related molecules. The calculated NMR chemical shifts fit expectation in terms of a fast interconversion between the two most preferred tautomers. A variety of π → π* and n → π* excitations, localized on a single ring or involving a charge-transfer between the two lateral rings of the molecule, gives rise to the broad UV-absorption bands. This property accounts for the efficient protection against damaging solar radiation provided by usnic acid for lichens.

  11. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    International Nuclear Information System (INIS)

    Pradhan, Prabhakar; Damania, Dhwanil; Turzhitsky, Vladimir; Subramanian, Hariharan; Backman, Vadim; Joshi, Hrushikesh M; Dravid, Vinayak P; Roy, Hemant K; Taflove, Allen

    2011-01-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed

  12. Probing the molecular and electronic structure of the lichen metabolite usnic acid: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Galasso, V., E-mail: galasso@univ.trieste.it [Dipartimento di Scienze Chimiche, Universita di Trieste, I-34127 Trieste (Italy)

    2010-08-23

    Graphical abstract: DFT calculations of structural preferences, acidic properties, carbonyl vibrations, {sup 13}C NMR chemical shifts, and absorption spectrum account for the unique structural backbone, chemical behaviour, and spectroscopic properties of usnic acid, the cortical pigment and potent reactive of lichens. - Abstract: The molecular structure of usnic acid was investigated by the density functional theory (DFT). Two keto-enol tautomers are nearly isoenergetic and more stable than other tautomers. Noteworthy is the energy difference among the three intramolecular O-H...O hydrogen bonds. The DFT/PCM calculated dissociation constants account for the acidic sequence of the three OH-groups. The electronic structure was also studied by calculating IR/Raman, NMR, and absorption features. A reliable assignment of the 'fingerprint' carbonyl stretching modes was supported by calculations on related molecules. The calculated NMR chemical shifts fit expectation in terms of a fast interconversion between the two most preferred tautomers. A variety of {pi} {yields} {pi}* and n {yields} {pi}* excitations, localized on a single ring or involving a charge-transfer between the two lateral rings of the molecule, gives rise to the broad UV-absorption bands. This property accounts for the efficient protection against damaging solar radiation provided by usnic acid for lichens.

  13. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  14. Final Report: Novel Nanowires as Probes of Electron Coherence and Correlations in Restricted Geometries

    International Nuclear Information System (INIS)

    Natelson, Douglas

    2005-01-01

    This is a final summary report of the research conducted under DE-FG03-01ER45946, which was a research program using metal nanostructures to examine quantum coherence of electrons in normal and ferromagnetic metals. This program was the PI's first federal research grant, and by augmenting with other funds (Packard Foundation), this grant supported two graduate students during its duration. In normal metal nanostructures, quantum coherence was assessed by two independent techniques: weak localization magnetoresistance, and time-dependent universal conductance fluctuations (TDUCF noise). This work found that, in AuPd nanowires, the coherence information inferred from these two techniques were quantitatively consistent, even in the presence of magnetic impurity and phonon scattering. This confirmed theoretical expectations. However, in Ag and Au wires, the two techniques disagree, with noise measurements indicating a lower coherence length at low temperatures than weak localization. We have a candidate explanation for this, and are finishing these experiments. This work shows that subtleties remain in our understanding of coherence processes even in normal metals, particularly those involving the tunneling two-level systems that produce low frequency noise; this has relevance for quantum information processing implementations using metal devices. We have also studied time-dependent universal conductance fluctuations in ferromagnetic metals for the first time. The TDUCF in ferromagnetic nanowires show that the Cooperon channel of coherent processes is suppressed in these correlated materials. Furthermore, the surprisingly steep temperature dependence of the noise suggests that decoherence in these systems is through a different process than in normal metals. We are finishing measurements of ''magnetofingerprint'' conductance fluctuations in ferromagnetic metals to examine this unusual temperature dependence with an independent technique. This program has produced three

  15. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Vaughn, Anthony E [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  16. Molecular frame photoemission: a probe of electronic/nuclear photo-dynamics and polarization state of the ionizing light

    International Nuclear Information System (INIS)

    Veyrinas, Kevin

    2015-01-01

    This is thesis is dedicated to the study and the use of the remarkable properties of the molecular frame photoelectron angular distribution (MFPAD). This observable is a very sensitive probe of both the photoionization (PI) processes in small molecules, through the determination of the magnitudes and relative phases of the dipole matrix elements, and the polarization state of the ionizing light, which is entirely encoded in the MFPAD in terms of the Stokes parameters (s1, s2, s3). MFPAD measurements take advantage of dissociative photoionization (DPI) processes by combining an electron-ion 3D momentum spectroscopy technique with the use of different radiation facilities: SOLEIL synchrotron (DESIRS and PLEIADES beamlines) and the XUV PLFA beamline (SLIC, LIDyL Attophysics group, CEA Saclay) based on the interaction of a strong laser field with a gaseous target called high harmonic generation (HHG). The first part of the thesis is devoted to the complete characterization of the polarization state of an incoming radiation. In this context, an original 'molecular polarimetry' method is introduced and demonstrated by comparison with a VUV optical polarimeter available on the DESIRS beamline. Using this method to determine the full polarization ellipse of HHG radiation generated in different conditions on the XUV PLFA facility leads to original results that include the challenging disentanglement of the circular and unpolarized components of the studied radiation. The second part deals with the study of DPI of the H 2 , D 2 and HD molecules induced by circularly polarized light at resonance with the doubly excited states Q1 and Q2. In this energy region (30-35 eV) where direct ionization, autoionization and dissociation compete on a femtosecond timescale, the photonic excitation gives rise to complex ultrafast electronic and nuclear coupled dynamics. The remarkable asymmetries observed in the circular dichroism in the molecular frame, compared to quantum

  17. Local probe investigations of the electronic phase diagrams of iron pnictides and chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp

    2015-09-24

    In this work, the electronic phase diagrams of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} and Fe{sub 1+y}Te were investigated using muon spin relaxation and Moessbauer spectroscopy. Single crystals of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} with x = 0.00, 0.35, 0.50, and 0.67 were examined. The undoped 122 parent compound CaFe{sub 2}As{sub 2} is a semi metal and shows antiferromagnetic commensurate spin density wave order below 167 K. By hole doping via Na substitution, the magnetic order is suppressed and superconductivity emerges including a Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting of the magnetic moments out of the ab-plane is found. The interaction of the magnetic and superconducting order parameter in this coexistence region was studied and a nanoscopic coexistence of both order parameters is found. This is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the superconducting transition temperature. This reduction was analysed using Landau theory and a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, T{sub c}/T{sub N}, for the 122 family of the iron pnictides is presented. The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The lattice dynamics at temperatures above and below this magneto-structural phase transition were studied and no change in the lattice dynamics were found. However, the lattice for finite x is softer than for the undoped compound. For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} is persistent even at optimal doping. The superconducting state is investigated by measuring the temperature dependence of the magnetic penetration depth, where two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature independent anisotropy of the magnetic penetration depth γ{sub

  18. Local probe investigations of the electronic phase diagrams of iron pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Materne, Philipp

    2015-01-01

    In this work, the electronic phase diagrams of Ca 1-x Na x Fe 2 As 2 and Fe 1+y Te were investigated using muon spin relaxation and Moessbauer spectroscopy. Single crystals of Ca 1-x Na x Fe 2 As 2 with x = 0.00, 0.35, 0.50, and 0.67 were examined. The undoped 122 parent compound CaFe 2 As 2 is a semi metal and shows antiferromagnetic commensurate spin density wave order below 167 K. By hole doping via Na substitution, the magnetic order is suppressed and superconductivity emerges including a Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting of the magnetic moments out of the ab-plane is found. The interaction of the magnetic and superconducting order parameter in this coexistence region was studied and a nanoscopic coexistence of both order parameters is found. This is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the superconducting transition temperature. This reduction was analysed using Landau theory and a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, T c /T N , for the 122 family of the iron pnictides is presented. The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The lattice dynamics at temperatures above and below this magneto-structural phase transition were studied and no change in the lattice dynamics were found. However, the lattice for finite x is softer than for the undoped compound. For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in Ca 1-x Na x Fe 2 As 2 is persistent even at optimal doping. The superconducting state is investigated by measuring the temperature dependence of the magnetic penetration depth, where two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature independent anisotropy of the magnetic penetration depth γ λ = 1.5(4) is obtained, which is much smaller compared to other 122 compounds

  19. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-01-01

    total ionization signals to the more elaborate PES and PAD, possibly combining them and/or resolving them in time. This experimental discussion will be complemented in a third part by a presentation of available theoretical tools focusing on TDDFT and detailing the methods used to address ionization observables. We shall also discuss the shortcomings of standard versions of TDDFT, especially what concerns the SIC problem, and show how to improve formally and practically the theory on that aspect. A long fourth part will be devoted to representative results. We shall illustrate the use of total ionization in pump and probe scenarios with fs lasers for tracking ionic dynamics in clusters. More challenging from the experimental point of view is pump and probe setups using attosecond pulses. The effort there is more on the capability to define proper signals to be measured/computed at such a short time scale. TDDFT analysis provides here a valuable tool in the search for the most efficient observables. PES and PAD will allow one to address more directly electronic dynamics itself by means of fs or ns laser pulses. We shall in particular discuss the impact of the dynamical regime in PES and PAD. We shall end this fourth part by addressing the role of temperature in PES and PAD. When possible, the results will be directly compared to experiments. The fifth part of the paper will be devoted to future directions of investigations. From the rich choice of developments, we shall in particular address two aspects. We shall start to discuss the information content of energy/angular spectra of emitted electrons in case of excitation by swift and highly charged ions rather than lasers. The second issue concerns the account of dissipative effects in TDDFT to be able to consider longer laser pulses where the competition between direct electron emission and thermalization is known to play a role as, e.g., in experiments with C 60 . Although such questions have been superficially

  20. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    International Nuclear Information System (INIS)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A.M.; Beard, Mary; Brown, Edward; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A.M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nuclides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  1. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy

    CERN Document Server

    Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A

    2011-01-01

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...

  2. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    Science.gov (United States)

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  3. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  4. Anomalous phosphine sensitivity coefficients as probes for a possible variation of the proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Špirko, V.

    2018-02-01

    A robust variational approach is used to investigate the sensitivity of the rotation-vibration spectrum of phosphine (PH3) to a possible cosmological variation of the proton-to-electron mass ratio, μ. Whilst the majority of computed sensitivity coefficients, T, involving the low-lying vibrational states acquire the expected values of T ≈ -1 and T ≈ -1/2 for rotational and ro-vibrational transitions, respectively, anomalous sensitivities are uncovered for the A1 - A2 splittings in the ν2/ν4, ν1/ν3 and 2ν _4^{ℓ=0}/2ν _4^{ℓ=2} manifolds of PH3. A pronounced Coriolis interaction between these states in conjunction with accidentally degenerate A1 and A2 energy levels produces a series of enhanced sensitivity coefficients. Phosphine is expected to occur in a number of different astrophysical environments and has potential for investigating a drifting constant. Furthermore, the displayed behaviour hints at a wider trend in molecules of C_{3v}(M) symmetry, thus demonstrating that the splittings induced by higher-order ro-vibrational interactions are well suited for probing μ in other symmetric top molecules in space, since these low-frequency transitions can be straightforwardly detected by radio telescopes.

  5. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  6. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna; Boll, Torben; Seibert, Judith; Haider, Ferdinand; Al-Kassab, Talaat

    2015-01-01

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  7. A flexible and accurate quantification algorithm for electron probe X-ray microanalysis based on thin-film element yields

    Science.gov (United States)

    Schalm, O.; Janssens, K.

    2003-04-01

    Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method.

  8. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser

    Directory of Open Access Journals (Sweden)

    P. Cinquegrana

    2014-04-01

    Full Text Available In this paper we propose a scheme that allows a strong reduction of the timing jitter between the pulses of a free electron laser (FEL and external laser pulses delivered simultaneously at the FEL experimental stations for pump-probe–type experiments. The technique, applicable to all seeding-based FEL schemes, relies on the free-space optical transport of a portion of the seed laser pulse from its optical table to the experimental stations. The results presented here demonstrate that a carefully designed laser beam transport, incorporating also a transverse beam position stabilization, allows one to keep the timing fluctuations, added by as much as 150 m of free space propagation and a number of beam folding mirrors, to less than 4 femtoseconds rms. By its nature our scheme removes the major common timing jitter sources, so the overall jitter in pump-probe measurements done in this way will be below 10 fs (with a margin to be lowered to below 5 fs, much better than the best results reported previously in the literature amounting to 33 fs rms.

  9. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Muna Khushaim

    2015-01-01

    Full Text Available The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T1Al2CuLi/θ′Al2Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al2Cu equilibrium composition. Additionally, the Li distribution inside the θ′ platelets was found to equal the same value as in the matrix. The equally thin T1 platelet deviates from the formula (Al2CuLi in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al2CuLi stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  10. Temperature and isotope effects on the shape of the optical absorption spectrum of solvated electrons in water

    International Nuclear Information System (INIS)

    Jou, F.Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in H 2 O and D 2 O have been measured at 274, 298, 340, and 380 K. All the spectra were fitted very well with the Gaussian and Lorentzian shape functions at the low- and high-energy sides of the absorption maximum, respectively, excluding the high-energy tail. The spectrum does not shift uniformly with temperature. The temperature coefficient of absorption decreases rapidly with increasing energy on the low-energy side of the absorption maximum, while it changes only slightly on the high-energy side. When the temperature increases the Lorentzian width remains constant, the Gaussian width varies proportionally to T/sup 1/2/, and the spectrum becomes more symmetrical. On going from H 2 O to D 2 O we found that the spectrum at a given A/A/sub max/ shows a shift of +0.05 eV in the low-energy wing. The shift decreases with increasing energy, reaching 0.03 eV at the absorption maximum. On the high-energy side of the band the shift becomes negative at hν > 2.2 eV. The shift on the low-energy side seems to be related to the difference of the zero-point energies of the inter- and intramolecular vibrations. The wavelength dependence of the temperature and isotope effects is consistent with the model that different types of excitation occur on the low- and high-energy sides of the absorption band. The temperature and isotopic dependence of the low-energy side are consistent with its width being due to phonon interactions

  11. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.; Volkov, A. Ya.; Kutin, A. A. [Institute of Macromolecular Compounds RAS, 199004 Bolshoy Pr., 31, St.-Petersburg (Russian Federation); Temiryazeva, M. P.; Temiryazev, A. G. [Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) Russian Academy of Sciences, Fryazino, Moscow region, 141190 (Russian Federation)

    2016-06-17

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsules and outside them.

  12. Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source

    Science.gov (United States)

    Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.

    2018-05-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q 18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.

  13. Towards Fast Measurement of the Electron Temperature in the SOL of ASDEX Upgrade Using Swept Langmuir Probes

    Czech Academy of Sciences Publication Activity Database

    Müller, H. W.; Adámek, Jiří; Horáček, Jan; Ionita, C.; Mehlmann, F.; Rohde, V.; Schrittwieser, R.

    2010-01-01

    Roč. 50, č. 9 (2010), s. 847-853 ISSN 0863-1042. [International Workshop on Electric Probes in Magnetized Plasmas/8th./. Innsbruck, 21.09.2009-24.09.2009] R&D Projects: GA AV ČR KJB100430901; GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * Langmuir probe * swept probe * ball-pen probe * fast temperature measurement * ELM Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201010144/pdf

  14. Contribution of the surface contamination of uranium-materials on the quantitative analysis results by electron probe microbeam analysis

    International Nuclear Information System (INIS)

    Bonino, O.; Fournier, C.; Fucili, C.; Dugne, O.; Merlet, C.

    2000-01-01

    The analytical testing of uranium materials is necessary for quality research and development in nuclear industry applications (enrichment, safety studies, fuel, etc). Electron Probe Microbeam Analysis Wavelength Dispersive Spectrometry (EPMA-WDS) is a dependable non-destructive analytical technology. The characteristic X-ray signal is measured to identify and quantify the sample components, and the analyzed volume is about one micron cube. The surface contamination of uranium materials modifies and contributes to the quantitative analysis results of EPMA-WDS. This contribution is not representative of the bulk. A thin oxidized layer appears in the first instants after preparation (burnishing, cleaning) as well as a carbon contamination layer, due to metallographic preparation and carbon cracking under the impact of the electron probe. Several analytical difficulties subsequently arise, including an overlapping line between the carbon Ka ray and the Uranium U NIVOVI ray. Sensitivity and accuracy of the quantification of light elements like carbon and oxygen are also reduced by the presence of uranium. The aim of this study was to improve the accuracy of quantitative analysis on uranium materials by EPMA-WDS by taking account of the contribution of surface contamination. The first part of this paper is devoted to the study of the contaminated surface of the uranium materials U, UFe 2 and U 6 Fe a few hours after preparation. These oxidation conditions are selected so as to reproduce the same contamination surfaces occurring in microprobe analytical conditions. Surface characterization techniques were SIMS and Auger spectroscopy. The contaminated surfaces are shown. They consist of successive layers: a carbon layer, an oxidized iron layer, followed by an iron depletion layer (only in UFe 2 and U 6 Fe), and a ternary oxide layer (U-Fe-O for UFe 2 et U 6 Fe and UO 2+x for uranium). The second part of the paper addresses the estimation of the errors in quantitative

  15. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.

    Science.gov (United States)

    Webster, Gordon; Watt, Lynsey C; Rinna, Joachim; Fry, John C; Evershed, Richard P; Parkes, R John; Weightman, Andrew J

    2006-09-01

    Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In

  16. Relativistic Electron Response to the Combined Magnetospheric Impact of a Coronal Mass Ejection Overlapping with a High-Speed Stream: Van Allen Probes Observations

    Science.gov (United States)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; hide

    2015-01-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  17. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Science.gov (United States)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  18. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.cz; Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R. [Institute of Plasma Physics, Prague (Czech Republic); Müller, H. W. [Max-Planck-Institute for Plasma Physics, Garching near Munich (Germany); Institute of Materials Chemistry & Research, University of Vienna, Vienna (Austria); Silva, C.; Fernandes, H.; Figueiredo, H. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck (Austria); Kurzan, B. [Max-Planck-Institute for Plasma Physics, Garching near Munich (Germany)

    2016-04-15

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ{sub BPP}) and the floating potential (V{sub fl}) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T{sub e} = (Φ{sub BPP} − V{sub fl})/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  19. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    International Nuclear Information System (INIS)

    Adamek, J.; Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Müller, H. W.; Silva, C.; Fernandes, H.; Figueiredo, H.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Kurzan, B.

    2016-01-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ_B_P_P) and the floating potential (V_f_l) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T_e = (Φ_B_P_P − V_f_l)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  20. 2H Kinetic Isotope Effects and pH Dependence of Catalysis as Mechanistic Probes of Rat Monoamine Oxidase A: Comparisons with the Human Enzyme‡

    Science.gov (United States)

    Wang, Jin; Edmondson, Dale E.

    2011-01-01

    Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Since the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits Ki values similar to those of human MAO A. The pH profile of kcat for rat MAO A shows a pKa of 8.2±0.1 for the benzylamine ES complex and pKa values of 7.5±0.1 and 7.6±0.1 for the respective ES complexes with p-CF3-1H and p-CF3-2H-benzylamine. In contrast to the human enzyme, the rat enzyme exhibits a single pKa value (8.3±0.1) with kcat/Km benzylamine vs. pH and pKa values of 7.8±0.1 and 8.1±0.2 are found for the ascending limbs, respectively, of kcat/Km vs. pH profiles for p-CF3-1H and p-CF3-2H-benzylamine and 9.3±0.1 and 9.1±0.2 for their respective descending limbs. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A exhibit large deuterium kinetic isotope effects on kcat and on kcat/Km. These effects are pH-independent, and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log kcat with the electronic substituent parameter (σ) at pH 7.5 and at 9.0 show a dominant contribution with positive ρ values (+1.2 – 1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues to rat MAO A show an increased van der Waals volumes (Vw) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits similar but not identical functional properties with the human enzyme and provide additional support for C-H bond cleavage via a polar nucleophilic mechanism. PMID:21819071

  1. ²H kinetic isotope effects and pH dependence of catalysis as mechanistic probes of rat monoamine oxidase A: comparisons with the human enzyme.

    Science.gov (United States)

    Wang, Jin; Edmondson, Dale E

    2011-09-06

    Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Because the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits K(i) values similar to those of human MAO A. The pH profile of k(cat) for rat MAO A shows a pK(a) of 8.2 ± 0.1 for the benzylamine ES complex and pK(a) values of 7.5 ± 0.1 and 7.6 ± 0.1 for the ES complexes with p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine, respectively. In contrast to the human enzyme, the rat enzyme exhibits a single pK(a) value (8.3 ± 0.1) with k(cat)/K(m) for benzylamine versus pH and pK(a) values of 7.8 ± 0.1 and 8.1 ± 0.2 for the ascending limbs, respectively, of k(cat)/K(m) versus pH profiles for p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine and 9.3 ± 0.1 and 9.1 ± 0.2 for the descending limbs, respectively. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A has large deuterium kinetic isotope effects on k(cat) and on k(cat)/K(m). These effects are pH-independent and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log k(cat) with the electronic substituent parameter (σ) at pH 7.5 and 9.0 show a dominant contribution with positive ρ values (1.2-1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues for rat MAO A shows an increased van der Waals volume (V(w)) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits functional properties similar but not identical with those of the human enzyme and provide additional support for C-H bond cleavage via a polar

  2. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  3. A flexible and accurate quantification algorithm for electron probe X-ray microanalysis based on thin-film element yields

    International Nuclear Information System (INIS)

    Schalm, O.; Janssens, K.

    2003-01-01

    Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (<5 keV). Since the layer thickness gradually changes with time, also the detector efficiency in the low energy region is not constant. Using the normal ZAF approach to quantification of EPXMA data is cumbersome in these conditions, because spectra from reference materials and from unknown samples must be acquired within a fairly short period of time in order to avoid the effect of the change in efficiency. To avoid this problem, an alternative approach to quantification of EPXMA data is proposed, following a philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method

  4. Isotope correlations as a probe for freeze-out characterization: central {sup 124}Sn+{sup 64}Ni, {sup 112}Sn+{sup 58}Ni collisions

    Energy Technology Data Exchange (ETDEWEB)

    Geraci, E.; Alderighi, M.; Anzalone, A.; Auditore, L.; Baran, V.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; Bonasera, A.; Borderie, B.; Bougault, R.; Bruno, M.; Brzychczyk, J.; Cardella, G.; Cavallaro, S.; Chbihi, A.; Cibor, J.; Colonna, M.; D' Agostino, M.; De Filippo, E.; Di Toro, M.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzano, G.; Le Neindre, N.; Li, S.; Lo Nigro, S.; Maiolino, C.; Majka, Z.; Manfredi, G.; Paduszynski, T.; Pagano, A.; Papa, M.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Russo, S.; Russotto, P.; Sechi, G.; Simion, V.; Sperduto, M.L.; Steckmeyer, J.C.; Trifiro, A.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wieleczko, J.P.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W

    2004-04-05

    {sup 124}Sn+{sup 64}Ni and {sup 112}Sn+{sup 58}Ni reactions at 35 AMeV incident energy were studied with the forward part of CHIMERA multi-detector. The most central collisions were selected by means of a multidimensional analysis. The characteristics of the source formed in the central collisions, as size, temperature and volume, were inspected. The measured isotopes of light fragments (3 {<=} Z {<=} 8) were used to examine isotope yield ratios that provide information on the free neutron to proton densities.

  5. Low cost digital electronics for isotope analysis with microcalorimeters - final report

    International Nuclear Information System (INIS)

    Hennig, W.

    2006-01-01

    The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would further allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ∼1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of

  6. Low cost digital electronics for isotope analysis with microcalorimeters - final report

    Energy Technology Data Exchange (ETDEWEB)

    W. Hennig

    2006-09-11

    The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would further allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ~1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of $80

  7. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Binhua; Liu, Jinyin; Zhou, Litao [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China); Long, Dan, E-mail: legend_long@aliyun.com [Department of Radiology, Zhejiang Cancer Hospital, Hangzhou 310022 (China); Feng, Kun; Sun, Xuhui [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China); Zhong, Jun, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China)

    2016-01-30

    Graphical abstract: An interaction between metal and graphene oxide was probed to enhance the hydrolysis efficiency of ammonia borane. - Highlights: • Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) for the hydrolysis of ammonia borane (AB). • The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). • An interfacial interaction between metal and GO was observed which could be related to the hydrolysis performance. • The results provide new insight into the enhanced performance of the M-GO hybrids. - Abstract: Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) to form the M-GO hybrids by a facile way. The hybrids showed good catalytic activities in the hydrolytic dehydrogenation of ammonia borane (AB, NH{sub 3}BH{sub 3}), which were significantly enhanced when compared to the metal nanoparticles or GO alone. The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). The distribution of metal elements was clearly imaged with identical electronic structure. Moreover, an interfacial interaction between metal and GO was observed with the peak intensity proportional to the catalytic performance in the hydrolysis of AB. The results provide new insight into the enhanced performance of the M-GO hybrids and may help for the design of advanced catalysts.

  8. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1976-01-01

    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  9. Skin Dose Equivalent Measurement from Neutron-Deficient Isotopes

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hua; Costigan, Steve A.; Romero, Leonard L.; Whicker, Jeffrey J.

    1997-12-01

    Neutron-deficient-isotopes decay via positron emission and/or electron capture often followed by x-ray, gamma-ray, and 0.511 MeV photons from positron annihilation. For cases of significant area and/or personnel contamination with these isotopes, determination of skin dose equivalent (SDE) is required by 10CFR835. For assessment of SDE, we evaluated the MICROSPEC-2(TM) system manufactured by Bubble Technology Industries of Canada which uses three different probes for dose measurement. We used two probes: (1) the X-probe which measures lower energy (4 - 120 keV) photon energy distributions and determines deep dose equivalent, SDE and dose equivalent to eyes, and (2) the B-probe which measures electron (positron) energy distributions, and determines skin dose equivalent. Also, the measured photon and beta spectra can be used to identify radioactive isotopes in the contaminated area. Measurements with several neutron-deficient sources showed that this system provided reasonably accurate SDE rate measurements when compared with calculated benchmark SDE rates with an average percent difference of 40%. Variations were expected because of differences between the assumed geometries used by MlCROSPEC-2 and the calculations when compared to the measurement conditions

  10. Th-U-PbT dating by Electron Probe Microanalysis, Part I. Monazite: analytical procedures and data treatment;Datacao Th-U-Pb{sub T} com microssonda eletronica, Parte I. Monazita: procedimentos analiticos e tratamento de dados

    Energy Technology Data Exchange (ETDEWEB)

    Vlach, Silvio Roberto Farias, E-mail: srfvlach@usp.b [Universidade de Sao Paulo (IG/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica

    2010-03-15

    Dating methodology by the electron probe microanalyser (EPMA) of (Th, U)-bearing minerals, highlighting monazite, acquired greater than ever importance in literature, particularly due to its superior spatial resolution, as well as versatility, which allow correlating petrological processes at times registered only in micro-scales in minerals and rocks with absolute ages. Although the accuracy is inferior to the one achieved with conventional isotopic methods in up to an order of magnitude, EPMA is the instrument that allows the best spatial resolution, reaching a few {mu}m{sup 3} in some conditions. Quantification of minor and trace elements with suitable precision and accuracy involves the own instrumental and analytical set-ups and data treatment strategies, significantly more rigorous when compared with those applied in conventional analyses. Th-U-Pb{sub T} dating is an example of these cases. Each EPMA is a unique machine as for its instrumental characteristics and respective automation system. In such a way, analytical procedures ought to be adjusted for laboratory specificities. The analytical strategies and data treatment adopted in the Electronic Microprobe Laboratory from Instituto de Geociencias of Universidade de Sao Paulo, Brazil, with a JEOL JXA8600S EPMA, and a ThermoNoran-Voyager 4.3 automation system, are presented and compared with the ones used in other laboratories. The influence of instrumental factors and spectral overlaps on Th, U, and Pb quantification is discussed. Applied procedures to interference correction, error propagation, data treatment, and fi nal chemical age presentation as well as to sampling and analyses are emphasized. Some typical applications are discussed, drawing attention to the most relevant aspects of electron microprobe dating. (author)

  11. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    Science.gov (United States)

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Probing new physics models of neutrinoless double beta decay with SuperNEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R. [CNRS/IN2P3, IPHC, Universite de Strasbourg, Strasbourg (France); Augier, C.; Bongrand, M.; Garrido, X.; Jullian, S.; Sarazin, X.; Simard, L. [CNRS/IN2P3, LAL, Universite Paris-Sud 11, Orsay (France); Baker, J.; Caffrey, A.J.; Horkley, J.J.; Riddle, C.L. [INL, Idaho Falls, ID (United States); Barabash, A.S.; Konovalov, S.I.; Umatov, V.I.; Vanyushin, I.A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Basharina-Freshville, A.; Evans, J.J.; Flack, R.; Holin, A.; Kauer, M.; Richards, B.; Saakyan, R.; Thomas, J.; Vasiliev, V.; Waters, D. [University College London, London (United Kingdom); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Timkin, V.; Tretyak, V.; Vasiliev, R. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cebrian, S.; Dafni, T.; Irastorza, I.G.; Gomez, H.; Iguaz, F.J.; Luzon, G.; Rodriguez, A. [University of Zaragoza, Zaragoza (Spain); Chapon, A.; Durand, D.; Guillon, B.; Mauger, F. [Universite de Caen, LPC Caen, ENSICAEN, Caen (France); Chauveau, E.; Hubert, P.; Hugon, C.; Lutter, G.; Marquet, C.; Nachab, A.; Nguyen, C.H.; Perrot, F.; Piquemal, F.; Ricol, J.S. [UMR 5797, Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Gradignan (France); UMR 5797, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Gradignan (France); Deppisch, F.F.; Jackson, C.M.; Nasteva, I.; Soeldner-Rembold, S. [Univ. of Manchester (United Kingdom); Diaz, J.; Monrabal, F.; Serra, L.; Yahlali, N. [CSIC - Univ. de Valencia, IFIC (Spain); Fushima, K.I. [Tokushima Univ., Tokushima (Japan); Holy, K.; Povinec, P.P.; Simkovic, F. [Comenius Univ., FMFI, Bratislava (Slovakia); Ishihara, N. [KEK, Tsukuba, Ibaraki (Japan); Kovalenko, V. [CNRS/IN2P3, IPHC, Univ. de Strasbourg (France); Joint Inst. for Nuclear Research, Dubna (Russian Federation); Lamhamdi, T. [USMBA, Fes (Morocco); Lang, K.; Pahlka, R.B. [Univ. of Texas, Austin, TX (United States)] (and others)

    2010-12-15

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double {beta} decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double {beta} decay by measuring the decay half-life and the electron angular and energy distributions. (orig.)

  13. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: Coupling isotopic tools with mathematical modeling.

    Science.gov (United States)

    Carrey, R; Rodríguez-Escales, P; Soler, A; Otero, N

    2018-02-01

    Nitrate removal through enhanced biological denitrification (EBD), consisting of the inoculation of an external electron donor, is a feasible solution for the recovery of groundwater quality. In this context, liquid waste from wine industries (wine industry by-products, WIB) may be feasible for use as a reactant to enhance heterotrophic denitrification. To address the feasibility of WIB as electron donor to promote denitrification, as well as to evaluate the role of biomass as a secondary organic C source, a flow-through experiment was carried out. Chemical and isotopic characterization was performed and coupled with mathematical modeling. Complete nitrate attenuation with no nitrite accumulation was successfully achieved after 10 days. Four different C/N molar ratios (7.0, 2.0, 1.0 and 0) were tested. Progressive decrease of the C/N ratio reduced the remaining C in the outflow and favored biomass migration, producing significant changes in dispersivity in the reactor, which favored efficient nitrate degradation. The applied mathematical model described the general trends for nitrate, ethanol, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) concentrations. This model shows how the biomass present in the system is degraded to dissolved organic C (DOC en ) and becomes the main source of DOC for a C/N ratio between 1.0 and 0. The isotopic model developed for organic and inorganic carbon also describes the general trends of δ 13 C of ethanol, DOC and DIC in the outflow water. The study of the evolution of the isotopic fractionation of organic C using a Rayleigh distillation model shows the shift in the organic carbon source from the WIB to the biomass and is in agreement with the isotopic fractionation values used to calibrate the model. Isotopic fractionations (ε) of C-ethanol and C-DOC en were -1‰ and -5‰ (model) and -3.3‰ and -4.8‰ (Rayleigh), respectively. In addition, an inverse isotopic fractionation of +10‰ was observed for

  14. Secondary α-deuterium isotope effects as a probe to the relationship between structure and mechanism of pyrolysis of secondary azoalkanes

    International Nuclear Information System (INIS)

    Grizzle, P.L.

    1975-01-01

    This study was carried out to investigate the mechanism of azoalkane thermolysis and the effect of molecular structure on the potential-energy hypersurface for pyrolysis utilizing secondary α-deuterium isotope effects. Since the magnitude of the α-effect for 1,1'-diphenylazoethane is of singular importance in the interpretation of those for related compounds, it has been redetermined. To investigate the effect of molecular structure on the potential-energy hypersurface for thermolysis, α-effects have been determined for 2,2,2',2'-tetramethyl-1,1'-diphenylazoethane and (2,2-dimethyl-1-phenylpropyl)azomethane; the inability to prepare these compounds by conventional methods necessitated the development of a new method for synthesis of secondary azoalkanes. A convenient synthesis of secondary azo compounds is reported. Secondary α-deuterium isotope effects were obtained for the thermal decomposition of 1,1'-diphenylazoethane (III) and 1,1'-diphenylazoethane-1,1'-d 2 (III-d 2 ). The isotope effect is entirely consistent with a simultaneous one-step thermolysis mechanism. Secondary α-deuterium isotope effects and activation parameters were obtained in the thermolysis of 2,2,2',2'-tetramethyl-1,1'-diphenylazopropane (VIII) and (2,2-dimethyl-1-phenylpropyl)azomethane (IX). The data for VIII is considered in terms of both a one- and two-step thermolysis mechanism. The α-effect and activation energy for VIII are not obviously reconcilable with a one-step mechanism. The α-effects, activation energies, and rates of thermolysis for VIII, IX, and (1-phenylethyl)azomethane are most easily rationalized by a two-step mechanism

  15. The rate of second electron transfer to QB(-) in bacterial reaction center of impaired proton delivery sho