WorldWideScience

Sample records for isotope powered stirling

  1. Small Stirling dynamic isotope power system for robotic space missions

    Science.gov (United States)

    Bents, D. J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

  2. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  3. Stirling Isotope Power System Program. Final report, January 1978-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Stirling Isotope Power System (SIPS) design is discussed, including the control system and engine starter. The development, of fabrication, and testing of the SIPS converter are presented. The work performed on the Isotope Heat Source Assembly is described. The ancillary equipment, system integration and qualification, and safety are discussed. The safety discussion consists primarily of prediction of dose rates around the IHS and the influence on handling equipment design. Reliability and quality assurance are included. (MHR)

  4. Parallel Stirling Converters Being Developed for Spacecraft Onboard Power

    Science.gov (United States)

    Thieme, Lanny G.

    1999-01-01

    Stirling Technology Co., as part of a NASA Lewis Research Center Phase II Small Business Innovation Research contract, has successfully demonstrated paralleling two thermodynamically independent Stirling converters. A system of four Stirling converters is being developed by NASA and the Department of Energy as an alternative high-efficiency radioisotope power source for spacecraft onboard electric power for NASA deep space missions. The high Stirling efficiency, exceeding 20 percent for this application, will greatly reduce the necessary isotope inventory in comparison to the current radioisotope thermoelectric generators (RTG s), significantly reducing mission cost and risk. Stirling is the most developed converter option of the advanced power technologies under consideration.

  5. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  6. Modular Stirling Power System (MSPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinia Technology Corporation's (ITC) proposed Modular Stirling Power System (MSPS) is a free-piston Stirling system that addresses NASA needs in 12-kW increments....

  7. Stirling Converters For Solar Power

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1993-01-01

    Two designs expected to meet long-term goals for performance and cost. Proposed for advanced systems to convert solar thermal power to electrical power. Each system, designed to operate with 11-m-diameter paraboloidal reflector, includes solar-energy receiver, liquid-metal heat-transport subsystem, free-piston Stirling engine, cooling subsystem, alternator or generator coupled directly or indirectly to commercial electric-power system, and control and power-conditioning circuitry. System converts approximately 75 kW of input solar thermal power falling on collector to about 25 kW of output electrical power.

  8. Power characteristics of a Stirling radioisotope power system over the life of the mission

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays. .

  9. Solar powered Stirling cycle electrical generator

    Science.gov (United States)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  10. Component technology for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  11. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  12. Materials technology for Stirling space power converters

    Science.gov (United States)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  13. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  14. Overheat Prevention in Solar-Powered Stirling Engines

    Science.gov (United States)

    Garrigus, W. E.; Pons, R. L.

    1982-01-01

    Proposed controller for solar-powered Stirling engine prevents engine from burning up when energy added by Sun exceeds that withdrawn by load. Head-temperature controller used existing electrical control unit of Stirling engine to regulate power output in response to head temperature. Power out-put is varied so keeps head temperature fairly constant.

  15. Dynamic Computer Model of a Stirling Space Nuclear Power System

    Science.gov (United States)

    2006-05-04

    Profiles of the Stirling converter……. 50 Figure 4-3. Random fiber regenerator matrices with 80% and 88% porosity................... 53 Figure 4-4...ideal in shape (Figure 2-7). 29,30 The main components of the Stirling converter are the heater, regenerator , cooler, displacer, power piston...and alternator. The heater and cooler provide a continuous heat source and sink, respectively, for the Stirling converter. The regenerator adds

  16. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  17. Status of several Stirling loss characterization efforts and their significance for Stirling space power development

    Science.gov (United States)

    Tew, Roy C., Jr.

    1988-01-01

    NASA-Lewis and other U.S. Government agencies have supported experimental and analytical programs for the characterization of Stirling cycle engines' thermodynamic losses, with a view to the improvement of Stirling engine design capabilities. The Space Power Demonstrator Engine is noted to have benefited from these efforts; test data and model predictions suggest that even greater performance improvements would be obtainable through additional modifications of engine regenerator and heater hardware.

  18. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  19. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  20. Mobile hydraulic power supply. Liquid piston Stirling engine pump

    Energy Technology Data Exchange (ETDEWEB)

    Ven, James D. van de [100 Institute Road, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2009-11-15

    Conventional mobile hydraulic power supplies involve numerous kinematic connections and are limited by the efficiency, noise, and emissions of internal combustion engines. The Stirling cycle possesses numerous benefits such as the ability to operate from any heat source, quiet operation, and high theoretical efficiency. The Stirling engine has seen limited success due to poor heat transfer in the working chambers, difficulty sealing low-molecular weight gases at high pressure, and non-ideal piston displacement profiles. As a solution to these limitations, a liquid piston Stirling engine pump is proposed. The liquid pistons conform to irregular volumes, allowing increased heat transfer through geometry features on the interior of the working chambers. Creating near-isothermal operation eliminates the costly external heat exchangers and increases the engine efficiency through decreasing the engine dead space. The liquid pistons provide a positive gas seal and thermal transport to the working chambers. Controlling the flow of the liquid pistons with valves enables matching the ideal Stirling cycle and creates a direct hydraulic power supply. Using liquid hydrogen as a fuel source allows cooling the compression side of the engine before expanded the fuel into a gas and combusting it to heat the expansion side of the engine. Cooling the compression side not only increases the engine power, but also significantly increases the potential thermal efficiency of the engine. A high efficiency Stirling engine makes energy regeneration through reversing the Stirling cycle practical. When used for regeneration, the captured energy can be stored in thermal batteries, such as a molten salt. The liquid piston Stirling engine pump requires further research in numerous areas such as understanding the behavior of the liquid pistons, modeling and optimization of a full engine pump, and careful selection of materials for the extreme operating temperatures. Addressing these obtainable

  1. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    Science.gov (United States)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  2. Status of NASA's Stirling Space Power Converter Program

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  3. Activity and accomplishments of dish/Stirling electric power system development

    Science.gov (United States)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  4. A dish-Stirling solar-thermal power system

    Science.gov (United States)

    Pons, R. L.; Clark, T. B.

    1980-01-01

    This paper presents results of a preliminary design/economic study of a first-generation point focusing distributed receiver solar-thermal electric system optimized for application to industrial and small community power plants at power levels up to 10 MWe. Power conversion is provided by small Stirling cycle engines mounted at the focus of paraboloidal solar concentrators. The output of multiple power modules (concentrator, receiver, engine, and electric generator) is collected by means of a conventional electrical system and interfaced with a utility grid. Based on the United Stirling P-75 engine, a 1 MWe system employing mass-produced components (100,000 modules/year) could produce electricity at costs competitive with those projected for electricity generated by more conventional means, e.g. with fossil fuels.

  5. Power Conversion with a Stirling Cycle for Venus Surface Mission

    Science.gov (United States)

    Mellott, Ken

    2004-01-01

    The light-filtering characteristic of the dense, mostly-CO2 atmosphere of Venus, combined with the high atmospheric cloud cover, relegates the surface mission use of photovoltaic power systems and beckons for the independence and reliability of a nuclear-powered energy source. A multi-faceted Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a helium- charged, kinematic Stirling converter, which is powered by nuclear, General Purpose Heat Source (GPHS) modules. The kinematic, Stirling power converter is configured to drive an electronics and sensor cooler in addition to a generator for electrical power. This paper briefly describes the design process and also describes and summarizes key features of the Stirling power converter preliminary design concept. With an estimated total efficiency of 23.4%, the power converter drives the electronics and sensor cooler, and also produces 100 watts of electricity. The converter rejects waste heat at a hot sink temperature of 500 C.

  6. An approach to optimization of low-power Stirling cryocoolers

    Science.gov (United States)

    Sullivan, D. B.; Radebaugh, R.; Daney, D. E.; Zimmerman, J. E.

    1983-01-01

    A method for optimizing the design (shape of the displacer) of low power Stirling cryocoolers relative to the power required to operate the systems is described. A variational calculation which includes static conduction, shuttle and radiation losses, as well as regenerator inefficiency, was completed for coolers operating in the 300 K to 10 K range. While the calculations apply to tapered displacer machines, comparison of the results with stepped displacer cryocoolers indicates reasonable agreement.

  7. Solar Stirling power generation - Systems analysis and preliminary tests

    Science.gov (United States)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  8. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    Directory of Open Access Journals (Sweden)

    Chia-En Ho

    2012-09-01

    Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.

  9. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    Can ÇINAR

    2004-01-01

    Full Text Available In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed was reached at 846 rpm without load.

  10. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  11. Optimal power and efficiency of quantum Stirling heat engines

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  12. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  13. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  14. Progress in High Power Free-Piston Stirling Convertor Development

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Kirby, Raymond L.; Chapman, Peter A.; Walter, Thomas J.

    2008-01-01

    The U.S. Space Exploration Policy has established a vision for human exploration of the moon and Mars. One option for power for future outposts on the lunar and Martian surfaces is a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. A 25 kW convertor was developed in the 1990s under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in such a possible lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Foster-Miller, Inc. is developing the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  15. Progress in High Power Free-Piston Stirling Convertor Development

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Kirby, Raymond L.; Chapman, Peter A.; Walter, Thomas J.

    2008-09-01

    The U.S. Space Exploration Policy has established a vision for human exploration of the moon and Mars. One option for power for future outposts on the lunar and Martian surfaces is a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. A 25 kW convertor was developed in the 1990s under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in such a possible lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Foster-Miller, Inc. is developing the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  16. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  17. Conceptual design of a solar electric advanced Stirling power system

    Science.gov (United States)

    White, M. A.; Brown, A. T.

    1987-02-01

    The objective is to develop a high confidence conceptual design for a free-piston Stirling engine based system designed to deliver 25 kW of three-phase electric power to a utility grid when coupled to the 11 meter Test Bed Concentrator (TBC) at SNLA. Further objectives include a design life of 60,000 hours, minimum life cycle cost and dynamic balancing. The approach used to achieve these objectives is to utilize a hermetically sealed Stirling hydraulic concept based on technology developed to an advanced level during the past 19 years for an artificial heart power source. Such engines and critical metal bellows components have demonstrated operating times in the desired range. This approach provides full film hydraulic lubrication of all sliding parts, simple construction with conventional manufacturing tolerances, proven hydraulically coupled counterbalancing, and simple but effective power control to follow insolation variations. Other advantages include use of commercially available hydraulic motors and rotary alternators which can be placed on the ground to minimize suspended weight. The output from several engine/concentrator modules can be directed to one large motor/alternator for further cost savings. Three monthly progress reports for the same period, January 1 to January 31, 1987, are compiled within this document.

  18. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  19. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  20. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  1. Summary of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    1992-01-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  2. 1987 overview of free-piston Stirling technology for space power application

    Science.gov (United States)

    Slaby, Jack G.; Alger, Donald L.

    1987-01-01

    The Lewis Research Center program concerned with the development of a free-piston Stirling engine for space-power applications is examined. The system mass of a Stirling system is compared to that of a Brayton system for the same peak temperature and output power; the advantages of the Stirling system are discussed. The predicted and experimental performances of the 25 kWe opposed-piston space power demonstrator engine are evaluated. It is determined that in order to enhance performance the regenerator needs to be modified, and the gas bearing flow between the displacer and power piston needs to be isolated in order to increase the operating stroke. Identification and correction of the energy losses, the design and operation of the linear alternator, and heat exchange concepts are considered. The design parameters and conceptual design characteristics for a 25 kWe single-cylinder free-piston Stirling space-power converter are described.

  3. Summary of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    1992-10-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  4. Overview of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    1992-01-01

    This paper presents an update on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power program is part of the High Capacity Power element of the NASA Civil Space Technology Initiative. Lewis is also providing technical management of a DOE-funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The Lewis component technology program is coordinated with the primary contract efforts of these projects but is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  5. High Specific Power Multiple-Cylinder Alpha Free-Piston Stirling Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will result in a design of a 30 kWe dual opposed alpha free-piston Stirling engine power conversion system for space applications, and provide...

  6. Overview of the NASA Lewis component technology program for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.; Swec, Diane M.

    This paper presents an update on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power program is part of the High Capacity Power element of the NASA Civil Space Technology Initiative. Lewis is also providing technical management of a DOE-funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The Lewis component technology program is coordinated with the primary contract efforts of these projects but is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  7. The Electromagnetic Compatibility (EMC) Design Challenge for Scientific Spacecraft Powered by a Stirling Power Converter

    Science.gov (United States)

    Sargent, Noel B.

    2001-01-01

    A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.

  8. Space Power Free-Piston Stirling Engine Scaling Study

    Science.gov (United States)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  9. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  10. Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Ahmadi

    2015-02-01

    Full Text Available Different variables affect the performance of the Stirling engine and are considered in optimization and designing activities. Among these factors, torque and power have the greatest effect on the robustness of the Stirling engine, so they need to be determined with low uncertainty and high precision. In this article, the distribution of torque and power are determined using experimental data. Specifically, a novel polynomial approach is proposed to specify torque and power, on the basis of previous experimental work. This research addresses the question of whether GMDH (group method of data handling-type neural networks can be utilized to predict the torque and power based on determined parameters.

  11. Status of an advanced radioisotope space power system using free-piston Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  12. Performance analysis of dish solar stirling power system; Stirling engine wo mochiita taiyonetsu hatsuden system no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Yamaguchi, I. [Meiji University, Tokyo (Japan); Naito, Y.; Momose, Y. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1996-10-27

    In order to estimate the performance of the dish solar Stirling power system, matching and control of each component system were studied, and the performance of the 25kWe class power system was estimated on the basis of direct solar radiation measured in Miyako island, Okinawa. Application of a Stirling engine to solar heat power generation is highly effective in spite of its small scale. The total system is composed of a converging system, heat receiver, engine/generator system and control system. As the simulation result, the generator output is nearly proportional to direct solar radiation, and the system efficiency approaches to a certain constant value with an increase in direct solar radiation. As accumulated solar radiation is large, the influence of slope error of the converging mirror is comparatively small. The optimum aperture opening ratio of the heat receiver determined on the basis of mean direct solar radiation (accumulated solar radiation/{Delta}t (simulated operation time of the system)), corresponds to the primary approximation of the opening ratio for a maximum total generated output under variable direct solar radiation. 6 refs., 6 figs., 1 tab.

  13. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  14. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Energy Technology Data Exchange (ETDEWEB)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S. [Mechanical Technology Inc., Latham, NY (United States)

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, {open_quotes}A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.{close_quotes} The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions.

  15. Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight

    Science.gov (United States)

    Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.

    2009-01-01

    Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.

  16. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  17. Technology demonstration of a free-piston stirling advanced radioisotope space power system

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Olan, Ronald W.; Erbeznik, Raymond M.

    1999-01-01

    Free-piston Stirling convertors (Stirling engine with integral linear alternator) are a mature technology with demonstrated long-life, maintenance-free, degradation-free operation exceeding 46,000 hours (5+ years) on one unit. Tens of thousands of hours have been accumulated on numerous systems in beta trials, plus more than 8 million flexure-hours (900 flexure-years) on the most critical component (flexure bearings), all with no failures when operated within specifications. Vibration is a key concern for Stirling convertors in space. Recent tests have demonstrated a factor of 50 reduction in vibration, relative to a single convertor, by coupling two convertors mechanically and electrically. Even though the measured vibration level is below Jet Propulsion Laboratory (JPL) specified vibration objectives, demonstration of an additional factor of 10 vibration reduction is pending with an active vibration reduction system. Stirling cycle efficiency is well established. A four-convertor 150-W(e) end of mission (EOM) power system for deep space missions is projected to require only three general purpose heat source (GPHS) modules with conservative Inconel 718 heater heads, leaving significant efficiency improvement potential when used with higher temperature materials. Even in the unlikely scenario of one inoperative convertor, the other three convertors ramp up to provide full output. A two-convertor demonstration system, representative of one-half of a 150-W(e) power system, is described in this paper and scheduled to become operational in December 1998.

  18. Conceptual design of an advanced Stirling conversion system for terrestrial power generation

    Science.gov (United States)

    1988-01-01

    A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.

  19. Control scheme for power modulation of a free piston Stirling engine

    Science.gov (United States)

    Dhar, Manmohan

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  20. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  1. Free-piston Stirling Engine system considerations for various space power applications

    Science.gov (United States)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  2. A 1987 overview of free-piston Stirling technology for space power application

    Science.gov (United States)

    Slaby, Jack G.; Alger, Donald L.

    1987-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space-power application. NASA Lewis serves as the project office to manage the newly initiated NASA SP-100 Advanced Technology Program. One of the major elements of this five-year program is the development of advanced power conversion concepts of which the Stirling cycle is a viable growth candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are comparisons between predicted and experimental engine performance, enhanced performance resulting from regenerator modification, increased operating stroke brought about by isolating the gas bearing flow between the displacer and power piston, identifying excessive energy losses and recommending corrective action, and a better understanding of linear alternator design and operation. Technology work is also conducted on heat exchanger concepts, both design and fabrication. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter.

  3. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    Science.gov (United States)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  4. Stirling engine power control and motion conversion mechanism

    Science.gov (United States)

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  5. Status update of a free-piston Stirling convertor for radioisotope space power systems

    Science.gov (United States)

    White, Maurice; Qiu, Songgang; Augenblick, Jack; Peterson, Allen; Faultersack, Frank

    2001-02-01

    Free-piston Stirling engines offer a relatively mature technology that is well-suited for advanced, high-efficiency radioisotope space power systems. This paper updates results from a combination of DOE and NASA contracts with Stirling Technology Company (STC). These contracts have demonstrated STC's Stirling convertor technology in a configuration and power level representative of a space power system. Based on demonstrated performance, long-life maintenance-free technology heritage, and success with aggressively imposed vibration testing. DOE has awarded system integration contracts to Boeing, Lockheed Martin and Teledyne Energy Systems. The objectives of these competitive Phase I contracts are to develop complete spacecraft power system conceptual designs based on the STC Stirling convertor, and to plan subsequent phases for two launches. Performance results for the DOE 55-W(e) Technology Demonstration Convertors (TDC's) have met original projections. Although the TDC's were intended only for technology demonstration, they have achieved very aggressive efficiency goals, demonstrated convertor-induced vibration levels below the Jet Propulsion Laboratory (JPL) specifications, passed a simulated launch load vibration test at 0.2 g2/Hz (12.3 g rms), and met EMI/EMC goals for most contemplated missions. No consideration for EMI reduction was included in the TDC design. Minor changes are underway to reduce EMI levels, with a goal of meeting specifications for missions such as Solar Probe with highly sensitive instrumentation. The long-term objective for DOE is to develop a power system with a system efficiency exceeding 20% that can function with a high degree of reliability for 10 years and longer on deep space missions. .

  6. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  7. Micro power/heat cogeneration incorporating a stirling engine; microKraft-Waerme-Kopplung mit Stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Luft, S. [Solo Kleinmotoren GmbH, Sindelfingen (Germany)

    2003-05-01

    The Stirling-engine for CHP-purpose developed by SOLO is a trend-setting technology. It represents the most suspicious perspective apart from the fuel-cell technology in order to become suitable to the requirements of the future power supply in the focus of the sustainability and the decentralized energy supply. The charm of the Stirling technology is based on the external combustion: a so far not known variability with the primary energy choice as well as a life span substantially extending, wear-free operation are possible thereby. The external combustion reduces also the maintenance and the emissions in a measure not known with conventional engine technologies. The development steps are finished. The result is the world-wide first concept for the commercial, stationary application of decentralized micro-CHP on Stirling technology basis, which goes into series. (orig.) [German] Das von SOLO entwickelte STIRLING-Motorenkonzept zur Kraft-Waerme-Kopplung ist eine Technologie, die neben der Brennstoffzellen-Technologie die vielversprechende Perspektive darstellt, um den Anforderungen der zukuenftigen Energieversorgung im Fokus der Nachhaltigkeit und der dezentralen Energiebereitstellung gerecht zu werden. Der Charme der Stirlingtechnologie liegt in der aeusseren Verbrennung. Eine bisher nicht gekannte Variabilitaet bei der Primaerenergiewahl und ein die Lebensdauer erheblich verlaengernder, verschleissfreier Betrieb werden dadurch ermoeglicht. Die externe Verbrennung verringert auch die Wartungsaufwendungen und reduziert die Emissionen in einem bei konventionellen Motorentechnologien nicht gekannten Mass. Die Entwicklungsschritte sind abgeschlossen und das Ergebnis ist das weltweit erste Konzept zur kommerziellen, stationaeren Anwendung dezentraler Kraft-Waerme-Kopplung, auf Stirling-Technologie-Basis, das in Serie geht. (orig.)

  8. A Small Fission Power System with Stirling Power Conversion for NASA Science Missions

    Science.gov (United States)

    Mason, Lee; Carmichael, Chad

    2011-01-01

    In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.

  9. Research on Stirling Engine in the System of Dish-Stirling Solar Power Generation%碟式太阳能热发电系统中斯特林发动机的研究

    Institute of Scientific and Technical Information of China (English)

    王译旋

    2015-01-01

    Based on the analysis of operating principle of dish-stirling solar power generation system, the article uses the stirling engine in the system of dish-stirling solar power generation as the object, analyzes the key technique of stirling cycle and engine, and combined the research status of stirling engine in dish-stirling solar power generation system, pointed out many research hot points of stirling engine, provides a reference for relative research of dish-stirling solar power generation system.%在分析碟式太阳能热发电系统工作原理的基础上,以碟式太阳能热发电系统中的斯特林发动机为研究对象,分析斯特林循环以及斯特林发动机的关键技术。结合碟式太阳能热发电系统中斯特林发动机的研究现状,指出斯特林发动机的诸多研究热点,为碟式太阳能热发电系统相关研究提供依据。

  10. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  11. Performance study of a Stirling engine in a combined heat and power system

    Energy Technology Data Exchange (ETDEWEB)

    Aliabadi, A.; Thomson, M.; Wallace, J.; Tzanetakis, T. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    The use of biofuels in engines can result in poor ignition quality, long ignition delays, and long residence times. However, biofuels can be used efficiently in low power applications with Stirling engines. This study examined biofuels combustion in a retrofitted commercially-available combined heat and power (CHP) system. The system consisted of a burner, a Stirling engine, a generator and a controller. The Stirling cycle consisted of 4 processes: an isothermal expansion; a constant volume regeneration; an isothermal compression; and a constant volume regeneration. Tests were conducted to run the CHP unit in a heat-manage mode with coolant and combustion temperature set points of 70 and 460 degrees C for a period of 1 hour and 45 minutes. Air and fuel supply rates were regulated in order to control heat input into the system. A steady state energy balance analysis was then performed. Results of the experimental study showed that the system was capable of producing 0.8 kW of electrical and 5.5 kW of thermal power. An energy balance analysis was used to create an experimental benchmark performance of the unit. A revised fueling system is also being designed to combust the biomass pyrolysis oil. 7 refs., 2 tabs., 10 figs.

  12. Stirling engines for low-temperature solar-thermal-electric power generation

    Science.gov (United States)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves

  13. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  14. Optimization of solar-powered Stirling heat engine with finite-time thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yaqi, Li [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xi' an Research Institute of Hi-Tech, Xi' an, Shaanxi 710025 (China); Yaling, He; Weiwei, Wang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2011-01-15

    A mathematical model for the overall thermal efficiency of the solar-powered high temperature differential dish-Stirling engine with finite-rate heat transfer, regenerative heat losses, conductive thermal bridging losses and finite regeneration processes time is developed. The model takes into consideration the effect of the absorber temperature and the concentrating ratio on the thermal efficiency; radiation and convection heat transfer between the absorber and the working fluid as well as convection heat transfer between the heat sink and the working fluid. The results show that the optimized absorber temperature and concentrating ratio are at about 1100 K and 1300, respectively. The thermal efficiency at optimized condition is about 34%, which is not far away from the corresponding Carnot efficiency at about 50%. Hence, the present analysis provides a new theoretical guidance for designing dish collectors and operating the Stirling heat engine system. (author)

  15. SPIKE-2: A practical Stirling engine for kilowatt level solar power

    Science.gov (United States)

    Beale, W. T.

    1984-03-01

    Recent advances in the art of free piston Stirling engine design make possible the production of 1-10kW free piston Stirling linear alternator engine, hermetically sealed, efficient, durable and simple in construction and operation. Power output is in the form of single or three phase 60 Hz. AC, or DC. The three phase capability is available from single machines without need of external conditioning. Engine voltage control regains set voltage within 5 cycles in response to any load change. The existing SPIKE-2 design has an engine alternator efficiency of 25% at 650 C heater wall temperature and a service life of over three years in solar service. The same system can be scaled over a range of at least 100 watts to 25kW.

  16. Study of Some Power Influencing Parameters of a Solar Low Temperature Stirling Engine

    Directory of Open Access Journals (Sweden)

    Hind El Hassani

    2014-06-01

    Full Text Available  The aim of this paper is to study experimentally and theoretically the effect of some geometrical parameters on low temperature differential Stirling engines (LT-SE performance. The studied parameters are: the phase angle, the compression ratio and the dead volume. Results show that for optimizing the performance of these engines, dead volume should be minimized, the compression ratio should be maximized and the optimal phase angle for the gamma type is 90°. For the adopted theoretical model, based on Schmidt theory, even if theoretical numerical results are different from those found experimentally, but it still remains a valid model for finding out some parameters effect on the LT-SE performance, and for calculating approximately the engine work and power. Key words: Stirling engine, low temperature, Solar, Phase angle, compression ratio, dead volume.

  17. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  18. Thermal energy storage for the Stirling engine powered automobile. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D T [ed.

    1979-03-01

    A detailed design of a thermal energy storage (TES) system for use with the Stirling engine as an automotive power system has been developed. The gravimetric and volumetric storage densities are competitive with electric battery storage systems. The TES/Stirling engine system meets all operational requirements for a practical vehicle and can be packaged in compact-sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept developed in this study is also useful for a dual-mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short-duration trips (approx. 10 miles or less) and liquid fuel carried onboard the vehicle used for long-duration trips (as in current automobiles). The dual-mode approach permits an automobile with the convenience and flexibility of current automobiles while offering the potential of 50% savings in the consumption of premium liquid fuels for automotive propulsion in the United States. Relative to the TES-only vehicle, the dual mode approach also reduces the TES cost significantly because of the much smaller TES capacity required.

  19. Design of multihundred-watt dynamic isotope power system for robotic space missions

    Science.gov (United States)

    Bents, D. J.; Geng, S. M.; Schreiber, J. G.; Withrow, C. A.; Schmitz, P. C.; McComas, T. J.

    The design of a multihundred-watt dynamic isotope power system (DIPS) based on the US Department of Energy (DOE) general-purpose heat source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) is described as a potential lower cost alternative to radioisotope thermoelectric generators (RTGs). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions. Since the competitive potential of FPSE as an isotope convertor was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain safe operating limits under all conditions including shutdown of one engine on a twin engine unit. Based on these results, preliminary characterizations of multihundred-watt units have been established. They indicate that, per electrical watt, the GPHS/small Stirling DIPS will be roughly equivalent to MOD RTG in size and mass but will require about a third the amount of isotope fuel.

  20. Design and testing of a second generation solar Stirling engine power conversion system

    Science.gov (United States)

    Nelving, H.-G.; Bratt, C.; Percival, W.; Wells, D.

    This paper discusses the design and testing of the improved, second generation 4-95 solar Stirling engine power conversion system. Design rationale and performance results are presented for the improved receiver design, improved concentrator alignment, integrated cooling unit, and improved control system. Flux patterns for the concentrator are presented along with calculated and measured data on the temperatures obtained in the solar heater tubes. Test results including maximum and average module performance are shown. The highlights from the testing include a maximum demonstrated power output of over 24.9 kilowatts electric output to the grid, and an overall module efficiency of 27 percent.

  1. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus

    Science.gov (United States)

    Colozza, Anthony J.

    2012-01-01

    The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.

  2. A low temperature differential Stirling engine-based power generation research programme

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, P.; Webb, R.; Lloyd, C.; Bodger, P. [Canterbury Univ., Christchurch (New Zealand). Dept. of Electrical and Computer Engineering

    2008-07-01

    The use of low-grade or waste heat energy for electric power generation has been largely overlooked as a serious option due to their low conversion efficiency. This paper described a research program initiated to develop a commercially viable electric power generation system that used low-grade and waste heat. The system was designed using a low temperature differential Stirling engine technology. Stirling engines are closed system machines that cycle working gases through a regenerator and then back and forth between hot and cold heat exchanger surfaces. The first phase of the program aims to design, construct, and test small-scale prototypes capable of operating with a temperature differential of as low as 30 K with an output of approximately 1 kW of electric power. A final prototype will then be selected an upscaled. A research pilot power plant using waste from an existing commercial geothermal power plant will then be constructed. The program will also investigate the local and global market viability of the plant. 13 refs., 3 figs.

  3. Multi-objective optimization and design for free piston Stirling engines based on the dimensionless power

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.

  4. Terrestrial Applications of Extreme Environment Stirling Space Power Systems

    Science.gov (United States)

    Dyson, Rodger. W.

    2012-01-01

    NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.

  5. An Experimental and Analytical Investigation of Stirling Space Power Converter Heater Head

    Science.gov (United States)

    Abdul-Aziz, Ali; Bartolotta, Paul; Tong, Mike; Allen, Gorden

    1995-01-01

    NASA has identified the Stirling power converter as a prime candidate for the next generation power system for space applications requiring 60000 hr of operation. To meet this long-term goal, several critical components of the power converter have been analyzed using advanced structural assessment methods. Perhaps the most critical component, because of its geometric complexity and operating environment, is the power converter's heater head. This report describes the life assessment of the heater head which includes the characterization of a viscoplastic material model, the thermal and structural analyses of the heater head, and the interpolation of fatigue and creep test results of a nickel-base superalloy, Udimet 720 LI (Low Inclusions), at several elevated temperatures for life prediction purposes.

  6. Optimization of a 5 kW solar powered alpha stirling engine using Powell's method

    Energy Technology Data Exchange (ETDEWEB)

    Shamekhi, A. [Numeric Method Development Co., Shemiranat, Tehran (Iran, Islamic Republic of); Aliabadi, A. [MAPNA Group, Tehran (Iran, Islamic Republic of)

    2010-08-13

    Many types of Stirling engines have been built in a variety of forms and sizes since its invention in 1816. The Stirling engine offers maximum efficiency; maximum power; and minimum costs. In this study, a solar powered alpha Stirling engine was simulated using a second order method. The paper presented the governing equations, including conservation of mass; pressure losses inside the heat exchangers; pressure losses inside the regenerator; and heat transfer in the heat exchangers. Methods to optimize the parameters in order to improve engine efficiency were also discussed. The study showed that the geometric parameter of the engine influences engine performance considerably. After 20 iterations of Powell's method for engine optimization, the engine performance was optimized to the value of 25.4 percent. 18 refs., 2 tabs., 8 figs.

  7. The development of high cooling power and low ultimate temperature superfluid Stirling refrigerators

    Science.gov (United States)

    Patel, Ashok B.

    The superfluid Stirling refrigerator (SSR) is a recuperative Stirling cycle refrigerator which provides cooling to below 2 K by using a liquid 3He-4He mixture as the working fluid. In 1990, Kotsubo and Swift demonstrated the first SSR, and by 1995, Brisson and Swift had developed an experimental prototype capable of reaching a low temperature of 296 mK. The goal of this thesis was to improve these capabilities by developing a better understanding of the SSR and building SSR's with higher cooling powers and lower ultimate temperatures. This thesis contains four main parts. In the first part, a numerical analysis demonstrates that the optimal design and ultimate performance of a recuperative Stirling refrigerator is fundamentally different from that of a standard regenerative Stirling refrigerator due to a mass flow imbalance within the recuperator. The analysis also shows that high efficiency recuperators remain a key to SSR performance. Due to a quantum effect called Kapitza resistance, the only realistic and economical method of creating higher efficiency recuperators for use with an SSR is to construct the heat exchangers from very thin (12 μm - 25 μm thick) plastic films. The second part of this thesis involves the design and construction of these recuperators. This research resulted in Kapton heat exchangers which are leaktight to superfluid helium and capable of surviving repeated thermal cycling. In the third part of this thesis, two different single stage SSR's are operated to test whether the plastic recuperators would actually improve SSR performance. Operating from a high temperature of 1.0 K and with 1.5% and 3.0% 3He-4He mixtures, these SSR's achieved a low temperature of 291 mK and delivered net cooling powers of 3705 μW at 750 mK, 977 μW at 500 mK, and 409 μW at 400 mK. Finally, this thesis describes the operation of three versions of a two stage SSR. Unfortunately, due to experimental difficulties, the merits of a two stage SSR were not

  8. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically Coupled Configuration

    Science.gov (United States)

    Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.

    2011-01-01

    A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  9. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    Science.gov (United States)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  10. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  11. Loss Analysis of High Power Stirling-Type Pulse Tube Cryocooler

    Science.gov (United States)

    Nakano, K.; Hiratsuka, Y.

    2015-12-01

    For the purpose of cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES) and current fault limiters, cryocoolers should be compact in size, light-weight, and have high efficiency and reliability. In order to meet the demand of HTS devices world-wide, the cryocooler needs to have COP efficiency >0.1. We have developed a high power Stirling-type pulse tube cryocooler (SPTC) with an in-line expander. The experimental results were reported in June 2012[1]. The cooling capacity was 210 W at 77 K and the minimum temperature was 37 K when the compressor input power was 3.8 kW. Accordingly, the COP was about 0.055. To further improve the efficiency, the energy losses in the cryocooler were analyzed. The experimental results and the numerical calculation results are reported in this paper.

  12. The optimization of Stirling refrigerator and Stirling heat engine

    Science.gov (United States)

    Zhu, Xin-Mei

    2007-03-01

    The optimization of an irreversible Stirling refrigerator or a Stirling heat engine is an important research subject for a long time. Taking into account of the influence of mixed thermal resistance and regeneration loss in the performance study, we have derived the optimal relation of both of them. For Stirling refrigerator, we have deduced the optimal relation between the thermal resistance coefficient and the efficiency. To the Stirling heat engine, we have deduced the optimal relation between the power output and the efficiency. The conclusions obtained mirror the observed performance of the Stirling refrigerator or the Stirling heat engine quite well. Thus, the results may provide a new theoretical guidance to the optimal design and the selection of optimal operating condition of the Stirling refrigerator or the Stirling heat engine.

  13. Free-Piston Stirling Power Conversion Unit for Fission Power System, Phase II Final Report

    Science.gov (United States)

    Wood, J. Gary; Stanley, John

    2016-01-01

    In Phase II, the manufacture and testing of two 6-kW(sub e)Stirling engines was completed. The engines were delivered in an opposed 12-kW(sub e) arrangement with a common expansion space heater head. As described in the Phase I report, the engines were designed to be sealed both hermetically and with a bolted O-ring seal. The completed Phase II convertor is in the bolted configuration to allow future disassembly. By the end of Phase II, the convertor had passed all of the final testing requirements in preparation for delivery to the NASA Glenn Research Center. The electronic controller also was fabricated and tested during Phase II. The controller sets both piston amplitudes and maintains the phasing between them. It also sets the operating frequency of the machine. Details of the controller are described in the Phase I final report. Fabrication of the direct-current to direct-current (DC-DC) output stage, which would have stepped down the main controller output voltage from 700 to 120 V(sub DC), was omitted from this phase of the project for budgetary reasons. However, the main controller was successfully built, tested with the engines, and delivered. We experienced very few development issues with this high-power controller. The project extended significantly longer than originally planned because of yearly funding delays. The team also experienced several hardware difficulties along the development path. Most of these were related to the different thermal expansions of adjacent parts constructed of different materials. This issue was made worse by the large size of the machine. Thermal expansion problems also caused difficulties in the brazing of the opposed stainless steel sodium-potassium (NaK) heater head. Despite repeated attempts Sunpower was not able to successfully braze the opposed head under this project. Near the end of the project, Glenn fabricated an opposed Inconel NaK head, which was installed prior to delivery for testing at Glenn. Engine

  14. Design Description of a Planned Breadboard Development of a Stirling Power Conversion System (SPCS) for the European Space Agency (ESA) Powered by a Simulated Nuclear Fuel Module

    Science.gov (United States)

    Parfitt, Claire; Vrublevskis, John; Bate, Alan; Summers, David; Edwards, Robin; Bradshaw, Tom; Crook, Martin; Gilley, Geoff; Rawlings, Thomas; Bailey, Paul; Dadd, Mike; Stone, Richard; Jamotton, Pierre; De Cock, Ellen; Linder, Martin; Dowell, Allan; Shaughnessy, Bryan

    2014-08-01

    The design of a breadboard power converter system for use with radioisotopic heat sources will be described. This design is based on the Stirling cycle, taking advantage of long-life technologies developed for past European space cooler systems. Electrical output is a conditioned DC bus of approximately 100 We. The design consists of a Stirling Converter Subsystem, Fuel Module Subsystem, Power Conditioning Electronics and Support Structure. The critical functions of a future Stirling radioisotope power generation system have been identified as safety, long-life, efficiency, mass and scalability. The breadboard (supported by 2 independent models) has been designed to investigate these areas fully and to raise their technology readiness levels (TRLs). Testing of the breadboard is currently planned to start in 2014.

  15. Microminiature rotary Stirling cryocooler for compact, lightweight, and low-power thermal imaging systems

    Science.gov (United States)

    Filis, Avishai; Bar Haim, Zvi; Pundak, Nachman; Broyde, Ramon

    2009-05-01

    Novel compact and low power consuming cooled infrared thermal imagers as used in gyro-stabilized payloads of miniature unmanned aerial vehicles, Thermal small arms sights and tactical night vision goggles often rely on integral rotary micro-miniature closed cycle Stirling cryogenic engines. Development of EPI Antimonides technology and optimization of MCT technology allowed decreasing in order of magnitudes the level of dark current in infrared detectors thus enabling an increase in the optimal focal plane temperature in excess of 95K while keeping the same radiometric performances as achieved at 77K using regular technologies. Maintaining focal plane temperature in the range of 95K to 110K instead of 77K improves the efficiency of Stirling thermodynamic cycle thus enlarging cooling power and enabling the development of a mini micro cooler similar to RICOR's K562S model which is three times smaller, lighter and more compact than a standard tactical cryocooler like RICOR's K508 model. This cooler also features a new type of ball bearings and internal components which were optimized to fit tight bulk constraints and maintain the required life span, while keeping a low level of vibration and noise signature. Further, the functions of management the brushless DC motor and temperature stabilization are delivered by the newly developed high performance sensorless digital controller. By reducing Dewar Detector thermal losses and increasing the focal plane temperature, longer life time operation is expected as was proved with RICOR's K508 model. Resulting from this development, the RICOR K562S model cryogenic engine consumes 1.2 - 3.0 WDC while operating in the closed loop mode and maintaining the typical focal plane arrays at 200-100K. This makes it compatible with very compact battery packages allowing further reduction of the overall thermal imager weight thus making it comparable with the compatible uncooled infrared thermal imager relying on a microbolometer detector

  16. Status of Kilowatt-Class Stirling Power Conversion Using a Pumped NaK Loop for Thermal Input

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Robbie, Malcolm G.

    2010-01-01

    Free-piston Stirling power conversion has been identified as a viable option for potential Fission Surface Power (FSP) systems on the Moon and Mars. Proposed systems consist of two or more Stirling convertors, in a dual-opposed configuration, coupled to a low-temperature uranium-dioxide-fueled, liquid-metal-cooled reactor. To reduce developmental risks associated with liquid-metal loop integration, a test rig has been built to evaluate the performance of a pair of 1-kW free-piston Stirling convertors using a pumped sodium-potassium (NaK) loop for thermal energy input. Baseline performance maps have been generated at the Glenn Research Center (GRC) for these 1-kW convertors operating with an electric heat source. Each convertor was then retrofitted with a custom-made NaK heater head and integrated into a pumped NaK system at the Marshall Space Flight Center (MSFC). This paper documents baseline testing at GRC as well as the progress made in integrating the Stirling convertors into the pumped NaK loop.

  17. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    Science.gov (United States)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  18. Testing of a Stirling engine for heat + power cogeneration; Test eines Stirlingmotors zur Kraft-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, M.; Heinen, J. [RWE Energy AG, Essen (Germany)

    2007-01-15

    As part of a technology evaluation of distributed energy generators, RWE Energy AG extensively tested a micro combined heat and power appliance, powered by a Stirling engine developed by the British firm Microgen Energy Limited. Microgen Energy Limited is a specialist in micro combined heat and power (microCHP) based on unique Free-Piston Stirling generator technology Microgen is working with leading appliance manufacturers to integrate its core technology into a range of innovative microCHP products. The investigations concentrated on the determination of capacity, efficiency and emissions, the grid connection and behaviour at start-up and under varying loads. This article summarises the results of the tests and gives an overview of micro-CHP technologies (CHP=combined heat and power) and their possible significance to the market in the future. (orig.)

  19. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    Science.gov (United States)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  20. KIPS kilowatt isotope power system

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Control System topical report covers basic control requirements, selection of control system and a recent review of an electromechanical approach to the flow control valve. Section I covers the basic control requirements for Organic Rankine cycle systems, particular requirements for an isotope fueled space power system, and special requirements imposed by launch, Shuttle deployment and spacecraft requirements. Various control devices which can be used to meet system requirements are discussed. In Section II, various combinations of control functions and devices are presented with comments as to the suitability of each for the intended application. This is essentially a review of the selection process used to pick the present KIPS control system. The formal trade-off matrix, component description, and system selection, as prepared for Design Reviews 2 and 3, is included as Appendix A to the report. Section 3 covers the recently completed design of an electronic-electromechanical flow control valve and compares this approach to the thermal bulb-hydro-mechanical flow control valve baseline. The results of this comparative study indicate that the present configuration is preferable to an electrical valve.

  1. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  2. Small Stirling Cycle Convertors

    Science.gov (United States)

    Penswick, L. Barry; Schreiber, Jeffery

    2005-02-01

    The Stirling convertor concept continues to be a viable potential candidate for various space power applications at electrical power levels ranging from greater than 100 KW to on the order of 10+watts. Various development efforts, both in the past and currently underway, have clearly demonstrated the potential for long operating life of this concept, its high efficiency in comparison to alternative power systems (>50% of Carnot based on electric power out to heat in), and its excellent specific power characteristics. A truly unique attribute of the Stirling convertor is the ability to maintain many of these same advantages at significantly lower electrical power levels (on the order of 1 watt and below). This provides the opportunity for a wider range of potential space power applications and the use of alternative heat sources operating at dramatically lower hot-end temperatures (about 250 °C vs. current values of about 650 °C). An overview of low-power Stirling convertors and related Stirling cooler technology is provided with an emphasis on assessing the technical maturity of this concept's key components at the low power level of interest. A conceptual design of a small, 1-watt (electrical output) Stirling convertor utilizing multiple Low Weight Radioisotope Heater Unit heat sources will be described. Key technical issues in the development of this power level Stirling convertor are discussed.

  3. 3 kW Stirling engine for power and heat production

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Bovin, Jonas Kabell; Carlsen, Henrik

    1996-01-01

    A new 3 kW Beta-type Stirling engine has been developed. The engine uses natural gas as fuel and is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism...... and the alternator are built into a pressurized crank casing. The engine produces 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW representing a shaft efficiency of 30% and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as the working gas. The crank...... for X-heads. A grease-lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function...

  4. High-power stirling-type pulse tube cooler for power engineering applications of high temperature superconductivity; Hochleistungspulsrohrkuehler vom Stirling-Typ fuer energietechnische Anwendungen der Hochtemperatursupraleitung

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc

    2015-12-15

    For the cooling of high temperature superconducting 4 MVA machines (motors or generators), a single-stage Stirling-type pulse-tube cryocooler was built. The cooling power, which the cryocooler was aimed for, is 80 - 100 W at 30 K with an electrical input power of 10 kW (8 kW pV-power). The advantages of this cooler type compared to traditional cooling concepts are an increased reliability and long maintenance intervals. While single-stage Stirling-type pulse-tube cryocoolers for the temperature range of liquid nitrogen (77 K) are already commercially available, there exist currently no commercial systems for the temperature range near 30 K, which is the important range for applications of high-temperature superconductivity. The experimental setup consisted of a 10 kW linear compressor, type 2S297W, from CFIC Inc. which was used as the pressure wave generator. The compressor was operated by a Micromaster 440 frequency inverter from Siemens, which was controlled by a custom-made computer program. The cold head was made in inline configuration, in order to avoid deflection losses. During the first cool-downs tests a temperature inhomogeneity occurred in the regenerator at low temperature and high pV-power, which was attributed to a constant mass flow (circular dc-flow) within the regenerator. This firstly observed dc-flow, generates a net energy flow from the hot end to the cold end of the regenerator, which reduces the cooling capacity considerably and hence the minimum attainable temperature is severely increased. For the design and optimization of the cold-head, a cryocooler model was initially created using the commercial simulation software Sage, which did not include the regenerator inhomogeneity seen in the experiment. For the modeling of the observed streaming inhomogeneity caused by the dc-flow, the regenerator was replaced by two identical parallel regenerators with variable transverse thermal coupling. In the inhomogeneous case (without dc-flow) the

  5. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  6. Conceptual design of free-piston Stirling conversion system for solar power units

    Science.gov (United States)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  7. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  8. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  9. Review of applications and of extended power density of 4-cylinder, in-line and hermetic Stirling engine

    Science.gov (United States)

    Carlqvist, Stig G.; Gothberg, Yngve; Kullberg, Gunnar; Torstensson, Bo

    The four-cylinder, in-line and hermetic Stirling engine has been found to have great flexibility and thus to be suitable for various applications. For very long life internal, linear alternators are foreseen with bearings being considerably deloaded. The configuration has been adapted for use as a duplex machine with the four-cylinder, double-acting Stirling engine driving a four-cylinder, double-acting Stirling heat pump or cooling machine. Also in this case the bearings will be considerably deloaded with long life as a result. A simple and fast reaction control system has been invented, which acts by varying the pressure in the cycle, while keeping the crankcase pressure low and nearly constant. This principle is also applicable in a duplex machine with a heat pump or cooling machine, thus making it possible to arbitrarily vary the heating or the cooling power of the heat pump or the cooling machine on the one side and the amount of electricity generated on the other side. A super-alloy or ceramic high power density rating has been investigated. It is estimated that the superalloy or ceramic power rating can be combined with thermal efficiencies of well over 40 percent.

  10. Recent advances in design of low cost film concentrator and low pressure free piston Stirling engines for solar power

    Science.gov (United States)

    Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.

    1984-03-01

    The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.

  11. Simulation of a Martini Displacer Free Piston Stirling Engine for Electric Power Generation

    National Research Council Canada - National Science Library

    Pascal Stouffs; Nasser Seraj Mehdizadeh

    2000-01-01

    .... A dynamic simulation of this engine has been developed using a decoupled analysis. The equation of motion of the free piston induces a strong coupling between the electrical load and the thermodynamics inside the free piston Stirling engine...

  12. The Stirling engine accelerates.; Der Stirling-Motor gibt Gas.

    Energy Technology Data Exchange (ETDEWEB)

    Pfannstiel, Dieter [DiWiTech - Ingenieurpraxis fuer technische und wissenschaftliche Dienstleistungen, Breitenbach a.H. (Germany)

    2010-01-15

    At this moment, Stirling engines are the most outstanding micro technology of combined heat and power generation. The free piston machine combines the principle of the conventional Stirling engine with a modern linear generator for power generation utilizing waste heat for the heating of houses or hot water tanks. All large manufacturers concern themselves with this technology and develop devices based on the Stirling engine. The overview contribution under consideration describes the current level of development of the Stirling devices of different manufacturers. In nearly two years, these devices will serially be produced in the market.

  13. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  14. Stirling Module Development Overview

    Science.gov (United States)

    Livingston, F. R.

    1984-01-01

    The solar parabolic dish Stirling engine electrically generating module consists of a solar collector coupled to a Stirling engine powered electrical generator. The module is designed to convert solar power to electrical power in parallel with numerous identical units coupled to an electrical utility power grid. The power conversion assembly generates up to 25 kilowatts at 480 volts potential/3 phase/alternating current. Piston rings and seals with gas leakage have not occurred, however, operator failures resulted in two burnt out receivers, while material fatigue resulted in a broken piston rod between the piston rod seal and cap seal.

  15. Steam and Stirling vs. gasoline engine. Wood-fuelled boiler for heat and power generation; Dampf und Stirling kontra Otto. Holzkessel als stromerzeugende Heizung

    Energy Technology Data Exchange (ETDEWEB)

    Genath, B.

    2007-06-15

    The contribution describes new systems presented at the ISH, e.g. compact cogeneration systems with a stirling motor or steam engine for its electric section. An outline is given of what to expect in the future. (orig.)

  16. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  17. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Science.gov (United States)

    Li, Zhi-Gang; Tang, Da-Wei; Li, Tie; Du, Jing-Long

    2011-05-01

    We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface. Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solar-thermal efficiency of 67.1%.

  18. An Overview of Dish-Stirling Concentrating Solar Power Technology%碟式斯特林太阳能热发电的技术发展

    Institute of Scientific and Technical Information of China (English)

    朱辰元; 彭小方

    2011-01-01

    The principle of Solar Dish-Stirling power system has been introduced.Some tests show that Solar Dish-Stirling technology has the highest solar energy-to-grid quality electricity transfer efficiency compared to peer technologies.Recent development of dish concentrating solar power systems based on Stirling engine technology has also been discussed.In view of the key technology of gas Stirling engine had been breached,a technical condition in developing 25kW dish-Stirling concentrating solar power in China has been formed.%碟式斯特林太阳能热发电是目前发电效率最高的太阳能热发电的技术。介绍了碟式斯特林太阳能热发电系统原理,论述了国际上目前以热气机为核心技术的碟式太阳能热发电系统发展状况。指出我国的燃气热气机发电技术已经取得了突破性的发展,25kW级碟式斯特林太阳能热发电系统的研发已具备了技术基础。

  19. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  20. Milliwatt isotope power source for microspacecraft

    Science.gov (United States)

    Chmielewski, Arthur B.; Borshchevsky, Alexander; Vining, Cronin B.

    1993-01-01

    Miniature spacecraft offer the potential to greatly reduce mission costs, but today there is no flight qualified power source that could operate a microspacecraft during a journey to the outer planets. This paper describes the Milliwatt Isotope Power Source (MIPS), a concept capable of reliable, long term electrical power generation in the milliwatt range. Utilizing existing Radioisotope Heater Unit (RHU) heat source technology and proven thermoelectric energy conversion module technology, a MIPS package about the size of a D-cell battery could deliver about 30 milliwatts of electrical power for several decades and weigh 70 grams. Such a power source could be used to power miniature instruments such as seismometers, propel a microrover or provide decentralized power aboard a more conventional spacecraft. Also, reliance on flight-qualified heat source technology and the small radioisotope inventory required are attractive safety considerations.

  1. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Gang; TANG Da-Wei; LI Tie; DU Jing-Long

    2011-01-01

    @@ We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing.Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results,we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.%We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.

  2. Stirling engine application study

    Science.gov (United States)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  3. A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source

    Energy Technology Data Exchange (ETDEWEB)

    Kongtragool, Bancha; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-06-15

    In this paper, the performances of a four power-piston, gamma-configuration, low-temperature differential Stirling engine are presented. The engine is tested with air at atmospheric pressure by using a solar simulator with four different solar intensities as a heat source. Variations in engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number obtained from the testing of the engine is also investigated. The results indicate that at the maximum actual energy input of 1378 W and a heater temperature of 439 K, the engine approximately produces a maximum torque of 2.91 N m, a maximum shaft power of 6.1 W, and a maximum brake thermal efficiency of 0.44% at 20 rpm. (author)

  4. Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, H.; Cinar, C.; Oztuerk, E.; Yuecesu, H.S. [Department of Mechanical Technology, Faculty of Technical Education, Gazi University, 06500 Teknikokullar, Ankara (Turkey)

    2010-01-15

    This study presents test results of a Stirling engine with a lever controlled displacer driving mechanism. Tests were conducted with helium and the working fluid was charged into the engine block. The engine was loaded by means of a prony type micro dynamometer. The heat was supplied by a liquefied petroleum gas (LPG) burner. The engine started to run at 118 C hot end temperature and the systematic tests of the engine were conducted at 180 C, 220 C and 260 C hot end external surface temperatures. During the test, cold end temperature was kept at 27 C by means of water circulation. Variation of the shaft torque and power with respect to the charge pressure and hot end temperature were examined. The maximum torque and power were measured as 3.99 Nm and 183 W at 4 bars charge pressure and 260 C hot end temperature. Maximum power corresponded to 600 rpm speed. (author)

  5. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  6. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  7. Stirling Engine Controller

    Science.gov (United States)

    Blaze, Gina M.

    2004-01-01

    Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions

  8. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  9. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  10. Rescue vehicle Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    David Hainsworth; Pete Nicolay [CSIRO Exploration & Mining (Australia)

    2001-03-15

    The aim of this project was to develop a proof-of-concept Stirling engine and heat cell for use in the mining industry, primarily for underground applications. In particular, the Stirling engine, being an external combustion engine, offers the potential to operate on stored heat in low-oxygen or inert underground atmospheres. This makes it attractive for rescue vehicles, which are required to operate in such environments. A prototype Stirling engine with power output in the 15kW range was constructed and tested. Experimental measurements showed that this output was not achieved. While the basic thermodynamic principles of the design were valid, achieved output was well below the required value. The conclusion is that, because of the lack of commercial Stirling cycle-based products and the difficulty experienced in this project in overcoming the problem of high temperature seal implementation to produce a working prototype, the short term potential of the Stirling engine for mine rescue applications is limited.

  11. Milliwatt Radioisotope Stirling Convertor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sest, Inc. proposes to perform a detailed evaluation at the both convertor and component levels of a small, low electrical output power (50 to 500 mW) Stirling cycle...

  12. Stirling Stuff

    CERN Document Server

    Reid, John S

    2016-01-01

    Robert Stirling's patent for what was essentially a new type of engine to create work from heat was submitted in 1816. Its reception was underwhelming and although the idea was sporadically developed, it was eclipsed by the steam engine and, later, the internal combustion engine. Today, though, the environmentally favourable credentials of the Stirling engine principles are driving a resurgence of interest, with modern designs using modern materials. These themes are woven through a historically based narrative that introduces Robert Stirling and his background, a description of his patent and the principles behind his engine, and discusses the now popular model Stirling engines readily available. These topical models, or alternatives made 'in house', form a good platform for investigating some of the thermodynamics governing the performance of engines in general.

  13. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  14. Long-Term Creep of a Thin-Walled Inconel 718 Stirling Power-Convertor Heater Head Assessed

    Science.gov (United States)

    Bowman, Randy R.

    2002-01-01

    The Department of Energy and NASA have identified Stirling power convertors as candidate power supply systems for long-duration, deep-space science missions. A key element for qualifying the flight hardware is a long-term durability assessment for critical hot section components of the power convertor. One such critical component is the power convertor heater head. The heater head is a high-temperature pressure vessel that transfers heat to the working gas medium of the convertor, which is typically helium. An efficient heater head design is the result of balancing the divergent requirements of thin walls for increased heat transfer versus thick walls to lower the wall stresses and thus improve creep resistance and durability. In the current design, the heater head is fabricated from the Ni-base superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV). Although IN 718 is a mature alloy system (patented in 1962), there is little long-term (>50,000-hr) creep data available for thin-specimen geometries. Since thin-section properties tend to be inferior to thicker samples, it is necessary to generate creep data using specimens with the same geometry as the actual flight hardware. Therefore, one facet of the overall durability assessment program involves generating relatively short-term creep data using thin specimens at the design temperature of 649 C (1200 F).

  15. Test Results From a Pair of 1-kWe Dual-Opposed Free-Piston Stirling Power Convertors Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Geng, Steven M.; Briggs, Maxwell H.; Penswick, L. Barry; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1-kW-class free-piston Stirling convertors were modified to operate with a NaK (sodium (Na) and potassium (K)) liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The convertors were successfully tested at the Marshall Space Flight Center (MSFC) from June 6 through July 14, 2009. The convertors were operated for a total test time of 66 hr and 16 min. The tests included (a) performance mapping the convertors over various hot- and cold-end temperatures, piston amplitudes, and NaK flow rates and (b) transient test conditions to simulate various startup (i.e., low-, medium-, and high-temperature startups) and fault scenarios (i.e., loss of heat source, loss of NaK pump, convertor stall, etc.). This report documents the results of this testing

  16. High-power Stirling-type pulse tube cryocooler: Observation and reduction of regenerator temperature-inhomogeneities

    Science.gov (United States)

    Dietrich, M.; Yang, L. W.; Thummes, G.

    2007-05-01

    A single stage Stirling-type pulse tube cryocooler driven by a 10 kW-class linear compressor was built and tested. During operation an azimuthal temperature inhomogeneity around the circumference of the regenerator was observed indicating a significant parasitic streaming in the regenerator. The nature of this streaming was examined and a numerical model based on the Sage software was created to understand its origin. It turns out that there is a critical operating condition where a self-preserving streaming starts to circulate in the regenerator. This critical condition is found to depend on the temperature gradient in the regenerator, the amount of mass flow and on the transverse thermal conductivity of the regenerator material. To overcome the negative effect of circulating streaming, the transverse heat conductance in the regenerator was increased by use of sandwich type fillings, where a part of the original stainless screens was replaced by materials with higher thermal conductance. Using these type regenerator fillings, the losses from streaming were significantly reduced and the refrigeration temperature was lowered to 34.5 K. Cooling powers of 50 W at 45 K and 200 W at 70 K are available with electric input powers of 6.3 kW and 8.6 kW, respectively.

  17. Parametric System Model for a Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  18. Solar Stirling system development

    Science.gov (United States)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  19. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    Science.gov (United States)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  20. Kinematic Stirling Engine Performance

    Science.gov (United States)

    Tew, J. R. C.

    1986-01-01

    Computer program developed for analyzing thermodynamic characteristics of kinematic Stirling engine. Computes time-varying piston positions, pressures, and gas temperatures in each of gas-control volumes into which engine working space is divided. Engine performance characterized by calculations of power and efficiency (both indicated and brake). Inputs to code are engine geometrical parameter, engine-operating conditions, and indexes that specify various options available.

  1. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling e...

  2. Recent Stirling engine loss-understanding results

    Science.gov (United States)

    Tew, Roy C.; Thieme, Lanny G.; Dudenhoefer, James E.

    1990-01-01

    For several years, NASA and other U.S. government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed.

  3. Performance of Stirling Engines

    Science.gov (United States)

    Iwamoto, Shoichi; Hirata, Koichi; Toda, Fujio

    We have developed five kinds of high- and low-temperature differential Stirling engines and their engine performance was investigated experimentally. In order to determine the parameters that affect engine performance, experimental results were discussed and compared with results calculated using analytical methods. We show an arranging method for the experimental results, and consider the performance of general Stirling engines. After using the arranging method with nondimensional numbers obtained by a dimensional analysis, a prediction method, which is used at the early design stage, is formulated. One of the nondimensional numbers in this prediction method is calculated based on engine specifications, including the properties of the working gas. The prediction method can predict engine speed, output power, the effect of working gas and operating conditions.

  4. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  5. High Specific Power Multiple-Cylinder Free-Piston Alpha Stirling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks highly efficient, long life solar dynamic power conversion systems. The requirements for these missions emphasize low mass and high conversion...

  6. Unique Features and Spacecraft Applications of Dynamic Isotope Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Raab, B.

    1982-01-01

    The dynamic isotope power system represents the most recent attempt to develop a heat-engine generator for space electric power. A major objective in this most recent effort was to increase the power and to reduce the cost of nuclear space power systems to the point where the unique features of this power source could be brought to bear for Earth-orbit missions which could benefit therefrom. This objective was largely achieved; both weight and cost of the dynamic isotope systems are comparable to solar power systems. The dynamic isotope power system, designed for spacecraft requiring prime power in the 500-2000 W range, has been successfully built and ground tested. A number of studies, summarized herein, have demonstrated the advantages of using such a power system instead of the conventional solar system for a variety of Earth-orbit missions. These advantages stem from the unique nature of the dynamic isotope system, different in kind from solar power systems. As a result, in many cases, the spacecraft design can be significantly simplified and more closely harmonized with mission requirements. This overall advantage can be crucial in missions which have stringent pointing, stability, viewing, and/or positioning requirements.

  7. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    Science.gov (United States)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  8. Implementation of a Sage-Based Stirling Model Into a System-Level Numerical Model of the Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Briggs, Maxwell H.

    2011-01-01

    The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.

  9. Idealization of The Real Stirling Cycle

    Directory of Open Access Journals (Sweden)

    Červenka Libor

    2016-12-01

    Full Text Available The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT Power commercial simulation software.

  10. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  11. Stirling Engine for Classroom Demonstration Purposes

    Science.gov (United States)

    Miller, Andrew

    2005-04-01

    In the study of Thermodynamics, the Carnot cycle is representative of an ideal engine. Such an engine has the maximum efficiency possible for a given temperature difference. The Stirling Cycle engine closely resembles the Carnot cycle in terms of efficiency. In order to demonstrate the Stirling Cycle in a classroom setting, a Stirling engine was built. Robert Stirling first patented the Stirling engine in 1816. The Stirling engine runs on the temperature differential between hot and cold air. As the air is cycled through the engine, the expansion and contraction of the air drives the piston. The work on the piston is transferred into mechanical work via a walking beam. There are no exhaust values that vent gases, because the gases inside the engine never leave. The power for the Stirling engine does not come from explosions like a combustion engine. Rather, the engine is powered by an external heat source. These engines also have practical purposes. They are used in very specialized applications where quiet operation is important. Examples of such uses are in submarines and auxiliary power generators.

  12. A compendium of solar dish/Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Stine, W.B. [California State Polytechnic Univ., Pomona, CA (United States). Dept. of Mechanical Engineering; Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

  13. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  14. Automotive Stirling engine development program

    Science.gov (United States)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.

  15. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-12-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  16. Non-heat pipe receiver/p-40 Stirling engine

    Science.gov (United States)

    Haglund, R. A.

    1981-01-01

    The technology for a full-up hybrid dish-Stirling Solar Thermal Power system is discussed. Overall solar-to-electric efficiency for the dish-Stirling system demonstration is approximately 30%. Hybrid operation is provided by fossil fuel combustion augmentation, which enables the Stirling engine to operate continuously at constant speed and power, regardless of insolation level, thus providing the capability to operate on cloudy days and at night.

  17. Isotope scaling of the H mode power threshold on JET

    Science.gov (United States)

    Righi, E.; Bartlett, D. V.; Christiansen, J. P.; Conway, G. D.; Cordey, J. G.; Eriksson, L.-G.; DeEsch, H. P. L.; Fishpool, G. M.; Gowers, C. W.; de Haas, J. C. M.; Harbour, P. J.; Hawkes, N. C.; Jacquinot, J.; Jones, T. T. C.; Kerner, W.; King, Q. A.; Lowry, C. G.; Monk, R. D.; Nielsen, P.; Rimini, F. G.; Saibene, G.; Sartori, R.; Schunke, B.; Sips, A. C. C.; Smith, R. J.; Stamp, M. F.; Start, D. F. H.; Thomsen, K.; Tubbing, B. J. D.; Zornig, N.

    1999-03-01

    Results are presented from a series of dedicated experiments carried out on JET in tritium, DT, deuterium and hydrogen plasmas to determine the dependence of the H mode power threshold on the plasma isotopic mass. The Pthr propto Aeff-1 scaling is established over the whole isotopic range. This result makes it possible for a fusion reactor with a 50:50 DT mixture to access the H mode regime with about 20% less power than that needed in a DD mixture. Results on the first systematic measurements of the power necessary for the transition of the plasma to the type I ELM regime, which occurs after the transition to H mode, are also in agreement with the Aeff-1 scaling. For a subset of discharges, measurements of Te and Ti at the top of the profile pedestal have been obtained, indicating a weak influence of the isotopic mass on the critical edge temperature thought to be necessary for the H mode transition.

  18. Update on the advanced Stirling conversion system project for 25 kW dish Stirling applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.; Wong, Wayne A.

    1992-01-01

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is examined. The free-piston Stirling engine has the potential for both solar and nuclear space power applications. Two parallel design directions feature a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor which incorporates a linear alternator to directly provide the electrical output of about 25 kW to a utility grid. The Cummins Engine Company (CEC) free-piston Stirling convertor incorporates a linear alternator along with hydrodynamic gas bearings to provide noncontacting, wear-free support to the pistons. The Stirling Technology Company design incorporates linear alternator technology with flexures that provide noncontacting support while also supplying much of the spring stiffness needed to obtain proper resonance.

  19. Advanced Stirling Convertor Update

    Science.gov (United States)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  20. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  1. Variable displacement alpha-type Stirling engine

    Science.gov (United States)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  2. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.

  3. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 1. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-09-15

    This project was Phase I of a multiphased program for the design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Phase I comprised the conceptual design and associated cost estimates of a stationary Stirling engine capable of being fueled by a variety of heat sources, with emphasis on coal firing, followed by the preparation of a plan for implementing the design, fabrication and testing of a demonstration engine by 1985. The development and evaluation of conceptual designs have been separated into two broad categories: the A designs which represent the present state-of-the-art and which are demonstrable by 1985 with minimum technical risk; and the B designs which involve advanced technology and therefore would require significant research and development prior to demonstration and commercialization, but which may ultimately offer advantages in terms of lower cost, better performance, or higher reliability. The majority of the effort in Phase I was devoted to the A designs.

  4. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 kW, wh...

  5. Utilization of stable isotopes in power reactor; Utilisation des isotopes stables dans les reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Desmoulins, P. [Electricite de France (EDF), 75 - Paris (France)

    1994-12-31

    The stable isotopes, besides uranium, used in EDF power nuclear reactors are mainly the boron 10 and the lithium 7. Boron is used in reactors as a neutrophagous agent for core reactivity control, and lithium, and more especially lithium 7, is extensively used as a solution in PWR moderators for primary fluid pH control. Boron and lithium ore reserves and producers are presented; industrial isotopic separation techniques are described: for the boron 10, they include dissociative distillation (Sulzer process) and separation on anionic resins, and for lithium 7, ion exchange columns (Cogema). 1 tab.

  6. Stirling engine technology. Fundamentals, concepts, developments, applications. 2. tot. new rev. ed.; Stirling-Maschinen-Technik. Grundlagen, Konzepte, Entwicklungen, Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F.; Lamprichs, J.; Beck, P.

    2007-07-01

    The book presents the technology of Stirling engines, their history, types, new trends and current and future applications. Commercially successful Stirling engines are presented. The second edition of this book focuses on decentral combined heat and power generation, utilisation of biomass and solar energy, heat pumps and refrigerators. Thermodynamic fundamentals of various types of Stirling engines are described, as well as requirements on engine components, and the ecological and economic advantages of the Stirling technology. A revised list of international suppliers, research institutions and individuals working in this field is contained in the appendix. (orig.)

  7. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  8. Mod II Stirling engine overviews

    Science.gov (United States)

    Farrell, Roger A.

    1988-01-01

    The Mod II engine is a second-generation automotive Stirling engine (ASE) optimized for part-power operation. It has been designed specifically to meet the fuel economy and exhaust emissions objectives of the ASE development program. The design, test experience, performance, and comparison of data to analytical performance estimates of the Mod II engine to date are reviewed. Estimates of Mod II performance in its final configuration are also given.

  9. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  10. Stirling engines. (Latest citations from the Aerospace database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines are briefly evaluated. (Contains 250 citations and includes a subject term index and title list.)

  11. Stirling convertor regenerators

    CERN Document Server

    Ibrahim, Mounir B

    2011-01-01

    Stirling Convertor Regenerators addresses the latest developments and future possibilities in the science and practical application of Stirling engine regenerators and technology. Written by experts in the vanguard of alternative energy, this invaluable resource presents integral scientific details and design concepts associated with Stirling converter regenerators. Content is reinforced with novel insights and remarkable firsthand experience that the authors and their colleagues acquired while working at the National Aeronautics and Space Administration (NASA) and other leading organizations.

  12. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  13. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  14. Advanced Technology Development for Stirling Convertors

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  15. How Does Stirling Engine Work?

    Science.gov (United States)

    Biwa, Tetsushi; Tashiro, Yusuke; Yazaki, Taichi

    In this paper the working mechanism of Stirling engine is studied from the standpoint of thermoacoustic framework. The work flux measurement is performed in a glass tube equipped with/without a regenerator-heat exchanger assembly. An atmospheric pressure air confined in the tube is periodically perturbed by two speakers at the same frequency (=48Hz) but out of phase. It is experimentally demonstrated that the phasing of two pistons in the Stirling engine (alpha arrangement type) plays the role in creating a steady work flux from the compression piston to the expansion piston, whereas a differentially heated regenerator in the engine operates as a power amplifier for the traveling wave propagating up the temperature gradient.

  16. Stirling Engine Heat Pump

    Science.gov (United States)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  17. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  18. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  19. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  20. Biomass CHP based on a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Cowburn, D.A.; Dando, R.L.

    1997-12-31

    Combined heat and power (CHP) schemes offer a means of converting fuel to useful energy with much higher efficiencies (up to 80 percent) compared to electricity generating stations (efficiencies <36 percent). This has led to many EEC member states, including the UK, and other industrial countries encouraging the use of CHP. At the smaller scale (<500 kWe) steam based systems have generally proven too costly to provide solid fuel with an opportunity to exploit this potentially attractive CHP market sector. The Stirling engine offers a technology which can produce mechanical power from solid fuels without the need to raise steam. This project has been directed towards producing a Stirling engine design capable of producing an output of 150 kW{sub e} from solid fuel. The participants in the projects, CRE Group Ltd., Basys Marine Ltd. (formerly Cray Marine) and Gamos Ltd., brought together a wide range of experience in the areas of gasification, combustion, heat transfer, Stirling engine technology and high precision engineering. A novel form of low pressure nitrogen charged Stirling engine has been designed specifically for stationary applications. This avoided the drawbacks of high pressures with H{sub e} or H used as the working fluids and consequent requirement for exotic sealing arrangements, which have been associated with previous Stirling engine`s aimed primarily at the automotive market. (author)

  1. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  2. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  3. Zinc Isotope Variability in Three Coal-Fired Power Plants: A Predictive Model for Determining Isotopic Fractionation during Combustion.

    Science.gov (United States)

    Ochoa Gonzalez, R; Weiss, D

    2015-10-20

    The zinc (Zn) isotope compositions of feed materials and combustion byproducts were investigated in three different coal-fired power plants, and the results were used to develop a generalized model that can account for Zn isotopic fractionation during coal combustion. The isotope signatures in the coal (δ(66)ZnIRMM) ranged between +0.73 and +1.18‰, values that fall well within those previously determined for peat (+0.6 ±2.0‰). We therefore propose that the speciation of Zn in peat determines the isotope fingerprint in coal. All of the bottom ashes collected in these power plants were isotopically depleted in the heavy isotopes relative to the coals, with δ(66)ZnIRMM values ranging between +0.26‰ and +0.64‰. This suggests that the heavy isotopes, possibly associated with the organic matter of the coal, may be preferentially released into the vapor phase. The fly ash in all of these power plants was, in contrast, enriched in the heavy isotopes relative to coal. The signatures in the fly ash can be accounted for using a simple unidirectional fractionation model with isotope fractionation factors (αsolid-vapor) ranging between 1.0003 and 1.0007, and we suggest that condensation is the controlling process. The model proposed allows, once the isotope composition of the feed coal is known, the constraining of the Zn signatures in the byproducts. This will now enable the integration of Zn isotopes as a quantitative tool for the source apportionment of this metal from coal combustion in the atmosphere.

  4. Performance of the Southern California Edison Company Stirling dish

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, C.W. [Southern California Edison Co., Rosemead, CA (United States); Stone, K.W. [Mako Enterprises, Huntington Beach, CA (United States)

    1993-10-01

    McDonnell Douglas Astronautics Company (MDAC) and United Stirling AB of Sweden (USAB) formed a joint venture in 1982 to develop and produce a Stirling dish solar generating system. In this report, the six year development and testing program continued by the Southern California Edison Company (SCE) is described. Each Stirling dish module consists of a sun tracking dish concentrator developed by the MDAC and a Stirling engine driven power conversion unit (PCU) developed by USAB. The Stirling dish system demonstrated twice the peak and daily solar-to-electric conversion efficiency of any other system then under development. This system continues to set the performance standard for solar to electric systems being developed in the early 1990`s. Test data are presented and used to estimate the performance of a commercial system.

  5. Commercialization of dish-Stirling solar terrestrial systems

    Science.gov (United States)

    Ross, Brad; Penswick, Barry; White, Maury; Cooper, Martin; Farbman, Gerald

    1990-01-01

    The requirements for dish-Stirling commercialization are described. The requirements for practical terrestrial power systems, both technical and economic, are described. Solar energy availability, with seasonal and regional variations, is discussed. The advantages and disadvantages of hybrid operation are listed. The two systems described use either a 25-kW free-piston Stirling hydraulic engine or a 5-kW kinematic Stirling engine. Both engines feature long-life characteristics that result from the use of welded metal bellows as hermetic seals between the working gas and the crankcase fluid. The advantages of the systems, the state of the technology, and the challenges that remain are discussed. Technology transfer between solar terrestrial Stirling applications and other Stirling applications is predicted to be important and synergistic.

  6. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    The External combustion of the Stirling engine makes it very attractive for small-scale Combined Heat and Power (CHP) plants using bio-fuels. Especially wood chips are an attractive fuel because of the high melting point and the low content of ash. Unfortunately, it is more complicated than...... expected to use bio-fuels for a Stirling engine. The high temperature in the hot heat exchanger transferring heat from the combustion to the Stirling engine combined with the low heating value of the fuel reduce the obtainable efficiency of the plant. The limitations of the combustion temperature in order...... to avoid melted ash in the combustion chamber decrease the obtainable efficiency even further. If a Stirling engine, which has an efficiency of 28,5% using natural gas, is converted into utilization of bio-fuel, the efficiency will decrease to 17,5%. Another problem for utilization of bio-fuels in Stirling...

  7. Commercialization of dish-Stirling solar terrestrial systems

    Science.gov (United States)

    Ross, Brad; Penswick, Barry; White, Maury; Cooper, Martin; Farbman, Gerald

    1990-01-01

    The requirements for dish-Stirling commercialization are described. The requirements for practical terrestrial power systems, both technical and economic, are described. Solar energy availability, with seasonal and regional variations, is discussed. The advantages and disadvantages of hybrid operation are listed. The two systems described use either a 25-kW free-piston Stirling hydraulic engine or a 5-kW kinematic Stirling engine. Both engines feature long-life characteristics that result from the use of welded metal bellows as hermetic seals between the working gas and the crankcase fluid. The advantages of the systems, the state of the technology, and the challenges that remain are discussed. Technology transfer between solar terrestrial Stirling applications and other Stirling applications is predicted to be important and synergistic.

  8. NASA Multidimensional Stirling Convertor Code Developed

    Science.gov (United States)

    Tew, Roy C.; Thieme, Lanny G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and the NASA Glenn Research Center. These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. Glenn is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in house at Glenn and under various grants and contracts. These efforts include the development of a multidimensional Stirling computational fluid dynamics code, high-temperature materials, advanced controllers, an end-to-end system dynamics model, low-vibration techniques, advanced regenerators, and a lightweight convertor. Under a NASA grant, Cleveland State University (CSU) and its subcontractors, the University of Minnesota (UMN) and Gedeon Associates, have developed a twodimensional computer simulation of a CSUmod Stirling convertor. The CFD-ACE commercial software developed by CFD Research Corp. of Huntsville, Alabama, is being used. The CSUmod is a scaled version of the Stirling Technology Demonstrator Convertor (TDC), which was designed and fabricated by the Stirling Technology Company and is being tested by NASA. The schematic illustrates the structure of this model. Modeled are the fluid-flow and heat-transfer phenomena that occur in the expansion space, the heater, the regenerator, the cooler, the compression space, the surrounding walls, and the moving piston and displacer. In addition, the overall heat transfer, the indicated power, and the efficiency can be calculated. The CSUmod model is being converted to a two

  9. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolpour, Ali Reza; Zomorodian, Ali [Department of Mechanics of Farm Machinery Engineering, Shiraz University, Shiraz (Iran); Akbar Golneshan, Ali [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran)

    2008-01-15

    In this research, a gamma-type, low-temperature differential (LTD) solar Stirling engine with two cylinders was modeled, constructed and primarily tested. A flat-plate solar collector was employed as an in-built heat source, thus the system design was based on a temperature difference of 80{sup o}C. The principles of thermodynamics as well as Schmidt theory were adapted to use for modeling the engine. To simulate the system some computer programs were written to analyze the models and the optimized parameters of the engine design were determined. The optimized compression ratio was computed to be 12.5 for solar application according to the mean collector temperature of 100{sup o}C and sink temperature of 20{sup o}C. The corresponding theoretical efficiency of the engine for the mentioned designed parameters was calculated to be 0.012 for zero regenerator efficiency. Proposed engine dimensions are as follows: power piston stroke 0.044 m, power piston diameter 0.13 m, displacer stroke 0.055 m and the displacer diameter 0.41 m. Finally, the engine was tested. The results indicated that at mean collector temperature of 110{sup o}C and sink temperature of 25{sup o}C, the engine produced a maximum brake power of 0.27 W at 14 rpm. The mean engine speed was about 30 rpm at solar radiation intensity of 900 W/m{sup 2} and without load. The indicated power was computed to be 1.2 W at 30 rpm. (author)

  10. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  11. NASA GRC Stirling Technology Development Overview

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2003-01-01

    The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in- house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermalhacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems.

  12. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  14. Advanced radioisotope heat source for Stirling Engines

    Science.gov (United States)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  15. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  16. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  17. On Bernoulli Numbers and Stirling Numbers%Bernoulli数与Stirling数

    Institute of Scientific and Technical Information of China (English)

    高泽图

    2001-01-01

    In this paper,using the method of formal power series, we study the Bernoulli numbers and the Stirling numbers,and point out the relation between Bernoulli numbers and Stirling numbers,and obtain several identities of including Bernoulli numbers and Stirling numbers.%应用形式幂级数的方法,研究Bernoulli数与Stirling数,指出它们之间的关系,获得几个包含Bernoulli数和Stirling数的恒等式.

  18. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    Science.gov (United States)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  19. Assessment of Stirling Technology Has Provided Critical Data Leading Toward Flight Readiness of the Stirling Converter

    Science.gov (United States)

    Thieme, Lanny G.

    2001-01-01

    The NASA Glenn Research Center is supporting the development of a Stirling converter with the Department of Energy (DOE, Germantown, Maryland) for an advanced Stirling Radioisotope Power System (SRPS) to provide spacecraft onboard electric power for NASA space science missions. A key technology assessment completed by Glenn and DOE has led to the SRPS being identified as a high-efficiency power source for such deep space missions as the Europa Orbiter and the Solar Probe. In addition, the Stirling system is now being considered for unmanned Mars rovers, especially where mission profiles may exclude the use of photovoltaic power systems, such as exploration at high Martian latitudes or for missions of long duration. The SRPS efficiency of over 20 percent will reduce the required amount of radioisotope by more than a factor of 3 in comparison to current radioisotope thermoelectric generators. This significantly reduces radioisotope cost, radiological inventory, and system cost, and it provides efficient use of scarce radioisotope resources. In support of this technology assessment, Glenn conducted a series of independent evaluations and tests to determine the technology readiness of a 55-We Stirling converter developed by Stirling Technology Company (Kennewick, Washington) and DOE. Key areas evaluated by Glenn included: 1) Radiation tolerance of materials; 2) Random vibration testing of the Stirling converter in Glenn's Structural Dynamics Lab to simulate operation in the launch environment; 3) Electromagnetic interference and compatibility (EMI/EMC) of the converter operating in Glenn's EMI lab; Independent failure modes, effects, and criticality analysis, and life and reliability 4. Independent failure modes, effects, and criticality analysis, and life and reliability assessment; and 5) SRPS cost estimate. The data from these evaluations were presented to NASA Headquarters and the Jet Propulsion Laboratory mission office by a joint industry/Government team

  20. Automotive Stirling Engine Development Program Mod I Stirling engine development

    Science.gov (United States)

    Simetkosky, M. A.

    1983-01-01

    The development of the Mod I 4-cylinder automotive Stirling engine is discussed and illustrated with drawings, block diagrams, photographs, and graphs and tables of preliminary test data. The engine and its drive, cold-engine, hot-engine, external-heat, air/fuel, power-control, electronic-control, and auxiliary systems are characterized. Performance results from a total of 1900 h of tests on 4 prototype engines include average maximum efficiency (at 2000 rpm) 34.5 percent and maximum output power 54.4 kW. The modifications introduced in an upgraded version of the Mod I are explained; this engine has maximum efficiency 40.4 percent and maximum power output 69.2 kW.

  1. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    Science.gov (United States)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  2. Linear moving magnet motor/generator for Stirling engines

    Science.gov (United States)

    Shtrikman, S.; Urieli, I.

    Free piston Stirling cycle machines have many inherent advantages, however suffer from the difficulties of extracting power output and controllability of the free displacer, which is usually driven by gas pressure forces. Modern rare earth samarium cobalt magnets allow the use of moving magnet linear electrical devices. This paper discusses the development and testing of moving magnet devices designed specifically for use with Stirling engines, both for generating electricity and for driving the displacer piston. The generator was used as an output stage of a free piston Stirling engine, and is capable of delivering a power of 500 watts at an estimated efficiency of about 90%. The motor was used to drive the displacer of the same Stirling engine. It was found to be completely controllable in amplitude, phase, and mean position. The relative merits of moving magnet linear motor/generators are discussed.

  3. New 5 Kilowatt Free-piston Stirling Space Convertor Developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2007-01-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc. s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 W and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  4. 一种船用碟式斯特林太阳能热发电装置的设计与实现%Design and Implementation of a Dish Stirling Solar Power Device for Ship

    Institute of Scientific and Technical Information of China (English)

    胡义; 朱顺敏; 徐国

    2014-01-01

    Based on existing ships solar photovoltaic power generation technology and the dish solar thermal power technolo -gy, a marine dish Stirling solar power generation device was designed , which uses STM32 F3 as the controller .A solar tracking control system for the dish Stirling solar thermal power generation device was developed based on the elevation angle -position mix-ing angle axis tracking technology .%在现有船舶太阳能光伏发电技术的基础上,基于碟式太阳能热发电技术,设计一种船用碟式斯特林太阳能热发电装置,并利用STM32 F3作为控制器,基于高度角-方位角双轴混合跟踪技术设计该船用碟式斯特林太阳能热发电装置的太阳跟踪控制系统。

  5. Technology Assessment of Doe's 55-we Stirling Technology Demonstrator Convector (TDC)

    Science.gov (United States)

    Furlong, Richard; Shaltens, Richard

    2000-01-01

    The Department of Energy (DOE), Germantown, Maryland and the NASA Glenn Research Center (GRC), Cleveland, Ohio are developing a Stirling Convertor for an advanced radioisotope power system as a potential power source for spacecraft on-board electric power for NASA deep space science missions. The Stirling Convertor is being evaluated as an alternative high efficiency power source to replace Radioisotope Thermoelectric Generators (RTGs). Stirling Technology Company (STC), Kennewick, Washington, is developing the highly efficient, long life 55-We free-piston Stirling Convertor known as the Technology Demonstrator Convertor (TDC) under contract to DOE. GRC provides Stirling technology expertise under a Space Act Agreement with the DOE. Lockheed Martin Astronautics (LMA), Valley Forge, Pennsylvania is the current power system integrator for the Advanced Radioisotope Power System (ARPS) Project for the DOE. JPL is responsible for the Outer Planets/Solar Probe Project for NASA.

  6. A miniature thermoacoustic stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gang [Cryogenics Laboratory, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Qing; Li, Zheng Yu.; Li, Qiang [Cryogenics Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100080 (China)

    2008-06-15

    A miniature thermoacoustic stirling engine was simulated and designed, having overall size of length 0.65 m and height of 0.22 m. The acoustic field generated in this miniature system has been described and analyzed. Some efforts had been paid to coupling and matching, and a miniature thermoacoustic engine and some extra experimental components have been constructed. Analysis and experimental results showed that to obtain better performance of the engine, the diameter of the resonance tube must be chosen appropriately according to the looped tube dimension and the input heating power. It provided an effective way to miniaturize the thermoacoustic stirling heat engine. The experimental results showed that the engine had low onset temperature and high pressure amplitude and ratio. With the filling helium gas of 2 MPa and heating power of 637 W, the maximal peak to peak pressure amplitude and pressure ratio reached 2.2 bar and 1.116, respectively, which was able to drive a refrigerator, a heat pump or a linear electrical generator. The operating frequency of the engine was steady at 282 Hz. (author)

  7. A miniature thermoacoustic stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Gang [Cryogenics Laboratory, Huazhong University of Science and Technology, Wuhan 430074 (China); Li Qing [Cryogenics Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100080 (China)], E-mail: liqing@cl.cryo.ac.cn; Li Zhengyu; Li Qiang [Cryogenics Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100080 (China)

    2008-06-15

    A miniature thermoacoustic stirling engine was simulated and designed, having overall size of length 0.65 m and height of 0.22 m. The acoustic field generated in this miniature system has been described and analyzed. Some efforts had been paid to coupling and matching, and a miniature thermoacoustic engine and some extra experimental components have been constructed. Analysis and experimental results showed that to obtain better performance of the engine, the diameter of the resonance tube must be chosen appropriately according to the looped tube dimension and the input heating power. It provided an effective way to miniaturize the thermoacoustic stirling heat engine. The experimental results showed that the engine had low onset temperature and high pressure amplitude and ratio. With the filling helium gas of 2 MPa and heating power of 637 W, the maximal peak to peak pressure amplitude and pressure ratio reached 2.2 bar and 1.116, respectively, which was able to drive a refrigerator, a heat pump or a linear electrical generator. The operating frequency of the engine was steady at 282 Hz.

  8. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  9. Self-pressurizing Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Charles L. (Livermore, CA)

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  11. Influence of the compression ratio on Stirling and Otto cycle

    Energy Technology Data Exchange (ETDEWEB)

    Koscak-Kolin, S.; Golub, M.; Kolin, I. [Zagreb Univ. (Croatia); Naso, V.; Lucentini, M. [Universita degli Studi La Sapienza, Rome (Italy)

    2000-07-01

    The Stirling engine (1815) is more than half a century older from the Otto engine (1867). Nevertheless, in spite of the considerably longer development period, compression ratio of Stirling engines remains nearly the same as it was in its very beginning. As a contrast to this, compression ratio of Otto engines progressively increases, always reaching higher and higher power. Finally, modern Otto engines are considerably stronger than contemporary Stirling engines of the same size. However, by means of thermodynamical analysis of the old indicator diagrams, the rate of growth could be mathematically expressed in the shape of polytropic equation. In such a way the proper direction for a significant improvement of the Stirling engine could be recognized. (orig.)

  12. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    Science.gov (United States)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  13. Automotive Stirling engine system component review

    Science.gov (United States)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  14. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests.

  15. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  16. Phase I: controls preliminary design report for Brayton Isotope Power System (BIPS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-20

    Background analyses of three control systems capable of controlling the speed, output voltage, and start rate of Brayton Isotope Power Systems (BIPS) are presented. Conclusions of all functions considered are summarized. (TFD)

  17. Adaptation of the low-cost and low-power tactical split Stirling cryogenic cooler for aerospace applications

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnell, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    Cryogenic coolers are often used in modern spacecraft in conjunction with sensitive electronics and sensors of military, commercial and scientific instrumentation. The typical space requirements are: power efficiency, low vibration export, proven reliability, ability to survive launch vibration/shock and long-term exposure to space radiation. A long-standing paradigm of exclusively using "space heritage" equipment has become the standard practice for delivering high reliability components. Unfortunately, this conservative "space heritage" practice can result in using outdated, oversized, overweight and overpriced cryogenic coolers and is becoming increasingly unacceptable for space agencies now operating within tough monetary and time constraints. The recent trend in developing mini and micro satellites for relatively inexpensive missions has prompted attempts to adapt leading-edge tactical cryogenic coolers for suitability in the space environment. The primary emphasis has been on reducing cost, weight and size. The authors are disclosing theoretical and practical aspects of a collaborative effort to develop a space qualified cryogenic refrigerator system based on the tactical cooler model Ricor K527 and the Iris Technology radiation hardened Low Cost Cryocooler Electronics (LCCE). The K27/LCCE solution is ideal for applications where cost, size, weight, power consumption, vibration export, reliability and time to spacecraft integration are of concern.

  18. Operating characteristics of a single-stage Stirling-type pulse tube cryocooler with high cooling power at liquid nitrogen temperatures

    Institute of Scientific and Technical Information of China (English)

    Jiu-ce SUN; Marc DIETRICH; Li-min QIU; Guenter THUMMES

    2015-01-01

    The operating characteristics are important for design and optimization of pulse tube cryocoolers, in particular for those with high cooling power, which up to now have been seldom extensively investigated. In this study, the dependence of cooling performance on the charge pressure and operating frequency has been investigated, both numerically and experimentally. A numerical model based on Sage software was established. Experiments were performed on a home-made single-stage high power Stirling-type pulse tube cryocooler (SPTC) working at liquid nitrogen temperatures. The results revealed that each charge pressure corresponds to an optimum frequency with respect to compressor and regenerator efficiency. A lower charge pressure results in a higher cryocooler efficiency, but the delivered maximum pV power is significantly reduced due to the stroke limit of the pistons in the linear compressor. The influence of operating characteristics on the temperature non-uniformity in the regener-ator was also investigated. By optimizing the charge pressure and frequency, the minimum no-load temperature was decreased to 46.9 K at 56.5 Hz and 2.0 MPa. A cooling power of 300 W at 71.8 K was measured with an electrical input power of 8.9 kW.%题目:液氮温区单级大功率斯特林型脉管制冷机工作特性研究  目的:探索充气压和运行频率等工作特性对大功率脉管制冷机最低制冷温度、制冷量以及回热器温度不均匀性的影响,期望进一步提升制冷机工作性能。  方法:1.通过理论计算模拟工作频率在40–70 Hz,充气压力在1.5–2.5 MPa下工作特性对制冷机性能的影响;2.实验研究充气压力为1.7–2.4 MPa,并在谐振频率附近工作时制冷机性能以及回热器温度不均匀性随充气压力、运行频率以及输入功率的变化。  结论:1.制冷机运行在1.9–2.1 MPa充气压力下,因平衡了制冷温度和焓流损失,故能取得优异性能,且

  19. Stirling machine operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. [Stirling Technology Co., Richland, WA (United States); Dudenhoefer, J.E. [Lewis Research Center, Cleveland, OH (United States)

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  20. A Stirling Idea

    Science.gov (United States)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  1. Parabolic Dish Stirling Module

    Science.gov (United States)

    Washom, B.

    1984-01-01

    The design, manufacture, and assembly of a commercially designed parabolic dish Stirling 25 kWe module is examined. The cost, expected performance, design uniquenesses, and future commercial potential of this module, which is regarded as the most technically advanced in the parabolic dish industry is discussed.

  2. Stirling in Another Context.

    Science.gov (United States)

    Papademetriou, Peter

    1981-01-01

    An analysis and a critique of how remodeling and extension of the Rice University School of Architecture, by James Stirling, Michael Wilford, and Associates, fits into the campus plan and its eclectic style established early in this century. (Author/MLF)

  3. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  4. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  5. Advanced 80 We Stirling Convertor Development Progress

    Science.gov (United States)

    Wood, J. Gary; Carroll, Cliff; Penswick, L. B.

    2005-02-01

    This paper presents progress on the Advanced Stirling Convertor (ASC) being developed by Sunpower and Boeing/Rocketdyne under NASA NRA funding. The ASC will use a high temperature heater head to allow for operation at 850 °C. The ASC is projected to have an efficiency approaching 40% (AC electrical out/ heat in) when operating at a temperature ratio of 3.0, and to have a convertor specific power of 90 We/kg (AC). An early developmental unit, the Frequency Test Bed (FTB) convertor, has already demonstrated 36% efficiency (based on AC electrical out) at this temperature ratio. The ASC is being developed for potential use in advanced radioisotope space power systems. The increased efficiency of this Stirling convertor compared to RTGs, would reduce the required amount of Plutonium fuel by a factor of approximately 5.

  6. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  7. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  8. Technical status of the Dish/Stirling Joint Venture Program

    Science.gov (United States)

    Bean, John R.; Diver, Richard B.

    Initiated in 1991; the Dish/Stirling Joint Venture Program (DSJVP) is a 5-year, $17.2 million joint venture which is funded by Cummins Power Generation, Inc. (CPG) of Columbus, Indiana and the United States Department of Energy's (DOE) Solar Thermal and Biomass Power Division. Sandia National Laboratories administers and provides technical management for this contract on the DOE's behalf. In January, 1995; CPG advanced to Phase 3 of this three-phase contract. The objective of the DSJVP is to develop and commercialize a 7-kW. Dish/Stirling System for remote power markets by 1997. In this paper, the technical status of the major subsystems which comprise the CPG 7-kW(sub e) Dish/Stirling System is presented. These subsystems include the solar concentrator, heat pipe receiver, engine/alternator, power conditioning, and automatic controls.

  9. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  10. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced...

  11. Simulation and analysis on performances of dish solar thermal power system based on Stirling engine%基于斯特林机的碟式太阳能热发电系统性能仿真分析

    Institute of Scientific and Technical Information of China (English)

    丁生平; 王永征; 吕瑞杰; 武岳; 姜磊

    2014-01-01

    Through an analysis on concentrator, receiver and Stirling engine, the functional relationships among each modules were obtained, the energy tranfer model of dish solar thermal power system was built.The simulation and anal-ysis on the performances of dish Stirling system were carried out under different climates conditions by using energy transfer model.The results showed that the engine pressure exhibited linear relationship with the solar direct normal in-solation;when the hot-head temperature kept in setting range, the net output power of the system increased with the en-gine pressure increasing;while the ambient temperature decreased, the Stirling engine efficiency increased and the net output power increased slightly; while the wind speed increased, the receiver efficiency and the net output power in-creased.%通过对聚光器、接收器和斯特林机等模块进行分析,得到了各模块之间的函数关系,建立了碟式太阳能热发电系统的能量传递模型,运用该模型对碟式太阳能热发电系统在不同气候条件下的性能进行了仿真分析。结果表明,斯特林机压力与太阳直接辐射强度呈线性增大关系;当斯特林机热头温度保持在设定值范围内时,系统净输出功率随斯特林机压力的增大而升高;当环境温度降低时,斯特林机效率和系统净输出功率均有所升高,但系统净输出功率升高幅度不大;当风速增大时,接收器效率及系统净输出功率均降低。

  12. Study of a thermoacoustic Stirling cooler

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2007-05-15

    A thermoacoustic-Stirling cooler is built and performance measurements are carried out. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary to operate in a Stirling cycle. The network has a coaxial topology instead of the toroidal one usually applied. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing wave cooler by almost a factor of two.

  13. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston Stirling engine activities

    Science.gov (United States)

    Slaby, J. G.

    1985-01-01

    This effort is keyed on the design, fabrication, assembly, and testing of a 25 kWe Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr endurance test conducted on a 2 kWe free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kWe free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application.

  14. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  15. Stirling engines. (Latest citations from the COMPENDEX database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  16. Optimum Stirling engine geometry

    Energy Technology Data Exchange (ETDEWEB)

    Senft, J.R. [University of Wisconsin, River Walls, WI (United States). Mathematics Dept.

    2002-07-01

    This paper combines the author's work on mechanical efficiency of reciprocating engines with the classic Schmidt thermodynamic model for Stirling engines and revisits the problem of identifying optimal engine geometry. All previous optimizations using the Schmidt theory focused on obtaining a maximal specific indicated cyclic work. This does not necessarily produce the highest shaft output. Indeed, some optima based upon indicated work would yield engines that cannot run at all due to excessive intrinsic mechanical losses. The analysis presented in this paper shows how to optimize for shaft or brake work output. Specifically, it presents solutions to the problem of finding the piston-to-displacer swept volume ratio and phase angle which will give the maximum brake output for a given total swept volume, given temperature extremes, a given mean operating pressure, and a given engine mechanism effectiveness. The paper covers the split-cylinder or gamma-type Stirling in detail, serving as a model for similar analysis of the other Stirling engine configurations. (author)

  17. NASA Radioisotope Power System Program - Technology and Flight Systems

    Science.gov (United States)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  18. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  19. Basic separative power of multi-component isotopes separation in a gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongmin; Lei, Zengguang; Zhuge, Fu [Institute of Physical and Chemical Engineering, Tianjin (China)

    2008-07-01

    On condition that the overall separation factor per unit exists in centrifuge for multi-component isotopes separation, the relations between separative power of each component and molecular weight have been investigated in the paper while the value function and the separative power of binary-component separation are adopted. The separative power of each component is proportional to the square of the molecular weight difference between its molecular weight and the average molecular weight of other remnant components. In addition, these relations are independent on the number of the components and feed concentrations. The basic separative power and related expressions, suggested in the paper, can be used for estimating the separative power of each component and analyzing the separation characteristics. The most valuable application of the basic separative power is to evaluate the separative capacity of centrifuge for multi-component isotopes. (author)

  20. News from the stirling engine. Now also operating for power generation from Biomass in a small power range; Neues von der Stirlingmaschine. Jetzt auch zur Stromerzeugung aus Biomasse im kleinsten Leistungsbereich

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Peter [Ecos GmbH, Osnabrueck (Germany)

    2008-07-01

    The future prospects for Stirling engines are better than ever before: the engine can be used efficiently as refrigerator and cogeneration system, as well as a driving unit or even for the direct conversion of solar energy into electrical energy. The report gives a short overview of the state of development, present and future applications as well as current tasks for the production of Stirling engines. Newest developments show, that besides fossil fuels as natural gas also biomass formed as wood pellets or wood wastes is utilized. (GL)

  1. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines. Phase III Final Report for the Radioisotope Power Conversion Technology NRA

    Science.gov (United States)

    Ibrahim, Mounir B.; Gedeon, David; Wood, Gary; McLean, Jeffrey

    2009-01-01

    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel.

  2. Modified SUNWATER prototype solar Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Towaie, H.; Alkaff, S.A. [Aden Univ., Aden (Yemen)

    2009-07-01

    The exhaust gases from internal combustion engines fueled by gasoline or diesel cause air pollution. Stirling engines, like other external combustion engines, could be fueled by combustible substances such as charcoal and wood. In addition, many non-fuel heat sources such as geothermal heat or solar heat can be used to power Stirling engines. This paper described a newly developed solar operated Stirling engine known as SUNWATER, which was built as part of a cooperative program between the University of Aden, Yemen and the Dresden University of Technology in Germany. The engine was used to run a water pump and was tested under realistic conditions at the solar park at the University of Aden. Several technical aspects had to be revised to address the many drawbacks that were encountered during the first test. This paper presented solutions to ensure better engine performance, simplicity in construction and cost reduction. The absorber was replaced with a simple and lighter aluminum concave type. The displacer mechanism was completely modified to ensure smooth operation and to minimize friction and starting torque. A preliminary test was conducted of the new modified engine, followed by additional work to achieve greater engine reliability. 8 tabs., 3 figs.

  3. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  4. Advanced Controller Developed for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  5. Active Vibration Reduction of the Advanced Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC

  6. Laser photochemical lead isotopes separation for harmless nuclear power engineering

    Science.gov (United States)

    Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.

    2016-09-01

    The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.

  7. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  8. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  9. Diaphragm Stirling cryocooler developments

    Science.gov (United States)

    Stacy, W. D.

    1992-01-01

    This paper reports on the status of several ongoing development programs aimed at the demonstration of diaphragm Stirling cycle cryocooler performance. Key attributes of this technology focus on long reliable operating life and excellent efficiency, making it a candidate for cooling of satellite-borne long wavelength sensors for astrophysics and earth observing missions. Three programs are described, each leading to system or component test hardware: a 2 W 65 K single-stage Standard Spacecraft Cryocooler, a 300 mW 30 K two-stage cooler and a 200 mW 4-20 K single-stage cooler. Design features are described, and breadboard experimental data are presented.

  10. Advanced Controller for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  11. A Stirling engine for use with lower quality fuels

    Science.gov (United States)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  12. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  13. Dish Stirling system integration and test progress report

    Science.gov (United States)

    Haglund, R. A.

    1982-01-01

    The integration and check-out of a complete Dish Solar Stirling Thermal Power System is described. The preliminary results of the tests conducted thus far are presented. The results are very encouraging and show promise of high performance and efficiency. The outstanding performance and durability of the 4-95 Stirling engine was the highlight of this 6 month integration and test activity. Exposure to severe heat, dust, sand and wind during the summer months and heavy rains, high winds, including sand storms and freezing cold in recent months did affected the engine or the receiver in any noticable manner.

  14. Dynamic isotope power system (DIPS) applications study. Volume I. Summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, W. Z.

    1979-11-01

    The Nuclear Integrated Multimission Spacecraft (NIMS) is designed for communications, surveillance, navigation and meteorelogical missions. This study assesses th attributes of the Dynamic Isotope Power System (DIPS) for this spacecraft. These attributes include cost, system and mission compatibility, and survivability. (LCL)

  15. Specification requirements summary for the Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, E.E.

    1976-02-10

    This document provides a summary of the required program specifications and procedures for the ERDA Phase I Brayton Isotope Power System (BIPS) Program. Also included are document definitions, descriptions, and formats, and a listing of commonly used abbreviations. This document is intended to be used as a guide in document preparation and control.

  16. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles

    Science.gov (United States)

    Luo, Ercang; Dai, Wei; Zhang, Yong; Ling, Hong

    2006-02-01

    Recently, considerable research efforts have been made to search substitution technologies for chlorofluorocarbon-based vapor compression cycles due to the concern over environmental issues. This letter introduces a helium-based thermoacoustic refrigeration system, which is a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine, for domestic refrigeration purpose. In the regenerators of both the refrigerator and the prime mover, helium gas experiences near to reversible high efficiency Stirling process. At the operating point with 3.0MPa mean pressure, 57.7Hz frequency, and 2.2kW heat input, the experimental cooler provides a lowest temperature of -64.4°C and 250W cooling power at -22.1°C. These results show good potential of the system to be an alternative in near future for domestic refrigeration with advantages of environment-friendliness, no moving parts, and heat driven mechanism.

  17. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  18. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    engines is, that the combustion of bio-fuels and transfer of the heat from the combustion gases to the Stirling engine need much more space than for natural gas as fuel. Because of the large differences in specific heat transfer on the inside and the outside of the heater tubes, the specific power...

  19. The Stirling Engine: A Wave of the Future

    Science.gov (United States)

    1992-01-01

    This video describes the Stirling engine, an external combustion engine which creates heat energy to power the motor, and can use many types of fuel. It can be used for both stationary and propulsion purposes and has advantages of better fuel economy and cleaner exhaust than internal combustion engines. The engine is shown being road tested at Langley Air Force Base.

  20. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  1. Low temperature differential thermoacoustic Stirling engine

    Science.gov (United States)

    Biwa, Tetsushi; Hasegawa, Daichi; Yazaki, Taichi

    2010-07-01

    To what extent can we lower the critical temperature ratio (CTR) necessary to start a thermoacoustic engine? We present an experimental method for predicting the CTR before the temperature ratio arrives at it using quality factor measurements. Based on the experimental quality factors, we tried to decrease the CTR of a thermoacoustic Stirling engine consisting of a looped tube and a branch resonator. Installation of the multiple regenerators at suitable positions can markedly enhance acoustic power production while overcoming energy dissipation. Results show that the CTR is decreased from 1.76 to 1.19 using five differentially heated regenerators.

  2. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  3. Brayton isotope power system, phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-28

    The Phase I program resulted in the development and ground demonstration of a dynamic power conversion system. The two key contractual objectives of 25% conversion efficiency and 1000 h of endurance testing were successfully met. As a result of the Phase I effort, the BIPS is a viable candidate for further development into a flight system capable of sustained operation in space. It represents the only known dynamic space power system to demonstrate the performance and endurance coupled with the simplicity necessary for reliable operation. This final report follows thirty-five monthly reports. For expediency, it makes liberal use of referenced documents which have been submitted to DOE during the course of the program.

  4. Kilowatt isotope power system. Phase II plan. Volume V. Safety, quality assurance and reliability

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-15

    The development of a Kilowatt Isotope Power System (KIPS) was begun in 1975 for the purpose of satisfying the power requirements of satellites in the 1980's. The KIPS is a /sup 238/PuO/sub 2/-fueled organic Rankine cycle turbine power system to provide a design output of 500 to 2000 W. Included in this volume are: launch and flight safety considerations; quality assurance techniques and procedures to be followed through system fabrication, assembly and inspection; and the reliability program made up of reliability prediction analysis, failure mode analysis and criticality analysis. (LCL)

  5. Anti -jamming design for diven control power of Stirling cryocooler%分置式斯特林制冷机驱动控制源的抗干扰设计

    Institute of Scientific and Technical Information of China (English)

    杨玉玲; 胥春茜

    2011-01-01

    Jamming from electromagnetism is an important factor to effect the cabability of Stifling cryocooler. This paper presented the anti -jamming design for driven and control power of Stirling cryocooler through hardware and software. In hardware we installed LC filter in the output of driven and control power. The monopole control of electromotor replaced the ambipolar control of electromotor and we installed partition of photoelectricity in the part of testing the temperature etc. In software we used the way of digital filtering for the sampled signal.%电磁干扰问题一直是影响斯特林制冷机性能的重要因素,文中分别从硬件和软件两方面对斯特林制冷机驱动控制源的抗干扰设计作介绍.本设计的硬件方面主要采用驱动控制器的输出部分加装LC滤波器、电机的单极性驱动代替传统的双极性驱动和测温部分装光电隔离器等措施;软件部分主要是对采样到的信号进行数字滤波.

  6. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced. Further......The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced...... of particles in the gas is small. Furthermore, the updraft gasifier can utilise fuels with a high content of water. The disadvantage is that the gas has a large content of tar. Tar is a large problem for utilisation of gasification gas in an internal combustion engine, but the external combustion...

  7. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    Science.gov (United States)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2015-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  8. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  9. New 5 kW free-piston Stirling space convertor developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2008-07-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.

  10. A study of the reliability of Stirling engines for distributed receiver systems

    Science.gov (United States)

    Holtz, R. E.; Uherka, K. L.

    1988-11-01

    The objective of this study was to examine the reliability of existing and improved Stirling engine concepts for dispersed solar dish/electric applications in the 25 to 50 kW sub e range. Five current kinematic Stirling engine designs have the capability to meet or exceed the 32 percent system efficiency goal of the DOE Solar Thermal Program. Experience with the Vanguard Solar-Dish/Stirling Engine module demonstrated that the 32 percent efficiency goal is realistic, but that improved Stirling engine reliability is necessary for successful implementation of dispersed solar power systems. A review of historical Stirling engine data illustrated that the three major reliability issues with kinematic Stirling engines are the piston-rod seals, engine hot parts and power control/drive systems. A specific kinematic engine concept that appears to have the potential for meeting the 50,000-hour operating lifetime requirement of solar power systems has a pressurized crankcase to reduce piston-rod seal problems, an indirectly heated hot-end section using heat pipes to smooth out temperature gradients in the heater tubes, and a variable-angle swashplate for power control. Further development efforts are required to establish reliability and validate performance goals of these engine concepts.

  11. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  12. A simple free-piston Sterling engine for combined heat and power generation (CHP) in the residential sector; Einfacher Stirling-Freikolben-Motor fuer die Kraft-Waerme-Kopplung (KWK) im Wohnbereich

    Energy Technology Data Exchange (ETDEWEB)

    Budliger, J.P.

    2001-07-01

    A completely static resonance tube is used in the Stirling cycle, as a substitute for a displacer piston. The Sterling system described works with only one, elastically suspended piston. The simple, cost-effective and maintenance-free basic design concept is explained in full detail, as well as some possible design types of resonance tube-charged, one-piston Stirling systems and their major advantages and performance characterisitcs. (orig./CB) [German] Anstelle eines Schwingkolbens kann auch ein voellig statisches Resonanzrohr eingesetzt werden: das resultierende Stirling-System umfasst nur noch einen einzigen, elastisch aufgehaengten Kolben. Dieses einfache, kostenguenstige und unterhaltsfreie Konzept stellt eine erwartungsvolle Loesung fuer dezentrale KWK-Anlagen dar. Im Vortrag werden einige moegliche Auslegungen solcher, mit Resonanzrohren aufgeladenen 1-Kolben-Stirling-Aggregate diskutiert, ihre wesentlichsten Eigenschaften und Leistungscharakteristiken beschrieben. (orig./CB)

  13. The impact of heat exchanger fouling on the optimum operation and maintenance of the Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Kuosa, M.; Kaikko, J.; Koskelainen, L. [Lappeenranta University of Technology, Department of Energy and Environmental Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2007-07-15

    This paper focuses on the effect of heat exchanger fouling on the performance of the Stirling engine in combined heat and power (CHP) application. Fouling results from using biomass fuels and affects the heat exchanger that transfers heat into the engine. This heat exchanger is referred to as the heater. The heat exchanger that recovers heat from the flue gases is also affected by fouling. To determine the performance of the Stirling engine, a commercial Stirling analysis tool is applied together with models that have been developed for the heat transfer in the heater, regenerator and cooler of the engine. The Stirling engine model uses constant temperatures for the heat addition and rejection, with the theory of displacement engine as a basis. The fouling in the heat exchanger is taken into account by using a fouling factor that corresponds with the degradation in the total heat transfer coefficient. The Stirling engine model together with the model for heat exchanger fouling makes it possible to estimate the effect of fouling on the performance of the Stirling engine. A cost model is developed for the engine to translate changes in performance into economy in CHP operation. In the studied application, the Stirling engine is operated by the heat demand. Together with the selected control method, performance and cost models compose a tool for the simulation and optimization of the system. The use of the models to determine the optimal cleaning interval of the heat exchanger surfaces is considered. (author)

  14. DISH STIRLING SYSTEM POTENTIAL ASSESSMENT FOR EIGHT MAIN SITES IN MADAGASCAR

    OpenAIRE

    Praene, Jean-Philippe; Radanielina, Harimisa; Rakotondramiarana, Hery Tiana

    2016-01-01

    International audience; Solar energy is a green and attractive renewable energy source that can be converted for power generation. The objective of this work is to evaluate the potential of dish Stirling systems if they are used in the fourth worldwide largest island of Madagascar. For that purpose, a theoretical model of the dish Stirling system based on the geometrical configuration and heat transfer was developed and coded on Matlab. Simulations were run to investigate the energy efficienc...

  15. A Unified Approach to Generalized Stirling Functions

    Institute of Scientific and Technical Information of China (English)

    Tianxiao HE

    2012-01-01

    Here presented is a unified approach to generalized Stirling functions by using generalized factorial functions,k-Gamma functions,generalized divided difference,and the unified expression of Stirling numbers defined in[16].Previous well-known Stirling functions introduced by Butzer and Hauss[4],Butzer,Kilbas,and Trujilloet[6]and others are included as particular cases of our generalization.Some basic properties related to our general pattern such as their recursive relations,generating functions,and asymptotic properties are discussed,which extend the corresponding results about the Stirling numbers shown in[21]to the defined Stirling functions.

  16. Dish Stirling solar receiver program

    Science.gov (United States)

    Haglund, R. A.

    1980-01-01

    A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.

  17. Novel diaphragm based Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Tucker, Alan; Gschwendtner, Michael; Sellier, Mathieu

    2012-06-01

    Industrial Research Ltd has developed a unique diaphragm-based pressure wave generator technology for employment in pulse tube and Stirling cryocoolers. The system uses a pair of metal diaphragms to separate the clean cryocooler gas circuit from a conventionally lubricated mechanical driver, thus producing a clean pressure wave with a long-life drive. We have now extended the same diaphragm concept to support and seal the displacer in a free piston Stirling expander. The diaphragms allow displacer movement without rubbing or clearance gap seals, hence allowing for the development of costeffective long-life and efficient Stirling cryocoolers. Initial modeling, operating in conjunction with a 200 cc swept volume pressure wave generator, predicted in excess of 300 W cooling at 77 K with a Carnot efficiency of over 25%. A proof-of-concept prototype has achieved cryogenic temperatures. Details of the concept, modeling, and testing will be presented.

  18. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  19. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  20. Ecological optimisation of an irreversible Stirling heat engine

    Energy Technology Data Exchange (ETDEWEB)

    He, J.; Chen, J. [Xiamen Univ. (China). Dept. of Physics; Wu, C. [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical Engineering

    2001-10-01

    A general cycle model of an irreversible Stirling heat engine using an ideal or Van der Waals gas as the working substance is established. It includes three main sources of the irreversibility such as the heat transfer across finite-temperature differences in the isothermal processes, the regenerative loss resulting from the non-perfect regeneration in the regenerator, and the heat leak loss between the external heat reservoirs. The ecological function is taken as an objective function for optimisation. The performance characteristics of the Stirling heat engine at maximum ecological function are revealed. They are compared with other performance characteristics of the Stirling heat engine at maximum power output and efficiency in order to expound the significance of the ecological objective function. The results obtained here are of importance in the optimal design and operation of real Stirling heat engines. Finally, it is pointed out that the results obtained in this paper are very general, from which the optimal performance of the Ericsson heat engine using an ideal gas as the working substance and the Carnot heat engine can be derived directly. (author)

  1. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    Science.gov (United States)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  2. Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2013-02-01

    Full Text Available This article describes a simple model obtained from a commercial Stirling engine and used for heating a caravan. The Stirling engine has been tested in the lab under different electrical load conditions, and the operating points obtained are presented. As an application of the model, a series of transient simulations was performed using TRNSYS. During these simulations, the caravan is traveling throughout the day and is stationary at night. Therefore, during the night-time hours, the heating system is turned on by means of the Stirling engine. The study was performed for each month of the year in different European cities. The different heating demand profiles for different cities induce variation in the electricity production, as it has been assumed that electricity is only generated when the thermal demand requires the operation of the Stirling system. As a result, a comparison of the expected power generation in different European cities is presented.

  3. Burning of the biomass in the furnace using a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Koffi, Maxime; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)]. E-mails: mkf_j@yahoo.fr; electo@unifei.edu.br

    2008-07-01

    Today, advances in technology for combustion and to control emissions resulted in programs of research and development. Within these technologies used for generation of electricity from biomass has been the Stirling engine combustion which can be directly attached to a cycle of steam and gasification. The Stirling engine technology gained strength because of its great advantages you can use any source of heat, including solar. It is worth mentioning that the use of biomass as fuel in applied technology, energy conversion as a Stirling engine favors the generation of electricity distributed low-power, very viable in isolated communities, because of its low cost of acquisition and maintenance for synchronous generators. This paper aims to use the heat released during the burning of biomass (eucalyptus) to drive a Stirling engine. (author)

  4. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    Science.gov (United States)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  5. High power laser production of short-lived isotopes for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); McKenna, P [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); McCanny, T [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Shimizu, S [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yang, J M [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Robson, L [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zweit, J [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Gillies, J M [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Bailey, J [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Chimon, G N [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Clarke, R J [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Neely, D [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Norreys, P A [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Collier, J L [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Singhal, R P [Department of Physics and Astronomy, University of Glasgow G12 8QQ (United Kingdom); Wei, M S [Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ (United Kingdom)] [and others

    2004-08-21

    Positron emission tomography (PET) is a powerful diagnostic/imaging technique requiring the production of the short-lived positron emitting isotopes {sup 11}C, {sup 13}N, {sup 15}O and {sup 18}F by proton irradiation of natural/enriched targets using cyclotrons. The development of PET has been hampered due to the size and shielding requirements of nuclear installations. Recent results show that when an intense laser beam interacts with solid targets, megaelectronvolt (MeV) protons capable of producing PET isotopes are generated. This report describes how to generate intense PET sources of {sup 11}C and {sup 18}F using a petawatt laser beam. The work describing the laser production of {sup 18}F through a (p,n) {sup 18}O reaction, and the subsequent synthesis of 2-[{sup 18}F] is reported for the first time. The potential for developing compact laser technology for this purpose is discussed.

  6. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  7. Output characteristics of Stirling thermoacoustic engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daming; Qiu, Limin; Wang, Bo; Xiao, Yong; Zhao, Liang [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China)

    2008-05-15

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE. (author)

  8. Output characteristics of Stirling thermoacoustic engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Daming [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China); Qiu Limin [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China)], E-mail: limin.qiu@zju.edu.cn; Wang Bo; Xiao Yong; Zhao Liang [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China)

    2008-05-15

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE.

  9. Innovation at Stirling

    Science.gov (United States)

    1998-11-01

    The 24th Stirling Meeting of the Scottish Branch of the Institute of Physics was held on 21 May 1998. It was, for the first time, coupled to a Physics Update Course, which then continued in the Heriot-Watt University over the following two days. This encouraged many more exhibitors to come to Stirling where some 220 physics teachers were present. Ten manufacturers, five publishers and, of course, the ASE and the Institute of Physics exhibited materials during the conference. Morning In his introductory remarks Jack Woolsey reminded teachers that a great deal of information about the Scottish Qualifications Authority was available on the web (http://www.sqa.org.uk). Lorna Neill chaired the morning session, which was devoted to teaching chips and assessing pupils! Tony Joyce (Motorola) emphasized the need to invest in the skills required by the electronics industry. There has been an explosion in the demand for microchips and Motorola, together with Edinburgh University, Compugraphics and Scottish Enterprise, have produced a number of `teaching chips' which are being used throughout Britain and abroad. Les Haworth (Edinburgh University) discussed the construction, operating principles and educational relevance of MOS devices. MOSFETs, he claimed, are the best vehicle for early teaching of device physics. Andrew Moore (Balerno High School) gave an entertaining presentation in which he suggested ways of using the `teaching chips' in practice. Although there were many good information sheets with suggested experiments and investigations, teachers often found it difficult to tailor them to specific courses. To reduce hassle Andrew recommended using the Teaching Chip Project Board which was now available. It was particularly useful for practical investigations at Standard Grade. For the question session Jim Jamieson (SSERC) and Walter Whitelaw (Edinburgh Council) joined the three speakers. Ian Kennedy (Kilwinning Academy) described a fascinating system, developed in his

  10. Stirling engine with pressurized crankcase

    Science.gov (United States)

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  11. Manufacturing and testing of a gamma type Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Can Cinar [Gazi University, Ankara (Turkey). Faculty of Technical Education; Halit Karabulut [Akdeniz University, Antalya (Turkey). Mechanical Engineering Dept.

    2005-01-01

    In this study, a gamma type Stirling engine with 276 cc swept volume was designed and manufactured. The engine was tested with air and helium by using an electrical furnace as heat source. Working characteristics of the engine were obtained within the range of heat source temperature 700-1000{sup o}C and range of charge pressure 1-4.5 bar. Maximum power output was obtained with helium at 1000{sup o}C heat source temperature and 4 bar charge pressure as 128.3 W. The maximum torque was obtained as 2 N m at 1000{sup o}C heat source temperature and 4 bar helium charge pressure. Results were found to be encouraging to initiate a Stirling engine project for 1 kW power output. (author)

  12. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    Science.gov (United States)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  13. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    Science.gov (United States)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  14. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    CERN Document Server

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  15. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    Science.gov (United States)

    Brandhorst, Henry W.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-01

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  16. Multidimensional computer simulation of Stirling cycle engines

    Science.gov (United States)

    Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.

    1990-01-01

    The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.

  17. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  18. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  19. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    2012-01-19

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  20. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1993-10-01

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  1. Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1989-01-01

    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals.

  2. Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric application

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1989-01-01

    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals.

  3. Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.C.; Kumar, S. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    2000-10-01

    This communication presents an investigation of a finite time thermodynamic analysis of an endoreversible Stirling heat engine. Finite time thermodynamics has been applied to maximise the power output and the corresponding thermal efficiency of an endoreversible Stirling heat engine with internal heat loss in the regenerator and for the finite heat capacity of the external reservoirs. The effect of the effectiveness of the various heat exchangers, the inlet temperatures of external heat reservoirs on the power output and the corresponding thermal efficiency have been studied. It is seen that an endoreversible Stirling heat engine with an ideal regenerator ({epsilon}{sub R}=1.00) is as efficient as an endoreversible Carnot heat engine. It is also found that the maximum power output increases with the heat capacitance rates and effectiveness of the source/sink side heat exchangers while thermal efficiency increases with the effectiveness of the regenerator. (Author)

  4. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  5. Radioisotope Power System Pool Concept

    Science.gov (United States)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  6. RE-1000 free-piston Stirling engine update

    Science.gov (United States)

    Schreiber, J.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  7. Study of a coaxial thermoacoustic-Stirling cooler

    Science.gov (United States)

    Tijani, M. E. H.; Spoelstra, S.

    2008-01-01

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 °C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  8. Study of a coaxial thermoacoustic-Stirling cooler

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-05-15

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 degrees C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  9. RE-1000 free-piston Stirling engine update

    Science.gov (United States)

    Schreiber, J.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  10. Review of isotopic power system%同位素电源系统研究进展

    Institute of Scientific and Technical Information of China (English)

    康海波

    2011-01-01

    The function of isotopic power source in the deep space exploration and its advantages was introduced.The development of isotopic power source in USA and Soviet Russia was reviewed. Particularly, the Prometheus plan was briefed. Finally, the security of isotopic power source was presented.%介绍了同位素电源在深空探测器中的重要作用和同位素电源的优点.概括了美国和前苏联在同位素电源方面的发展及美国普罗米修斯计划,并对同位素电源的安全性进行简要介绍.

  11. Characterization of the Advanced Stirling Radioisotope Generator EU2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  12. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    Science.gov (United States)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  13. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler

    DEFF Research Database (Denmark)

    Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie

    2016-01-01

    Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four d...

  14. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  15. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  17. A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines

    Science.gov (United States)

    Backhaus, Scott; Reid, Robert S.

    2005-02-01

    A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.

  18. Overview 2003 of NASA Multi-D Stirling Convertor Code Development and DOE and NASA Stirling Regenerator R and D Efforts

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Simon, Terry; Mantell, Susan; Gedeon, David; Qiu, Songgang; Wood, Gary

    2004-01-01

    This paper win report on continuation through the third year of a NASA grant for multi-dimensional Stirling CFD code development and validation; continuation through the third and final year of a Department of Energy, Golden Field Office (DOE), regenerator research effort and a NASA grant for continuation of the effort through two additional years; and a new NASA Research Award for design, microfabrication and testing of a "Next Generation Stirling Engine Regenerator." Cleveland State University (CSU) is the lead organization for all three efforts, with the University of Minnesota (UMN) and Gedeon Associates as subcontractors. The Stirling Technology Company and Sun power, Inc. acted as unfunded consultants or participants through the third years of both the NASA multi-D code development and DOE regenerator research efforts; they win both be subcontractors on the new regenerator microfabrication contract.

  19. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  20. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  1. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electric......An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...

  2. No money printing machine. The market for cogeneration units with a Stirling engine begins to increase; Keine Gelddruckmaschinen. Markt fuer Stirling-KWK-Geraete kommt in Bewegung

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2012-10-15

    The serial production of micro combined heat and power units with a Stirling engine is started. However, it is becoming apparent, that from economic reasons units of the 1-kW{sub el.}-class designed for single-family houses and two-family houses are increasingly used as a base load unit in multi-family houses and small trades.

  3. Brayton Isotope Power System (BIPS). Phase I. First annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-27

    The objective of the BIPS program is to develop a closed gas turbine dynamic conversion system for space application. The baseline system is a 7-year life, 450 lb, 1300 W(e) unit using Brayton cycle hardware developed for the NASA LeRC and two 2400 W(t) Multi-Hundred Watt isotope heat sources developed for the ERDA. Phase I of the three-phase BIPS program is the conceptual design of the flight system, the design, development, and testing of a prototype Ground Demonstration System (GDS). The Mini-Brayton Rotating Unit (Mini-BRU), Mini-BRU Recuperator (MBR), and Heat Source Assembly (HSA) will be integrated into the ground demonstrator loop, and the system will be tested under simulated space conditions at the AiResearch Space Power Laboratory. Successful completion of the Phase I effort in mid 1978 is expected to lead to the Phase II and Phase III follow-on efforts. Phase II is a 24-month effort for the development and qualification of a flight system. Qualification will include testing with an isotope heat source. Phase III is a 12-month effort to fabricate flight-qualified hardware for delivery in April 1981.

  4. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  5. A model for exergy analysis and thermodynamic bounds of Stirling refrigerators

    Science.gov (United States)

    Razani, A.; Dodson, C.; Roberts, T.

    2010-04-01

    A thermodynamic model based on exergy flow through a Stirling Refrigerator is developed. Important irreversibilities of the refrigerator due to external heat transfer with the reservoirs, heat leak, flow and heat transfer in regenerator are included in the model. Expansion and compression efficiencies are introduced in the model to account for the losses in these processes. The effect of a control phase shift between the mass flow rate and pressure across regenerator on the performance of the refrigerator is presented. Analytical solutions representing important quantities in the design of Stirling refrigerators such as the load curve, cooling power and efficiency in terms of basic system input parameters are developed. Thermodynamic bounds for the performance of Stirling refrigerators are obtained. Results indicating a compromise between cooling power and efficiency that are dependent on the constraint of the system are presented and discussed.

  6. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  7. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  8. Integration of a free-piston Stirling engine and a moving grate incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.C.; Hsu, T.C.; Chiou, J.S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2008-01-15

    The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers. From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity. (author)

  9. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    Science.gov (United States)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  10. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  11. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  12. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    Science.gov (United States)

    Uri, Bin-Nun

    2011-06-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  13. A Typical Simulation of a 3-KW Stirling Engine

    Directory of Open Access Journals (Sweden)

    Duan Chen

    2012-10-01

    Full Text Available Stirling engine is being received more and more attention with the development of renewable energy utility. The paper described the design and simulation of a 3-KW Stirling engine based on a testing V-type machine while in the process of manufactured at the Huazhong University of Science and Technology. The engine was driven by solar energy. Based on the testing machine, the heater model of variable heat source, regenerator model and complete appliance model were built, and the thermal performance was simulated and shown under a typical sunlight in the area of Wuhan. The results suggested that the output power curve of Stirling engine appeared as the shape of a saddle in consideration that the radiant energy density of solar energy was non-constant, and electrical heating was employed to serve as the auxiliary heat source. There was about 1.83 KW output work of the manufactured engine during the simulation, and the effective efficiency was about 25.4%.

  14. β Style Free-Piston Stirling Engine Control System Research

    Directory of Open Access Journals (Sweden)

    Xu Jian

    2016-01-01

    Full Text Available For the Free-Piston Stirling Engines (FPSE control system, a three -phase bridge circuit is reused as the system output about rectifier and start inverter. When FPSE system is in the power stage, the double closed loop control strategy and optimization algorithm of PI control parameters is adopted to ensure the highest system transmission efficiency under the requirements of the system output power and guarantee the stability of the running system. The simulation results prove the effectiveness of the above research content.

  15. Study of a thermoacoustic Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H.; Poignand, G.A. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-12-15

    A Stirling cycle thennoacoustic engine is developed and performance measurements are performed. The engine uses thermal power to generate acoustic power. It consists mainly of three parts: a thermodynamic part consisting of a regenerator, two heat exchangers, and a thermal buffer tube; an acoustic network consisting of an acoustic compliance and an inertance; and a resonator. The thermodynamic part and the acoustic network are placed in a torus configuration. The hot heat exchanger is placed on the top of the torus so that the shape and size of the hot heat exchanger can be designed or chosen independently of the regenerator dimensions. Two different resonators types of about a 1/4-wave length have been tested during the study of the engine. The first resonator forms a too heavy load for the engine and could not be loaded with an RC-acoustic load. A second resonator is designed and built that has less loss than the first one. The performance measurements with the second resonator show that the engine at its most efficient operating point generates 190 watt of acoustic power with an efficiency of 22.5%, corresponding to 36% of Carnot.

  16. Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible.

    Science.gov (United States)

    Bu, Wenting; Fukuda, Miho; Zheng, Jian; Aono, Tatsuo; Ishimaru, Takashi; Kanda, Jota; Yang, Guosheng; Tagami, Keiko; Uchida, Shigeo; Guo, Qiuju; Yamada, Masatoshi

    2014-08-19

    Atmospheric deposition of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has been observed in the terrestrial environment around the FDNPP site; however, their deposition in the marine environment has not been studied. The possible contamination of Pu in the marine environment has attracted great scientific and public concern. To fully understand this possible contamination of Pu isotopes from the FDNPP accident to the marine environment, we collected marine sediment core samples within the 30 km zone around the FDNPP site in the western North Pacific about two years after the accident. Pu isotopes ((239)Pu, (240)Pu, and (241)Pu) and radiocesium isotopes ((134)Cs and (137)Cs) in the samples were determined. The high activities of radiocesium and the (134)Cs/(137)Cs activity ratios with values around 1 (decay corrected to 15 March 2011) suggested that these samples were contaminated by the FDNPP accident-released radionuclides. However, the activities of (239+240)Pu and (241)Pu were low compared with the background level before the FDNPP accident. The Pu atom ratios ((240)Pu/(239)Pu and (241)Pu/(239)Pu) suggested that global fallout and the pacific proving ground (PPG) close-in fallout are the main sources for Pu contamination in the marine sediments. As Pu isotopes are particle-reactive and they can be easily incorporated with the marine sediments, we concluded that the release of Pu isotopes from the FDNPP accident to the marine environment was negligible.

  17. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  18. The Stirling engine mechanism optimization

    Directory of Open Access Journals (Sweden)

    Jiří Podešva

    2016-03-01

    Full Text Available A special type of the gas engine with external combustion is called Stirling engine. The mechanism has two pistons with two volumes inside. The pistons are connected together through cooler, regenerator and warmer. The engine effectivity depends on the piston movement behaviour. The usual sinusoidal time curve leads to low effectiveness. The quick movement from lower to upper position with a certain delay in both top and bottom dead centres is more effective. The paper deals with three types of mechanisms, analyzing the piston movement, and their behavior. Special emphasize is taken to the piston movement regime.

  19. Recent Advances in Technology on Dish Stirling Solar Power Generating Systems%碟式斯特林太阳能发电系统最新进展

    Institute of Scientific and Technical Information of China (English)

    刘建明; 陈革; 章其初

    2011-01-01

    太阳能热发电技术中最具发展潜力的是碟式太阳能高温发电技术,尤其是近几年碟式斯特林太阳能发电技术更是令世界瞩目,它具有光电转换效率高、耗水量低、发电方式灵活及可逐步规模化等特点.目前,国内外碟式斯特林太阳能发电系统的研制方兴未艾,国外太阳能斯特林发电机制作及测试技术已趋于成熟,正处于中试和大规模推广阶段.国外主要的碟式斯特林发电系统包括SES公司的SunCatcher单元、Cleanergy,公司的Eumdish单元、Infinia公司的PowerDish单元等.国内碟式斯特林太阳能热发电技术研究取得了一些成绩,但总体来说,目前还未获得实质性的进展,相关研究尚处于初级阶段.碟式斯特林太阳能发电系统的核心部件是太阳能斯特林发电机,其某些关键部件的研发难度较大,如高温太阳能吸收器、高效回热器、工质密封、功率和转速控制等.要攻克这些关键技术,需要国内外相关部门的大力支持.我国科研工作者应通过各种形式与国外斯特林发电机制造商及科研机构进行技术合作,逐渐掌握此项技术;或者借鉴国外的研制经验自主研发,然后通过示范推广,建设大型碟式斯特林太阳能发电厂.

  20. Comparison of Stirling engines for use with a 25-kW disk-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.

  1. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ovaskainen, R

    1999-11-01

    The mass spectrometric determination of minor abundant isotopes, {sup 234}U and {sup 236}U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n({sup 234}U)/n({sup 238}U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n({sup 234}U)/n({sup 235}U) and n({sup 236}U)/n({sup 235}U) ratios were determined using ion counting in combination with the decelerating device. The n({sup 235}U)/n({sup 238}U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n({sup 234}U)/n({sup 235}U) ratios and 5-25 percent for the n({sup 236}U)/n({sup 235}U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International

  2. Plant Characteristics af a Multi-Fuel Sofc-Stirling Hybrid Configuration

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    is generated. Simulations for the proposed system were conducted using different fuels which facilitate use of variety of fuels depending on availability. Here, results for Natural Gas (NG), ammonia, Di-Methyl Ether (DME), methanol and ethanol are presented and analysed. System behaviour is further...... efficiency compared with the stand alone Stirling engine or SOFC plant. For the SOFC and Stirling combined configuration, the overall power production has increased by about 10% compared to the stand alone SOFC plant. System efficiencies of about 60% are achieved which is remarkable for such small plant...

  3. Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, V.S. [Institute of Thermophysics SB RAS (Russian Federation); Bakos, G.C. [Democritus University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Energy Economics, 67 100 Xanthi (Greece); Finnikov, K.A. [Siberian Federal University (Russian Federation)

    2009-07-15

    In this paper, the principle of heat energy conversion via Stirling pump into electricity is considered. New scheme of Stirling pump is proposed, that differs from known ones in application of offset heater and cooler and valves controlling the motion of liquid. The mathematical model is implemented to examine the liquid flow and gas heat exchange in cylinders and regenerator. The numerical simulation of engine's working cycle is conducted for the purpose of determining the characteristic parameters of its design. A possibility of achieving high thermal efficiency at acceptable power level is shown. (author)

  4. Assessment of a 40-kilowatt stirling engine for underground mining applications

    Science.gov (United States)

    Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.

    1982-06-01

    An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

  5. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......, using wood powder as fuel will be developed at Lund University, Sweden, in cooperation with the Technical University of Denmark and with the wood powder boiler manufacturer VTS AB. The unit is to be run in CHP operation by Vattenfall - the largest electric power company in Sweden - in a one-year field...

  6. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  7. Micro CHP module with Stirling engine: tests and market introduction; Mikro-KWK-Modul mit Stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, A.

    2002-07-01

    This article describes a small combined heat and power (CHP) module based on a stationary Stirling engine with a 2 - 9 kW electrical and a 8 - 24 kW thermal rating. Its associated gas burner is also described. The article reviews the history of the development of this CHP module and describes how the Stirling engine works. The advantages offered by the Stirling engine in comparison with conventional engines in terms of low maintenance requirements and low emissions of pollutants are discussed. The design of the module and its integration into heating systems are examined. Tests with 30 units providing a total of 150,000 hours of operation are discussed. Production facilities and market introduction activities are briefly described.

  8. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which...

  9. Advanced Stirling Convertor (ASC) Development for NASA RPS

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  10. Advanced Stirling Technology Development at NASA Glenn Research Center

    Science.gov (United States)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  11. COMPUTER SIMULATION OF A STIRLING REFRIGERATING MACHINE

    Directory of Open Access Journals (Sweden)

    V.V. Trandafilov

    2015-10-01

    Full Text Available In present numerical research, the mathematical model for precise performance simulation and detailed behavior of Stirling refrigerating machine is considered. The mathematical model for alpha Stirling refrigerating machine with helium as the working fluid will be useful in optimization of these machines mechanical design. Complete non-linear mathematical model of the machine, including thermodynamics of helium, and heat transfer from the walls, as well as heat transfer and gas resistance in the regenerator is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. Important design parameters are varied and their effect on Stirling refrigerating machine performance determined. The simulation results of Stirling refrigerating machine which include heat transfer and coefficient of performance are presented.

  12. Stirling Air Conditioner for Compact Cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  13. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  14. Simple and Clear Proofs of Stirling's Formula

    Science.gov (United States)

    Niizeki, Shozo; Araki, Makoto

    2010-01-01

    The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.

  15. Flexure bearing support, with particular application to stirling machines

    Science.gov (United States)

    Beckett, Carl D.; Lauhala, Victor C.; Neely, Ron; Penswick, Laurence B.; Ritter, Darren C.; Nelson, Richard L.; Wimer, Burnell P.

    1996-01-01

    The use of flexures in the form of flat spiral springs cut from sheet metal materials provides support for coaxial nonrotating linear reciprocating members in power conversion machinery, such as Stirling cycle engines or heat pumps. They permit operation with little or no rubbing contact or other wear mechanisms. The relatively movable members include one member having a hollow interior structure within which the flexures are located. The flexures permit limited axial movement between the interconnected members, but prevent adverse rotational movement and radial displacement from their desired coaxial positions.

  16. Start-up and control method and apparatus for resonant free piston Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  17. Compact Stirling cooling of astronomical detectors

    CERN Document Server

    Raskin, Gert; Pessemier, Wim; Padilla, Jesus Perez; Vandersteen, Jeroen

    2013-01-01

    MAIA, a three-channel imager targeting fast cadence photometry, was recently installed on the Mercator telescope (La Palma, Spain). This instrument observes a 9.4 x 14.1 arcmin field of view simultaneously in three color bands ($u$, $g$ and $r$), using three of the largest (un-) available frame-transfer CCDs, namely the 2k x 6k CCD42-C0 from e2v. As these detectors are housed in three separate cryostats, compact cooling devices are required that offer sufficient power to cool the large chips to a temperature of 165K. We explored a broad spectrum of cooling options and technologies to cool the MAIA detectors. Finally, compact free-piston Stirling coolers were selected, namely the CryoTel MT cryo-coolers from SUNPOWER, that can extract 5W of heat at a temperature of 77K. In this contribution we give details of the MAIA detector cooling solution. We also discuss the general usability of this type of closed-cycle cryo-coolers for astronomical detectors. They offer distinct advantages but the vibrations caused by ...

  18. 5-kWe Free-piston Stirling Engine Convertor

    Science.gov (United States)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  19. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Madi, F.J. [Sverdrup Technology, Inc., Cleveland, OH (United States). Lewis Research Center Group

    1994-09-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  20. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    Science.gov (United States)

    Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.

    1992-08-01

    Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  1. Ferroelectric Stirling-Cycle Refrigerator

    Science.gov (United States)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    A Stirling-cycle refrigerator has a three-pump configuration and pumping sequence, in which one pump serves as a compressor. one pump serves as an expander, and one pump serves as a displacer. The pumps are ferroelectrically actuated diaphragm pumps which are coordinated by synchronizing the ferroelectric-actuator voltages in such a way that the net effect of the displacer is to reduce the deleterious effect of dead space; that is, to circulate a greater fraction of the working fluid through the heat exchangers than would be possible by use of the compressor and expander alone. In addition. the displacer can be controlled separately to make the flow of working fluid in the heat exchangers turbulent (to increase the rate of transfer of heat at the cost of greater resistance to flow) or laminar (to decrease the resistance to flow at the cost of a lower heat-transfer rate).

  2. Kilowatt Isotope Power System: component test report for the ground demonstration system jet condenser orifice performance. 77-KIPS-103

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, E.L.

    1977-11-08

    The purpose of these tests was to determine which orifice elements achieved satisfactory hydraulic and thermal performance prior to their incorporation into the Jet Condenser Assembly. Requirements were as set forth within the Kilowatt Isotope Power System (KIPS) Component Test Procedure number 414 for the Jet Condenser Orifice Performance testing. The results of the performance testing conducted on the Jet Condenser Orifices are presented. Part Number 720841 Jet Condenser Orifice Nozzle successfully completed the orifice screening tests.

  3. Development of Small-Scale CHP Plant with a Wood Powder-Fueled Stirling Engine

    Science.gov (United States)

    Sato, Katsura; Ohiwa, Norio; Ishikawa, Akira; Shimojima, Hidetoshi; Nishiyama, Akio; Moriya, Yoichi

    Small-scale biomass CHP (combined heat and power) plants are in demand for environmental reasons - particularly systems fueled by wood waste, which are simple to operate and require no maintenance while having high thermal efficiency similar to oil-fired units. A 55kWe Stirling engine CHP system, combined with a simplified biomass combustion process that uses pulverized wood powder has been developed to meet these requirements. Wood powder of less than 500 μm was mainly used in these tests, and a combustion chamber length of 3 m was applied. Under these conditions, the air ratio can be reduced to 1.1 without increasing CO emissions by less than 10 ppm, and with combustion efficiency of 99.9%. Under the same conditions, NOx emissions are estimated to be less than 120 ppm (on the basis of 6% O2). Wood powder was confirmed to have excellent properties as a fuel for Stirling engines. The 55 kWe Stirling engine performance test was carried out to optimize the operating condition of wood powder burners. The status of Stirling engine operation at a full load with 55 kWe was stable, and start-up and shut -down operations were easy to perform. Operational status was evaluated as being excellent, except for an ash fouling problem in the Stirling engine heater tubes. Ash fouling characteristics were considered in the final stage of the demonstration test. This paper summarizes the wood powder combustion test and Stirling engine performance test. Furthermore, the ash fouling data is shown and the mechanism of ash fouling in heater tubes is discussed.

  4. The Experimental Study of Atmospheric Stirling Engines Using Pin-Fin Arrays' Heat Exchangers

    Science.gov (United States)

    Isshiki, Seita; Sato, Hidekazu; Konno, Shoji; Shiraishi, Hiroaki; Isshiki, Naotsugu; Fujii, Iwane; Mizui, Hiroyuki

    This paper reports experimental results on two kinds of atmospheric Stirling engines that were designed and manufactured using a pin-fin array heat exchanger for the heater and cooler (abbreviated to “pin-fin Stirling engine” hereafter). The first one is a large β type pin-fin Stirling engine with a 1.7-liter displacement volume and power piston volume. The heater consists of an aluminum circular disk with a diameter of 270mm and with large-scale pin-fin arrays carved into the surface. The maximum output reached 91W at a temperature difference of 330K, which is 36% of the scheduled value and 68% of the Kolin's cubic power law. The maximum thermal efficiency was estimated 4.2%. The second engine is an α type pin-fin Stirling engine. Glass syringes were used for the piston-cylinder system and the Ross-yoke mechanism was used for the crank mechanism. By changing temperature difference, the characteristic of output torque in the large range was measured with a precision torque detector.

  5. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  6. Energy analysis of the cryogenic CO2 capture process based on Stirling coolers

    OpenAIRE

    Song, Chunfeng; Kitamura, Yutaka; Li, Shuhong

    2014-01-01

    In the existing coal-fired power plants, the energy penalty associated with CO2 capture process is an important challenge. For this reason, energy analysis has been widely used as a powerful tool to optimize the capture efficiency and reduce energy consumption. In our previous work, a Stirling cooler based cryogenic CO2 capture system was outlined. Process simulation and energy analysis of the system were undertaken in this research. The whole CO2 capture process is composed of three sections...

  7. James Stirling Regionalismo y modernidad

    Directory of Open Access Journals (Sweden)

    Javier de Esteban Garbayo

    2015-05-01

    Full Text Available ResumenEn los años treinta, la arquitectura moderna se había introducido en los más remotos lugares del mundo enfrentándose con la infinita idiosincrasia de lo local, y al mismo tiempo, el arquitecto, sintiendo las limitaciones de su estilo e intentando ampliar su vocabulario, se embarcó en un proceso de difusión, asimilación y personalización.La idea de una renovada época después de la posguerra británica, sería compartida por una joven generación de arquitectos con el fin de encontrar una nueva forma de modernidad.Si en sus proyectos domésticos de mediados de los cincuenta, James Stirling partió de una aproximación al regionalismo y a la 'tradición funcional' con el fin de renovar el lenguaje moderno, no abandonaría la idea 'programática' inicial de entender la arquitectura desde una consistencia formal y una lógica que combinaba 'una síntesis común del pasado reciente y una certera actitud hacia el futuro'. AbstractThirties, modern architecture had percolated into remote corners of the world, encountering the infinite idiosyncrasies of locality, and, at the same time, Architects, feelings the limitations of their style and becoming intent upon extending their vocabulary, embarked upon a process of diffusion, assimilation and personalitation.The idea of a renewed period after British postwar, was shared for a new young architects generationto find a new way of modernity.While in his mid fifties housing projects, James Stirling approached to 'regionalism' and 'the functional tradition' to renew the modern language, he wouldn't reject the programmatic idea to understand architecture from a logic and formal consistency that combine 'a common synthesis of the recent past and a certain attitude toward the future'.

  8. A combination of Stirling engine and high-efficiency boiler. Microsize cogeneration unit for heat and power supply; Stirlingmotor und Brennwertkessel vereint. Mikro-Waermekraftkopplung liefert Strom und Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Donnerbauer, R.

    2001-03-01

    Apart from the heat pump and fuel cell, there is another new development: At the ISH in March, the Dutch producer EnAtEc intends to present a microsize cogeneration unit consisting of a gas-fuelled high-efficiency boiler and a free-piston Stirling motor. [German] Sind die Wirkungsgrade in der Heiztechnik ausgenutzt? Auf die Frage 'Was kommt nach der Brennwerttechnik?' gibt es jetzt neben Waermepumpe und Brennstoffzelle eine neue Antwort. Zur kommenden ISH Ende Maerz hat die niederlaendische Firma EnAtEc die Vorstellung einer 'Mikro-Waermekraftkopplung' ({mu}WK) angekuendigt. Das Geraet kombiniert einen Gas-Brennwertkessel mit einer Freikolben-Stirlingmaschine. (orig.)

  9. Fast Whole-Engine Stirling Analysis

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  10. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  11. Analytical model for Stirling cycle machine design

    CERN Document Server

    Formosa, Fabien; 10.1016/j.enconman.2010.02.010

    2013-01-01

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

  12. US Army Power Overview

    Science.gov (United States)

    2010-09-01

    Cells (DMFC, RMFC, SOFC ), Batteries & Stirl ing (LFP, Kinemat ic) * Packaged & Reformed Fuels : Methanol, Propane, NaBH4, Ammonia Borane * Direct JP-8... Fuel Goal - SOFC , Stirl ing Burner ~ RENEWABLES/ALTERNATIVE ENERGY * Solar, Wind Energy Storage Systems * Bio- Fuels , Hydrogen Generation ~ MOBILE...ENVIRONMENTAL CONTROL UNITS * Advanced C02 Cooling * Co-Gen Systems (HAC & Stir ling I Fuel Cell ) Soldier Power Existing Situation: • Batteries

  13. Hydrogen Internal Combustion Stirling Engine

    Science.gov (United States)

    Takahashi, Sanyo; Morita, Hiroyuki; Kurata, Osamu; Yamashita, Iwao

    The hydrogen combustion Stirling engine utilizes internal combustion of a stoichiometric H2 and O2 mixture injected into the working gas as thermal input, and the cyclic operation is completed with the removal of water from the engine after condensation at the cooler. In the prototype engine, a catalytic combustor is substituted for the conventional heater, and the H2-O2 mixture is injected at a constant flow rate from the boundary between the regenerator and the cooler. The engine internal heating characteristics were compared to those on external heating to clarify the internal heating effect on the engine performance. The internal heating performance showed almost the same characteristics as those of external heating, except for the increase of expansion work due to the direct thermal input. The increase of expansion work improved the engine performance, particularly in the region of high engine speed. Furthermore, it was found that the steady injection method was able to suppress the mixture strength to a relatively low level.

  14. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  15. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China.

    Science.gov (United States)

    Tang, Shunlin; Feng, Chaohui; Feng, Xinbin; Zhu, Jianming; Sun, Ruoyu; Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua; Zhou, Ting

    2017-04-15

    Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ(202)Hg=-2.04±0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7-2.6‰ in δ(202)Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  16. Stirling laboratory research engine survey report

    Science.gov (United States)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  17. A Ross-Stirling spacecraft refrigerator

    Science.gov (United States)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  18. Desarrollo de motores stirling para aplicaciones solares

    OpenAIRE

    García Menéndez, David

    2013-01-01

    Los sistemas de conversión termosolar basados en motores Stirling figuran entre las líneas de investigación actuales que pretenden contribuir al uso racional de la energía y al desarrollo sostenible. La presente Tesis Doctoral tiene como objetivo proporcionar criterios de análisis, diseño, fabricación y ensayo útiles para el desarrollo de motores Stirling alimentados con energía solar, a diferentes niveles de salto térmico. La metodología empleada está basada principalmente en técnicas...

  19. AZ-TH, 80 KWE Solar Dish-Stirling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Osuna, R.; Enrile, J.; Sanchez, M.; Fernandez-Quero, V.; Barragan, J.; Ruiz, V.; Silva, M.; Bas, F.; Lopez-Lara, G.; Fernandez-Liebre, F.

    2006-07-01

    Ing. Jose Barragan, Solucar R and D, Avda. Buhaira 2, E-41018 Sevilla, Spain, Tel: +34 95 4937111; Fax: +34 95 4937008; jose.barragan@solucarrd.abengoa.com Abstract. An initiative to promote a 80kWe dish-stirling facility is being carried out by Solucar, an Abengoa company working on solar energy, with the support of the Renewable Energies Program of Andalusia Government TROUGH the Agencia de Innovacion (IDEA), and the Agencia Andaluza de la Energia (AAE). The plant consists of 7 stirling dishes of 11,2kWe unitary power, that will generate 104MWh of electricity in a year, and will sell it to the grid in a commercial basis under the frame of solar thermal renewable energy production regulations in Spain, that consider up to 0,18/kWh over pool market price for electricity. To achieve the feasibility of the project, a new concentrator based on single spherical 0,5 m2 curved mirrors has been proposed. It has been developed following the schemes of the traditional pedestal/arms heliostats. Foreseen cost for concentrator reaches 450/m2 when completely installed and in operation. The facility will be installed in the area of PS10 and Sevilla PV plants, in the solar park that Abengoa is promoting in Sanlucar la Mayor, in order to share maintenance, supervision, vigilance and operation costs with other bigger plants. (Author)

  20. Development of high capacity Stirling type pulse tube cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Imura, J. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan)], E-mail: junnosuke_imura@yahoo.co.jp; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan); Ohashi, Y.; Nomachi, H.; Okumura, N. [Aisin Seiki Co., Ltd., 2-1, Asahi-machi, Kariya, Aichi 448-8650 (Japan); Nagaya, S.; Tamada, T.; Hirano, N. [Chubu Electric Power Co., Inc., 1, Toshin-cho, Higashi-ku, Nagoya-shi, Aichi 261-8680 (Japan)

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were 150, 200, 250, 350 and 400. Using 250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  1. Development of high capacity Stirling type pulse tube cryocooler

    Science.gov (United States)

    Imura, J.; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K.; Ohashi, Y.; Nomachi, H.; Okumura, N.; Nagaya, S.; Tamada, T.; Hirano, N.

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were #150, 200, 250, 350 and 400. Using #250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  2. MANUFACTURING AND TESTING OF A V-TYPE STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    B. Demir

    2012-01-01

    Full Text Available In this study, a V-type Stirling engine with 163 cc total swept volume was designed and manufactured. Air was used as working fluid. Performance tests were conducted at the range of 1-3 bar charge pressure and within the range of hot source temperature 700-1050 °C. Experimental results are given. Variation of engine power and torque with hot source temperature at various air charge pressure are tested. Also variation of engine torque with engine speed for different air charge pressure are tested. According to experimental analysis, the maximum engine power was obtained as 21.334 W at 1050 ˚C hot source temperature and 1.5 bars charge pressure.

  3. Automotive Stirling Engine Mod 1 Design Review, volume 2

    Science.gov (United States)

    1982-01-01

    The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.

  4. Isotopic compositions of (236)U and Pu isotopes in "black substances" collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident.

    Science.gov (United States)

    Sakaguchi, Aya; Steier, Peter; Takahashi, Yoshio; Yamamoto, Masayoshi

    2014-04-01

    Black-colored road dusts were collected in high-radiation areas in Fukushima Prefecture. Measurement of (236)U and Pu isotopes and (134,137)Cs in samples was performed to confirm whether refractory elements, such as U and Pu, from the fuel core were discharged and to ascertain the extent of fractionation between volatile and refractory elements. The concentrations of (134,137)Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 MBq/kg, respectively. (239+240)Pu was detected at low levels, ranging from 0.15 to 1.14 Bq/kg, and with high (238)Pu/(239+240)Pu activity ratios of 1.64-2.64. (236)U was successfully determined in the range of (0.28 to 6.74) × 10(-4) Bq/kg. The observed activity ratios for (236)U/(239+240)Pu were in reasonable agreement with those calculated for the fuel core inventories, indicating that trace amounts of U from the fuel cores were released together with Pu isotopes but without large fractionation. The quantities of U and (239+240)Pu emitted to the atmosphere were estimated as 3.9 × 10(6) Bq (150 g) and 2.3 × 10(9) Bq (580 mg), respectively. With regard to U, this is the first report to give a quantitative estimation of the amount discharged. Appreciable fractionation between volatile and refractory radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found.

  5. "Starfish" Heater Head For Stirling Engine

    Science.gov (United States)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  6. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  7. The Stirling Lesson-Sampling Instruments.

    Science.gov (United States)

    White, D. R.

    A long-term Leverhulme Research Project was established at Stirling University in 1970 to investigate the potential of microteaching as a major ingredient in the preparation of graduate high school teachers in Scotland. Members of the research team developed systematic observation schedules for each of the skills, in order to sharpen the focus of…

  8. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  9. Asymptotic estimates for generalized Stirling numbers

    NARCIS (Netherlands)

    Chelluri, R.; Richmond, L.B.; Temme, N.M.

    1999-01-01

    Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range inclu

  10. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  11. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Engine Convertor

    Science.gov (United States)

    Kirby, Raymond L.; Vitale, Nick

    2008-01-01

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling convertors for 2020 launch. Use of two of the nominal 5 kW convertors allows the system to be dynamically balanced. A group of four dual-convertor combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the Free Piston Stirling Engine (FPSE) convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  12. Analysis and design consideration of mean temperature differential Stirling engine for solar application

    Energy Technology Data Exchange (ETDEWEB)

    Tlili, Iskander; Timoumi, Youssef; Nasrallah, Sassi Ben [Laboratoire d' Etude des Systemes Thermiques et Energetiques Ecole Nationale d' Ingenieurs de Monastir, Rue Ibn El Jazzar, 5019 Monastir (Tunisia)

    2008-08-15

    This article presents a technical innovation, study of solar power system based on the Stirling dish (SD) technology and design considerations to be taken in designing of a mean temperature differential Stirling engine for solar application. The target power source will be solar dish/Stirling with average concentration ratio, which will supply a constant source temperature of 320{sup o}C. Hence, the system design is based on a temperature difference of 300{sup o}C, assuming that the sink is kept at 20{sup o}C. During the preliminary design stage, the critical parameters of the engine design are determined according to the dynamic model with losses energy and pressure drop in heat exchangers was used during the design optimisation stage in order to establish a complete analytical model for the engine. The heat exchangers are designed to be of high effectiveness and low pressure-drop. Upon optimisation, for given value of difference temperature, operating frequency and dead volume there is a definite optimal value of swept volume at which the power is a maximum. The optimal swept volume of 75 cm{sup 3} for operating frequency 75 Hz with the power is 250 W and the dead volume is of 370 cm{sup 3}. (author)

  13. Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Barry; McGovern, Jim [Department of Mechanical Engineering, Dublin Institute of Technology, Dublin (Ireland)

    2010-02-15

    The aim of this study was to investigate the feasibility of utilising a Stirling cycle engine as an exhaust gas waste heat recovery device for an Otto cycle internal combustion engine (ICE) in the context of an automotive power plant. The hybrid arrangement would produce increased brake power output for a given fuel consumption rate when compared to an ICE alone. The study was dealt with from an energy system perspective with design practicalities such as power train integration, location of auxiliaries, manufacture costs and other general plant design considerations neglected. The study necessitated work in two distinct areas: experimental assessment of the performance characteristics of an existing automotive Otto cycle ICE and mathematical modelling of the Stirling cycle engine based on the output parameters of the ICE. It was subsequently found to be feasible in principle to generate approximately further 30% useful power in addition to that created by the ICE by using a Stirling cycle engine to capture waste heat expelled from the ICE exhaust gases over the complete range of engine operating speeds. (author)

  14. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  15. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  16. Energy efficiency and economic feasibility of CCHP driven by Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X.Q.; Wang, R.Z.; Huang, X.H. [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics

    2004-06-01

    This paper deals with the problem of energy efficiency evaluation and economic feasibility analysis of a small scale trigeneration system for combined cooling, heating and power generation (CCHP) with an available Stirling engine. Trigeneration systems have a large potential of energy saving and economical efficiency. The decisive values for energetic efficiency evaluation of such systems are the primary energy rate and comparative primary energy saving ({delta}q), while the economic feasibility analysis of such systems relates the avoided cost, the total annual saving and payback period. The investigation calculates and compares the energy saving and economic efficiency of trigeneration system with Stirling engine against contemporary conventional independent cooling, heating and power, showing that a CCHP system saves fuel resources and has the assurance of economic benefits. (author)

  17. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas...

  18. Environmental Loss Characterization of an Advanced Stirling Convertor (ASC-E2) Insulation Package Using a Mock Heater Head

    Science.gov (United States)

    Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.

  19. Material Studies Related to the Use of NaK Heat Exchangers Coupled to Stirling Heater Heads

    Science.gov (United States)

    Locci, Ivan E.; Bowman, Cheryl L.; Geng, Steven M.; Robbie, Malcolm G.

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. Destructive material evaluation was performed on a NaK shell heat exchanger that was developed by the NASA Glenn Research Center (GRC) and integrated with a commercial 1 kWe Stirling convertor from Sunpower Incorporated. The NaK Stirling test demonstrated Stirling convertor electrical power generation using a pumped liquid metal heat source under thermal conditions that represent the heat exchanger liquid metal loop in a Fission Power Systems (FPS) reactor. The convertors were operated for a total test time of 66 hr at a maximum temperature of 823 K. After the test was completed and NaK removed, the heat exchanger assembly was sectioned to evaluate any material interactions with the flowing liquid metal. Several dissimilar-metal braze joint options, crucial for the heat exchanger transfer path, were also investigated. A comprehensive investigation was completed and lessons learned for future heat exchanger development efforts are discussed.

  20. Stirling Space Engine Program. Volume 1; Final Report

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  1. The power of integrating kinetic isotope effects into the formalism of the Michaelis-Menten equation.

    Science.gov (United States)

    Klinman, Judith P

    2014-01-01

    The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued until the present. This review discusses a family of eukaryotic copper proteins, including dopamine β-monooxygenase, tyramine β-monooxygenase and peptidylglycine α-amidating enzyme, which are responsible for the synthesis of neuroactive compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. The review highlights the results of studies showing how combining kinetic isotope effects with initial rate parameters permits the evaluation of: (a) the order of substrate binding to multisubstrate enzymes; (b) the magnitude of individual rate constants in complex, multistep reactions; (c) the identification of chemical intermediates; and (d) the role of nonclassical (tunnelling) behaviour in C-H activation. © 2013 FEBS.

  2. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    Science.gov (United States)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  3. United Stirling's solar engine development: The background for the Vanguard engine

    Science.gov (United States)

    Holgersson, S.

    1984-03-01

    The development and testing resulting in the Vanguard engine and some of the characteristics of the Stirling engine based power conversion unit are described. The major part of the solar engine development is concentrated to the three different areas, the receiver, the lubrication system and the control system. Five engines are on test within the solar project. The function of the components are validated in actual solar tests.

  4. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  5. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-02-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed

  6. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  7. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-06-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed.

  8. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    OpenAIRE

    V. V. Trandafilov; M.G. Khmelniuk; O. Y.Yakovleva; A. V. Ostapenko

    2016-01-01

    To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed.

  9. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  10. A numerical model on thermodynamic analysis of free piston Stirling engines

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  11. Thermoacoustic Stirling Heat Pump Working as a Heater

    Science.gov (United States)

    Bassem, Mohamed Mehdi; Ueda, Yuki; Akisawa, Atsushi

    2011-10-01

    A prototype thermoacoustic heat pump working as a heater was demonstrated. The heat pump was composed of an acoustic driver, a branched tube, and a looped tube containing a regenerator; the looped tube was connected to the acoustic driver via the branched tube, and the regenerator consisted of many narrow flow channels. The measurement results of the acoustic impedance inside the looped tube indicated that the energy conversion of the acoustic power flow into the acoustic heat flow in the regenerator occurred through the inherently efficient Stirling cycle. Moreover, the heat pump generated a hot temperature of 370 °C, corresponding to a temperature lift along the regenerator of 340 °C.

  12. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Low size, weight, power and price split Stirling linear cryocooler usually comprises electro-dynamically driven compressor and pneumatically driven expander which are side-by-side fixedly mounted upon the common frame and interconnected by the configurable transfer line. Vibration export produced by such a cryocooler comprises of a pair of tonal forces, the frequency of which essentially equals fixed driving frequency. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber, having one translational and two tilting modes essentially tuned to the driving frequency. Dynamic analysis shows that the dynamic reactions (force and moment) produced by such a dynamic absorber are capable of simultaneous attenuation of translational and tilting components of cryocooler induced vibration. The authors reveal the preferable design, the method of fine tuning and outcomes of numerical simulation on attainable performance.

  13. Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine

    Science.gov (United States)

    Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.

    2004-06-01

    A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.

  14. Duplex Stirling gas fired heating only heat pump

    Science.gov (United States)

    Beale, W.

    1982-03-01

    In phase I the Duplex Stirling Gas fired Heat Pump was analyzed with the aid of the Sunpower third order simulation and optimization code and found to show heating COP of 1.7 at the rating point of 8 C (17 F) with a heat delivery of 10 kW. Also it was found that a direct heat exchange between working fluid and source and sink air was consistent with high COP in the heat pump, thus eliminating the need for an intermediate heat transfer fluid and its associated pumps and controls. Further, it was demonstrated in the simulation that the heat engine power output could be matched to the heat pump load over the range of source temperatures without need of complex control systems. Cost estimates, along with COP figures from the analysis indicated a payback time of 2 to 4 years in completion with existing combustion heating systems in northern climates.

  15. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  16. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, Greg [Cool Energy, Inc., Boulder, CO (United States); Weaver, Samuel P. [Cool Energy, Inc., Boulder, CO (United States)

    2013-03-27

    Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of US power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one

  17. Description of a Stirling engine; Defense et illustration du moteur stirling

    Energy Technology Data Exchange (ETDEWEB)

    Caillate, A. [Lycee Gustave Eiffel, 21 - Dijon (France)

    2004-05-01

    The Stirling cycle is made up of 2 isotherm transformations: compression and expansion, and 2 isochoric transformations: heating and cooling. This article presents the Stirling engine with the view of illustrating different notions of thermodynamics for a college audience. The starting point is a reduced-size Stirling engine that has been fitted with pressure, temperature and volume sensors. By connecting the outputs of the volume and pressure sensors to an oscilloscope operating in the xy mode, the cycle diagram in the Clapeyron frame has been obtained. It was verified that the cycle is always clockwise covered and that the surface of the cycle increases whenever the engine is slowed down. (A.C.)

  18. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  19. Stirling Colgate and Gamma-Ray Bursts

    Science.gov (United States)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  20. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  1. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    . The gasification process is usually based on an atmospheric - pressure circulating fluidized bed gasifier coupled to a tar - crac king vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification...... Fuel Cell (SOFC). In the present study, a MSW gasification plant int egrated with SOFC is combined with a Stirling engine to recover the energy of the off - gases from the topping SOFC cycle. Detailed plant design is proposed and thermodynamic analysis is performed. Relevant parameters have been...

  2. A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4

    Science.gov (United States)

    Qiu, L. M.; Cao, Q.; Zhi, X. Q.; Gan, Z. H.; Yu, Y. B.; Liu, Y.

    2011-10-01

    Precooled phase shifters can significantly enhance the phase shift effect and further improve the performance of pulse tube cryocoolers. A separate three-stage Stirling pulse tube cryocooler (SPTC) with a cold inertance tube was designed and fabricated. Helium-4 instead of the rare helium-3 was used as the working fluid. The cryocooler reached a bottom temperature of 4.97 K with a net cooling power of 25 mW at 6.0 K. The operating frequency was 29.9 Hz and the charging pressure was 0.91 MPa. It is the first time a refrigeration temperature below the critical point of helium-4 was obtained in a three-stage Stirling pulse tube cryocooler.

  3. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    Science.gov (United States)

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  4. Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview

    Science.gov (United States)

    Shin, Euy-Sik Eugene

    2015-01-01

    Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.

  5. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    Science.gov (United States)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1990-01-01

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  6. Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application

    Science.gov (United States)

    Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

    2011-01-01

    This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

  7. Development of a Transient Model of a Stirling-Based CHP System

    Directory of Open Access Journals (Sweden)

    Antón Cacabelos

    2013-06-01

    Full Text Available Although the Stirling engine was invented in 1816, this heat engine still continues to be investigated due to the variety of energy sources that can be used to power it (e.g., solar energy, fossil fuels, biomass, and geothermal energy. To study the performance of these machines, it is necessary to develop and simulate models under different operating conditions. In this paper, we present a one-dimensional dynamic model based on components from Trnsys: principally, a lumped mass and a heat exchanger. The resulting model is calibrated using GenOpt. Furthermore, the obtained model can be used to simulate the machine both under steady-state operation and during a transient response. The results provided by the simulations are compared with data measured in a Stirling engine that has been subjected to different operating conditions. This comparison shows good agreement, indicating that the model is an appropriate method for transient thermal simulations. This new proposed model requires few configuration parameters and is therefore easily adaptable to a wide range of commercial models of Stirling engines. A detailed analysis of the system results reveals that the power is directly related to the difference of temperatures between the hot and cold sources during the transient and steady-state processes.

  8. Detailed Performance Analysis of the 10-Kw CNRS-Promes Dish/Stirling System

    Energy Technology Data Exchange (ETDEWEB)

    Reinalter, W.; Ulmer, S.; Heller, P.; Rauch, T.; Gineste, J. M.; Ferriere, A.; Nepveu, F.

    2006-07-01

    The CNRS-Promes dish/Stirling system was erected in June 2004 as the last of three country reference units built in the Envirodish project, partly financed by the German ministry of environment. It represents the latest development step of the EuroDish system with many improved components. With a measured peak of 11 kW electrical output power it is also the best performing system so far. The measurement campaign to determine the optical and thermodynamic efficiency of the system is presented. The optical quality of the concentrator and the energy input to the power conversion unit was measured with a classical flux-mapping system using a Lambertian target and a CCD camera system. For the thermodynamic analysis all the data necessary for a complete energy balance around the Stirling engine, i.e. efficiency of the Stirling motor, the cavity and the receiver as well as the parasitic losses were measured or approximated by calculations. Such a detailed performance analysis helps to quantify all significant losses of the system and to identify the most rewarding future improvements. (Author)

  9. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  10. Development of a pellet boiler with Stirling engine for m-CHP domestic application

    Energy Technology Data Exchange (ETDEWEB)

    Crema, Luigi; Alberti, Fabrizio; Bertaso, Alberto; Bozzoli, Alessandro [Fondazione Bruno Kessler (FBK), Povo, Trento (IT). Renewable Energies and Environmental Technologies Unit (REET)

    2011-12-15

    A new sustainable technology has been designed by Fondazione Bruno Kessler through its unit Renewable Energies and Environmental Technologies. This technology is realized integrating in a single system (1) a Stirling engine (mRT-1K) from a pre-engineering design of Allan J. Organ; (2) a micro-heat exchanger technology, to reduce the net transfer unit deficit on the hot side of the heat engine; (3) a customized pellet boiler, able to extract electrical and thermal power; and (4) a customized hydraulic circuit, connecting the cool side of the Stirling engine and the heat generation on the second section of the pellet boiler. The objective of this paper was to present a new technology for the micro-cogeneration of energy at a distributed level able to be integrated in domestic dwellings. Most part of the available biomass is used in buildings for the generation of thermal power for indoor heating and, in minor cases, for hot sanitary water. In the Province of Trento, 88% of the biomass is used for this purpose. The full system is actually under integration for the test phase and not yet tested. The first tests on the single components have confirmed preliminary results on the Stirling engine with respect to the tolerances, pressurization, and proper integration of the electrical generator-driven control system. The pellet boiler has been tested separately, confirming an overall thermal efficiency of 90%. (orig.)

  11. Four-Cylinder Stirling Engine Control Simulation

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Four-cylinder, Stirling-engine, transient-engine-simulation computer program developed. Program intended for control analysis. Associated engine model simplified to shorten computer calculation time. Model includes engine mechanical-drive dynamics and vehicle-load effects. Computer program also includes subroutines that allow acceleration of engine by addition of hydrogen to system and braking of engine by short circuiting of working spaces.

  12. Fuel and emissions properties of Stirling engine operated with wood powder

    Energy Technology Data Exchange (ETDEWEB)

    Akio Nishiyama; Hidetoshi Shimojima; Akira Ishikawa; Yoshinori Itaya; Shinji Kambara; Hiroshi Moritomi; Shigekatsu Mori [C-Tech Corporation Ltd., Nagoya (Japan). Engineering Development Group

    2007-10-15

    From viewpoints of the environment and fuel cost reduction, small-scale biomass combined heat and power (CHP) plants are in demand, especially wood-waste fueled system, which are simple to operate and maintenance-free with high thermal efficiency similar to oil fired units. These are requested by wood and other industries located in mountainous region. To meet these requirements, a Stirling engine CHP system combined with simplified biomass combustion process with pulverized wood powder was developed. In an R&D project started in 2004 considering wood powder properties as a fuel, combustion performance and emissions in combustion flue gas were tested using combustion test apparatus with commercial size units. The wood powder combustion system was modified and optimized during the combustion test results, and the design of the demonstration plant combined with 55 kW{sub e} Stirling engine power unit was considered. The demonstration plant was finally completed in March of 2006, and test operation has been progressed for the future commercial CHP system. In the wood powder combustion test, wood powder of less than 500 {mu}m is mainly used, and a combustion chamber length of 3 m is applied. In these conditions, the air ratio can be reduced to 1.1 without increasing CO emission of less than 10 ppm and combustion efficiency of 99.9%. In the same conditions, NOx emission is estimated to be less than 120 ppm (6% O{sub 2} basis). Wood powder was confirmed to have excellent properties as a fuel for Stirling engine CHP system. This paper summarizes the wood powder combustion test, and presents the evaluation of the burner design parameters for the biomass Stirling engine system. 28 refs., 16 figs., 5 tabs.

  13. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  14. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  15. Advanced Stirling Convertor Heater Head Durability and Reliability Quantification

    Science.gov (United States)

    Krause, David L.; Shah, Ashwin R.; Korovaichuk, Igor; Kalluri, Sreeramesh

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for long duration Science missions, such as lunar applications, Mars rovers, and deep space missions, that require reliable design lifetimes of up to 17 years. Resistance to creep deformation of the MarM-247 heater head (HH), a structurally critical component of the ASRG Advanced Stirling Convertor (ASC), under high temperatures (up to 850 C) is a key design driver for durability. Inherent uncertainties in the creep behavior of the thin-walled HH and the variations in the wall thickness, control temperature, and working gas pressure need to be accounted for in the life and reliability prediction. Due to the availability of very limited test data, assuring life and reliability of the HH is a challenging task. The NASA Glenn Research Center (GRC) has adopted an integrated approach combining available uniaxial MarM-247 material behavior testing, HH benchmark testing and advanced analysis in order to demonstrate the integrity, life and reliability of the HH under expected mission conditions. The proposed paper describes analytical aspects of the deterministic and probabilistic approaches and results. The deterministic approach involves development of the creep constitutive model for the MarM-247 (akin to the Oak Ridge National Laboratory master curve model used previously for Inconel 718 (Special Metals Corporation)) and nonlinear finite element analysis to predict the mean life. The probabilistic approach includes evaluation of the effect of design variable uncertainties in material creep behavior, geometry and operating conditions on life and reliability for the expected life. The sensitivity of the uncertainties in the design variables on the HH reliability is also quantified, and guidelines to improve reliability are discussed.

  16. Solar Stirling receiver alternatives for the terrestrial solar application

    Science.gov (United States)

    Stearns, J.

    1986-01-01

    Concept studies have been completed for four dish-Stirling receivers, i.e., solar only and thermal storage receiver, each of which is either directly coupled or indirectly (heat pipe) coupled to the Stirling engine. The results of these studies are to be applied to systems benefit/cost analysis to determine the most desirable development approach.

  17. SOME REMARKS ABOUT STIRLING NUMBERS OF THE SECOND KIND

    Directory of Open Access Journals (Sweden)

    Ramiz Vugdalić

    2013-05-01

    Full Text Available In this paper we give a representation of Stirling numbers of the second kind, we obtain explicit formulas for some cases of Stirling numbers of the second kind and illustrate a method for founding other such formulas. 2010 Mathematics Subject Classification. 11B73, 05A10.

  18. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and syn

  19. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and syn

  20. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  1. Analysis and Design of a Dish/Stirling System for Solar Electric Generation with a 2.7 kW Air-Cooled Engine

    OpenAIRE

    Beltrán-Chacón R.; Velázquez-Limón N.; Sauceda-Carvajal D.

    2012-01-01

    This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, ...

  2. A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Science.gov (United States)

    Shou, Chun-Hui; Luo, Zhong-Yang; Wang, Tao; Shen, Wei-Dong; Rosengarten, Gary; Wang, Cheng; Ni, Ming-Jiang; Cen, Ke-Fa

    2011-12-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.

  3. Regenerative characteristics of magnetic or gas Stirling refrigeration cycle

    Science.gov (United States)

    Chen, J.; Yan, Z.

    A general criterion to distinguish whether a Stirling refrigeration cycle possesses the condition of perfect regeneration is given. It is proven using the criterion that a Stirling refrigeration cycle using a simple paramagnetic or ferromagnetic material as the working substance possesses the condition of perfect regeneration, as does a Stirling refrigeration cycle using an ideal or van der Waals gas as the working substance. However, a Stirling refrigeration cycle using a gas which is described by the Redlich-Kwong, Beattie-Bridgeman, Benedict-Webb-Rubin, Dieterici, Berthelot, or Martin-Hou equation as the working substance does not possess the condition of perfect regeneration and its coefficient of performance is always smaller than that of the Carnot refrigeration cycle for the same temperature range. Moreover, the effect of non-perfect regeneration on the level of refrigeration and the coefficient of performance of a Stirling refrigeration cycle is expounded using a strict equation of state.

  4. A Study of Regenerator for a Personal Stirling Refrigerator

    Science.gov (United States)

    Murakami, Kazuhiko; Otaka, Toshio; Sakamoto, Moriyoshi; Yamaguchi, Hajime; Ota, Masahiro

    Stirling cycle system is expected as a gentle system to the earth, because the working fluid is completely free from chlorine molecules. A regenerator is the most important element of the Stirling cycle system for the performances. Flow in a regenerator is very complicated because the regenerator is made of matrix. So we are studying about Stirling cycle systems, especially the regenerator for a personal Stirling refrigerator. In this report, flow in a regenerator for a personal Stirling refrigerators is studied by using an original experimental set-up. Flow velocities and pressures at the outside of a matrix in a regenerator were measured in a round pipe. Flow effects of inlet or outlet shape and area for a regenerator were examined in detail. Pressure loss were measured at sides of a regenerator and friction factors were expressed as empirical formulas for each conditions of inlet shape of regenerator or matrixes.

  5. Milliwatt Radioisotope Stirling Convertor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Studies of potential space missions have highlighted the need for very small electric power supplies for a variety of applications. The light weight radioisotope...

  6. Kilowatt Isotope Power System. Phase I. System test report. 78-KIPS-33

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-29

    The KIPS Ground Demonstration System (GDS) was designed to simulate, as closely as possible, a Flight System Conceptual Design (FSCD). No radiator was incorporated and electric heat sources were used in place of isotope heat sources. To minimize air in-leakage and to simulate heat losses associated with space operation, the system was operated in a vacuum chamber. Initial testing was performed on the development system which did not incorporate a high performance turbine or non-condensing configuration of the cold liquid passages in certain regenerator vapor regions. After testing of the development system and retrofit to the GDS configuration, which included improvements in the above two items, the GDS was installed in the test chamber. Testing to date showed the GDS configuration has demonstrated a system efficiency of greater than 15%. Satisfactory heat balances have been calculated on most system components, permitting evaluation of component performance. Certain performance deficiencies currently exist which prevented the 18% efficiency goal being attained. These can be corrected with further development.

  7. Heat transfer measurements in the regenerator of a Stirling engine; Die Bestimmung des Waermeuebergangs im Regenerator einer Stirling-Maschine

    Energy Technology Data Exchange (ETDEWEB)

    Schikora, H.

    2002-07-01

    The F-CFC ban has stimulated research on new refrigerants and alternative technologies. The Stirling engine is one such option. Simulation programs commonly use empirical heat transfer relations. However, these are difficult to establish as Stirling engines have highly complex flow patterns. The author describes an experimental measurement of heat transfer in the regenerator of a Stirling engine. The results serve as a basis for calculating a new correlation for heat transfer in this important component, which will enable more realistic calculations of the Stirling engine process. [German] Wegen des weitgehenden Verbots der ozonzerstoerenden Fluor-Chlor-Kohlenwasserstoffe (FCKW) wird in der Kaeltetechnik seit Jahren nach Alternativen gesucht. Neben der Verwendung oekologisch vertraeglicher Kaeltemittel in Kaltdampf-Kaeltemaschinen kann auch der Einsatz alternativer Kaelteerzeugungsverfahren sinnvoll sein. In diesem Zusammenhang bieten sich vor allem Stirling-Kaeltemaschinen an, die mit dem umweltunschaedlichen Arbeitsgas Helium betrieben werden. Simulationsprogramme zur Berechnung dieser Maschinen verwenden u.a. empirische Beziehungen fuer den Waermeuebergang. Wegen der aeusserst komplexen Stroemungsformen in Stirling-Maschinen sind diese Beziehungen jedoch bisher relativ ungenau. In der vorliegenden Arbeit wird die experimentelle Bestimmung des Waermeuebergangs im Regenerator einer Stirling-Maschine beschrieben. Auf Basis dieser Ergebnisse wurde eine neue Korrelation fuer den Waermeuebergang in diesem wichtigen Bauteil ermittelt. Diese neue Beziehung ermoeglicht zukuenftig eine realitaetsnaehere Berechnung von Stirling-Maschinen. (orig.)

  8. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  9. Numerical analysis on performance and contaminated failures of the miniature split Stirling cryocooler

    Science.gov (United States)

    He, Ya-Ling; Zhang, Dong-Wei; Yang, Wei-Wei; Gao, Fan

    2014-01-01

    A mathematical model based on thermodynamic theory of variable mass is developed for the split Stirling refrigerator, in which, the whole machine is considered by one-dimensional approach while the processes in the regenerator are simulated by two-dimensional approach. First, the influence of the ideal frost layer distributions on the flow and heat transfer in the regenerator and the performance of the Stirling cryocooler are simulated. Then, the distribution of the contaminated water vapor and its coagulated and deposited process is qualitatively analyzed. Finally, the lifetime of the refrigerator is evaluated based on the calculated data. The results show that when the refrigerator is operated at uniform distribution of the water vapor partial pressure in the regenerator, the cooling capacity is reduced over 10% at about 631 h, and the power consumption of compressor is increased over 20% at about 1168 h. However, for the linear distribution of water vapor partial pressure, the refrigerator can work properly because the frost never reaches the criterion of failure. Also, it is found that when the Stirling cryocooler restarts after a shutdown, the cooling capacity is reduced by 10% once the frost mass is over 7.05 mg, and there is no cooling capacity once the frost mass reaches 41.2 mg.

  10. Optimal design of Stirling heat engine using an advanced optimization algorithm

    Indian Academy of Sciences (India)

    R V RAO; K C MORE; J TALER; P OCION

    2016-11-01

    The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently developed advanced optimization algorithm namely ‘‘teaching–learning-based optimization (TLBO) algorithm’’ is used for maximization of output power, minimization ofpressure losses and maximization of the thermal efficiency of the entire solar Stirling system. The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of preference by similarity to ideal solution (TOPSIS) and fuzzy Bellman–Zadeh method that have used the Pareto frontier gained through non-dominated sorting genetic algorithm-II (NSGA-II). The comparisons were also made with those obtained by the experimental results. It is found that the TLBO algorithm has produced comparatively better results than those given by the decision-making methods and the experimental results presented by the previous researchers.

  11. Free-piston Stirling hydraulic engine and drive system for automobiles

    Science.gov (United States)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  12. Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

    Science.gov (United States)

    Nakano, K.; Yumoto, K.; Hiratsuka, Y.

    2015-12-01

    For wide spread high-temperature superconductor (HTS) devices, a cryocooler having COP of >0.1, with a compact size, light weight, high efficiency and high reliability is required. For practical use of superconductive devices, Sumitomo Heavy Industries, Ltd. (SHI) developed a high-efficiency Stirling type pulse tube cryocooler (STPC). The STPC had high reliability and low vibration. However, its efficiency was not enough to meet the demands of an HTS motor. To further improve the efficiency, we reconsidered the expander of cryocooler and developed a Stirling cryocooler (STC). Two prototype units of a compact, high-efficiency split Stirling cryocooler were designed, built and tested. With the second prototype unit, a cooling capacity of 151 W at 70 K and a minimum temperature of 33 K have been achieved with a compressor input power of 2.15 kW. Accordingly, COP of about 0.07 has been achieved. The detailed design of the prototype units and the experimental results will be reported in this paper.

  13. Testing of Stirling engine solar reflux heat-pipe receivers

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  14. A rapid method for the sampling of atmospheric water vapour for isotopic analysis.

    Science.gov (United States)

    Peters, Leon I; Yakir, Dan

    2010-01-01

    Analysis of the stable isotopic composition of atmospheric moisture is widely applied in the environmental sciences. Traditional methods for obtaining isotopic compositional data from ambient moisture have required complicated sampling procedures, expensive and sophisticated distillation lines, hazardous consumables, and lengthy treatments prior to analysis. Newer laser-based techniques are expensive and usually not suitable for large-scale field campaigns, especially in cases where access to mains power is not feasible or high spatial coverage is required. Here we outline the construction and usage of a novel vapour-sampling system based on a battery-operated Stirling cycle cooler, which is simple to operate, does not require any consumables, or post-collection distillation, and is light-weight and highly portable. We demonstrate the ability of this system to reproduce delta(18)O isotopic compositions of ambient water vapour, with samples taken simultaneously by a traditional cryogenic collection technique. Samples were collected over 1 h directly into autosampler vials and were analysed by mass spectrometry after pyrolysis of 1 microL aliquots to CO. This yielded an average error of system provides a rapid and reliable alternative to conventional cryogenic techniques, particularly in cases requiring high sample throughput or where access to distillation lines, slurry maintenance or mains power is not feasible.

  15. A comparison of Stirling engines for use with a 25 kW dish-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.

  16. A comparison of Stirling engines for use with a 25 kW dish-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.

  17. Detailed analysis of isotopic ratio of radioactive iodine in surface soil around Fukushima Daiichi Nuclear Power Plant

    Science.gov (United States)

    Miyake, Yasuto; Matsuzaki, Hiroyuki; Fujiwara, Takeshi; Saito, Takumi; Yamagata, Takeyasu; Honda, Maki

    2013-04-01

    In March 2011, there was an accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) and a lot of radionuclides were discharged into the environment, resulting from a powerful earthquake and tsunami. Considering the impact on human health, the radiation dosimetry is the most important for Iodine-131 among radionuclides in the initial stage immediately following the release of radionuclides. However, Iodine-131 cannot be detected after several months owing to its short half-life (8 days). Cesium-137 was also leaked out from the FDNPP and this can be detected now. But this did not identically act with Iodine-131 and be suitable for the reconstruction of Iodine-131 distribution at the initial stage. Since Iodine-129 (half-life: 1.57E7 yrs) can be detected in the future and it act chemically identically with Iodine-131, the reconstruction by Iodine-129 analysis is important. For this reconstruction, it is necessary to know the isotopic ratio of radioactive iodine (129I/131I) released from the FDNPP. In this study, the Iodine-129 concentration was measured by accelerator mass spectrometry (AMS) in several surface soil samples collected around the FDNPP for which the Iodine-131level had already been determined. Soil samples were put into a U8 standard vessel after being roughly homogenized and dried. Then, samples were homogenized again more completely and several grams were taken for Iodine-129 measurement. Each sample was combusted in a quartz tube and outgas was trapped in alkali solution. An aliquot was taken from the trap solution for the determination of the Iodine-127 concentration by inductively coupled plasma mass spectrometry (ICP-MS). The iodine carrier was added to the trap solution, from which the iodine fraction was purified by solvent extraction and back extraction. Finally, silver iodide precipitation was obtained by adding silver nitrate solution. After dried, the precipitation was mixed with niobium powder and pressed into a cathode for the target

  18. Determination of long-lived Nb isotopes in nuclear power plant wastes

    Energy Technology Data Exchange (ETDEWEB)

    Osvath, Szabolcs [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Muegyetem Rakpart 9, 1111 Budapest (Hungary)], E-mail: osvath@reak.bme.hu; Vajda, Nora; Molnar, Zsuzsa [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Muegyetem Rakpart 9, 1111 Budapest (Hungary)

    2008-01-15

    {sup 94}Nb and {sup 93m}Nb are long-lived radionuclides, produced by thermal and fast neutrons from {sup 93}Nb that is a major component of the Zr alloys used in nuclear reactors. A radiochemical method for the determination of these nuclides has been developed. The separation is based on the insolubility of Nb oxides and the retention of the fluoric complexes on anion exchange resin. The Nb sources are detected by {gamma}- and X-ray spectrometries. Activity concentrations determined in radioactive waste samples of a nuclear power plant are presented.

  19. Determination of long-lived Nb isotopes in nuclear power plant wastes.

    Science.gov (United States)

    Osváth, Szabolcs; Vajda, Nóra; Molnár, Zsuzsa

    2008-01-01

    (94)Nb and (93m)Nb are long-lived radionuclides, produced by thermal and fast neutrons from (93)Nb that is a major component of the Zr alloys used in nuclear reactors. A radiochemical method for the determination of these nuclides has been developed. The separation is based on the insolubility of Nb oxides and the retention of the fluoric complexes on anion exchange resin. The Nb sources are detected by gamma- and X-ray spectrometries. Activity concentrations determined in radioactive waste samples of a nuclear power plant are presented.

  20. The 4 K Stirling cryocooler demonstration

    Science.gov (United States)

    Stacy, W. Dodd

    1992-01-01

    This report briefly summarizes the results and conclusions from an SBIR program intended to demonstrate an innovative Stirling cycle cryocooler concept for efficiently lifting heat from 4 K. Refrigeration at 4 K, a temperature useful for superconductors and sensitive instruments, is beyond the reach of conventional regenerative thermodynamic cycles due to the rapid loss of regenerator matrix heat capacity at temperatures below about 20 K. To overcome this fundamental limit, the cryocooler developed under this program integrated three unique features: recuperative regeneration between the displacement gas flow streams of two independent Stirling cycles operating at a 180 degree phase angle, tailored distortion of the two expander volume waveforms from sinusoidal to perfectly match the instantaneous regenerator heat flux from the two cycles and thereby unload the regenerator, and metal diaphragm working volumes to promote near isothermal expansion and compression processes. Use of diaphragms also provides unlimited operating life potential and eliminates bearings and high precision running seals. A phase 1 proof-of-principle experiment demonstrated that counterflow regenerator operation between 77 K and 4 K increases regenerator effectiveness by minimizing metal temperature transient cycling. In phase 2, a detailed design package for a breadboard cryocooler was completed. Fabrication techniques were successfully developed for manufacturing high precision miniature parallel plate recuperators, and samples were produced and inspected. Process development for fabricating suitably flat diaphragms proved more difficult and expensive than anticipated, and construction of the cryocooler was suspended at a completion level of approximately 75%. Subsequent development efforts on other projects have successfully overcome diaphragm fabrication difficulties, and alternate funding is currently being sought for completion and demonstration testing of the 4 K Stirling cryocooler.

  1. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  2. Basic dynamics of split Stirling refrigerators

    Science.gov (United States)

    de Waele, A. T. A. M.; Liang, W.

    2008-09-01

    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temperature at the cold end is an input parameter. The general equations are derived which are subsequently treated in the harmonic approximation. Examples are given of application of the relations for describing optimum-performance conditions as well as the interrelationship between cooler and heat-engine operation.

  3. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  4. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  5. In-line stirling energy system

    Science.gov (United States)

    Backhaus, Scott N.; Keolian, Robert

    2011-03-22

    A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.

  6. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India)

    Energy Technology Data Exchange (ETDEWEB)

    Voltaggio, M.; Spadoni, M. [CNR — Istituto di Geologia Ambientale e Geoingegneria, Via Salaria km. 29.300, 00010 Montelibretti, Roma (Italy); Sacchi, E. [Dept. of Earth and Environmental Sciences, University of Pavia and CNR-IGG, Via Ferrata 1, 27100 Pavia (Italy); Sanam, R.; Pujari, P.R.; Labhasetwar, P.K. [CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020 (India)

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra — India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. {sup 87}Sr/{sup 86}Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water–rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. - Highlights: • Ash ponds have wide environmental and social impact in India. • Isotope ratios can be used as tracers for possible pollution of groundwater. • Isotopes of O, H, Sr, U and Ra have been used to investigate the area of Koradi. • Salinity of groundwater is not due to fly ash but linked to local brick kilns. • A model for the residence time of water based on Ra isotopes is described.

  7. Atmospheric radioxenon isotope monitoring in Beijing after the Fukushima nuclear power plant accident.

    Science.gov (United States)

    Zhou, Chongyang; Zhou, Guoqing; Feng, Shujuan; Jin, Yuren; Zhao, Xinhua; Cheng, Ziwei; Huang, Xiongliang; Xu, Hui; Zhou, Xu

    2013-02-01

    A custom-made, on-site radioxenon sampling, separation and monitoring system was used to monitor atmospheric radioxenon concentrations in Beijing, released from the Fukushima Daiichi nuclear power plant after the earthquake of 11 March 2011. The results show that (133)Xe concentrations ranged from 393 to 26 mBq/m(3) from 12 to 27 April 2011, and those of (131 m)Xe were 84 and 40 mBq/m(3) on 13 and 15 April 2011, respectively. The highest dose rate caused by (133)Xe was 2 × 10(-5)mSv/yr, and the average (133)Xe/(131 m)Xe ratio was 3.8 ± 0.4.

  8. Versatile experimental low power 4 K cryocooler

    Science.gov (United States)

    Lambert, N.; Barbanera, S.; Zimmerman, J. E.

    The construction of a low power cryocooler consisting of a five-stage plastic Stirling cooler with an additional Joule-Thomson stage is described. Among its novel features are a contamination-free, pneumatic helium compressor and displacer drive. Valve timing is under computer control. Titanium foil embedded in the cylinder wall reduces helium diffusion through the plastic. The Joule-Thomson stage uses the same low pressure helium as the Stirling stages. The Stirling system cools down below 9 K. The Joule-Thomson stage delivers a few mW cooling at 4.2 K.

  9. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  10. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  11. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  12. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  13. Jacobi-Stirling polynomials and $P$-partitions

    CERN Document Server

    Gessel, Ira M; Zeng, Jiang

    2012-01-01

    We investigate the diagonal generating function of the Jacobi-Stirling numbers of the second kind $ \\JS(n+k,n;z)$ by generalizing the analogous results for the Stirling and Legendre-Stirling numbers. More precisely, letting $\\JS(n+k,n;z)=p_{k,0}(n)+p_{k,1}(n)z+...+p_{k,k}(n)z^k$, we show that $(1-t)^{3k-i+1}\\sum_{n\\geq0}p_{k,i}(n)t^n$ is a polynomial in $t$ with nonnegative integral coefficients and provide combinatorial interpretations of the coefficients by using Stanley's theory of $P$-partitions.

  14. Low-capacity systems on the march... Pt. 2. Cogeneration system consisting of a wood boiler and stirling engine; Jetzt kommen die Kleinen... T. 2. KWK-Anlage als Scheitholzkessel/-Stirling-Kombination

    Energy Technology Data Exchange (ETDEWEB)

    Gross, B.

    2008-08-15

    Energetic use of wood so far is usually limited to low-capacity systems and for thermal power generation for room heating purposes. In principle, however, it is also possible to convert part of the combustion heat into electric power by means of a Stirling engine. This strategy of combined heat and ower generation is an interesting alternative to conventional systems because of its higher efficiency and CO2 neutrality. While marketable systems are available in the range above 500 kWel, they are still lacking in the low-capacity sector. The HOVAL company successfully developed a low-capacity cogeneration system - comprising a wood boiler and stirling engine - for the range of 1 kWel and up to 50 kWth. (orig.)

  15. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    Within the scope of a comprehensive study and two development and demonstration projects, various technologies in the power range of up to 2 MWel for small-scale biomass-fired CHP plants have been investigated, evaluated and compared considering technical as well as economic aspects. Such plants...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  16. Advanced Stirling Converter (ASC) Phase III Progress Update

    Science.gov (United States)

    Wood, J. Gary; Wilson, Kyle; Buffalino, Andrew; Frye, Patrick; Matejczyk, Dan; Penswick, L. B.

    2007-01-01

    Progress in the development of the Advanced Stirling Convertor (ASC) is presented here. The ASC is being developed under contact with the NASA Glenn Research Center and is supported by the Science Mission Directorate for potential use in future radioisotope power systems having significantly increased efficiency and higher specific power compared to the current thermoelectric systems. Phase II of the effort successfully demonstrated very high conversion efficiency and also demonstrated the low mass capability of the ASC design. The non-hermetic ASC-1 converters demonstrated during Phase II employ superalloy heater heads designed for greater than 14 years life at 850 °C operation. Phase III, which is reported on here, includes the fabrication of multiple next generation hermetic ASC-2 units. Phase III also includes the development of multiple lower-temperature (650 °C hot end) convertors based on the basic ASC design and designated as ASC-0 units. Multiple converters are being built for extended life testing at NASA GRC.

  17. Performance measurements and energy balance of an SPS V160 Stirling motor at the German Aerospace Research Establishment

    Science.gov (United States)

    Noyes, Gerold

    1990-02-01

    Before conversion to solar operation to serve as a solar receiver test bed, a Stirling Power Systems (SPS) V160F natural gas-fired co-generation stirling motor was tested. A test stand was built and instrumented, and the motor performance was measured under various loads. An energy balance of the motor/generator unit was done including electric output and input, thermal input, waste heat in the cooling water, cooling air, exhaust, radiation and free convection from the motor housing. The influence of the internal cooling water temperature on motor performance was measured. Measurements, including an exhaust gas analysis and surface temperature distribution, were made to determine the combustion chamber efficiency. A magnetic eddy current brake was used to measure the shaft output of the stirling motor and measure the efficiency of the generator. The total natural gas to electric energy conversion efficiency was measured to be 23 percent above 2/3 of full power; 20 percent efficiency was achieved down to 1/3 power. Maximum power was measured at 8.9 kWc.

  18. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  19. Future prospects of the Stirling engine. Good chances in the market provided that boundary conditions are o.k.; Kommt der Stirlingmotor? Gute Marktchancen bei vernuenftigen Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-07-15

    The Stirling principle has many ecological advantages and is therefore considered an innovative technical model engine. By combustion in an external combustion chamber, it can generate heat and power from the most varied energy sources. Pollutant emissions and noise are much lower than with other internal combustion engines. On the other hand, its difficult technical integration has so far prevented its widespread use. (orig.)

  20. Carbon isotopic composition (δ(13)C and (14)C activity) of plant samples in the vicinity of the Slovene nuclear power plant.

    Science.gov (United States)

    Sturm, Martina; Vreča, Polona; Krajcar Bronić, Ines

    2012-08-01

    δ(13)C values of various plants (apples, wheat, and maize) collected in the vicinity of the Krško Nuclear Power Plant (Slovenia) during 2008 and 2009 were determined. By measuring dried samples and their carbonized counterparts we showed that no significant isotopic fractionation occurs during the carbonization phase of the sample preparation process in the laboratory. The measured δ(13)C values of the plants were used for δ(13)C correction of their measured (14)C activities.

  1. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident

    Directory of Open Access Journals (Sweden)

    M. A. Charette

    2012-11-01

    Full Text Available Radium has four naturally occurring isotopes that have proven useful in constraining water mass source, age, and mixing rates in the coastal and open ocean. In this study, we used radium isotopes to determine the fate and flux of runoff-derived cesium from the Fukushima Nuclear Power Plant (NPP. During a June 2011 cruise, the highest Cs concentrations were found along the eastern shelf of northern Japan, from Fukushima south, to the edge of the Kuroshio current, and in an eddy ∼ 130 km from the NPP site. Locations with the highest cesium also had some of the highest radium activities, suggesting much of the direct ocean discharges of Cs remained in the coastal zone 2–3 months after the accident. We used a short-lived Ra isotope (223Ra, t1/2 = 11.4 d to derive an average water mass age (Tr in the coastal zone of 32 days. To ground-truth the Ra age model, we conducted a direct, station-by-station comparison of water mass ages with a numerical oceanographic model and found them to be in excellent agreement (model avg. Tr = 27 days. From these independent Tr values and the inventory of Cs within the water column at the time of our cruise, we were able to calculate an offshore 134Cs flux of 3.9–4.6 × 1013 Bq d−1. Radium-228 (t1/2 = 5.75 yr was used to derive a vertical eddy diffusivity (Kz of 0.7 m2 d−1 (0.1 cm2 s−1; from this Kz and 134Cs inventory, we estimated a 134Cs flux across the pycnocline of 1.8 × 104 Bq d−1 for the same time period. On average, our results show that horizontal mixing loss of Cs from the coastal zone was ∼ 109 greater than vertical exchange below the surface mixed layer. Finally, a mixing/dilution model that utilized our Ra-based and

  2. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Space Convertor

    Science.gov (United States)

    Kirby, Raymond L.; Vitale, N.

    2008-01-01

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled ``Affordable Fission Surface Power Study'' recommended a 40 kWe, 900 K, NaK-cooled, Stirling conversion for 2020 launch. Use of two of the nominal 5 kW converters allows the system to be dynamically balanced. A group of four dual-converter combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the FSPE convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  3. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    Science.gov (United States)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  4. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Space Convertor

    Science.gov (United States)

    Kirby, Raymond L.; Vitale, Nicholas

    2008-01-01

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling conversion for 2020 launch. Use of two of the nominal 5 kW converters allows the system to be dynamically balanced. A group of four dual-converter combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the FSPE convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  5. Cold Inertance Tube for 4 K Stirling Type Pulse Tube Cryocoolers

    Science.gov (United States)

    Li, ZhuoPei; Gan, ZhiHua; Qiu, LiMin

    The losses in the regenerator are minimized when the amplitude of the mass flow is minimized for a given acoustic power which requires that the mass flow lags the pressure by about 30° at the cold end of regenerator. The phase shift provided by an inertance tube is strongly influenced by the temperature of the inertance tube and the acoustic power at the cold end of the regenerator. For a 4 K Stirling type pulse tube cryocooler, the acoustic power at the cold end of the regenerator decreases significantly with the temperature thereby it's difficult to achieve ideal phase relationship with ambient inertance tube. While cold inertance tube provide a larger phase shift in that the viscosity of the working fluid decreases and the density increases as the temperature decreases. However, use of cold inertance tube increases additional heat load to the regenerator. Therefore it's of great significance to determine when a cold inertance tube should be used. In this paper effect of temperature of inertance tube is calculated for a 4 K Stirling type pulse tube cryocooler with different acoustic powers at the cold end. A comparison of ambient temperature inertance tube and cold inertance tube is made.

  6. Variable Conductance Heat Pipes for Radioisotope Stirling Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall program objective is to develop a high temperature variable conductance heat pipe (VCHP) backup radiator, and integrate it into a Stirling radioisotope...

  7. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  8. Evaluation of Stirling cooler system for cryogenic CO2 capture

    OpenAIRE

    Song, Chun Feng; Kitamura, Yutaka; Li, Shu Hong

    2012-01-01

    In previous research, a cryogenic system based on Stirling coolers has been developed. In this work, the novel system was applied on CO2 capture from post-combustion flue gas and different process parameters (i.e. flow rate of feed gas, temperature of Stirling cooler and operating condition) were investigated to obtain the optimal performance (CO2 recovery and energy consumption). From the extensive experiments, it was concluded that the cryogenic system could realize CO2 capture without solv...

  9. Normal ordering problem and the extensions of the Stirling grammar

    Science.gov (United States)

    Ma, S.-M.; Mansour, T.; Schork, M.

    2014-04-01

    The purpose of this paper is to investigate the connection between context-free grammars and normal ordered problem, and then to explore various extensions of the Stirling grammar. We present grammatical characterizations of several well known combinatorial sequences, including the generalized Stirling numbers of the second kind related to the normal ordered problem and the r-Dowling polynomials. Also, possible avenues for future research are described.

  10. Modifications and testing of a 4-95 Stirling engine for solar applications

    Science.gov (United States)

    Nelving, H. G.; Percival, W. H.

    1982-01-01

    The modifications and testing of a standard Stirling engine, required for connection to a 25 kW induction alternator, for use with a solar thermal parabolic dish electric module is described. Power was absorbed by a GE induction alternator connected to the utility grid. Also included are the results from recent testing of another solar engine at the DOE-Georgia Tech solar site. It was done in parallel with the testing at Edwards for the purpose of comparing performance of two solar-only receivers, which were based on the standard 4-95 involute heat exchanger.

  11. Thermodynamic Analysis of a Woodchips Gasification Integrated with Solid Oxide Fuel Cell and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Integrated gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power application is analysed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas which is utilized for feeding the SOFC stacks for electricity...... and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on LHV (lower heating value) can be achieved. Different parameter studies are performed to analysis system behaviour under different conditions. The analysis show that increasing fuel mass flow from the design point results...

  12. Performance of the SITP 35K two-stage Stirling cryocooler

    Science.gov (United States)

    Liu, Dongyu; Li, Ao; Li, Shanshan; Wu, Yinong

    2010-04-01

    This paper presents the design, development, optimization experiment and performance of the SITP two-stage Stirling cryocooler. The geometry size of the cooler, especially the diameter and length of the regenerator were analyzed. Operating parameters by experiments were optimized to maximize the second stage cooling performance. In the test the cooler was operated at various drive frequency, phase shift between displacer and piston, fill pressure. The experimental results indicate that the cryocooler has a higher efficiency with a performance of 0.85W at 35K with a compressor input power of 56W at a phase shift of 65°, an operating frequency of 40Hz, 1MPa fill pressure.

  13. Design and manufacturing of a V-type Stirling engine with double heaters

    Energy Technology Data Exchange (ETDEWEB)

    Batmaz, Ihsan; Uestuen, Sueleyman [Gazi University, Faculty of Technical Education, 06500 Besevler, Ankara (Turkey)

    2008-11-15

    Under the consideration of the solar energy potential of Turkey, a V-type Stirling engine having two heaters was designed, optimized and then manufactured. The prototype engine was tested in laboratory condition using an electrical heating system. Tests were conducted within the temperature range of 650-1000 C with 50 C increments. The pressure ranged from the ambient value to 2 bar with 0.5 bar increments at each stage of temperature. The maximum power was obtained at 950 C and 1.0 bar charge pressure as 118 W. (author)

  14. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchinson, Jesson D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-20

    The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational performance of a compact reactor configuration that closely resembles the flight unit to be used by NASA to execute a deep space exploration mission. The reactor design will include heat pipes coupled to Stirling engines to demonstrate how one can generate electricity when extracting energy from a “nuclear generated” heat source. This series of experiments is a larger scale follow up to the DUFF series of experiments1,2 that were performed using the Flat-Top assembly.

  15. Prototype Low Temperature Low Power Cryocooler,

    Science.gov (United States)

    1982-02-01

    4 t CO-other superconducting devices. lLEb In 1977 Dr. Jim Zimmerman of National Bureau of Standards, Boulder, CO described a stirling cycle...Zimmerman successfully operated a point-Contact Nb SQUID on a four- stage stirling cycle cryocooler with a mechanical drive power of approxi- mately 15...allow a complete pressure change in the Cryocooler cylinder (plus expan- ion volume and regenerator ). Since this is not easily accomplished in a

  16. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  17. KiloPower Program

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-04

    These are the slides for a phone interview with Aerospace America magazine of the AIAA. It goes over the KiloPower Program at Los Alamos National Laboratory (LANL), and covers the following: 1 kWe Kilopower, 10 kWe Kilopower, Kilopower Reactor Using Stirling Technology (KRUSTY) Integration Test (DAF), Reactor Configuration, and Platen Positions.

  18. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  19. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India).

    Science.gov (United States)

    Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 40 kW Stirling engine for solid fuel

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Trærup, Jens; Ammundsen, Niels

    1996-01-01

    that dynamic seals are avoided. Grease lubricated bearings are used in a special designed crank mechanism, which eliminates guiding forces on the pistons. Helium is used as the working gas at 4 MPa mean pressure. The first test of the 40 kW engine with natural gas as fuel has been made in the laboratory...... been designed primarily for utilisation of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has...... been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurised crankcase so...