WorldWideScience

Sample records for isotope enrichment factors

  1. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  2. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  3. The fractioning factor and the number of theorical plates in isotopic enrichment columns determined simultaneously

    International Nuclear Information System (INIS)

    Ducatti, Carlos

    1997-01-01

    Using an analytical approach and an analytical graphical method, it was determined simultaneously the fractioning factor and the number of theoretical plates in isotopic enrichment columns during the conditions of dinamical isotopic equilibrium. (author). 5 refs., 2 figs., 2 tabs

  4. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  5. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  6. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  7. Stable isotope enrichment by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2003-01-01

    Thermal diffusion (TD) in both gaseous and liquid phase has been the subject of extensive experimental and theoretical investigations, especially after the invention by K. Clusius and G. Dickel of the thermal diffusion column, sixty years ago. This paper gives a brief overview of the most important applications and developments of this transport phenomenon for enrichment of 13 C and of some noble gases isotopes in our institute. The results of calculations of the transport coefficients H and K for a concentric tube type TD column, operated with methane as process gas, are presented. Static separation factor at equilibrium vs gas pressure has been calculated for various molecular models. The experimental separation factors for different gas pressure were found to be consistent with those calculated for the inverse power repulsion model and the Lennard-Jones model. The most important characteristics of a seven-stage cascade consisting of 19 TD columns of concentric tube type are given. This system has been constructed and successfully operated at a temperature of 673 K and produces an enrichment of methane of natural isotopic 13 C abundance, up to the concentration of 25% 13 CH 4 . Enrichment of the noble gases isotopes implies: - a . Enrichment of 20 Ne and 22 Ne in a eight-stage cascade consisting of 8 TD columns; - b. enrichment of 46 Ar in a seven-stage cascade consisting of TD columns and finally; - c. enrichment of 78 Kr and 86 Kr in a fifteen-stage cascade, consisting of 35 TD columns. For all these installations we have adopted TD columns of hot wire type (4 m in length), operated at a temperature of 1073 K. (author)

  8. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  9. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.C.

    1997-01-01

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  10. 235U isotope enrichment in the metastable levels of UI

    International Nuclear Information System (INIS)

    Gagne, J.M.; Demers, Y.; Dreze, C.; Pianarosa, P.

    1983-01-01

    We have used optical pumping to produce a substantial 235 U enrichment in the metastable levels of UI in the discharge afterglow of a hollow-cathode vapor generator. The measured isotope-enrichment factor for the level at 3800 cm -1 is approximately 20

  11. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-01-01

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235 U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  12. IR laser enrichment of light elements isotopes - challenges and prospects

    International Nuclear Information System (INIS)

    Parthasarathy, V.

    2002-01-01

    Full text: Infra-red multiple photon dissociation (IR MPD) of poly-atomic molecules has made considerable progress since its discovery in the early seventies. Since the process was found to be isotopically selective; the possibility of laser isotope separation (LIS) created a lot of initial excitement. While the early investigations were concerned with the fundamental dynamics and potential applications of the phenomenon, serious efforts for the isotope enrichment process have been made only during the last decade. These efforts focussed on aspects to improve both the enrichment factor and throughput in various systems. Many research groups have achieved a good measure of success for scaling up the process for various light elements like carbon, oxygen, silicon and sulphur whose isotopes are quite important in medicine and technology. Significant results have been reported especially for the separation of carbon isotopes wherein macroscopic operating scales have been already realised. This talk will give-a summary of our work carried out at BARC and highlight the current efforts for scaling up the process for carbon isotopes enrichment. This would include the design aspects of a large photochemical reactor with multi-pass, refocusing optics for efficient photon utilization. It will also cover the development of a cryogenic distillation set up and a preparative gas chromatograph for a large scale separation and collection of the isotopically enriched photoproduct in the post irradiation stage. Based on the experience gained and infra structure developed, plans are afoot to separate oxygen and sulphur isotopes using a similar approach

  13. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  14. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  15. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1986-05-01

    A rotating fully ionized plasma column was produced in a vacuum-arc centrifuge. The apparatus is described and new results for the rotational velocity and isotope enrichment of carbon and metal plasmas are shown. The ion rotation velocity is derived from electrostatic probes measurents and from the azimuthal displacement of the material deposited behind of a narrow slit. The isotope enrichment is measured with a modified quadrupole mass spectrometer, which determines, in situ, the relative abundance of the isotopes at the end of the plasm column at various radil positions. (Author) [pt

  16. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  17. Capability of the electromagnetic isotope-enrichment facility at ORNL

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    The isotope separation program at Oak Ridge National Laboratory (ORNL) prepares and distributes electromagnetically enriched stable isotopes to the worldwide scientific community. Among the topics discussed in the present paper are the methods of enriching isotopes, the limitations that apply to the quantity and final assay of the separation products, and a generalized production flowsheet indicating the capability of the facility. A brief description of each of the production steps, from the selection and preparation of initial feedstock to the recovery and distribution of the isotopically enriched material, is presented. The future of the facility, the continued supply of enriched isotopes, and the response of the program to new and changing requirements are emphasized

  18. The Helikon technique for isotope enrichment

    International Nuclear Information System (INIS)

    Haarhoff, P.C.

    1976-11-01

    The separating element employed in the UCOR process for uranium enrichment has an enriched stream which is much smaller than the depleted stream. To deal with this small cut and to exploit the full potential of the process, a new cascade technique has been developed, the so-called helikon technique. It is based on the principle that an axial flow compressor can simultaneously compress a number of streams of different isotopic composition, which flow through it in parallel, without any significant mixing between them. The technique makes it possible to achieve the desired enrichment with a relatively small number of separating units, by making the best use of the high enrichment factor available. A further feature of the helikon technique is that a module yields an enrichment factor which is not constant, but can vary. In this way a cascade can be built up from modules of a fixed size, which is a great advantage when compared to conventional cascade arrangements where several unit sizes are required. A general theoretical treatment of the helikon technique is given and the similarity between helikon and conventional cascades is pointed out. Practical helikon cascades are subsequently discussed on the basis of the UCOR process

  19. Early history of chemical exchange isotope enrichment and lessons we learn

    International Nuclear Information System (INIS)

    Ishida, Takanobu; Ono, Yuriko

    2006-01-01

    The chemical exchange isotope enrichment process has an advantage over other isotope separation methods in that it involves two chemicals rather than one and, consequently, relatively large separation factors can be obtained. However, the chemical exchange method requires a chemical conversion of the substance enriched in the target isotope into the second substance. The idiosyncrasies of the isotope separation process by this method are pointed out using McCabe-Thiele diagram and, from them, the difficulties involved in the chemical exchange methods are itemized. Examples of the points being made are taken from the pioneering works of this field carried out by Harold C. Urey, his contemporaries, the students and the students' students. Lessons we learn from these works are discussed. (author)

  20. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  1. Availability of enriched stable isotopes: present status and future prospects

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1986-01-01

    The Electromagnetic Isotope Enrichment Facility (EMIEF) is currently used to produce 225 enriched stable isotopes of 50 elements. Among these are included most of the known elements with stable isotopes except for the noble gases, certain light elements, monisotopic elements, etc. The EMIEF can also be used to produce enriched samples of radioactive species, most notably the isotopes of uranium and plutonium. These enriched materials are placed in either the Sales Inventory of in the Research Materials Collection (RMC). The materials in the Sales Inventory are for sale to anyone on a first come, first served basis. Prices in the most recent catalog range from $0.05/mg for 99.8% 140 Ce to $1,267/mg for 98.5% 176 Lu. The materials in the RMC are made available to US researchers (or groups that include a US investigator) on a loan basis for use in non-destructive experiments and applications. In addition, certain samples have been provided to European investigators for cross-section studies through the auspices of EURATOM and the European-American Nuclear Data Committee. The status of the enriched isotopes included in the Sales Inventory is tabulated where isotopes are listed that are either not available or are in insufficient quantity or quality to meet current requests, as of 6/30/86. These can be summarized in the following subcategories: isotopes with zero inventory (22), Isotopes of insufficient quantity (17), and isotopes with insufficient enrichment quality (10). Of these 49 species, the supplies of 10 will be replenished by the scheduled FY86 enrichments in process (isotopes of bromine, calcium, nickel, potassium, rubidium, and strontium). In Table 3 are listed isotopes where the current inventory is less than the average annual sales level for the past five years. There are 47 isotopes listed, representing 25 different elements. Thus, there exists considerable potential for a substantial increase in the number of isotopes with zero inventory

  2. The isotopic enrichment of uranium in 1979

    International Nuclear Information System (INIS)

    Baron, M.

    1979-01-01

    The Eurodif uranium enrichment plant built on the Tricastin site is described. The uranium isotope separation plants in service abroad are presented. The main characteristics of the international enrichment market are defined [fr

  3. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  4. Availability of enriched isotopic material for accelerator targets

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    The electromagnetic isotope enrichment facility at ORNL provides a broad spectrum of highly enriched stable isotopes to the worldwide scientific community. The continued timely availability of these materials is of vital importance in many areas of basic research and, in particular, as source material for the fabrication of accelerator targets. A brief description of the facility and its capabilities and limitations is presented

  5. Application of enriched stable isotopes as tracers in biological systems

    DEFF Research Database (Denmark)

    Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente

    2008-01-01

    The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry...... (ICP-MS) instrumentation, such as reaction/collision cell ICP-MS and multicollector ICP-MS with improved isotope ratio measurement and interference removal capabilities. Adaptation and refinement of radioisotope tracer experiment methodologies for enriched stable isotope experiments......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...

  6. Development of empirical relation for isotope of uranium in enriched uranium matrix

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Vidyasagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Uranium enriched in 235 U is required in commercial light water reactors to produce a controlled nuclear reaction. Enrichment allows the 235 U isotopes to be increased from 0.71% to a range between 2% to 5% depending upon requirement. The enriched uranium in the form of sintered UO 2 pellet is used for any commercially operating boiling light water reactors. The enriched uranium fuel bundle surface swipes sample is being analysed to assess the tramp uranium as a quality control parameter. It is known that the 234 U isotope also enriched along with 235 U isotope in conventional gaseous diffusion enrichment process. The information about enrichment percentage of 234 U helps to characterize isotopic properties of enriched uranium. A few reports provide the empirical equation and graphs for finding out the specific activity, activity percentage, activity ratio of 234 U isotopes for enriched uranium. Most of them have not provided the reference for the data used and their source. An attempt has been made to model the relationship between 234 U and 235 U as a function of uranium enrichment at low level

  7. Status of the isotope enrichment program at Oak Ridge National Laboratory

    Science.gov (United States)

    Tracy, J. G.

    1991-05-01

    The objectives of the isotope enrichment program at the Oak Ridge National Laboratory are to prepare and distribute electromagnetically separated stable isotopes to the research, medical and industrial communities on a worldwide basis. Topics discussed in this presentation include (1) a review of facility modifications, (2) current facility capabilities, (3) enrichment processes, and (4) final product distribution. An update on alternative separations methods to augment the electromagnetic separations process is covered, as well as special services that are available for providing custom materials to meet special applications. Recent changes in U.S. Department of Energy policy that impact the nation's isotope and isotope-related programs are summarized, with special emphasis on the effects on isotope enrichment, radioisotope production, target fabrication, pricing, and marketing and distribution of stable isotopes.

  8. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1997-01-01

    The Oak Ridge national laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the isotope enrichment facility (IEF)fwill be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies. (orig.)

  9. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  10. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  11. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Talbot, L.; Willis, D.R.; Hurlbut, F.C.; Fiszdon, W.; Anderson, J.B.

    1978-03-01

    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  12. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  13. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  14. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth

    Science.gov (United States)

    2017-01-01

    In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4–5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies. PMID:28405367

  15. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  16. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  17. The role of enriched isotopes in fundamental physical investigations

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Skorynin, G.M.; Shubin, A.N.

    2002-01-01

    Development of physics of elementary particles, astrophysics and cosmology at present is characterized by continuous increase of a number of fundamental problems experimental investigation of which needs significant quantities of enriched isotopes of high purity. Study of solar neutrino radiation, search of nonluminous matter, detection of neutrino-free double beta-decay are the most priority investigations in the world at present. In the report the most actual experiments with enriched isotopes ( 136 Xe, 100 Mo, 76 Ge, 116 Cd, 82 Se and some others) are discussed together with basic requirements for isotopes and possibilities on operating time of the Industrial Joining Electrochemical plant [ru

  18. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  19. Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange

    International Nuclear Information System (INIS)

    Knochel, A.; Eggers, I.; Klatte, B.; Wilken, R. D.

    1985-01-01

    A process for enriching and separating heavy hydrogen isotopes having a heavy hydrogen cation (deuterium and/or tritium) from substance streams containing them, wherein the respectively present hydrogen isotopes are exchanged in chemical equilibria. A protic, acid solution containing deuterium and/or tritium is brought into contact with a value material from the group of open-chained polyethers or aminopolyethers, macro-monocyclic or macro-polycyclic polyethers, macro-monocyclic or macro-polycyclic amino polyethers, and mixtures of these values, in their free or proton salt form to form a reaction product of the heavy hydrogen cation with the value or value salt and bring about enrichment of deuterium and/or tritium in the reaction product. The reaction product containing the value or value salt is separated from the solution. The separated reaction product is treated to release the hydrogen isotope(s) to be enriched in the form of deuterium oxide (HDO) and/or tritium oxide (HTO) by regenerating the value or its salt, respectively. The regenerated value is returned for reuse

  20. Ultrahigh thermal conductivity of isotopically enriched silicon

    Science.gov (United States)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  1. Simulating Isotope Enrichment by Gaseous Diffusion

    Science.gov (United States)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  2. A 2000-2010 years outlook of isotopic uranium enrichment

    International Nuclear Information System (INIS)

    Vasaru, G.

    1998-01-01

    The increase of the installed power in nuclear plants implies the following steps to be achieved: - developing a parallel industry for the nuclear fuel cycle able to ensure a rhythmic supply of natural uranium, possibly an isotopic enrichment of 235 U of around 1.2 - 3.2%, depending on the reactor system; - manufacturing the fuel elements and the operation of cycle back-end, which may, possibly, include a temporary storage of the irradiated fuel; - reprocessing the spend fuel; - radioactive waste processing in view of final disposal, as well as the recovery of un-spent uranium and of plutonium formed. The heavy water reactors of CANDU-PHW does not imply any isotopic enrichment but provides a lower burnup of only 7,000 MW day/tone. An enrichment to 1.2% in 235 U for this type of reactors could increase the burnup up to 20,000 MW day/tone. An advanced method of enriching 235 U is based on the Atomic Vapor Laser Isotop Separation (AVLIS). This procedure called AVLIS has several advantages which are pointed out in this paper, among which: a very high selectivity; high separation factors; a low energy consumption due to the fact that in the conditions of a selective photo ionization, the energy necessary to the process is only 6.2 eV for the separated 235 U atom vs 0.3 MeV in case of inertial separators or 3 MeV in case of gaseous diffusion procedure. With the current laser yields an energy consumption of 100 kWh/SWU is estimated for AVLIS procedures as compared with 2,400 kWh/SWU in case of gaseous diffusion; an almost entire extraction of 235 U, what ensures a more efficient utilisation of nuclear fuel. Due to its modular character and to potential improvement in the equipment which could be achieved, this procedure will ensure a reduction in the investment costs in the construction stage what will make AVLIS a substitute of the classical separation procedures

  3. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  4. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  5. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1987-01-01

    High rotational velocity and centrifugal isotopic separation of carbon in a vacuum-arc plasma centrifuge are presented. Enrichments of up to 390% for 13 C are measured at 6 cm radius with angular rotation frequencies in excess of 1.0 x 10 5 rad/s in an axial magnetic field of 0.12 T

  6. Enrichment of 15N and 10B isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    D'Souza, A.B.; Sonwalkar, A.S.; Subrahmanyam, B.V.; Valladares, B.A.

    1994-01-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. 15 N and 10 B in Chemical Engineering Division is presented. 15 N is widely used as a tracer in agricultural research and 10 B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on 15 N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of 10 B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched 10 B to be used as soluble reactor poison. (author)

  7. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  8. Expanded uncertainty associated with determination of isotope enrichment factors: Comparison of two point calculation and Rayleigh-plot.

    Science.gov (United States)

    Julien, Maxime; Gilbert, Alexis; Yamada, Keita; Robins, Richard J; Höhener, Patrick; Yoshida, Naohiro; Remaud, Gérald S

    2018-01-01

    The enrichment factor (ε) is a common way to express Isotope Effects (IEs) associated with a phenomenon. Many studies determine ε using a Rayleigh-plot, which needs multiple data points. More recent articles describe an alternative method using the Rayleigh equation that allows the determination of ε using only one experimental point, but this method is often subject to controversy. However, a calculation method using two points (one experimental point and one at t 0 ) should lead to the same results because the calculation is derived from the Rayleigh equation. But, it is frequently asked "what is the valid domain of use of this two point calculation?" The primary aim of the present work is a systematic comparison of results obtained with these two methodologies and the determination of the conditions required for the valid calculation of ε. In order to evaluate the efficiency of the two approaches, the expanded uncertainty (U) associated with determining ε has been calculated using experimental data from three published articles. The second objective of the present work is to describe how to determine the expanded uncertainty (U) associated with determining ε. Comparative methodologies using both Rayleigh-plot and two point calculation are detailed and it is clearly demonstrated that calculation of ε using a single data point can give the same result as a Rayleigh-plot provided one strict condition is respected: that the experimental value is measured at a small fraction of unreacted substrate (f < 30%). This study will help stable isotope users to present their results in a more rigorous expression: ε ± U and therefore to define better the significance of an experimental results prior interpretation. Capsule: Enrichment factor can be determined through two different methods and the calculation of associated expanded uncertainty allows checking its significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Method and device for the enrichment of isotopes

    International Nuclear Information System (INIS)

    Stehle, H.

    1976-01-01

    A variation of a method for isotope enrichment by laser radiation is proposed which improves the selectivity and with it the economy of the method by eliminating undesired reactions caused by thermal activation. The method according to the invention is applied discontinuously in three steps: The isotope mixture and the reacting agents are fed to a vessel, a laser beam is passed through, and the contents are emptied into a vacuum tank while expanding adiabatically. The time steps are controlled. The method is explained using the example of separating an isotope mixture of UF 6 . (UWI) [de

  10. Theorical and experimental analysis of nitrogen-15 isotope enrichment by nitrogen monoxide and nitric acid system

    International Nuclear Information System (INIS)

    Ducatti, C.

    1985-01-01

    Nitrogen-15 isotope enrichment by chemical exchange in NO/HNO 3 system was studied using two different theories. The isotope fractionation factors obtained by the countercurrent theory was compared to those estimated by the isotope equipartition theory were confronted through a model. A column in countercurrent was built at laboratory scale and parameters such as: number of theoretical plates, height equivalent to a theoretical plate, type of packing, total height of column, production of H 15 NO 3 /week, obtained under isotope dynamic equilibrium conditions, were studied in comparison to those in the literature. (Author) [pt

  11. Candidate processes for diluting the 235U isotope in weapons-capable highly enriched uranium

    International Nuclear Information System (INIS)

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile 235 U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile 235 U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel

  12. Stable-isotope-enrichment program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    This paper has attempted to present a brief description of the production steps, from the selection and preparation of the initial feedstock to the recovery and distribution of the isotopically enriched materials. The facility suffers from the disadvantage of coping with utility and support systems that are rapidly becoming obsolescent and that the current operational level is insufficient to maintain sales inventory equilibrium. The electromagnetic isotope enrichment facility does, however, have the operational equipment and capability to almost triple the current production. This increased production can be achieved as rapidly as an expanded operational crew can be trained

  13. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  14. Amino Acid Isotope Incorporation and Enrichment Factors in Pacific Bluefin Tuna, Thunnus orientalis

    Science.gov (United States)

    Bradley, Christina J.; Madigan, Daniel J.; Block, Barbara A.; Popp, Brian N.

    2014-01-01

    Compound specific isotopic analysis (CSIA) of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs) are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days) laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT), a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ15N∼11.5‰) were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC) where they were fed a controlled diet with high δ15N values relative to PBFT white muscle (diet δ15N∼13.9‰). Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ15N values of amino acids across trophic levels are the underlying drivers of the trophic 15N enrichment. Nearly all amino acid δ15N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of 15N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies. PMID:24465724

  15. Chlorine isotope fractionation during supergene enrichment of copper

    Science.gov (United States)

    Reich, M.; Barnes, J.; Barra, F.; Milojevic, C.; Drew, D.

    2017-12-01

    Supergene enrichment of Cu deposits in the Atacama Desert has played a critical role in making this the prime Cu-producing province of the world. The Cu-hydroxychloride atacamite is a major component of supergene zones in this region whereas in similar deposits elsewhere it is rare. Atacamite requires saline water to form and dissolves rapidly when exposed to fresh, meteoric water. Previous chlorine stable isotope data [1] for atacamite mineralization at the Radomiro Tomic, Chuquicamata and Mina Sur Cu deposits show δ37Cl values that range from -0.1 to +0.2‰, indicating a similar nonmagmatic source for the introduction of chloride. However, distal atacamite mineralization on the periphery of these orebodies show more fractionated and lighter δ37Cl values (-3.2 to -0.1‰). Although little disagreement currently exists about the involvement of saline groundwater during the formation of atacamite [2], no δ37Cl data are currently available for atacamite within a single deposit and/or supergene enrichment profile that allow explaining the aforementioned differences in the observed δ37Cl values. Furthermore, no experimental data for chlorine isotope fractionation between Cu-hydroxychloride minerals and water exist that help evaluate possible mechanisms of fractionation along the groundwater flow path. Here we present a new database that combines detailed mineralogical observations with δ37Cl data of atacamite along a thick ( 100 m) supergene enrichment profile at the Barreal Seco IOCG deposit in the Atacama Desert of northern Chile. Chlorine stable isotope data of atacamite vary between -0.62 and +2.1 ‰ and show a well-defined trend where δ37Cl values progressively decrease (become lighter) with depth. These data, when combined with new experimental determinations of chlorine isotope fractionation between atacamite and water, point to changes triggered by the progressive deepening of groundwater tables during Andean uplift and the extreme desiccation of

  16. Isotopic enrichment of 15N by ionic exchange cromatography

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Matsui, E.; Salati, E.

    1979-01-01

    The ionic exchange chromatographic method in columns of resin which is employed in the study of isotopic enrichment of 15 N is presented. Determinations are made of the isotopic separation constant for the exchange of isotopes 15 N and 14 N in the equilibrium involving ammonium hidroxide in the solution phase and ions NH 4 + adsorbed in cationic resins: Dowex 50W-X8 and X12, 100-200 mesh. Experiments are also conducted for determination of height of theoretical plates for situations of equilibrium of the NH 4 + band in two systems of resin's columns aimed at estimating the experimental conditions used. The isotopic analyses of nitrogen are carried out by mass spectrometry [pt

  17. Isotope enrichment effect of gaseous mixtures in standing sound vibration

    International Nuclear Information System (INIS)

    Knesebeck, R.L.

    1984-01-01

    When standing acoustic waves are excited in a tube containing a mixture of two gases, a partial zonal fractioning of the components arises as consequence of mass transport by diffusion, driven by the thermal and pressure gradients which are associeted with the standing waves. This effect is present in each zone corresponding to a quarter wavelength, with the heavier component becoming enriched at the nodes fo the standing waves and deplected at the crests. The magnitude of the enrichment in one of the components of a binary gas mixture is given by Δω=ap 2 /lambda [b + (1-bω)] 2 . Where ω is the mass concentration of the component in the mixture, a and b are parameters which are related to molecular proprieties of the gases, p is the relative pressure amplitude of the standing wave and lambda is its wavelength. For a natural mixture of uranium hexafluorate, with 0.715% of the uranium isotope 340 an enrichment of about 2 x 10 -6 % in the concentration of this isotope is theorecticaly attainable per stage consisting of a quarter wavelenght, when a standing acoustical wave of relative pressure amplitude of 0,2 and wavelenght of 20 cm is used. Since standing acoustical waves are easely excited in gas columns, an isotope enrichment plant made of a cascade of tubes in which standing waves are excited, is presumably feasible with relatively low investment and operation costs. (Author) [pt

  18. Experimental study of relationship between average isotopic fractionation factor and evaporation rate

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2010-12-01

    Full Text Available Isotopic fractionation is the basis of tracing the water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in water evaporating from free water bodies are mainly affected by temperature and relative humidity, and vary significantly with these atmospheric factors over the course of a day. The evaporation rate (E can reveal the effects of atmospheric factors. Therefore, there should be a certain functional relationship between isotopic fractionation factors and E. An average isotopic fractionation factor (α* was defined to describe isotopic differences between vapor and liquid phases in evaporation with time intervals of days. The relationship between α* and E based on the isotopic mass balance was investigated through an evaporation pan experiment with no inflow. The experimental results showed that the isotopic compositions of residual water were more enriched with time; α* was affected by air temperature, relative humidity, and other atmospheric factors, and had a strong functional relation with E. The values of α* can be easily calculated with the known values of E, the initial volume of water in the pan, and isotopic compositions of residual water.

  19. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  20. Lithium isotope separation factors of some two-phase equilibrium systems

    International Nuclear Information System (INIS)

    Palko, A.A.; Drury, J.S.; Begun, G.M.

    1976-01-01

    Isotope separation factors of seventeen two-phase equilibrium systems for lithium isotope enrichment have been determined. In all cases, lithium amalgam was used as one of the lithium-containing phases and was equilibrated with an aqueous or organic phase containing a lithium compound. In all systems examined, isotopic exchange was found to be extremely rapid, and 6 Li was concentrated in the amalgam phase. The isotopic separation factor for the LiOH(aqueous) vs Li(amalgam) system has been studied as a function of temperature from -2 to 80 degreeC. The values obtained have been compared with the ''electrolysis'' and exchange separation factors given in the literature. The two-phase systems, LiCl(ethylenediamine) vs Li(amalgam) and LiCl(propylenediamine) vs Li(amalgam), have been studied, and the isotopic separation factors have been determined as functions of the temperature. The factors for the two systems have been found to be substantially the same (within limits of the errors involved) over the temperature range studied (0 to 100 degreeC) as those for the aqueous system. The isotopic separation factors for the seventeen systems have been tabulated, and correlations have been drawn that show the salt and solvent effects upon the values obtained

  1. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry

    Science.gov (United States)

    Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd

    2017-08-01

    Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large

  2. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  3. Enrichment of {sup 15}N and {sup 10}B isotopes by chemical exchange process

    Energy Technology Data Exchange (ETDEWEB)

    D` Souza, A B; Sonwalkar, A S; Subrahmanyam, B V; Valladares, B A [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. {sup 15}N and {sup 10}B in Chemical Engineering Division is presented. {sup 15}N is widely used as a tracer in agricultural research and {sup 10}B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on {sup 15}N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of {sup 10}B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched {sup 10}B to be used as soluble reactor poison. (author). 5 refs., 2 figs., 3 tabs.

  4. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.; Erbert, G.; Paisner, J.; Chen, H.; Chiba, Z.; Beeler, R.; Combs, R.; Mostek, S.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of $450 million dollars in the corresponding reduction of electrical power consumption. We discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion centers around the results of spectroscopic measurements of excited-state lifetimes, photoionization cross sections, and isotope shifts

  5. The jet nozzle process for uranium 235 isotopic enrichment

    International Nuclear Information System (INIS)

    Jordan, I.; Umeda, K.; Brown, A.E.P.

    1979-01-01

    A general survey of the isotopic enrichment of Uranium - 235, principally by jet nozzle process, is made. Theoretical treatment of a single stage and cascade of separation stages of the above process with its development in Germany until 1976 is presented [pt

  6. Method for separation and enrichment of isotopes

    International Nuclear Information System (INIS)

    Kakihana, H.; Miyamatsu, T.

    1977-01-01

    Boron or uranium isotopes can be chemically separated and enriched with high speed and with high separating efficiency by using weakly basic anion exchange fibers having a diameter of not more than 100 μ, an aspect ratio of at least 5 and an exchange capacity of at least 2 meq/g-dry fiber, which are packed in a column at a specific volume of 2.0 to 20.0 ml/g-dry fiber

  7. Isotopic enrichment of 15N by ionic exchange chromatography

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1979-01-01

    The present paper presents some studies on production of 15 N-enriched ammonium sulphate with 5% atoms by ionic exchange chromatography method. Two systems are described of columns of resin, where experiments were conducted by eluition of NH 4 + bands with sodium hydroxide solution. Analyses were made of the cost of production of 15 N-enriched ammonium sulphate 5% atoms and, based on the experiments developed, a cost was obtained which was compatible with the international price of the product. The isotopic analyses of nitrogen were made by mass spectrometry. (Author) [pt

  8. Isotopic analysis of uranium hexafluoride highly enriched in U-235

    International Nuclear Information System (INIS)

    Chaussy, L.; Boyer, R.

    1968-01-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment (≅2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [fr

  9. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  10. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  11. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of ∼ 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry

  12. Sulfur isotope separation by anion exchange chromatography: 34 S isotope enrichment

    International Nuclear Information System (INIS)

    Bendassolli, Jose Albertino; Trivelin, Paulo Cesar O.; Carneiro Junior, Francisco

    1995-01-01

    The 34 S isotope separation was carried out by isotopic exchange reactions between sulphurous acid in solution and bisulphite anions adsorbed on an ammonium quaternary (Dowex 1 x 8 and Dowex 2 x 8, 100-200 mesh) anion exchange resin packed in columns. Each resin column had 130 cm length and 2.2 cm diameter. The columns were connected in series during displacement of bisulphite bands. For the experiments, a band of bisulphite was fixed to the anion resin, initially in the hydroxyl ion form, and subsequently eluted with 0.2 0.3, 0.4 and 0.6 mol L -1 HCL solution. The hydrochloric acid solution was kept under a nitrogen atmosphere at 245 KPa of pressure, in order to prevent the evolution of gases and also the oxidation of the bisulphite. The experiments showed that the best results were obtained with the elution of bisulphite with 0.2 mol.L -1 HCL, with the Dowex 1 x 8 resin. Enrichments in 34 S of 17.33 atoms% were obtained using Dowex 1 x 8 resin, 0.2 mol.L -1 HCL solution and band displacement of 50 m. Replacing the depleted portion of the band with natural bisulphite, for each 10 m of band displacement, produced 6.79 mmol of sulphurous acid enriched with approximately 17% of 34 S, after 14 m of band dislocation. (author). 7 refs., 1 fig., 2 tabs

  13. Chromatographic enrichment of isotopes in hydrogen and water samples on palladium

    International Nuclear Information System (INIS)

    Andreev, B.M.; Polevoi, A.S.; Perevezentsev, A.N.

    1987-01-01

    Data on the isotopic enrichment of hydrogen and water samples by chromatography on palladium have been analyzed. Experimental data on the effect of temperature, hydrogen flow, volume of the enriched fraction, and length of the chromatographic column on the degree of separation attainable in the column have been obtained. It has been shown that the maximum separation achievable (regardless of the type of the isotope mixture) at 273 K falls with increase of hydrogen flow and volume of the enriched gas fraction recoverable from the column. A separation degree of ∼ 1040 has been achieved for a mixture of protium and deuterium in a 10-mm wide and 0.6-m long chromatographic column packed with palladium black with a grain size of 0.2-0.5 mm at 273 K and a specific hydrogen flow of 1.22 mole/m 2 x sec. For a protium-tritium mixture a separation degree of ∼ 90 has been reached in a similar column at 273 K and a specific hydrogen flow of 0.4 mole/m 2 x sec

  14. Yield and enrichment studies of C-13 isotope by multi-photon ...

    Indian Academy of Sciences (India)

    Abstract. Multi-photon dissociation of Freon-22 (CF2HCl) at low temperatures has been carried out to separate the C-13 isotope using a TEA CO2 laser. Yield and enrichment of C-13 isotope in the product C2F4 are studied at 9P(22) laser line as a function of temperature (–50°C to 30°C). It is observed that at a given fluence ...

  15. Growth and characterization of isotopically enriched 70Ge and 74Ge single crystals

    International Nuclear Information System (INIS)

    Itoh, K.

    1992-10-01

    Isotopically enriched 70 Ge and 74 Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm 3 volume. To our knowledge, we have grown the first 70 Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be ∼2 x cm -3 which is two order of magnitude better that of 74 Ge crystals previously grown by two different groups. Isotopic enrichment of the 70 Ge and the 74 Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed

  16. Tritium enrichment of environmental waters by electrolysis: Development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1976-01-01

    Equations are developed for the estimation of tritium enrichment in batch, continuous feed and periodic addition electrolysis cells. Optimum enrichment and minimum variability is obtained using developed cathode surfaces which catalyse the separation of tritium, as exhibited by the results of experiments using mild steel cathodes with NaOH electrolyte. The equations and various simple refinements of technique are applied to the determination of tritium enrichment factors by the spike cell method: for batch cells the standard errors are less than 1%. (author)

  17. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox

    Science.gov (United States)

    Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.

    2017-12-01

    An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal

  18. Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using LC/MS

    Science.gov (United States)

    Persson, Xuan-Mai T.; Błachnio-Zabielska, Agnieszka Urszula; Jensen, Michael D.

    2010-01-01

    Measurements of plasma free fatty acids (FFA) concentration and isotopic enrichment are commonly used to evaluate FFA metabolism. Until now, gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) was the best method to measure isotopic enrichment in the methyl derivatives of 13C-labeled fatty acids. Although IRMS is excellent for analyzing enrichment, it requires time-consuming derivatization steps and is not optimal for measuring FFA concentrations. We developed a new, rapid, and reliable method for simultaneous quantification of 13C-labeled fatty acids in plasma using high-performance liquid chromatography-mass spectrometry (HPLC/MS). This method involves a very quick Dole extraction procedure and direct injection of the samples on the HPLC system. After chromatographic separation, the samples are directed to the mass spectrometer for electrospray ionization (ESI) and analysis in the negative mode using single ion monitoring. By employing equipment with two columns connected parallel to a mass spectrometer, we can double the throughput to the mass spectrometer, reducing the analysis time per sample to 5 min. Palmitate flux measured using this approach agreed well with the GC/C/IRMS method. This HPLC/MS method provides accurate and precise measures of FFA concentration and enrichment. PMID:20526002

  19. Enrichment of sub-milligram size carbon samples

    NARCIS (Netherlands)

    Kitagawa, H; vanderPlicht, J

    We have developed a carbon isotope enrichment system for use in conjunction with the Groningen Accelerator Mass Spectrometer. Using thermal diffusion of CO, we obtained an enrichment factor of about 3 for C-13 for half-gram carbon in 5 days. This means we expect for C-14 an enrichment factor of 6,

  20. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    Science.gov (United States)

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Method for the enrichment of isotopes

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.; Gebauhr, W.

    1976-01-01

    A method for the enrichment of isotopes, especially of uranium compounds, is described, working according to the principle of selective excitation by laser beams. As the starting compound, UF 6 is mentioned; the reaction partness are atomic gases (hydrogen, oxygen, nitrogen) or radicals (CH 3 , CHO). According to the invention, the gas mixture flows through the reaction space with a velocity so large that in leaving it, recombination of the reaction partner will already take place again. In this way, competing thermal reactions will be avoided and energy transfer fo excited 235 U molecules to non-excited 238 U molecules is eliminated to a large extent. A suitable equipment for implementing the method is described. (UWI) [de

  2. Interlaboratory determinations of isotopically enriched metals by field desorption mass spectroscopy

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.; Achenbach, C.; Ziskoven, R.

    1982-01-01

    The isotopic distribution of stable isotopes in six enriched metals (calcium, copper, barium, rubidium, strontium and thallium) has been determined by field desorption mass spectrometry. A first evaluation of the interlaboratory reproducibility of the application of this method for trace determination of metals was made using three different types of mass spectrometers in three different laboratories. The standard deviations for the most abundant isotopes of the metals investigated are between +-0.1 and +-0.5%. Within these standard deviations, the values obtained by the three mass spectrometry groups are the same. To support the accuracy of our quantification, thermal ionization mass spectrometry has been employed and confirms the results of the field desorption method. (orig.) [de

  3. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  4. Water enriched in the rare stable isotopes : Preparation, measurement and applications

    NARCIS (Netherlands)

    Faghihi, Vahideh

    2016-01-01

    The subject of this thesis is water with increased abundances of the rare stable isotopes 2H and 18O (and to some extent also 17O). Such artificially enriched (or "labelled") waters are often used in biomedicine, for establishing the total amount of body water (and thus body composition) of humans

  5. Magnetic and micellar effects on photoreactions. 1. 13C isotopic enrichment of dibenzyl ketone via photolysis in aqueous detergent solution

    International Nuclear Information System (INIS)

    Turro, N.J.; Chow, M.F.; Chung, C.J.; Kraeutler, B.

    1981-01-01

    The photolysis of dibenzyl ketone (DBK) in homogeneous organic solutions and in micelle-containing detergent solutions has been investigated from the standpoint of determining the extent and location of 13 C enrichment that occurs. In a series of experiments it is established that for incomplete conversions the residual, recovered DBK is enriched in 13 C relative to the initial unphotolyzed DBK. The efficiency of the 13 C/ 12 C separation is shown to be characterized by an isotope enrichment parameter, α, which is independent of the extent of conversion. A combination of mass spectrometry and nuclear magnetic resonance spectroscopy provides support for the primary location of the 13 C enrichment at C-1 (the carbonyl carbon) with a lesser but significant enrichment at C-2 (the methylene carbon). A very small but experimentally distinct enrichment of the aromatic rings is indicated by 13 C NMR analysis. An isomer of DBK, 1-phenyl-4'-methylacetophenone (PMAP) is formed as a minor product of photolysis in micellar solutions. PMAP, like the recovered, residual DBK, is found to be substantially enriched in 13 C relative to the starting DBK. The magnitude of α is found to be significantly influenced by the application of laboratory magnetic fields to the photolysis sample. The latter result, along with the unusually large magnitude of α, suggests that the mechanism involved in isotopic enrichment is not dominated by kinetic mass isotope effects but rather by nuclear magnetic moment and/or magnetic spin isotope effects

  6. An isotopic analysis system for plutonium samples enriched in 238Pu

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Camp, D.C.

    1991-08-01

    We have designed and built a gamma-ray spectrometer system that measures the relative plutonium isotopic abundances of plutonium oxide enriched in 238 Pu. The first system installed at Westinghouse Savannah River Company was tested and evaluated on plutonium oxide in stainless steel EP60/61 containers. 238 Pu enrichments ranged from 20% to 85%. Results show that 200 grams of plutonium oxide in an EP60.61 container can be measured with ±0.3% precision and better than ±1.0% accuracy in the specific power using a counting time of 50 minutes. 3 refs., 2 figs

  7. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair

    International Nuclear Information System (INIS)

    Okazaki, M.; Shiga, T.; Sakata, S.; Konaka, R.; Toriyama, K.

    1988-01-01

    Microwave effects on the spin adduct yield were observed in the photoreduction of menadione in micellar solutions with ordinary sodium dodecyl sulfate (SDS), deuterium-labeled SDS, and a mixture of them. A large isotope effect was found in the microwave modulation of the spin adduct yield, which is due to the ESR transitions of the transient radical pair in the reaction. It is demonstrated for the first time that the microwave field can be used to enrich one of the isotopes which coexist in the system

  8. Re-enrichment of O-18 isotopic water used for the production of F-18 in a cyclotron

    International Nuclear Information System (INIS)

    Kim, J.; Kim, T.S.; Choi, H.; Jang, D.S.; Jeong, D.Y.

    2004-01-01

    Full text: The demand for and applications of stable isotopes in medicine, industry, and science in the modern era has increased and expanded significantly. Especially, 18 O-enriched water (> 90%) is used as a target in a cyclotron for the production of the β -emitting radioisotope 18 F, which is essential for PET (Positron Emission Tomography) pharmaceutical [ 18 F]-labeled 2-deoxyglucose (FDG) synthesis. Currently, 18 O is produced by a cold distillation of NO (Nitric Oxide) or a fractional distillation of water. These processes, however, are technically complicated and costly so as to limit the production of 18 O. In this regard, it is essential to re-use the used target water as much as possible since the 18 O-enriched water is so expensive (∼ $150/g). In order to recycle the used target water, it is necessary to purify the organic and inorganic impurities contaminated during the 18 f-FDG production loop and to re-enrich the 18 O isotope in the target water diluted during the purification process. For the development of a compact target water 18 O re-enrichment system, the 18 O isotope separation characteristics of MD (Membrane Distillation) were investigated. The 18 O isotopic water permeation and separation characteristics of a hydrophobic PTFE membrane using Air Gap MD and Vacuum Enhanced MD were evaluated. Permeation fluxes were measured by weighing the collected membrane-permeated water vapor. 18 O/ 16 O of each water sample was analyzed by a Tunable Diode Laser Absorption Spectroscopy (TDLAS). We observed the effects of the air in the membrane pores and the temperature gradient applied to the membrane surfaces on the vapor permeation flux and the oxygen isotope separation for the first time. For both AGMD and VEMD, the permeation flux and the degree of 18 O separation increased as the membrane interfacial temperature gradient increased. Even though the oxygen isotope separation and the permeation flux for the VEMD is slightly higher than the AGMD, the

  9. Use of minor uranium isotope measurements as an aid in safeguarding a uranium enrichment cascade

    International Nuclear Information System (INIS)

    Levin, S.A.; Blumkin, S.; Von Halle, E.

    1979-01-01

    Surveillance and containment, which are indispensable supporting measures for material accountability, do not provide those charged with safeguarding an installation with the assurance beyond the shadow of a doubt that all the input and output uranium will in fact be measured. Those who are concerned with developing non-intrusive techniques for safeguarding uranium enrichment plants under the Nuclear Non-Proliferation Treaty have perceived the possibility that data on the minor uranium isotope concentrations in an enrichment cascade withdrawal and feed streams may provide a means either to corroborate or to contradict the material accountability results. A basic theoretical study has been conducted to determine whether complete isotopic measurements on enrichment cascade streams may be useful for safeguards purposes. The results of the calculations made to determine the behaviour of the minor uranium isotopes ( 234 U and 236 U) in separation cascades, and the results of three plant tests made to substantiate the validity of the calculations, are reviewed briefly. Based on the fact that the 234 U and 236 U concentrations relative to that of 235 U in cascade withdrawal streams reflect the cascade flow-sheet, the authors conclude that the use of the minor isotope concentration measurements (MIST) in cascade withdrawal streams is a potentially valuable adjunct to material accounting for safeguarding a 235 U enrichment cascade. A characteristic of MIST, which qualifies it particularly for safeguards application under the NPT, is the fact that its use is entirely non-intrusive with regard to process technology and proprietary information. The usefulness of MIST and how it may be applied are discussed briefly. (author)

  10. Radiogenic isotopes in enriched mid-ocean ridge basalts from Explorer Ridge, northeast Pacific Ocean

    Science.gov (United States)

    Cousens, Brian; Weis, Dominique; Constantin, Marc; Scott, Steve

    2017-09-01

    Extreme gradients in topography related to variations in magma supply are observed on the Southern Explorer Ridge (SER), part of the northern Juan de Fuca ridge system. We report radiogenic isotope (Pb, Sr, Nd, Hf) and geochemical data for twenty-four basalt whole-rock and glass samples collected from the length of the SER and from Explorer Deep, a rift to the north of the SER. Lavas from the SER form a north-south geochemical gradient, dominated by E-MORB at the northern axial high, and range from T-MORB to N-MORB towards the southern deepest part of the ridge. Linear relationships between incompatible element ratios and isotopic ratios in MORB along the ridge are consistent with mixing of magmas beneath the ridge to generate the geographic gradient from E- to N-MORB. The E-MORB have high Sr and Pb, and low Nd and Hf isotopic ratios, typical of enriched mantle that includes a FOZO or HIMU isotopic component. The West Valley and Endeavour segments of the northern Juan de Fuca ridge also include this isotopic component, but the proportion of the FOZO or HIMU component is more extreme in the SER basalts. The FOZO or HIMU component may be garnet-bearing peridotite, or a garnet pyroxenite embedded in peridotite. Recycled garnet pyroxenite better explains the very shallow SER axial high, high Nb/La and La/Sm, and the ;enriched; isotopic compositions.

  11. Blood-specific isotopic discrimination factors in the Magellanic penguin (Spheniscus magellanicus).

    Science.gov (United States)

    Ciancio, Javier E; Righi, Carina; Faiella, Adrián; Frere, Esteban

    2016-08-30

    The use of stable isotopes for ecological studies has increased exponentially in recent years. Isotopic trophic studies are based on the assumption that animals are what they eat plus a discrimination factor. The discrimination factor is affected by many variables and can be determined empirically. The Magellanic penguin is a highly abundant marine bird that plays a key role in the southern oceans. This study provides the first estimation of the Magellanic penguin blood discrimination factor for (13) C and (15) N. A two and a half month feeding experiment was performed, in which ten captive penguins were fed their main natural prey (anchovy Engraulis anchoita). The discrimination factors were estimated by comparing anchovy δ(13) C and δ(15) N values (obtained with isotope ratio mass spectrometry using lipid-extracted and bulk anchovy muscle) with penguin blood δ(13) C and δ(15) N values. Penguin blood was shown to be enriched, compared with anchovies, for (13) C and (15) N. No changes were observed in the stable isotope ratios of anchovies and discrimination factors during the experiment. The overall discrimination factors were 0.93 ± 0.12 (bulk) and 0.41 ± 0.12 (lipid-free) for (13) C; and 2.81 ± 0.17 (bulk) and 2.31 ± 0.17 (lipid-free) for (15) N. Having an accurate discrimination factor for the studied species is key in any trophic or food web isotopic study. Comparisons of estimated diet-to-blood discrimination factors with published values of aquatic piscivore birds showed that the (13) C discrimination factor is particularly variable, and therefore ecologists should be cautious when using a surrogate value from other species. In this study, the Magellanic penguin discrimination factor of a tissue that does not require euthanasia was obtained, a fundamental input for trophic isotopic modeling of the species. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Organic photochemical reactions on solid surfaces: Enrichment and separation of isotopes. Final report. SBIR-1988, Phase 2

    International Nuclear Information System (INIS)

    Ruderman, W.; Fehlner, J.; Spencer, J.

    1988-01-01

    The objectives of the Phase II program were to: (1) investigate organic photochemical reactions on solid porous silica surfaces, (2) utilize the magnetic isotope effect to develop a (13)C enrichment process using a fluidized bed reactor, and (3) investigate the possibility of enrichment of heavier isotopes having a nuclear spin. Although researchers were able to demonstrate a continuous fluidized bed (13)C enrichment process, analysis showed that the process could not compete with low temperature distillation of CO because of the high cost of the starting material, dibenzylketone (DBK), and the difficulty of converting the photochemical decomposition products back to DBK. However, the process shows promise for the separation of heavier isotopes such as (29)Si. The photochemical studies led to the discovery that the selectivity for terminal chlorination of alkanes can be increased more than 25 fold by sorbing the alkanes on ZSM-5 zeolites in a fluidized bed. The selectivity is ascribed to the presence of interfaces within the crystals

  13. Positional enrichment by proton analysis (PEPA). A one-dimensional "1H-NMR approach for "1"3C stable isotope tracer studies in metabolomics

    International Nuclear Information System (INIS)

    Vinaixa, Maria; Yanes, Oscar; Rodriguez, Miguel A.; Capellades, Jordi; Aivio, Suvi; Stracker, Travis H.; Gomez, Josep; Canyellas, Nicolau

    2017-01-01

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of "1"3C-satellite peaks using 1D-"1H-NMR spectra. In comparison with "1"3C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of "1"3C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of "1H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  14. Uranium-isotope enrichment: application bounds of the separative power and separation work concepts

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1981-05-01

    The aim of this paper is a critical re-examination of the concepts of separative power, separation work and value function in order to understand if their extension to the new enrichment processes such as Laser Isotope Separation is possible.

  15. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Krämer, Lisa; Jäger, Christian; Trezzi, Jean-Pierre; Jacobs, Doris M; Hiller, Karsten

    2018-02-14

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13 C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13 C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13 C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13 C-labeled bread and quantified 13 C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  16. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Krämer, Lisa; Jäger, Christian; Jacobs, Doris M.; Hiller, Karsten

    2018-01-01

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated. PMID:29443915

  17. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lisa Krämer

    2018-02-01

    Full Text Available Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS. The limit of quantification was increased by optimizing (1 the metabolite extraction from plasma, (2 the GC-MS measurement, and (3 most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine. Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  18. Synthesis and Use of Stable Isotope Enriched Retinals in the Field of Vitamin A

    Directory of Open Access Journals (Sweden)

    Johan Lugtenburg

    2010-03-01

    Full Text Available The role of vitamin A and its metabolites in the life processes starting with the historical background and its up to date information is discussed in the introduction. Also the role of 11Z-retinal in vision and retinoic acid in the biological processes is elucidated. The essential role of isotopically enriched systems in the progress of vision research, nutrition research etc. is discussed. In part B industrial commercial syntheses of vitamin A by the two leading companies Hoffmann-La Roche (now DSM and BASF are discussed. The knowledge obtained via these pioneering syntheses has been essential for the further synthetic efforts in vitamin A field by other scientific groups. The rest of the paper is devoted to the synthetic efforts of the Leiden group that gives an access to the preparation of site directed high level isotope enrichment in retinals. First the synthesis of the retinals with deuterium incorporation in the conjugated side chain is reviewed. Then, 13C-labeled retinals are discussed. This is followed by the discussion of a convergent synthetic scheme that allows a rational access to prepare any isotopomer of retinals. The schemes that provide access to prepare any possible isotope enriched chemically modified systems are discussed. Finally, nor-retinals and bridged retinals that give access to a whole (as yet incomplete library of possible isotopomers are reviewed.

  19. Magnesium isotopes: a tool to understand self-enrichment in globular clusters

    Science.gov (United States)

    Ventura, P.; D'Antona, F.; Imbriani, G.; Di Criscienzo, M.; Dell'Agli, F.; Tailo, M.

    2018-06-01

    A critical issue in the asymptotic giant branch (AGB) self-enrichment scenario for the formation of multiple populations in globular clusters (GCs) is the inability to reproduce the magnesium isotopic ratios, despite the model in principle can account for the depletion of magnesium. In this work, we analyse how the uncertainties on the various p-capture cross sections affect the results related to the magnesium content of the ejecta of AGB stars. The observed distribution of the magnesium isotopes and of the overall Mg-Al trend in M13 and NGC 6752 are successfully reproduced when the proton-capture rate by 25Mg at the temperatures ˜100 MK, in particular the 25Mg(p, γ)26Alm channel, is enhanced by a factor ˜3 with respect to the most recent experimental determinations. This assumption also allows us to reproduce the full extent of the Mg spread and the Mg-Si anticorrelation observed in NGC 2419. The uncertainties in the rate of the 25Mg(p, γ)26Alm reaction at the temperatures of interest here leave space for our assumption and we suggest that new experimental measurements are needed to settle this problem. We also discuss the competitive model based on the supermassive star nucleosynthesis.

  20. Metabolism and transport studies of exogenous compounds thanks to 13C uniform isotopic enrichment

    International Nuclear Information System (INIS)

    Bravin, F.

    2008-12-01

    The study of many exogenous compounds does not raise difficulties when they are isolated, purified and in quantities sufficient for the usual detection methods used in biology (Chromatography, NMR, Mass Spectrometry, etc). When they are found in a biological fluid (blood, urines,..), they are often in infinitesimal amount such as the effect of their biological matrices or the background noise that make their detection and their quantification very delicate. The use of internal standards uniformly enriched with carbon 13 and/or nitrogen 15 makes it possible to obtain a signal more easily recognizable and identifiable thanks to the presence of the isotopes (peaks shifted in a mass spectrum for example). This is why, complementary to the analytical and biochemical studies of zearalenone (ZEN) metabolism, we were interested in building mass spectra of molecules enriched (rates between 0 and 1) by various isotopes ( 13 C, 15 N, 18 O and 2 H). In parallel we studied the influence of the 13 C enrichment on the reactivity of a given molecule, from a theoretical and an experimental point of view. (author)

  1. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  2. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems.

    Science.gov (United States)

    Álvarez, C Rodríguez; Jiménez-Moreno, M; Bernardo, F J Guzmán; Martín-Doimeadios, R C Rodríguez; Nevado, J J Berzas

    2018-01-01

    The fate of mercury (Hg) in the soil-earthworm system is still far from being fully understood, especially regarding recurrent and challenging questions about the importance of the reactivity of exogenous Hg species. Thus, to predict the potential effect of Hg inputs in terrestrial ecosystems, it is necessary to evaluate separately the reactivity of the endogenous and exogenous Hg species and, for this purpose, the use of enriched stable isotope tracers is a promising tool. In the present work, earthworms (Lumbricus terrestris) were exposed to historically Hg contaminated soils from the Almadén mining district, Spain. The soils were either non-spiked, which contain only endogenous or native Hg naturally occurring in the soil, or spiked with isotopically enriched inorganic Hg ( 199 IHg), representing exogenous or spiked Hg apart from the native one. The differential reactivity of endogenous and exogenous Hg in the soil conditioned the processes of methylation, mobilization, and assimilation of inorganic Hg by earthworms. Both endogenous and exogenous Hg species also behave distinctly regarding their bioaccumulation in earthworms, as suggested by the bioaccumulation factors, being the endogenous methylmercury (MeHg) the species more readily bioaccumulated by earthworms and in a higher extent. To the best of our knowledge, this work demonstrates for the first time the potential of enriched stable isotopes to study the effects of fresh Hg inputs in soil-earthworm systems. The findings of this work can be taken as a case study on the dynamics of Hg species in complex terrestrial systems and open a new door for future experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Preparation of isotopically enriched mercury sulphide targets

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J.; Friebel, H.U.; Frischke, D.; Grossman, R.; Maier, H.J. [Dept. fuer Physik, Univ. Muenchen (LMU) (Germany); Maier-Leibnitz-Lab. (MLL), Garching (Germany)

    2007-07-01

    The primary difficulty in performing nuclear reactions on mercury is to obtain a suitable target. The primary difficulty in performing nuclear reactions on mercury is to obtain a suitable target. The utilization of amalgam targets has been reported in early publications. These targets, however, were lacking homogeneity and in-beam stability. A thorough investigation of literature shows, that HgS, because of its comparatively high chemical and mechanical stability, is one of the more adequate Hg compounds for accelerator target applications. In this presentation we describe the production of HgS targets consisting of an enriched Hg isotope and S of natural isotopic abundance, starting up from HgO. Following the outline given in [3], in this special case HgS can be prepared by dissolving HgO in diluted HNO{sub 3} and subsequent precipitation of the black HgS modification with gaseous H{sub 2}S. Last step of the target production procedure is evaporation-condensation of HgS in vacuum. In the present case, HgS layers of 500 {mu}g/cm{sup 2} on a backing carbon foil of 26 {mu}g/cm{sup 2} with a protective carbon layer of about 20 {mu}g/cm{sup 2} thickness on top of the HgS layer were produced. (orig.)

  4. Use of enriched 74Se and 77Se in combination with isotope pattern deconvolution to differentiate and determine endogenous and supplemented selenium in lactating rats

    International Nuclear Information System (INIS)

    Gonzalez Iglesias, H.; Fernandez Sanchez, M.L.; Garcia Alonso, J.I.; Sanz-Medel, A.

    2007-01-01

    A quantitative methodology has been developed to differentiate between endogenous and supplemented selenium in lactating rats using two enriched selenium isotopes. Lactating rats were fed for 2 weeks with formula milk containing one enriched Se isotope, 77 Se, as the metabolic tracer. The isotopic composition of selenium in serum and urine samples was then measured by collision cell ICP-MS after the addition of a solution containing another enriched isotope, 74 Se, as quantitation tracer, before analysis. Isotope pattern deconvolution allowed the transformation of measured Se isotopic abundances into concentrations of natural abundance (endogenous) selenium and enriched 77 Se (supplemented) present in the samples. The proposed methodology was validated using serum and urine reference materials spiked with both 77 Se and 74 Se. The obtained results are discussed in terms of selenium exchange and half-life in lactating rats (11-12 days) and selenium levels in serum in comparison with non-supplemented rats and control rats after maternal feeding. (orig.)

  5. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    Science.gov (United States)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a

  6. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  7. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-(micro)m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  8. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  9. Intercomparison of enriched stable isotope reference materials for medical and biological studies

    International Nuclear Information System (INIS)

    Parr, R.M.; Clements, S.A.

    1991-01-01

    This report summarizes the results of an intercomparison exercise organized by the IAEA during the latter part of 1988 and 1989. Data are presented for 13 different kinds of enriched stable isotope reference material containing 2 H, 13 C, 15 N and 18 O. Results were submitted by forty participants in twenty countries. 2 refs, 13 figs, 18 tabs

  10. Practical enrichment technique for 33S (34S)

    International Nuclear Information System (INIS)

    McInteer, B.B.; Lyman, J.L.; Nilsson, A.C.; Quigley, G.P.

    1982-01-01

    The successful preparation of a macroscopic sample of enriched 33 S by laser-induced molecular dissociation is reported. Approach was to induce isotopically selective dissociation of SF 6 with CO 2 -laser pulses and to separate the remaining SF 6 from the sulfur-containing reaction products by cryogenic distillation. A 200 Hz, 0.75 J/pulse laser was used for photolysis of low-pressure (less than 1 torr) gas mixtures. The mixture of SF 6 and scavenger recirculated continuously throughout the irradiation chamber where the laser pulses selectively dissociated 32 SF 6 to give the final products: SF 4 or SOF 2 . The unreacted SF 6 was enriched in the heavier isotopes: 33 S, 34 S, and 36 S. A 1.3-g sample of SF 6 was collected with a 33 S enrichment factor of 1.96 and a 34 S enrichment factor of 2.25. A similar size sample of depleted ( 32 S) sulfur compounds was also collected. A scavenger was necessary to ensure high yield, and moist hydrogen was found to be best for our conditions. Removal of hydrogen fluoride was also necessary to prevent severe corrosion and to maintain high isotopic selectivity. 6 figures

  11. Stable isotopes. Enriched wheat: a new chance for nutrition research

    International Nuclear Information System (INIS)

    Chagvardieff, P.

    1996-01-01

    The Department of Plant Eco-physiology (DEV) from the CEA/Life Sciences Department of Cadarache (France) has artificially produced two kg of carbon 13 labelled wheat for nutrition research. It is the first successful stable isotope labelling of complex nutriments with a 10% enrichment in carbon 13. This wheat has been used for the manufacturing of pastas to follow the assimilation of nutrients by the organism. This short paper gives some details about the experimental procedure of labelled wheat cultivation. (J.S.)

  12. On the enrichment of low-abundant isotopes of light chemical elements by gas centrifuges

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Zaozerskiy, Yu.P.; Shmelev, G.M.; Shipilov, Yu.D.

    2000-01-01

    A brief review of the main areas for the application of the isotopes 15 N and 13 C is made. Separation of the nitrogen isotopes in a single gas centrifuge in the form of pure nitrogen, ammonia, and trifluoride of nitrogen as well as the carbon isotopes in the form of carbon dioxide has been studied by means of numerical simulation. The parameters of the centrifugal machine investigated were close to the parameters of the Iguassu machine. The dependence of the efficiency criterion versus the basic parameters of the separation process has been explored in the computational experiments. Comparisons of the calculated results with the experimental data have shown good agreement. The results obtained have demonstrated the possibility of using gas centrifuge technology to enrich successfully the low-abundant isotopes of light chemical elements

  13. Experimental study on isotope fractionation of evaporating water of different initial isotopic composition

    International Nuclear Information System (INIS)

    Pooja Devi; Jain, A.K.; Rao, M.S.; Kumar, B.

    2014-01-01

    The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan. (author)

  14. Russian ElectroKhimPribor integrated plant - producer and supplier of enriched stable isotopes

    International Nuclear Information System (INIS)

    Tatarinov, A.N.; Polyakov, L.A.

    1997-01-01

    Russian ElectroKhimPribor Integrated Plant, as well as ORNL, is a leading production which manufactures and supplied to the world market such specific products as stable isotopes. More than 200 isotopes of 44 elements can be obtained at its electromagnetic separator. Changes being underway for a few last years in Russia affected production and distribution of stable isotopes. There arose a necessity in a new approach to handling work in this field so as to create favourable conditions for both producers and customers. As a result, positive changes in calutron operation at ElectroKhimPribor has been reached; quality management system covering all stages of production has been set up; large and attractive stock of isotopes has been created; prospective scientific isotope-based developments are taken into account when planning separation F campaigns; executing the contracts is guaranteed; business philosophy has been changed to meet maximum of customer needs. For more than forty years ElectroKhimPribor have had no claim from customers as to quality of products or implementing contracts. Supplying enriched stable isotopes virtually to all the world's leading customers, ElectroKhimPribor cooperates successfully with Canadian company Trace Science since 1996

  15. ForCent model development and testing using the Enriched Background Isotope Study experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parton, W.J.; Hanson, P. J.; Swanston, C.; Torn, M.; Trumbore, S. E.; Riley, W.; Kelly, R.

    2010-10-01

    The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool {sup 14}C signature ({Delta} {sup 14}C) data from the Enriched Background Isotope Study {sup 14}C experiment (1999-2006) shows that the model correctly simulates the temporal dynamics of the {sup 14}C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass {Delta} {sup 14}C data, and with soil respiration {Delta} {sup 14}C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study {sup 14}C experimental treatments on soil respiration {Delta} {sup 14}C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.

  16. Use of enriched {sup 74}Se and {sup 77}Se in combination with isotope pattern deconvolution to differentiate and determine endogenous and supplemented selenium in lactating rats

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Iglesias, H.; Fernandez Sanchez, M.L.; Garcia Alonso, J.I.; Sanz-Medel, A. [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo (Spain)

    2007-10-15

    A quantitative methodology has been developed to differentiate between endogenous and supplemented selenium in lactating rats using two enriched selenium isotopes. Lactating rats were fed for 2 weeks with formula milk containing one enriched Se isotope, {sup 77}Se, as the metabolic tracer. The isotopic composition of selenium in serum and urine samples was then measured by collision cell ICP-MS after the addition of a solution containing another enriched isotope, {sup 74}Se, as quantitation tracer, before analysis. Isotope pattern deconvolution allowed the transformation of measured Se isotopic abundances into concentrations of natural abundance (endogenous) selenium and enriched {sup 77}Se (supplemented) present in the samples. The proposed methodology was validated using serum and urine reference materials spiked with both {sup 77}Se and {sup 74}Se. The obtained results are discussed in terms of selenium exchange and half-life in lactating rats (11-12 days) and selenium levels in serum in comparison with non-supplemented rats and control rats after maternal feeding. (orig.)

  17. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates

    Science.gov (United States)

    Mangalo, Muna; Meckenstock, Rainer U.; Stichler, Willibald; Einsiedl, Florian

    2007-09-01

    Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains ( Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ 18O water = +700‰) and depleted water (δ 18O water = -40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation ( ɛS > -13.2‰), δ 18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 ( ɛS factor ( ɛS exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5'-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the "recycled" sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the

  18. Research of catalysts for isotope enrichment of deuterium oxide in water - PX15-01/89 progress report

    International Nuclear Information System (INIS)

    1989-08-01

    The information about the development of research project for producing concentrate deuterium oxide by isotope enrichment in hydrogen-water contact systems combined with electrolysis are described. (C.G.C.)

  19. Energy consumption of chemical uranium enrichment

    International Nuclear Information System (INIS)

    Miyake, T.; Takeda, K.; Obanawa, H.

    1987-01-01

    A quantitative study of chemical separation energy for enriching uranium-235 by the redox chromatography was conducted. Isotope exchange reactions between U 4+ -UO 2 2+ ions in the enrichment column are maintained by the redox reactions. The chemical separation energy is ultimately supplied by hydrogen and oxygen gas for regenerating redox agents. The redox energy for the isotope separation is theoretically predicted as a function of the dynamic enrichment factor observed in the chromatographic development of uranium adsorption band. Thermodynamic treatments of the equilibrium reactions implies and inverse redox reaction which can be enhanced by the chemical potential of the ion-exchange reaction of oxidant. Experimental results showed 30 to 90% recovery of the redox energy by the inverse reaction. These results will devise a simplified redox chromatography process where a number of columns in one module is reduced

  20. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  1. Mass-independent isotope effects in chemical exchange reaction

    International Nuclear Information System (INIS)

    Nishizawa, Kazushige

    2000-01-01

    Isotope effects of some elements in chemical exchange reaction were investigated by use of liquid-liquid extraction, liquid membrane or chromatographic separation. Cyclic polyether was used for every method. All polyethers used in a series of the studies were made clear that they distinguished the isotopes not only by their nuclear masses but also by their nuclear sizes and shapes. Chromium isotopes, for example, were recognized to have enrichment factors being proportional to δ 2 > which is a parameter to show field shift or the nuclear size and shape of the isotope. It follows that the chromium isotopes are separated not by their masses but by their field shift effects. Nuclear spin also played a great role to separate odd mass number isotopes from even mass number isotopes in even atomic number elements. Contribution of the nuclear spin (I=3/2) of 53 Cr to total enrichment factor, ε 53/52 = -0.00028, for 53 Cr to 52 Cr was observed to be, ε spin = -0.0025. (author)

  2. Stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry

    NARCIS (Netherlands)

    van Trigt, R; Kerstel, E.R.T.; Visser, GH; Meijer, H.A.J.

    2001-01-01

    We demonstrate the feasibility of using laser spectrometry (LS) to analyze isotopically highly enriched water samples (i.e., delta H-2 less than or equal to 15000 parts per thousand, delta O-18 less than or equal to 1200 parts per thousand), as often used in the biomedical doubly labeled water (DLW)

  3. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  4. Trophic enrichment factors for blood serum in the European badger (Meles meles.

    Directory of Open Access Journals (Sweden)

    David J Kelly

    Full Text Available Ecologists undertaking stable isotopic analyses of animal diets require trophic enrichment factors (TEFs for the specific animal tissues that they are studying. Such basic data are available for a small number of species, so values from trophically or phylogenetically similar species are often substituted for missing values. By feeding a controlled diet to captive European badgers (Meles meles we determined TEFs for carbon and nitrogen in blood serum. TEFs for nitrogen and carbon in blood serum were +3.0 ± 0.4‰ and +0.4 ± 0.1‰ respectively. The TEFs for serum in badgers are notably different from those published for the red fox (Vulpes vulpes. There is currently no data for TEFs in the serum of other mustelid species. Our data show that species sharing similar niches (red fox do not provide adequate proxy values for TEFs of badgers. Our findings emphasise the importance of having species-specific data when undertaking trophic studies using stable isotope analysis.

  5. Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shi Junwen [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Feng Weiyue [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: fengwy@mail.ihep.ac.cn; Wang Meng [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Fang [Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li Bai [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang Bing; Zhu Motao [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Chai Zhifang [Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]|[Institute of Nuclear Technology, Shenzhen University, Shenzhen 518060 (China)]|[Institute of Nanochemistry and Nanosafety, Shanghai University, Shanghai (China)

    2007-01-30

    In order to investigate trace mercury-containing proteins in maternal rat and their offspring, a method of enriched stable isotopic tracer ({sup 196}Hg and {sup 198}Hg) combined with size-exclusion chromatography (SEC) coupled to inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS) was developed. Prior to the analysis, {sup 196}Hg- and {sup 198}Hg-enriched methylmercury was administrated to the pregnant rats. Then the mercury-containing proteins in serum and brain cytosol of the dam and pup rats were separated by size-exclusion columns and the mercury was detected by ICP-MS. The ICP-MS spectrogram of the tracing samples showed significantly elevated {sup 196}Hg and {sup 198}Hg isotopic signals compared with the natural ones, indicating that the detection sensitivity could be increased by the tracer method. The contents of mercury in chromatographic fractions of the dam and pup rat brain cytosol were quantitatively estimated by post-column reverse ID-ICP-MS. The quantitative speciation differences of mercury in brain cytosol between the dam and pup rats were observed, indicating that such studies could be useful for toxicological estimation. Additionally, the isotopic ratio measurement of {sup 198}Hg/{sup 202}Hg in the tracing samples could be used to identify the artifact mercury species caused in the analytical procedure. The study demonstrates that the tracer method combined with high-performance liquid chromatography (HPLC)-ICP-IDMS could provide reliably qualitative and quantitative information on mercury-containing proteins in organisms.

  6. Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Shi Junwen; Feng Weiyue; Wang Meng; Zhang Fang; Li Bai; Wang Bing; Zhu Motao; Chai Zhifang

    2007-01-01

    In order to investigate trace mercury-containing proteins in maternal rat and their offspring, a method of enriched stable isotopic tracer ( 196 Hg and 198 Hg) combined with size-exclusion chromatography (SEC) coupled to inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS) was developed. Prior to the analysis, 196 Hg- and 198 Hg-enriched methylmercury was administrated to the pregnant rats. Then the mercury-containing proteins in serum and brain cytosol of the dam and pup rats were separated by size-exclusion columns and the mercury was detected by ICP-MS. The ICP-MS spectrogram of the tracing samples showed significantly elevated 196 Hg and 198 Hg isotopic signals compared with the natural ones, indicating that the detection sensitivity could be increased by the tracer method. The contents of mercury in chromatographic fractions of the dam and pup rat brain cytosol were quantitatively estimated by post-column reverse ID-ICP-MS. The quantitative speciation differences of mercury in brain cytosol between the dam and pup rats were observed, indicating that such studies could be useful for toxicological estimation. Additionally, the isotopic ratio measurement of 198 Hg/ 202 Hg in the tracing samples could be used to identify the artifact mercury species caused in the analytical procedure. The study demonstrates that the tracer method combined with high-performance liquid chromatography (HPLC)-ICP-IDMS could provide reliably qualitative and quantitative information on mercury-containing proteins in organisms

  7. Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach.

    Science.gov (United States)

    Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P; Chen, Celia Y

    2014-05-06

    Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg(+) and Hg(2+), into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg(+) and Hg(2+) uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg(+) or Hg(2+) were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg(2+) occurred during the course of the experiment, enhancing the uptake of Hg(2+) spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments.

  8. Design, construction, and operation of a laboratory scale reactorfor the production of high-purity, isotopically enriched bulksilicon

    Energy Technology Data Exchange (ETDEWEB)

    Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.

    2004-12-20

    The design and operation of a recirculating flow reactor designed to convert isotopically enriched silane to polycrystalline Si with high efficiency and chemical purity is described. The starting material is SiF{sub 4}, which is enriched in the desired isotope by a centrifuge method and subsequently converted to silane. In the reactor, the silane is decomposed to silicon on the surface of a graphite starter rod (3 mm diameter) heated to 700-750 C. Flow and gas composition (0.3-0.5% silane in hydrogen) are chosen to minimize the generation of particles by homogeneous nucleation of silane and to attain uniform deposition along the length of the rod. Growth rates are 5 {micro}m/min, and the conversion efficiency is greater than 95%. A typical run produces 35 gm of polycrystalline Si deposited along a 150 mm length of the rod. After removal of the starter rod, dislocation-free single crystals are formed by the floating zone method. Crystals enriched in all 3 stable isotopes of Si have been made: {sup 28}Si (99.92%), {sup 29}Si (91.37%), and {sup 30}Si (88.25%). Concentrations of electrically active impurities (P and B) are as low as mid-10{sup 13} cm{sup -3}. Concentrations of C and O lie below 10{sup 16} and 10{sup 15} cm{sup -3}, respectively.

  9. Simultaneous speciation of endogenous and exogenous elements by HPLC/ICP-MS with enriched stable isotopes

    International Nuclear Information System (INIS)

    Suzuki, K.T.

    1996-01-01

    High performance liquid chromatography (HPLC)/inductively coupled argon plasma-mass spectrometry (ICP-MS) was introduced to investigate the distributions of selenium (Se) in biological fluids. The method was to determine both the natural abundance of Se and an enriched stable isotope of Se used as a tracer. The distributions of Se in plasma and in urine specimens were determined in Wistar rats on various Se diets with and without an intravenous injection of 82 Se-selenite. Although the distribution of natural abundance Se (endogenous Se) in the plasma was affected little by the nutritional status of Se, that in the urine gave a Se peak depending on the nutritional status of Se, and the peak was identified as methylselenol. When 82 Se-selenite was injected in excess into rats given three different Se diets (Se-deficient, Se-adequate, Se-excessive), three Se peaks occurred in the HPLC chromatogram of the urine samples, corresponding to selenite, methylselenol and trimethylselenonium ion in the order of elution, and the intensities of the tracer peaks reflected the nutritional status. These results indicate that the HPLC/ICP-MS method is a powerful analytical tool for specifying Se-containing biological constituents, both natural abundance and enriched stable isotopes. Methylselenol in urine is proposed to be a sensitive and Se-specific biological indicator for diagnosing the nutritional status of Se. Furthermore, it was shown that an enriched stable isotope such as 82 Se-selenite was shown to be used for the same purpose, and that 82 Se-methylselenol and 82 Se-trimethylselenonium ion in urine were more sensitive indicators of the Se status of the rats. (author)

  10. Stable carbon and nitrogen isotope trophic enrichment factors for Steller sea lion vibrissae relative to milk and fish/invertebrate diets

    Science.gov (United States)

    Stricker, Craig A.; Christ, Aaron M.; Wunder, Michael B.; Doll, Andrew C.; Farley, Sean D.; Rea, Lorrie D.; Rosen, David A. S.; Scherer, R. D.; Tollit, Dominic J.

    2015-01-01

    Nutritional constraints have been proposed as a contributor to population declines in the endangered Steller sea lion Eumetopias jubatus in some regions of the North Pacific. Isotopic analysis of vibrissae (whiskers) is a potentially useful approach to resolving the nutritional ecology of this species because long-term (up to 8 yr) dietary information is sequentially recorded and metabolically inert once formed. Additionally, vibrissae are grown in utero, potentially offering indirect inference on maternal diet. However, diet reconstruction using isotopic techniques requires a priori knowledge of trophic enrichment factors (TEFs), which can vary relative to diet quality and among animal species. In this study, we provide new TEF estimates for (1) maternal relative to pup vibrissae during both gestation and nursing and (2) adult vibrissae relative to a complex diet. Further, we refine vibrissa-milk TEFs based on an additional 76 animals with an age distribution ranging from 1 to 20 mo. Mother-pup vibrissae TEF values during gestation and nursing were near zero for δ13C and averaged 0.8 and 1.6‰, respectively, for δ15N. In contrast, vibrissa-fish/invertebrate TEFs averaged 3.3 (± 0.3 SD) and 3.7‰ (±0.3) for lipid-free δ13C and δ15N, respectively. Average lipid-free δ13C and δ15N vibrissa-milk TEFs were 2.5 (±0.9) and 1.8‰ (±0.8), respectively, and did not differ among metapopulations. Empirically determined TEFs are critical for accurate retrospective diet modeling, particularly for evaluating the hypothesis of nutritional deficiency contributing to the lack of Steller sea lion population recovery in some regions of Alaska.

  11. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  12. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    Science.gov (United States)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  13. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  14. Calibration of an isotopically enriched carbon-13 layer pressure sensor to 156 GPa in a diamond anvil cell

    International Nuclear Information System (INIS)

    Qiu Wei; Baker, Paul A.; Velisavljevic, Nenad; Vohra, Yogesh K.; Weir, Samuel T.

    2006-01-01

    An isotopically enriched 13 C homoepitaxial diamond layer of 6±1 μm thickness was grown on top of a brilliant cut diamond anvil by a microwave plasma chemical vapor deposition process for application as a pressure sensor. This isotopically enriched diamond tip was then used in conjunction with a natural isotopic abundance diamond anvil to generate high pressure on the sample. We provide a calibration for the 13 C Raman mode of this extremely thin epitaxial layer to 156 GPa using ruby fluorescence and the equation of state of copper as secondary pressure standards. The nonlinear calibration of the 13 C Raman mode pressure sensor is compared with similar calibrations of 12 C Raman edge and a good agreement is obtained. The Raman signal from the 13 C epitaxial layer remained a distinct singlet to 156 GPa, and pressure calibration is independent of sample mechanical strength or the diamond anvil geometry. The use of even thinner layer would allow calibration further into ultrahigh pressure regime where the use of other optical sensors has proven to be difficult

  15. Factors influencing the thermodynamic isotope effect of lithium in polyetherlithium liquid-liquid extraction systems

    International Nuclear Information System (INIS)

    Fu Lian; Fang Shengqiang; Yao Zhongqi; Gao Zhichang; Tan Ganzhu

    1989-01-01

    The published data up to now concerning polyether-lithium liquid-liquid extraction systems, can be summarized by the equation, ε p = (α-1)/[1 + 0.46(1-P)], where α denotes the isotope separation factor; P - the ratio of the lithium concentration in the organic phase to the initial concentration of crown ethers; ε p -the enrichment coefficient as P = 100%. Based on the changes in ε p , P, α and D(distribution ratio), the functions of factors such as polyether's structure, polyether's side group, polyether's concentration, organic solvent, negative ion of lithium salt and lithium salt's concentration, are discussed and reported

  16. Method for separating isotopes

    International Nuclear Information System (INIS)

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  17. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  18. Separation of nitrogen isotopes by laser light

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Y; Noguchi, Y; Yamanaka, C [Osaka Univ., Suita (Japan). Faculty of Engineering

    1976-06-01

    The separation experiment on nitrogen isotopes by laser light was made. First, the nitrogen isotopes of /sup 14/N and /sup 15/N in NH/sub 3/ molecules were separated by CO/sub 2/ laser and UV light. The separation factor and the enrichment factor were calculated. It was shown that their pressure dependence was in good agreement with the measured values. The separation factor of about 2% was obtained with UV light of 10/sup 6/W/cm/sup 2/.

  19. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1993-01-01

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.)

  20. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  1. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  2. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  3. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment.

    Science.gov (United States)

    Kangani, Cyrous O; Kelley, David E; Delany, James P

    2008-09-15

    A simple, direct and accurate method for the determination of concentration and enrichment of free fatty acids (FFAs) in human plasma was developed. The validation and comparison to a conventional method are reported. Three amide derivatives, dimethyl, diethyl and pyrrolidide, were investigated in order to achieve optimal resolution of the individual fatty acids. This method involves the use of dimethylamine/Deoxo-Fluor to derivatize plasma free fatty acids to their dimethylamides. This derivatization method is very mild and efficient, and is selective only towards FFAs so that no separation from a total lipid extract is required. The direct method gave lower concentrations for palmitic acid and stearic acid and increased concentrations for oleic acid and linoleic acid in plasma as compared to methyl ester derivative after thin-layer chromatography. The [(13)C]palmitate isotope enrichment measured using direct method was significantly higher than that observed with the BF(3)/MeOH-TLC method. The present method provided accurate and precise measures of concentration as well as enrichment when analyzed with gas chromatography combustion-isotope ratio-mass spectrometry.

  4. Process and device for step by step enrichment of deuterium and/or tritium by isotope exchange

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der.

    1984-01-01

    Deuterium and/or tritium are bound to steam by isotope exchange after permeation through an exchange wall. Primary and secondary flows are guided by the counterflow principle. The secondary side has a metal oxide as oxidation catalyst. The plant can consist of several enrichment stages. The various flows and parts of the plant are described. (PW) [de

  5. Stable isotope separation in calutrons: Forty years of production and distribution

    International Nuclear Information System (INIS)

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest ( 205 Tl to 46 Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels

  6. Valence-associated uranium isotope fractionation of uranium enriched phosphate in a shallow aquifer, Lee County, Florida

    International Nuclear Information System (INIS)

    Weinberg, J.M.; Levine, B.R.; Cowart, J.B.

    1993-01-01

    The source of anomalously high concentrations of uranium, characterized by U-234/U-238 activity ratios significantly less than unity, in shallow groundwaters of Lee County, Florida, was investigated. Uranium in cores samples was separated into U(IV) and U(VI) oxidation state fractions, and uranium analyses were conducted by alpha spectrometry. Uranium mobility was also studied in selected leaching experiments. Results indicate that mobilization of unusually soluble uranium, present in uranium enriched phosphate of the Pliocene age Tamiami Formation at determined concentrations of up to 729 ppm, is the source for high uranium concentrations in groundwater. In leaching experiments, approximately one-third of the uranium present in the uranium enriched phosphate was mobilized into the aqueous phase. Results of previous investigations suggest that U-234, produced in rock by U-238 decay, is selectively oxidized to U(VI). The uranium enriched phosphate studied in this investigation is characterized by selective reduction of U-234, with a pattern of increasing isotopic fractionation with core depth. As a consequence, U-234/U-238 activity ratios greater than 1.0 in the U(IV) fraction, and less than 1.0 in the U(VI) fraction have developed in the rock phase. In leaching experiments, the U(VI) fraction from the rock was preferentially mobilized into the aqueous phase, suggesting that U-234/U-238 activity ratios of leaching groundwaters are strongly influenced by the isotopic characteristics of the U(VI) fraction of rock. It is suggested that preferential leaching of U(VI), present in selectivity reduced uranium enriched phosphate, is the source for low activity ratio groundwaters in Lee County

  7. Origin of enormous trace metal enrichments in weathering mantles of Jurassic carbonates: evidence from Sr, Nd and Pb isotopes

    Science.gov (United States)

    Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.

    2013-12-01

    Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm

  8. Oxygen isotope fractionation in uranium oxides

    International Nuclear Information System (INIS)

    Zheng Yongfei

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows: spinel 3 < illite. Two sets of self-consistent fractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0∼1200 degree C. The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits

  9. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression.

    Science.gov (United States)

    Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García

    2012-03-01

    The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass

  10. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  11. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  12. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    Science.gov (United States)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  13. Isotopic separation of 13C by selective photodissociation of formaldehyde

    International Nuclear Information System (INIS)

    Mussillon, T.

    1998-01-01

    The aim of this work is to study the feasibility of the 13 C isotopic separation by UV laser spectroscopy. The spectra of H 2 12 CO and H 2 13 CO have been recorded by a Fourier transform spectrometer between 28000 and 34000 cm -1 . From these data has been carried out a systematic study of some lines by laser spectroscopy. The selectivity measurements have been compared with the obtained enrichment factors. Thus has been revealed in a quantitative way, the importance of the isotopic re-mixture phenomena and of the selectivity loss. The best enrichment factor has been measured at 29935,56 cm -1 (band: (2,14,1)). A final percentage of 42,1 % has been obtained in a reproducible way for 13 C. The evolution of the enrichment factor has been characterized for a pressure range between 4,4 and 43 mbar. Above the radical dissociation threshold, it has not be possible to show a positive effect of NO on the enrichment factor. This negative result has been explained by a detailed kinetic study of the radical reactions (available literature). This experimental study has been completed by a bibliographic synthesis for understanding the formaldehyde photochemistry. All the processes able to influence the performance of this isotopic separation process have been gathered in this work in an exhaustive way. The radical dissociation threshold of H 2 13 CO have been calculated from molecular constants of the literature and from known thermodynamic data for H 2 12 CO. (O.M.)

  14. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Patterson, K.Y.; Veillon, Claude

    1992-01-01

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g -1 . The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  15. In vivo trace element speciation study by using enriched stable isotopic tracer technique

    International Nuclear Information System (INIS)

    Feng Weiyue; Chai Zhifang; Shi Junwen; Ding Wenjun

    2005-01-01

    In contrast to the radioactive tracer method, the enriched stable isotopic technique used in life sciences will not cause radiation damage to cells and its operation will be no radioactive risk, In our laboratory, the enriched stable isotopes Cr-50, Hg-196 and Hg-198 combined with biochemical separation, neutron activation analysis (NAA) and inductively coupled plasma mass spectrometry (ICP-IVIS) have been used to investigate the element speciation in vivo. Chromium (Cr) is proposed to act as a potentiator of insulin action in animals and human beings. Its deficiency induces the symptoms resembling diabetes and its supplement can alleviate these symptoms. However, as the concentration of Cr in vivo is usually at ultratrace level(- ng/g), its speciation study is usually difficult, since it is almost impossible to avoid the exogenous Cr contamination caused by separation and determination processes. Therefore, in this study, 50 Cr 2 O 3 with 94.2% 50 Cr was used as a tracer combined with gel chromatography to study the Cr speciation in serum, liver, urine and other tissues of healthy and diabetic rats. The Cr concentrations can be determined via 50 Cr(n, γ) 51 Cr by NAA, which is ideally suited for the ultratrace element analyses due to its high precision, accuracy and sensitivity. Such research have found that the most quantity of chromium in vivo is mainly combined with high molecular weight proteins, which is later identified as transferrin and low molecular weight protein is mainly excreted from urine. Mercury is listed by the International Program of Chemical Safety as one of the six most dangerous chemicals in the global environment. Mercury compounds in the environment are often difficult to degrade. However, the mechanism on mercury toxicity to developing children following long term and low dose of mercury exposure is still not clear. Therefore, high sensitive method in vivo needs to be developed to study such low level mercury toxicity to fetus In this

  16. A Summary of Actinide Enrichment Technologies and Capability Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Bradley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. The EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.

  17. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  18. Semiempirical method to determine the uranium isotopic compositions

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2008-01-01

    In a nuclear reactor design calculation, some variations of U 235 enrichment are commonly needed. This will affect the isotopic compositions of the 3 main uranium isotopes i.e. U 234 , U 235 and U 238 for the respective enrichment. Due to the limited compositions data available, it is urgent to make an approximate way that can be used to determine the compositions of the 3 isotopes, for the desired enrichments. This paper presents the theoretical background used for constructing a semi empirical formula to estimate the composition of the 3 uranium isotopes as a function of U 235 enrichment, obtained based on the measurement data available. Based on the available data, and the lack of compositions data within the enrichment range between 3.5 % and around 12 %, it is concluded that 2 separate linear equations i.e. for ≤ 3.5 % and ≥ 3.5 % might be needed for U 235 isotope. For the U 234 isotope, a polynomial equation of 4 th order is well suited to be used for the whole range of enrichment between 0.711 % and 20 %, whilst for higher enrichment (> 20 %), a power function seems to give a better approach. The composition of U 238 can then be determined from the U 235 and U 234 composition at the desired enrichment of U 235 . (author)

  19. Separation of calcium isotopes with cryptand complexes

    International Nuclear Information System (INIS)

    Heumann, K.G.; Schiefer, H.P.

    1981-01-01

    The calcium isotope separation in the liquid-liquid extraction system H 2 O/CHCl 3 is investigated using and cryptands for complex formation as well as without complexing agent. An extraction procedure is used which allows the transfer of larger amounts of calcium in the H 2 O phase. Without complexing agent in the extraction system, enrichment of the lighter calcium isotopes is already evident in the CHCl 3 phase which is just the same as when using cryptand. In the case of cryptand as a complexing agent, the isotope separation is higher. The separation factor is calculated to be a = 1 + epsilon = 1.011 for 40 Ca/ 48 Ca without complexing agent or with cryptand and a = 1.015 in the system with cryptand. For 40 Ca/ 44 Ca the epsilon-value is smaller by nearly a factor of two. These separation factors are the highest which are determined in chemical systems for calcium isotopes. (orig.)

  20. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  1. Isotope effects accompanying evaporation of water from leaky containers.

    Science.gov (United States)

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  2. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation; La separation isotopique par chromatographie ionique

    Energy Technology Data Exchange (ETDEWEB)

    Albert, M G; Barre, Y; Neige, R

    1994-12-31

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.). 5 refs.

  3. Optimizing design parameter for light isotopes separation by distillation method

    International Nuclear Information System (INIS)

    Ahmadi, M.

    1999-01-01

    More than methods are suggested in the world for producing heavy water, where between them chemical isotopic methods, distillation and electro lys are used widely in industrial scale. To select suitable method for heavy water production in Iran, taking into consideration, domestic technology an facilities, combination of hydrogen sulphide-water dual temperature process (Gs) and distillation (D W) may be proposed. Natural water, is firstly enriched up to 15 a% by G S process and then by distillation unit is enriched up to the grade necessary for Candu type reactors (99.8 a%). The aim of present thesis, is to achieve know-how, optimization of design parameters, and executing basic design for water isotopes separation using distillation process in a plant having minimum scale possible. In distillation, vapour phase resulted from liquid phase heating, is evidently composed of the same constituents as liquid phase. In isotopic distillation, the difference in composition of constituents is not considerable. In fact alteration of constituents composition is so small that makes the separation process impossible, however, direct separation and production of pure products without further processing which becomes possible by distillation, makes this process as one of the most important separation processes. Profiting distillation process to produce heavy water is based on difference existing between boiling point of heavy and light water. The trends of boiling points differences (heavy and light water) is adversely dependant with pressure. As the whole system pressure decreases, difference in boiling points increases. On the other hand according to the definition, separation factor is equal to the ratio of pure light water vapour pressure to that of heavy water, or we can say that the trend of whole system pressure decrease results in separation factor increase, which accordingly separation factor equation to pressure variable should be computed firstly. According to the

  4. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  5. Technical status study of heavy water enrichment

    International Nuclear Information System (INIS)

    Sukarsono; Imam Dahroni; Didik Herhady

    2007-01-01

    Technical status study of heavy water enrichment in Indonesia and also in the world has been done. Heavy water enrichment processes have been investigated were water distillation, hydrogen distillation, laser enrichment, electrolysis and isotop exchange. For the isotop exchange, the chemical pair can be used were water-hydrogen sulphite, ammonium-hydrogen, aminomethane-hydrogen, and water-hydrogen. For the isotope exchange, there was carried out by mono thermal or bi thermal. The highest producer of heavy water is Canada, and the other producer is USA, Norwegian and India. The processes be used in the world are isotope exchange Girdler Sulphide (GS), distillation and electrolysis. Research of heavy water carried out in Batan Yogyakarta, has a purpose to know the characteristic of heavy water purification. Several apparatus which has erected were 3 distillation column: Pyrex glass of 2 m tall, stainless steel column of 3 m tall and steel of 6 m tall. Electrolysis apparatus is 50 cell electrolysis and an isotope exchange unit which has catalyst: Ni- Cr 2 O 3 and Pt-Carbon. These apparatus were not ready to operate. (author)

  6. Possibility of obtaining enriched americium-242g by the elution of recoil atoms from zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shafiev, A I; Vityutnev, V M; Ivanov, V M; Yakovlev, G N

    1974-12-31

    On the example of production the possibility of obtaining enriched actinide isotopes by the elution of recotl atoms with the use of a zeolite- americium-241 target was shown. The enrichment factor and the recoil atoms of / sup 242g/Am yield depend on preliminary target treatment and solution composition used for elution. (auth)

  7. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  8. Sulfur and Oxygen Isotope Fractionation During Bacterial Sulfur Disproportionation Under Anaerobic Haloalkaline Conditions

    NARCIS (Netherlands)

    Poser, Alexander; Vogt, Carsten; Knöller, Kay; Sorokin, Dimitry Y.; Finster, Kai W.; Richnow, Hans H.

    2016-01-01

    Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were −0.9‰ to −1‰ for

  9. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.

    2012-01-01

    We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time......-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can...

  10. Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene.

    Science.gov (United States)

    Mancini, Silvia A; Hirschorn, Sarah K; Elsner, Martin; Lacrampe-Couloume, Georges; Sleep, Brent E; Edwards, Elizabeth A; Lollar, Barbara Sherwood

    2006-12-15

    The effects of iron concentration on carbon and hydrogen isotopic fractionation during aerobic biodegradation of toluene by Pseudomonas putida mt-2 were investigated using a low iron medium and two different high iron media. Mean carbon enrichment factors (epsilonc) determined using a Rayleigh isotopic model were smaller in culture grown under high iron conditions (epsilonc = -1.7+/-0.1%) compared to low iron conditions (epsilonc = -2.5+/-0.3%). Mean hydrogen enrichment factors (epsilonH) were also significantly smaller for culture grown under high iron conditions (epsilonH = -77 +/-4%) versus low iron conditions (EpsilonH = -159+/-11%). A mechanistic model for enzyme kinetics was used to relate differences in the magnitude of isotopic fractionation for low iron versus high iron cultures to the efficiency of the enzymatic transformation. The increase of carbon and hydrogen enrichment factors at low iron concentrations suggests a slower enzyme-catalyzed substrate conversion step (k2) relative to the enzyme-substrate binding step (k-l) at low iron concentration. While the observed differences were subtle and, hence, do not significantly impact the ability to use stable isotope analysis in the field, these results demonstrated that resolvable differences in carbon and hydrogen isotopic fractionation were related to low and high iron conditions. This novel result highlights the need to further investigate the effects of other trace elements known to be key components of biodegradative enzymes.

  11. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  12. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  13. Stable Isotope Food Web Analysis of a Large Subtropical Lake: Alternative Explanations for 15N Enrichment of Pelagic vs. Littoral Fisheries

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2003-01-01

    Full Text Available The food webs of littoral, pelagic, and littoral-pelagic ecotone (interface regions of a large subtropical lake were investigated using stable isotope ratio methods, expanding the focus of a previous fish-only study to include other food web components such as primary producers and invertebrates. In these food webs, δ13C increased ~4o/oo and δ15N increased ~10o/oo from primary producers to fish. The δ15N of fish was ~9o/oo in the littoral zone, ~10 o/oo in the ecotone, and ~12o/oo in the pelagic zone. The cross-habitat enrichment in fish 15N corresponded with both an increase in the size of fish and an increase in the δ15N of primary consumers (mollusks. Despite larger body size in the pelagic zone, fish in all three habitats appear to occur at the same average trophic level (TL = 4, assuming an enrichment factor of 3.4o/oo per trophic level, and normalizing to the δ15N of primary consumers.

  14. Multiple enrichment of the Carpathian-Pannonian mantle: Pb-Sr-Nd isotope and trace element constraints

    Science.gov (United States)

    Rosenbaum, Jeffrey M.; Wilson, Marjorie; Downes, Hilary

    1997-07-01

    Pb isotope compositions of acid-leached clinopyroxene and amphibole mineral separates from spinel peridotite mantle xenoliths entrained in Tertiary-Quaternary alkali basalts from the Carpathian-Pannonian Region of eastern Europe provide important constraints on the processes of metasomatic enrichment of the mantle lithosphere in an extensional tectonic setting associated with recent subduction. Principal component analysis of Pb-Sr-Nd isotope and rare earth element compositions of the pyroxenes is used to identify the geochemical characteristics of the original lithospheric mantle protolith and a spectrum of infiltrating metasomatic agents including subduction-related aqueous fluids and silicate melts derived from a subduction-modified mantle wedge which contains a St. Helena-type (HIMU) plume component. The mantle protolith is highly depleted relative to mid-ocean ridge basalt-source mantle with Pb-Nd-Sr isotope compositions consistent with an ancient depletion event. Silicate melt infiltration into the protolith accounts for the primary variance in the Pb-Sr-Nd isotope compositions of the xenoliths and has locally generated metasomatic amphibole. Infiltration of aqueous fluids has introduced radiogenic Pb and Sr without significantly perturbing the rare earth element signature of the protolith. The Pb isotope compositions of the fluid-modified xenoliths suggest that they reacted with aqueous fluids released from a subduction zone which had equilibrated with sediment derived from an ancient basement terrain. We propose a model for mantle lithosphere evolution consistent with available textural and geochemical data for the xenolith population. The Pb-Sr-Nd isotope compositions of both alkaline mafic magmas and rare, subduction-related, calc-alkaline basaltic andesites from the region provide important constraints for the nature of the asthenospheric mantle wedge and confirm the presence of a HIMU plume component. These silicate melts contribute to the metasomatism

  15. Isotopic and chemical investigations on Angra dos Reis

    International Nuclear Information System (INIS)

    Wasserburg, G.J.; Tera, F.; Papanastassiou, D.A.; Huneke, J.C.

    1977-01-01

    Extensive isotopic studies of Pb, Sr and Xe and chemical abundance measurements of K, Rb, Sr, Ba, Nd, Sm, U and Th for total meteorite and mineral separates of the Angra dos Reis achondrite are reported on. U-Pb, Th-Pb and Pb-Pb ages are concordant at 4.54 AE for the total meteorite and for high-purity whitlockite in Angra dos Reis. This establishes Angra dos Reis as an early planetary differentiate which has not been disturbed for these systems since 4.54 AE ago. Measured 87 Sr/ 86 Sr in pyroxene and whitlockite for Angra dos Reis (ADOR) are distinctly below BABI by two parts in 10 4 and only one part in 10 4 above the lowest 87 Sr/ 86 Sr (ALL) measured in an Allende inclusion. The difference in ADOR-ALL corresponds to an interval of condensation in the solar nebula of approximately 3 m.y. If 26 Al was the heat source for the magmatism on the parent planets of Angra dos Reis and the basaltic achondrites (BABI) then the relatively large difference in 87 Sr/ 86 Sr, BABI - ALL, must be the result of planetary evolution rather than condensation over approximately 10 m.y. Xe isotopic measurements confirm the presence of large amounts of 244 Pu-produced fission Xe and show that 244 Pu was enriched in the whitlockite relative to the pyroxene by a factor of approximately 18. Chemical element enrichment factors between the whitlockite and the fassaitic pyroxene in Angra dos Reis are presented. The enrichment factors demonstrate close analogy between the rare earth elements and their actinide analogs. The enrichment factor for Pu is intermediate to the enrichment factors of Nd and Sm. (Auth.)

  16. Assignment of element and isotope factors

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    Element and isotope factors are assigned in the NICS internal accounting system at the Exxon Fuel Fabrication Facility on the basis of coded information included on the material transfer documents. This paper explains more fully the manner in which NICS assigns these factors

  17. Enrichment services for chromium isotopes for the GALLEX (gallium experiment) international collaboration experiment on solar neutrino flux

    Science.gov (United States)

    Szady, Andrew J.

    1990-07-01

    Detailed discussions were held with members of the Gallium Experiment (GALLEX) international solar neutrino research collaboration concerning negotiations to provide $1.4 million in services to enrich (50)Cr for a (51)Cr neutrino source. The source will be used to calibrate the 20-ton gallium solar neutrino detector currently in place in the Gran Sasso Laboratory in Italy. Funding approval for the enrichment services is expected from the European Common Market by October 19, 1990. The discussions focused on the technical aspects of the enrichment, the health and safety requirements for handling the process gas, cost projections, schedule, the Work-for-Others contract, and the method of payment. Discussions were also held with members of the Nuclear Physics Dept. at the University of Milan concerning the availability of isotopes enriched by the Calutron at the Oak Ridge National Laboratory. Very high purity material is needed to grow crystals for use in double beta decay detectors. Finally, working sessions were held to draft a coauthored paper on the results of using the gas centrifuge to remove trace quantities of (85)Kr from natural xenon.

  18. The measurement of the isotope ratios and concentrations of zinc by thermal ionization mass spectrometry using double isotope dilution

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1994-01-01

    The isotope ratios and concentrations of zinc are measured by silicagel-thermal ionization mass spectrometry using the double isotope spikers. The double isotope spikers ( 70 Zn and 67 Zn-enriched isotopes) are used to correct the isotope mass fractionation for the zinc isotope ratios, and to certify the zinc concentrations in the unknown samples. The zinc concentrations of these double isotope spikers are surveyed by a spiker made of pure (99.99%) natural zinc metal powder. The correcting factors (f a , f t and f n ) of the zinc isotope ratios in the spiked mixture, spike and unspiked samples for the isotope mass fractionation, and the spike-to-unspiked ratios (X r ) of the zinc isotope r in the spiked mixture samples can be obtained to solve the matrix equations by numerical approximation. The natural zinc isotope ratios are: 64 Zn/ 67 Zn = 11.8498, 66 Zn/ 67 Zn = 6.7977, 68 Zn/ 67 Zn = 4.5730 and 70 Zn/ 67 Zn = 0.1520. The uncertainties determined of the isotope ratios and concentrations of zinc are +- 0.16% and +-0.31%, respectively

  19. Fractionation of lithium isotopes in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, Takao; Kawada, Kazuhiko; Kakihana, Hidetake; Hosoe, Morikazu

    1991-01-01

    Various methods for lithium isotope separation have been developed, and their applicability to large-scale enriched lithium isotope production has been assessed. Ion-exchange chromatography is one such method. Cation-exchange chromatography of lithium was carried out to investigate the lithium isotope effect in aqueous ion-exchange systems. The heavier isotope. 7 Li, was preferentially fractionated into the resin phase in every experiment conducted, and this result is consistent with the results of previous work. The value of the separation factor was 1.00089-1.00171 at 25C. A comparison of lithium isotope effect with those of potassium and rubidium indicated that the isotope effect originating from hydration is larger than the effect due to phase change for lithium, while the opposite is the case with potassium and rubidium

  20. The changing face of enrichment

    International Nuclear Information System (INIS)

    Dunckel, E.

    1981-01-01

    The AIS techniques considered are atomic vapour laser isotope separation, molecular laser isotope separation and plasma separation. The future of the AIS technique and their advantages over the gas centrifuge method are discussed in terms of economics, power consideration, and possible enrichment contracts. (U.K.)

  1. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  3. Role of stable isotope mass spectroscopy in hydrological sciences

    International Nuclear Information System (INIS)

    Keesari, Tirumalesh

    2017-01-01

    Isotope Ratio Mass Spectrometry (IRMS) is a specialized technique used to provide information about a given sample about its geographic, chemical, physical and biological origin. The ability to determine the source of water molecule stems from the relative isotopic abundances of its constituent elements, viz., hydrogen and oxygen or sometimes through its dissolved elements such as carbon, nitrogen and sulphur etc. Since the isotope ratios of carbon, hydrogen, oxygen, sulfur, and nitrogen can become locally enriched or depleted through a variety of kinetic and thermodynamic factors, measurement of the isotope ratios can be used to unravel the processes and differentiate water samples which otherwise exhibit similar chemical signatures. For brevity, this article focuses mainly on measurement of water isotopes, common notation for expressing isotope data and standards, theory of isotope hydrology, field applications and advances

  4. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    Science.gov (United States)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  5. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system

    Science.gov (United States)

    Peters, Jacob M.; Wolf, Nathan; Stricker, Craig A.; Collier, Timothy R.; Martinez del Rio, Carlos

    2012-01-01

    The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ~45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult.

  6. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  7. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  8. Isotope applications in the environmental field

    International Nuclear Information System (INIS)

    DeWitt, R.

    1978-01-01

    Established uses of enriched isotopes in the environmental field were surveyed to determine future trends in isotope needs. Based on established isotope uses, on the projected increase in the pollution problem, and on the apparent social and economic pressure for pollution abatement, a significant demand for enriched isotopes appears to be developing for the assessment and control of air, water, and soil pollutants. Isotopic techniques will be used in combination with conventional methods of detection and measurement, such as gas chromatography, x-ray fluorescence, and atomic absorption. Recent advances in economical isotope separation methods, instrumentation, and methodology promise to place isotopic technology within the reach of most research and industrial institutions. Increased application of isotope techniques appears most likely to occur in areas where data are needed to characterize the movement, behavior, and fate of pollutants in the environment

  9. Industrial aspects in uranium enrichment

    International Nuclear Information System (INIS)

    Mezin, M.

    1982-05-01

    Characteristics of isotope separation processes in operation and under development are discussed. These include the number of stages in series, the number of components, the component unit capacity and enery requirements. The implementation of an enrichment process and the question of an enrichment plant in Australia are also considered

  10. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  11. Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-ethoxycarbonyl ethyl ester derivatives of the amino acids.

    Science.gov (United States)

    Godin, Jean-Philippe; Faure, Magali; Breuille, Denis; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2007-06-01

    We describe a new method of assessing, in a single run, (13)C isotopic enrichment of both Val and Thr by gas chromatography-combustion-isotope-ratio mass spectrometry (GC-C-IRMS). This method characterised by a rapid one-step derivatisation procedure performed at room temperature to form the N(O,S)-ethoxycarbonyl ethyl ester derivatives, and a polar column for GC. The suitability of this method for Val and Thr in in-vivo samples (mucosal hydrolysate) was demonstrated by studying protein metabolism with two tracers ((13)C-valine or (13)C-threonine). The intra-day and inter-day repeatability were both assessed either with standards or with in-vivo samples at natural abundance and at low (13)C isotopic enrichment. For inter-day repeatability CVs were between 0.8 and 1.5% at natural abundance and lower than 5.5% at 0.112 and 0.190 atom% enrichment for Val and Thr, respectively. Overall isotopic precision was studied for eleven standard amino acid derivatives (those of Val, Ala, Leu, Iso, Gly, Pro, Asp, Thr, Ser, Met, and Phe) and was assessed at 0.32 per thousand. The (13)C isotopic measurement was then extended to the other amino acids (Ala, Val, Leu, Iso, Gly, Pro, Thr, and Phe) at natural abundance for in-vivo samples. The isotopic precision was better than 0.002 atom% per amino acid (for n = 4 rats). This analytical method was finally applied to an animal study to measure Thr utilization in protein synthesis.

  12. Application of the isotopic index in isotope geochemical investigation

    International Nuclear Information System (INIS)

    Schuetze, H.

    1982-06-01

    A method is described which allows to calculate approximately isotope exchange equilibria between different crystalline silicates. The algorithm uses a newly introduced isotopic index. It is defined using isotopic increments of the variant types of silicatic bonds. This isotopic index gives a quantitative measure of the ability to enrich 18 O or 30 Si, respectively. The dependence of isotopic fractionations on temperature can be calculated approximately by means of the isotopic index, too. On this theoretical base some problems of magmatism and two varieties of an isotope geochemical model of the evolution of the Earth's crust are treated. Finally, the possibility is demonstrated to give prognostic statements about the likelihood of ore bearing of different granites. (author)

  13. Enriched lithium collection from lithium plasma flow

    International Nuclear Information System (INIS)

    Karchevsky, A.I.; Laz'ko, V.S.; Muromkin, Y.A.; Pashkovsky, V.G.; Ustinov, A.L.; Dolgolenko, D.A.

    1994-01-01

    In order to understand the physical processes concerned with the selective heating by ion cyclotron resonance and with the subsequent collection of heated particles, experiments were carried out with the extraction of lithium samples, enriched with 6 Li isotopes. Probe and integral extractors allow to collect enriched Li at the end of the selective heating region. Surface density distribution on the collector and local isotopic content of lithium are measured, as a function of the screen height and the retarding potential. Dependence of the collected amount of lithium and of its isotopic content on the value of the magnetic field is also measured. 4 figs., 2 tabs., 5 refs

  14. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  15. THz spectroscopy of the 29 cm{sup -1} oxygen vibrational line in natural silicon and isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Kurt; Dressel, Martin [1. Physikalisches Inst., Univ. Stuttgart (Germany); Gorshunov, Boris; Zhukova, E.S. [1. Physikalisches Inst., Univ. Stuttgart (Germany); A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Moscow Inst. Physics and Technology (Russian Federation); Korolev, P.S. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Lomonosov Moscow State Univ. (Russian Federation); Kalinsuhkin, V.P. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Abrosimov, N.V. [Leibniz Inst. Kristallzuechtung, Berlin (Germany); Sennikov, P.G. [Inst. Chem. High-Purity Substances, Nizhny Novgorod (Russian Federation); Pohl, H.J. [PTB, Braunschweig (Germany); Zakel, S. [VITCON-Projektconsult, Jena (Germany)

    2012-07-01

    Looking for a possible host-isotope effect on the low-energy two-dimensional motion of interstitial oxygen in silicon we have measured the resonance parameters of the lowest transition of the 30 cm{sup -1} band of the Si-O-Si complex in natural Si and in isotopically enriched {sup 28}Si at temperatures between 5 K and 22 K by means of coherent-source terahertz spectroscopy. At 5.5 K we obtain for the resonance maxima 29.24 {+-} 0.003 cm{sup -1} and 29.22 {+-} 0.003 cm{sup -1} and for the line widths 0.09 {+-} 0.01 cm{sup -1} and 0.11 {+-} 0.01 cm{sup -1} for {sup 28}Si and {sup nat}Si, respectively. Both lines can be fitted by single Lorentzians, so, no obvious isotopic structure or asymmetry of the line in {sup nat}Si due to the Si neighbors in the Si-O-Si complex is detected. We therefore conclude that down-shift and broadening of the {sup nat}Si-resonance is not due to the Si isotopes in the isolated Si-O-Si complex but to an average effect of the isotopically inhomogeneous lattice.

  16. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  17. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    A method of separating deuterium, i.e., heavy hydrogen, from certain naturally occurring sources using tuned infrared lasers to selectively decompose specified classes of organic molecules (i.e., RX) into enriched molecular products containing deuterium atoms is described. The deuterium containing molecules are easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. The undecomposed molecules and the other reaction products which are depleted of their deuterium containing species can be catalytically treated, preferably using normal water, to restore the natural abundance of deuterium and such restored molecules can then be recycled

  18. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web.

    Science.gov (United States)

    Boyle, M D; Ebert, D A; Cailliet, G M

    2012-04-01

    In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P 0·05). © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  19. Theoretical foundations of the correction factors for the analysis of the relative variations of 13C/12C and 18O/16O ratios, by mass spectrometry

    International Nuclear Information System (INIS)

    Ducatti, C.; Salati, E.

    1982-01-01

    A review is made of analytical procedures to calculate correction factors, proposed by CRAIG (1957) to determine isotopic enrichment relating to the international PBD standard sample, obtained from analysis of carbon dioxide gas samples by mass spectrometry. Using such correction factors, the isotopic composition of the secondary CENA-standard sample is characterized through calculation of the main isotopic ratios of this sample. It is then possible to obtain correction factors for the determination of the isotopic enrichment relating to the secondary CENA-standard sample itself. New correction factors are proposed taking into account the interference of various isotopic species and the variability in sample and secondary standard preparation, that make possible the detemination of carbon-13 and oxygen-18 isotopic enrichment relating to the international PBD standard sample, with a total analytical error σ = + - 0.2 0 /00 in normal routine work. (Author) [pt

  20. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    Science.gov (United States)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  1. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    Science.gov (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  2. Study of chromium speciation in normal and diabetic rats by activable enriched stable isotope technique

    International Nuclear Information System (INIS)

    Feng, W.Y.; Qian, Q.F.; Ding, W.J.; Chai, Z.F.

    2000-01-01

    Chromium speciation was investigated in the liver cytosol, serum and urine of normal and diabetic rats after a single intravenous injection of enriched stable isotope 50 Cr tracer solution. Sephadex G-25 gel chromatography combined with instrumental neutron activation analysis was used to isolate and characterize protein-bound chromium in the above materials. The results indicate that Cr is mainly combined with a high-molecular-weight protein either in liver cytosol or serum. A low-molecular-weight, Cr-containing compound (LMWCr) was found in all the observed liver, serum and urine samples of both normal and diabetic rats. Chromium is excreted chiefly as LMWCr in urine. (author)

  3. Charge exchange effect on laser isotope separation of atomic uranium

    International Nuclear Information System (INIS)

    Niki, Hideaki; Izawa, Yasukazu; Otani, Hiroyasu; Yamanaka, Chiyoe

    1982-01-01

    Uranium isotope separating experiment was performed using the two-step photoionization technique with dye laser and nitrogen laser by heating uranium metal with electron beam and producing atomic beam using generated vapour. The experimental results are described after explaining the two-step photoionization by laser, experimental apparatus, the selection of exciting wavelength and others. Enrichment factor depends largely on the spectrum purity of dye laser which is the exciting source. A large enrichment factor of 48.3 times was obtained for spectrum width 0.03A. To put the uranium isotope separation with laser into practice, the increase of uranium atomic density is considered to be necessary for improving the yield. Experimental investigation was first carried out on the charge exchange effect that seems most likely to affect the decrease of enrichment factor, and the charge exchange cross-section was determined. The charge exchange cross-section depends on the relative kinetic energy between ions and atoms. The experimental result showed that the cross-section was about 5 x 10 -13 cm 2 at 1 eV and 10 -13 cm 2 at 90 eV. These values are roughly ten times as great as those calculated in Lawrence Livermore Laboratory, and it is expected that they become the greatest factor for giving the upper limit of uranium atomic density in a process of practical application. (Wakatsuki, Y.)

  4. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Xichang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research — UFZ, Leipzig 04318 (Germany)

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰.

  5. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    International Nuclear Information System (INIS)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-01-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰

  6. Anomalous isotope effects in the U(IV)-U(VI) exchange system

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko; Nomura, Masao; Okamoto, Makoto; Onitsuka, Hatsuki; Nakanishi, Takashi.

    1992-01-01

    In previous papers, the enrichment of 236 U in the U(IV) - U(VI) chemical exchange system was found to be significantly smaller than the value estimated by the normal mass dependence enrichment of 235 U. Further experiments have been carried out in the present work to confirm the strange phenomenon of the isotopic anomaly in uranium enrichment. The results have indicated that the separation coefficient of 236 U is the same value as one previously reported. To confirm the anomaly of uranium isotope separation, α-ray spectrometry was implemented to check the enrichment behavior of 234 U. Although no theoretical explanation is given for the isotopic anomaly, this is favorable phenomenon for the re-enrichment of recycled uranium which contains isotopes 232 U and 236 U. (author)

  7. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  8. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    A method is described for separating and enriching deuterium containing molecules comprising the steps of: providing a source of organic molecules containing a normal abundance of deuterium atoms, the organic molecules having a structural formula RX, in which R is an organic radical selected from ethyl, isopropyl, t-butyl and 3-cyclopentenyl, and in which X is selected from F, Cl, Br and OH, and wherein R represents 3-cyclopentenyl, X may additionally represent H; exposing the molecules to the radiation of at least one pulsed infrared laser source which has been specifically tuned and focussed to selectively decompose RX molecules containing deuterium to form an enriched olefin specie containing deuterium, and HX; and separating the deuterium enriched olefin specie from the undecomposed deuterium depleted RX molecules and HX. (author)

  9. Isotope puzzle in sputtering

    International Nuclear Information System (INIS)

    Zheng Liping

    1998-01-01

    Mechanisms affecting multicomponent material sputtering are complex. Isotope sputtering is the simplest in the multicomponent materials sputtering. Although only mass effect plays a dominant role in the isotope sputtering, there is still an isotope puzzle in sputtering by ion bombardment. The major arguments are as follows: (1) At the zero fluence, is the isotope enrichment ejection-angle-independent or ejection-angle-dependent? (2) Is the isotope angular effect the primary or the secondary sputter effect? (3) How to understand the action of momentum asymmetry in collision cascade on the isotope sputtering?

  10. Isotope separation using tunable lasers

    International Nuclear Information System (INIS)

    Snavely, B.B.

    1975-01-01

    Various processes for laser isotope separation based upon the use of the spectroscopic isotope effect in atomic and molecular vapors are discussed. Emphasis is placed upon processes which are suitable for uranium enrichment. A demonstration process for the separation of uranium isotopes using selective photoionization is described. (U.S.)

  11. Radioactive 85Kr in krypton enriched with a light isotope

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Vieiar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Piumendon, J.

    1993-01-01

    Radioactive krypton 85, a product of nuclear power generation, is known to be accumulating in the atmosphere continuously. Its volumetric activity in natural krypton is 700-800 Bq/liter. This can cause difficulties, e.g., in the fabrication of nuclear radiation detector for high-mass krypton. Krypton with a reduced 85 Kr content can be obtained by isotope separation. As part of an experiment to look for two-positron decay and conversion of an atomic electron to a positron in 78 Kr, Saenz measured the 85 Kr content in 78 Kr-enriched krypton. A mixture of two 85 Kr samples was used as the working substance of a cylindrical ionization chamber. The useful volume (1.33 liter) of the chamber contained 35.3 liters of gas at ∼2.5 kPa. The energy resolution of the detector at an energy of 0.511 MeV was 3.8%. The measurements were made in a passive lead shield 20 cm thick in an underground laboratory at a depth of 675 m water equivalent. Results are presented for counting rates in low-energy regions, contribution of krypton-85 to background, and the volumetric activity of krypton-85

  12. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the ...

  13. United States uranium enrichment policies

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    ERDA's uranium enrichment program policies governing the manner in which ERDA's enrichment complex is being operated and expanded to meet customer requirements for separative work, research and development activities directed at providing technology alternatives for future enrichment capacity, and establishing the framework for additional domestic uranium enrichment capacity to meet the domestic and foreign nuclear industry's growing demand for enrichment services are considered. The ERDA enrichment complex consists of three gaseous diffusion plants located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Today, these plants provide uranium enrichment services for commercial nuclear power generation. These enrichment services are provided under contracts between the Government and the utility customers. ERDA's program involves a major pilot plant cascade, and pursues an advanced isotope separation technique for the late 1980's. That the United States must develop additional domestic uranium enrichment capacity is discussed

  14. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  15. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  16. A novel membrane inlet mass spectrometer method to measure ¹⁵NH4₄⁺ for isotope-enrichment experiments in aquatic ecosystems.

    Science.gov (United States)

    Yin, Guoyu; Hou, Lijun; Liu, Min; Liu, Zhanfei; Gardner, Wayne S

    2014-08-19

    Nitrogen (N) pollution in aquatic ecosystems has attracted much attention over the past decades, but the dynamics of this bioreactive element are difficult to measure in aquatic oxygen-transition environments. Nitrogen-transformation experiments often require measurement of (15)N-ammonium ((15)NH4(+)) ratios in small-volume (15)N-enriched samples. Published methods to determine N isotope ratios of dissolved ammonium require large samples and/or costly equipment and effort. We present a novel ("OX/MIMS") method to determine N isotope ratios for (15)NH4(+) in experimental waters previously enriched with (15)N compounds. Dissolved reduced (15)N (dominated by (15)NH4(+)) is oxidized with hypobromite iodine to nitrogen gas ((29)N2 and/or (30)N2) and analyzed by membrane inlet mass spectrometry (MIMS) to quantify (15)NH4(+) concentrations. The N isotope ratios, obtained by comparing the (15)NH4(+) to total ammonium (via autoanalyzer) concentrations, are compared to the ratios of prepared standards. The OX/MIMS method requires only small sample volumes of water (ca. 12 mL) or sediment slurries and is rapid, convenient, accurate, and precise (R(2) = 0.9994, p < 0.0001) over a range of salinities and (15)N/(14)N ratios. It can provide data needed to quantify rates of ammonium regeneration, potential ammonium uptake, and dissimilatory nitrate reduction to ammonium (DNRA). Isotope ratio results agreed closely (R = 0.998, P = 0.001) with those determined independently by isotope ratio mass spectrometry for DNRA measurements or by ammonium isotope retention time shift liquid chromatography for water-column N-cycling experiments. Application of OX/MIMS should simplify experimental approaches and improve understanding of N-cycling rates and fate in a variety of freshwater and marine environments.

  17. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    Science.gov (United States)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  18. Covariance of oxygen and hydrogen isotopic compositions in plant water: species effects

    International Nuclear Information System (INIS)

    Cooper, L.W.; DeNiro, M.J.

    1989-01-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species—specific factors on leaf water enrichment of D and 18 O have not been studied for different plants growing together. Accordingly, to learn whether leaf water enrichment patterns and processes for D and 18 O are different for individual species growing under the same environmental conditions we tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show higher slopes (m in the leaf water equation °D = m ° 18 O + b) than in C 3 plants. We determined the relationships between the stable hydrogen (°D) and oxygen (° 18 O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. Slopes (m in the above leaf water equation) ranged from 1.50 to 3.21, compared to °8 for meteoric water, but differences in slope could not be attributed to carboxylation pathway (CAM vs. C 3 ) nor climate (coastal California vs. Sonoran Desert). Higher slopes were correlated with greater overall ranges of leaf water enrichment of D and 18 O. Water in plants with higher slopes also differed most from unaltered meteoric water. Leaf water isotope ratios in plants with lower slopes were better correlated with temperature and humidity. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes

  19. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    International Nuclear Information System (INIS)

    Croteau, Marie-Noele; Luoma, Samuel N.; Pellet, Bastien

    2007-01-01

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53 Cr, 65 Cu and 106 Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53 Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53 Cr was recovered in the feces after 22.5 h of depuration (GRT). 53 Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65 Cu and 106 Cd assimilation was detectable for most experimental snails, i.e., 65/63 Cu and 106/114 Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ± 0.07 g g -1 d -1 . IR was inferred from the amount of 53 Cr egested in the feces during depuration and the concentration of 53 Cr in the labelled lettuce. Assimilation efficiencies (±95% CI) determined using mass balance calculations were 84 ± 4% for Cu and 85 ± 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals

  20. Enrichment of natural calcium with 48 Ca by electromigration in molten salt

    International Nuclear Information System (INIS)

    Lagarde, G.; Bimbot, R.; Legoux, Y.

    1990-01-01

    A method for producing calcium enriched with 48 Ca by means of electromigration technique is presented. The aim of the study is the production of the calcium isotope for utilization in ion sources. The scheme of the electrolytic cell system and the operating parameters are presented. The reliability of the equipment and the experiments designed to evaluate the functional optimization of the system are examined. The obtention of calcium, with a factor of enrichment of approximately 10, from 225 g of Ca Br2 in 8 months is possible [fr

  1. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  2. Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado

    Science.gov (United States)

    Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.

    2012-12-01

    , consistent with evaporative enrichment in food (plants) due to plant transpiration. However, grasshopper body water from any given location is further enriched in 18O and D relative to food. Isotopic values decrease slightly with increasing elevation, but some specific grasshopper species appear more sensitive to elevation. Overall, evaporative enrichment of 18O and D in this relatively dry environment appears the strongest factors influencing grasshopper compositions.

  3. Application of stable isotopes and isotope pattern deconvolution-ICPMS to speciation of endogenous and exogenous Fe and Se in rats

    International Nuclear Information System (INIS)

    Gonzalez Iglesias, H.; Fernandez-Sanchez, M.L.; Garcia Alonso, J.I.; Lopez Sastre, J.B.; Sanz-Medel, A.

    2009-01-01

    Full text: Enriched stable isotopes are crucial to study essential trace element metabolism (e.g. Se, Fe) in biological systems. Measuring isotope ratios by ICPMS and using appropriate mathematical calculations, based on isotope pattern deconvolution (IPD) may provide quantitative data about endogenous and exogenous essential or toxic elements and their metabolism. In this work, IPD was applied to explore the feasibility of using two Se (or Fe) enriched stable isotopes, one as metabolic tracer and the other as quantitation tracer, to discriminate between the endogenous and supplemented Se (or Fe) species in rat fluids by collision cell ICPMS coupled to HPLC separation. (author)

  4. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    Science.gov (United States)

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  5. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  6. Enrichment of 15N by ion exchange chromatography

    International Nuclear Information System (INIS)

    Ohwaki, Masao; Ohtsuka, Haruhisa; Nomura, Masao; Okamoto, Makoto; Fujii, Yasuhiko

    1996-01-01

    15 N isotope separation was studied using cation exchange resins which consist of functional groups: sulfonic acid, carboxylic acid and phenol at various concentration of the eluent LiOH. The isotope separation coefficients for these ion exchange resins were observed to be nearly equal, in spite of the large difference in ion exchange characteristics. The effect of flow rate on 15 N isotope separation was also studied, and the results indicate that the operation at high flow rate would be preferable for the industrial process of 15 N enrichment. Based on the preliminary investigations, a continuous operation using a series of ion exchange columns has been carried out in order to achieve high enrichment of 15 N. (author)

  7. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    Science.gov (United States)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  8. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  9. Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2009-12-01

    The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.

  10. Transient behavior of enrichment of tritium water in adsorption-distillation column

    International Nuclear Information System (INIS)

    Fukada, Satoshi

    2006-01-01

    Enrichment of tritium in an adsorption-distillation column was experimentally investigated under the two processes of simple distillation and total-reflux distillation. Adsorption of water on silica-gel pellets enhanced the total isotope separation factor in the water distillation column. The transient behavior of tritium enrichment was analyzed using material balance equations of tritium and water in each cell with a height corresponding to HETP. The experimental transient behavior was well simulated by the material balance equations with additional assumptions on vapor and liquid flow rates regardless of the different processes of simple distillation and total-reflux distillation. (author)

  11. Search for biological effects of 13C-enrichment in developing mammalian systems

    International Nuclear Information System (INIS)

    Gregg, C.; Ott, D.; Deaven, L.; Spielmann, H.; Krowke, R.; Neubert, D.

    1975-01-01

    Increasing diagnostic use of stable isotopes, especially in children and pregnant women, enhances the importance of studies on the biological isotope effects in sensitive mammalian systems. Experimental data on animal systems are meager. The mouse embryos was studied at various stages and mouse limb buds were studied in organ culture. Limb bud development in vitro was unaffected by incubation with 82 mol percent 13 C-glucose as judged by either morphological or biochemical criteria. Of 271 preimplantation embryos incubated in vitro, 95.2 percent developed normally; in 13 C-enriched medium, 96.5 percent showed normal development. 13 C-Enrichment of the embryos in vitro is over 60 percent. Administration of 1.2 g glucose-U- 13 C to pregnant mice during organogenesis leads to enrichment of maternal liver glycogen to over 17 mol percent 13 C, about one-third this level in the embryo, and a lower level in maternal blood. The absolute 13 C content of the embryo continues to increase for several days after the end of isotope administration, while the enrichment in maternal tissues falls. The lipid fraction of the fetus is most highly labeled shortly after the end of isotope administration []These studies on developing mammalian systems have not yet revealed any alteration of normal development due to stable isotope enrichment. (auth)

  12. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  13. Availability of enrichment services

    International Nuclear Information System (INIS)

    Svenke, E.

    1977-01-01

    The report summarizes major uncertainties which are likely to influence future demands for uranium isotopic enrichment. Since for the next decade the development of nuclear power will be largely concerned with the increment in demand the timely need for enrichment capacity will be particularly sensitive to assumptions about growth rates. Existing worldwide capacity together with capacities under construction will be sufficient well into the 1980's. However, long decision and construction leadtime, uncertainty as to future demand as well as other factors, specifically high capital need, all of which entail financial risks, create hindrances to a timely development of increment. The adequacy of current technology is well demonstrated in plant operation and new technology is under way. Technology is, however, not freely available on a purely commercial basis. Commercial willingness, which anticipates a limited degree of financial risk, is requesting both long term back-up from the utilities that would parallel their firm decisions on the acquisition of nuclear power units, and a protective government umbrella. This situation depends on the symbiotic relationship that exists between the nuclear power generating organizations, the enrichment undertakings and the governments involved. The report accordingly stresses the need for a more cooperative approach and this, moreover, at the multinational level. There is otherwise a risk that proper resources and financing means will not be allocated to the enrichment sector. Export limitations that request the highest degree of industrial processing of nuclear fuel, i.e. the compulsory enrichment of natural uranium, do not serve the interests of overall industrial efficiency

  14. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  15. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    Science.gov (United States)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  16. Industrial scale production of stable isotopes employing the technique of plasma separation

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  17. Factors that predict consumer acceptance of enriched processed meats.

    Science.gov (United States)

    Shan, Liran C; Henchion, Maeve; De Brún, Aoife; Murrin, Celine; Wall, Patrick G; Monahan, Frank J

    2017-11-01

    The study aimed to understand predictors of consumers' purchase intention towards processed meat based functional foods (i.e. enriched processed meat). A cross-sectional survey was conducted with 486 processed meat consumers in spring 2016. Results showed that processed meats were perceived differently in healthiness, with sausage-type products perceived less healthy than cured meat products. Consumers were in general more uncertain than positive about enriched processed meat but differences existed in terms of the attitudes and purchase intention. Following regression analysis, consumers' purchase intention towards enriched processed meat was primarily driven by their attitudes towards the product concept. Perceived healthiness of existing products and eating frequency of processed meat were also positively associated with the purchase intention. Other factors such as general food choice motives, socio-demographic characteristics, consumer health and the consumption of functional foods and dietary supplements in general, were not significant predictors of the purchase intention for enriched processed meat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isotopic enrichments via altered first and second solution electron affinities

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Espe, M.P.; Reiter, R.C.

    1986-01-01

    Electron spin resonance experiments have been utilized to show that the solution electron affinity of benzene- 13 C 6 is less than that of benzene by 0.24 kcal/mol and that the solution EA of benzene-d 6 is less than that of benzene by 0.44 kcal/mol. Perdeuteration of naphthalene, anthracene, or perylene results in a very similar lowering of the solution EA of the hydrocarbon as evidenced by the fact that the equilibrium constant for the electron transfer between the hydrocarbon anion radical, X/sup .-/, and the perdeuterated hydrocarbon, Xd (X/sup .-/ + Xd = Xd/sup .-/ + X), is less than unity. Likewise the second EAs of perdeuterated perylene and anthracene are lower than those of the unsubstituted hydrocarbons (K/sub eq/ for X 2- + Xd/sup .-/ = X/sup .-/ + Xd 2- is less than unity). The free energy and enthalpy of electron transfer from the anthracene anion radical to perdeuterated anthracene is 0.41 kcal/mol and that from the anthracene dianion to the perdeuterated anion radical is 0.10 kcal/mol. The fact that these equilibrium constants are not equal to 1 enables one to use the difference in the chemical reactivity of the ions and neutral molecules to selectively isotopically enrich the hydrocarbons involved

  19. Status of stable enrichment and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.

    1995-01-01

    Enriched stable and radioactive isotopes have played a significant role in the progress of mankind with most of that progress occurring in the last 50 years. The Oak Ridge National Laboratory (ORNL) has been a major contributor to that progress by developing production methods and supplying enriched isotopes to research, medical and commercial users world-wide. The only alternate major source for these materials, especially the stable isotopes, is located in Russia. Over this time period, many changes in the content and form of this function have occurred in response to scientific, commercial, and political influences. Many of these changes have been positive, while some have had a negative impact on the supply and availability of enriched isotopes. What has not changed, however, is the importance of these special materials to virtually all aspects of life

  20. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  1. New processes for uranium isotope separation

    International Nuclear Information System (INIS)

    Vanstrum, P.R.; Levin, S.A.

    1977-01-01

    An overview of the status and prospects for processes other than gaseous diffusion, gas centrifuge, and separation nozzle for uranium isotope separation is presented. The incentive for the development of these processes is the increasing requirements for enriched uranium as fuel for nuclear power plants and the potential for reducing the high costs of enrichment. The latest nuclear power projections are converted to uranium enrichment requirements. The size and timing of the market for new enrichment processes are then determined by subtracting the existing and planned uranium enrichment capacities. It is estimated that to supply this market would require the construction of a large new enrichment plant of 9,000,000 SWU per year capacity, costing about $3 billion each (in 1976 dollars) about every year till the year 2000. A very comprehensive review of uranium isotope separation processes was made in 1971 by the Uranium Isotope Separation Review Ad Hoc Committee of the USAEC. Many of the processes discussed in that review are of little current interest. However, because of new approaches or remaining uncertainties about potential, there is considerable effort or continuing interest in a number of alternative processes. The status and prospects for attaining the requirements for competitive economics are presented for these processes, which include laser, chemical exchange, aerodynamic other than separation nozzle, and plasma processes. A qualitative summary comparison of these processes is made with the gaseous diffusion, gas centrifuge, and separation nozzle processes. In order to complete the overview of new processes for uranium isotope separation, a generic program schedule of typical steps beyond the basic process determination which are required, such as subsystem, module, pilot plant, and finally plant construction, before large-scale production can be attained is presented. Also the present value savings through the year 2000 is shown for various

  2. Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm

    Science.gov (United States)

    Coutaud, Margot; Méheut, Merlin; Glatzel, Pieter; Pokrovski, Gleb S.; Viers, Jérôme; Rols, Jean-Luc; Pokrovsky, Oleg S.

    2018-01-01

    Despite the importance of phototrophic biofilms in metal cycling in freshwater systems, metal isotope fractionation linked to metal adsorption and uptake by biofilm remains very poorly constrained. Here, copper isotope fractionation by a mature phototrophic biofilm during Cu surface adsorption and incorporation was studied in batch reactor (BR) and open drip flow reactor (DFR) systems at ambient conditions. X-ray Absorption Spectroscopy (both Near Edge Structure, XANES, and Extended Fine Structure, EXAFS) at Cu K-edge of the biofilm after its interaction with Cu in BR experiments allowed characterizing the molecular structure of assimilated Cu and quantifying the degree of CuII to CuI reduction linked to Cu assimilation. For both BR and DFR experiments, Cu adsorption caused enrichment in heavy isotope at the surface of the biofilm relative to the aqueous solution, with an apparent enrichment factor for the adsorption process, ε65Cuads, of +1.1 ± 0.3‰. In contrast, the isotope enrichment factor during copper incorporation into the biofilm (ε65Cuinc) was highly variable, ranging from -0.6 to +0.8‰. This variability of the ε65Cuinc value was likely controlled by Cu cellular uptake via different transport pathways resulting in contrasting fractionation. Specifically, the CuII storage induced enrichment in heavy isotope, whereas the toxicity response of the biofilm to Cu exposure resulted in reduction of CuII to CuI, thus yielding the biofilm enrichment in light isotope. EXAFS analyses suggested that a major part of the Cu assimilated by the biofilm is bound to 5.1 ± 0.3 oxygen or nitrogen atoms, with a small proportion of Cu linked to sulfur atoms (NS biofilm exhibited a similar trend over time of exposure. Our study demonstrates the complexity of biological processes associated with live phototrophic biofilms, which produce large and contrasting isotope fractionations following rather small Cu redox and speciation changes during uptake, storage or release of

  3. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans.

    Directory of Open Access Journals (Sweden)

    Maya S deVries

    Full Text Available Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0-1 ‰ and 3-4 ‰, respectively. Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days was over 8 times longer than that of carbon (3.4 ± 1.4 days. In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively. We compared the mantis shrimps' incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals.

  4. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    Science.gov (United States)

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  5. Application of multiple-isotope and groundwater-age data to identify factors affecting the extent of denitrification in a shallow aquifer near a river in South Korea

    Science.gov (United States)

    Kaown, Dugin; Koh, Eun-Hee; Mayer, Bernhard; Kim, Heejung; Park, Dong Kyu; Park, Byeong-Hak; Lee, Kang-Kun

    2018-01-01

    The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74-83 mg L-1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between -4.8 and -7.9‰ and O isotope enrichment factors varying between -3.8 and -4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10-20 years) than in the north (20-30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.

  6. Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces

    Directory of Open Access Journals (Sweden)

    Shaena Montanari

    2017-06-01

    Full Text Available Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals’ diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta, a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ13Cfeces is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ15Nfeces is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals.

  7. On the trophic ecology of Gammaridea (Crustacea: Amphipoda) in coastal waters: A European-scale analysis of stable isotopes data

    Science.gov (United States)

    Mancinelli, Giorgio

    2012-12-01

    Gammaridean amphipods are found throughout a diverse range of coastal and brackish environments and are generally considered macrophagous herbivores/detritivores. While predation and cannibalism have been shown to be common in freshwater species, motivating a revision of the group functional role, only qualitative information is available on marine Gammaridea. In this study, a survey was conducted of the available literature on stable C and N isotopic signatures of macrophagous, fully aquatic Gammaridea and their potential basal resources in European brackish and coastal environments. The contribution of intra- and inter-specific predation to the signatures of gammarideans was verified by a mixing model procedure where the diet-tissue enrichment constant was not set a priori. Specifically, for each study included in the survey the minimum and maximum diet-tissue nitrogen enrichment factors (Δ15Nmin and Δ15Nmax) providing a non-zero solution were calculated for a range of carbon enrichment factors, assuming that both metrics would increasingly differ from the values expected for a single trophic level as predation and/or cannibalism increased in the diet of the consumer. The minimum enrichment factors Δ15Nmin estimated for a Δ13C of -2.6‰ and +0.5‰ were found to be independent from resource-related artefacts and provided the highest number of successful model runs. Δ15Nmin values were consistent with a diet based on living or decaying primary producers and not compatible with cannibalism or intra-guild predation. However, they showed a bimodal distribution and were on average far below the range found in the literature, matching the enrichment factors of gammarideans measured under laboratory conditions. These results are discussed considering the interaction of the distinctive isotopic features of basal resources in coastal habitats and the biology and ecology of gammaridean amphipods. Particular emphasis is placed on the high variability of nitrogen

  8. R and D on laser uranium enrichment

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    An AEC Advisory Committee on Uranium Enrichment has completed investigations into the actual condition of laser isotope separation. The working group set up for the purpose has issued a report on the series of investigations made on its development and measures for promoting it. The report says that the development of the process in Japan is at a fundamental stage. Noting that further efforts are needed before its future can be predicted, the report proposes a cource of research and development for the immediate future. For the atomic vapor laser isotope separation (AVLIS), government organizations are engaged in data base buildup and conducting basis engineering tests, and Japan Atomic Energy Research Institute will consider the re-enrichment of uranium recovered from reprocessing. Non-governmental unions of researchers will promote the combination of copper-vapor laser and dye laser. For the molecular laser isotope separation (MLIS), the Institute of Physical and Chemical Research will take up studies with the cooperation of the Power Reactor and Nuclear Fuel Development Corporation. In chapters covering the philosophy of laser uranium enrichment technology development, the report deals with its significance, actual conditions and tasks, and goals and measures for its promotion. (Nogami, K.)

  9. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  10. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  11. Experiments on the Haeffner effect i. e. isotope enrichment on passage of high current densities through metallic melts. [Lithium]. Versuche zum Haeffner-Effekt (Isotopenanreicherung beim Durchgang von Gleichstrom hoher Stromdichte durch Metallschmelzen)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G

    1962-01-01

    The Haeffner effect (E. Haeffner 1953) found first with mercury and later confirmed with several other metals consists in an enrichment of the lighter isotopes at the anode end, and of the heavier isotopes at the cathode end. In the present work measurements were made on molten lithium. To keep current intenisities within reasonable limits the experiments were done in steel capillaries of 0.6 mm inner diameter and lengths 22-43 cm. Current densities were 6000-7400 A/cm/sup 2/ and the duration 150 h. Neutron activation was used as isotope analysis method. Surprisingly and in contrast to previous measurements an enrichment of Li/sub 6/ of about 1% was found at the ends of the capillary relative to its middle. This was independent of the current direction. No explanation of the effect is given.

  12. A committee report on the state-of-art of uranium isotope enrichment measurement techniques

    International Nuclear Information System (INIS)

    1982-06-01

    The activity of a sectional meeting (June, 1979 - February, 1982) for uranium enrichment measurement under the Committee on Analytical Chemistry of Nuclear Fuels and Reactor Materials is summarized. In the first part of this report, the object and present state of the measurement at the following organization are described; two development organizations (Power Reactor and Nuclear Fuel Development Corporation and Japan Nuclear Fuel Development), two nuclear fuel makers (Japan Nuclear Fuel and Mitsubishi Nuclear Fuel), one safeguards inspection organization (Nuclear Material Control Center) and one research organization (Japan Atomic Energy Research Institute). The second part contains the principle and technique of several measurement methods for uranium isotopic assay, such as mass spectrometry, passive and active assays and optical spectral method. Lastly, the concept of the reference materials and its practical information for mass spectrometry and non-destructive assay are described. (author)

  13. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  14. MUICYCL and MUIFAP: models tracking minor uranium isotopes in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blum, S.R.; McLaren, R.A.

    1979-10-01

    Two computer programs have been written to provide information on the buildup of minor uranium isotopes in the nuclear fuel cycle. The Minor Uranium Isotope Cycle Program, MUICYCL, tracks fuel through a multiyear campaign cycle of enrichment, reactor burnup, reprocessing, enrichment, etc. MUICYCL facilities include preproduction stockpiles, U 235 escalation, and calculation of losses. The Minor Uranium Isotope Flowsheet Analyzer Program, MUIFAP, analyzes one minor isotope in one year of an enrichment operation. The formulation of the enrichment cascade, reactors, and reprocessing facility is presented. Input and output descriptions and sample cases are presented. The programs themselves are documented by short descriptions of each routine, flowcharts, definitions of common blocks and variables, and internal documentation. The programs are written in FORTRAN for use in batch mode

  15. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation

    Science.gov (United States)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O.'D.; Kilcoyne, A. L. David; Zega, Thomas J.

    2010-08-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ 15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ( sbnd C tbnd N) and carboxyl ( sbnd COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/ 14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other

  16. Uranium enrichment : global view and Brazilian perspectives

    International Nuclear Information System (INIS)

    Zouain, D.M.; Sakamoto, L.H.

    1981-12-01

    A global view of isotope enrichment involving a general description of process (technical-economical aspects and policy) and status in developing countries is done. An enrichment demand in function of the Brazilian Nuclear Program is evaluated, analyzing a probable market and a low market. The perspectives to attend this demand, are studied. (E.G.) [pt

  17. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  18. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  19. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  20. High-throughput simultaneous determination of plasma water deuterium and 18-oxygen enrichment using a high-temperature conversion elemental analyzer with isotope ratio mass spectrometry.

    Science.gov (United States)

    Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B

    2004-01-01

    This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.

  1. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  2. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  3. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Zhang, Xi-Chang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Liu, Weiping [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Center for Environmental Research – UFZ, Leipzig 04318 (Germany)

    2015-09-15

    Highlights: • Alpha-cypermethrin (α-CP) can be degraded by microorganisms in soil. • Biodegradation of α-CP resulted in carbon isotope fractionation. • A relationship was found between carbon isotope ratios and concentrations of α-CP. • An enrichment factor ϵ of α-CP was determined as −1.87‰. • CSIA is applicable to assess biodegradation of α-CP. - Abstract: To assess microbial degradation of alpha-cypermethrin in soil, attenuation of alpha-cypermethrin was investigated by compound-specific stable isotope analysis. The variations of the residual concentrations and stable carbon isotope ratios of alpha-cypermethrin were detected in unsterilized and sterilized soils spiked with alpha-cypermethrin. After an 80 days’ incubation, the concentrations of alpha-cypermethrin decreased to 0.47 and 3.41 mg/kg in the unsterilized soils spiked with 2 and 10 mg/kg, while those decreased to 1.43 and 6.61 mg/kg in the sterilized soils. Meanwhile, the carbon isotope ratios shifted to −29.14 ± 0.22‰ and −29.86 ± 0.33‰ in the unsterilized soils spiked with 2 and 10 mg/kg, respectively. The results revealed that microbial degradation contributed to the attenuation of alpha-cypermethrin and induced the carbon isotope fractionation. In order to quantitatively assess microbial degradation, a relationship between carbon isotope ratios and residual concentrations of alpha-cypermethrin was established according to Rayleigh equation. An enrichment factor, ϵ = −1.87‰ was obtained, which can be employed to assess microbial degradation of alpha-cypermethrin. The significant carbon isotope fractionation during microbial degradation suggests that CSIA is a proper approach to qualitatively detect and quantitatively assess the biodegradation during attenuation process of alpha-cypermethrin in the field.

  4. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  5. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  6. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  7. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    International Nuclear Information System (INIS)

    Salamalikis, V.; Argiriou, A.A.; Dotsika, E.

    2016-01-01

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R"2 > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  8. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Salamalikis, V., E-mail: vsalamalik@upatras.gr [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Argiriou, A.A. [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Dotsika, E. [Stable Isotope Unit, Institute of Nanoscience and Nanotechnology, National Center of Scientific Research ‘Demokritos’, Ag. Paraskevi Attikis, 15310 Athens (Greece)

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R{sup 2} > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  9. Experimental determination of isotope enrichment factors – bias from mass removal by repetitive sampling

    DEFF Research Database (Denmark)

    Buchner, Daniel; Jin, Biao; Ebert, Karin

    2017-01-01

    to account for mass removal and for volatilization into the headspace. In this study we use both synthetic and experimental data to demonstrate that the determination of ε-values according to current correction methods is prone to considerable systematic errors even in well-designed experimental setups....... Application of inappropriate methods may lead to incorrect and inconsistent ε-values entailing misinterpretations regarding the processes underlying isotope fractionation. In fact, our results suggest that artifacts arising from inappropriate data evaluation might contribute to the variability of published ε...

  10. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    International Nuclear Information System (INIS)

    Marchesi, Massimo; Thomson, Neil R.; Aravena, Ramon; Sra, Kanwartej S.; Otero, Neus; Soler, Albert

    2013-01-01

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S 2 O 8 2− was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH − :S 2 O 8 2− ratio. •Base-catalyzed S 2 O 8 2− can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH − :S 2 O 8 2− ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S 2 O 8 2− ) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S 2 O 8 2− molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S 2 O 8 2− molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S 2 O 8 2− molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system

  11. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  12. Pollution assessment using local enrichment factors: the Berounka River (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Nováková, Tereza; Matys Grygar, Tomáš; Kotková, Kristýna; Elznicová, J.; Strnad, L.; Mihaljevic, M.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 1081-1092 ISSN 1439-0108 Institutional support: RVO:61388980 Keywords : Berounka River * Fluvial sediments * Local enrichment factors * Normalization * Pollution assessment Subject RIV: DD - Geochemistry Impact factor: 2.522, year: 2016

  13. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  14. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined....... The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization....../ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  15. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  16. Lithium isotope separation on an ion exchange resin having azacrown ether as an anchor group

    International Nuclear Information System (INIS)

    Kim, D.W.; Jeong, Y.K.; Lee, J.K.; Hong, Ch.P.; Kim, Ch.S.; Jeon, Y.Sh.

    1997-01-01

    As study on the separation of lithium isotopes was carried out with an ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane (N 3 O 3 ) as an anchor group. The lighter isotope, 6 Li concentrated in the resin phase, while the heavier isotope, 7 Li is enriched in the fluid phase. Upon column chromatography [0.6 cm (I. D.) x 20 cm (height) using 1.0M ammonium chloride solution as an eluent, single separation factor, α, 1.068 ( 6 Li/ 7 Li) r esin/( 6 Li/ 7 Li) s olution was obtained by the GLUECKAUF method from the elution curve and isotope ratios. (author)

  17. Uranium enrichment in South Africa

    International Nuclear Information System (INIS)

    Roux, A.J.A.; Grant, W.L.

    1976-01-01

    It is stated that the South African process is of an aerodynamic type, the separating element being in effect a high performance stationary-walled centrifuge using UF 6 in hydrogen as process fluid. Some details of the very low uranium inventory and high separation factor achievable are given. A new cascade technique is described, based on the principle that an axial flow compressor can simultaneously transmit several streams of different isotopic composition without there being significant mixing between them. The research and development programme is discussed. It is expected that an enrichment plant of 5000 t/a SW capacity, with provision for expansion up to 10,000 t/a SW capacity, will come into operation by 1984. (U.K.)

  18. Isotopic compositions of potassium and calcium in magnetic spherulesfrom marine sediments

    International Nuclear Information System (INIS)

    Shimarura, T.; Yanagita, S.; Yamakoshi, K.; Nogami, K.; Arai, O.; Tazawa, Y.; Kobayashi, K.

    1979-01-01

    Isotopic compositions of potassium and calcium in individual magnetic spherules were determined. No significant anomaly was observed for potassium within twice the statistical error (2sigma), although for calcium isotopes enrichment of 46 Ca, 44 Ca and 42 Ca were observed in one spherule. The relative excess of 46 Ca, 44 Ca and 42 Ca in the spherule agrees with the relative yield of spallogenic calcium isotopes observed in iron meteorites. This fact indicates that the enrichment in the calcium isotopes was caused by cosmic ray irradiation of the spherule in outer space. (Auth.)

  19. The separation nozzle method for enrichment of the light uranium isotope

    International Nuclear Information System (INIS)

    Becker, E.W.

    1982-05-01

    The history of the development of the separation nozzle method for enrichment of the light uranium isotope is described as a contribution to a memorandum published by Deutsche Forschungsgemeinschaft. The work was triggered off by an effect which had been observed in fundamental studies on gas kinetics. Development up to the technical maturity covered a period of more than 25 years. The implementation of the project at the Karlsruhe Nuclear Research Center provided an adequate financial and technical framework, the employment of senior staff without limitations in time being of major importance for the continuity of work. The links established between the Institute and the University and the resulting opportunity of having doctoral theses written, on the other hand, gave rise to a permanent flow of young, highly qualified scientists and engineers. Thus the Institut's requirements for junior staff could be satisfied in an optimum way. Although the Center offered a variety of possibilities of internal technical cooperation, important developments were performed jointly with industrial firms experienced in related fields. By this, not only a steady flow of know-how had been accumulated but also the large-scale applicability was ensured at a later date of results jointly obtained. (orig.) [de

  20. Sulfur cycling in contaminated aquifers: What can we learn from oxygen isotopes in sulfate? (Invited)

    Science.gov (United States)

    Knoeller, K.; Vogt, C.; Hoth, N.

    2009-12-01

    Bacterial reduction of dissolved sulfate (BSR) is a key process determining the natural attenuation in many contaminated aquifers. For example, in groundwater bodies affected by acid mine drainage (AMD) BSR reduces the contaminant load by producing alkalinity and facilitating a sustainable fixation of sulfur in the sediment. In aquifers contaminated with petroleum hydrocarbons sulfate may act as a terminal electron acceptor for the anaerobic oxidation of the organic contaminants to carbon dioxide and water. Due to the isotope selectivity of sulfate reducing bacteria, BSR shows the most pronounced isotope fractionation within the sulfur cycle. While sulfur displays a straightforward kinetic enrichment in the residual sulfate described by the enrichment factor epsilon (ɛ), the mechanism of oxygen isotope fractionation is still being discussed controversially. Nevertheless, it is agreed on that oxygen isotope exchange between ambient water and residual sulfate occurs during BSR in natural environments. With respect to this potential isotope exchange, the fractionation parameter theta (θ) is introduced instead of the kinetic enrichment factor epsilon (ɛ). The dual isotope system considering both sulfate-sulfur and sulfate-oxygen isotope fractionation and the respective fractionation parameters ɛ and θ provides an excellent tool for the recognition and quantification of BSR. Beyond that, the dual isotope approach may help identify and estimate interfering sulfur transformations such as re-oxidation and disproportionation processes which is especially vital for the understanding of the overall natural attenuation potential of the investigated aquifers. We present two examples from different field studies showing the benefits of applying the combination of sulfur and oxygen isotopes in dissolved sulfate to reveal the details of the sulfur cycle. The first case study is concerned with the evaluation of the potential for BSR in an AMD-affected aquifer close to an

  1. Centrifugal extraction of highly enriched tin isotopes and increase of specific activity of the radionuclide 119mSn on the gas centrifuge cascade

    International Nuclear Information System (INIS)

    Suvorov, I.A.; Tcheltsov, A.N.; Sosnin, L.Yu.; Sazikin, A.A.; Rudnev, A.I.

    2002-01-01

    This work contains the results of research on centrifugal enrichment of 118 Sn isotope followed by irradiation and, finally, a second centrifugal enrichment to produce high specific activity 119m Sn. Non-steady-state separation methods were used for the effective extraction of the radionuclide 119m Sn from the irradiated target. As a result of this work, radiation sources based on 119m Sn were obtained with a specific activity of 500 mCi/g. This is 100 times greater than the specific activity obtained after irradiation in the reactor alone. In addition, the sources had an previously unattainable radio-purity ratio of 113 Sn/ 119m Sn of approximately 10 -6

  2. Formation of chondrules in a moderately high dust enriched disk: Evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite

    Science.gov (United States)

    Hertwig, Andreas T.; Defouilloy, Céline; Kita, Noriko T.

    2018-03-01

    Oxygen three-isotope analysis by secondary ion mass spectrometry of chondrule olivine and pyroxene in combination with electron microprobe analysis were carried out to investigate 24 FeO-poor (type I) and 2 FeO-rich (type II) chondrules from the Kaba (CV) chondrite. The Mg#'s of olivine and pyroxene in individual chondrules are uniform, which confirms that Kaba is one of the least thermally metamorphosed CV3 chondrites. The majority of chondrules in Kaba contain olivine and pyroxene that show indistinguishable Δ17O values (= δ17O - 0.52 × δ18O) within analytical uncertainties, as revealed by multiple spot analyses of individual chondrules. One third of chondrules contain olivine relict grains that are either 16O-rich or 16O-poor relative to other indistinguishable olivine and/or pyroxene analyses in the same chondrules. Excluding those isotopically recognized relicts, the mean oxygen isotope ratios (δ18O, δ17O, and Δ17O) of individual chondrules are calculated, which are interpreted to represent those of the final chondrule melt. Most of these isotope ratios plot on or slightly below the primitive chondrule mineral (PCM) line on the oxygen three-isotope diagram, except for the pyroxene-rich type II chondrule that plots above the PCM and on the terrestrial fractionation line. The Δ17O values of type I chondrules range from ∼-8‰ to ∼-4‰; the pyroxene-rich type II chondrule yields ∼0‰, the olivine-rich type II chondrule ∼-2‰. In contrast to the ungrouped carbonaceous chondrite Acfer 094, the Yamato 81020 CO3, and the Allende CV3 chondrite, type I chondrules in Kaba only possess Δ17O values below -3‰ and a pronounced bimodal distribution of Δ17O values, as evident for those other chondrites, was not observed for Kaba. Investigation of the Mg#-Δ17O relationship revealed that Δ17O values tend to increase with decreasing Mg#'s, similar to those observed for CR chondrites though data from Kaba cluster at the high Mg# (>98) and the low Δ17O

  3. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  4. Isotope separation by selective dissociation of trifluoromethane with an infrared laser

    International Nuclear Information System (INIS)

    Hartford, A.J.

    1982-01-01

    A process for obtaining compounds enriched in a desired isotope of an element selected from hydrogen and carbon comprises exposing subatmospheric pressure gaseous trifluoromethane containing said desired isotope and one or more other isotopes of the same element to infrared laser radiation of a predetermined frequency, which selectively dissociates trifluoromethane molecules containing said desired isotope and separating the resulting dissociation product enriched in said desired isotope from the remainder of the gas. The term 'trifluoromethane' (TFM) refers to a mixture of CF 3 H and CF 3 D, the latter constituting about 0.015 percent of the total. TFM is irradiated with a CO 2 laser at an appropriate infrared wavelength

  5. Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO3](2) at ambient temperature.

    Science.gov (United States)

    Böttcher, Michael E; Geprägs, Patrizia; Neubert, Nadja; von Allmen, Katja; Pretet, Chloé; Samankassou, Elias; Nägler, Thomas F

    2012-09-01

    In this study, we present the first experimental results for stable barium (Ba) isotope ((137)Ba/(134)Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO(3)](2). This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of-0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO (3) (witherite) formation.

  6. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    Science.gov (United States)

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  7. Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology?

    Science.gov (United States)

    Abe, Yumiko; Hunkeler, Daniel

    2006-03-01

    Stable isotope data have been increasingly used to assess in situ biodegradation of organic contaminants in groundwater. The data are usually evaluated using the Rayleigh equation to evaluate whether isotope data follow a Rayleigh trend, to calculate the extent of contaminant biodegradation, or to estimate first-order rate constants. However, the Rayleigh equation was developed for homogeneous systems while in the subsurface, contaminants can migrate at different velocities due to physical heterogeneity. This paper presents a method to quantify the systematic effect that is introduced by applying the Rayleigh equation to field isotope data. For this purpose, the travel time distribution between source and sampling point is characterized by an analytical solution to the advection-dispersion equation. The systematic effect was evaluated as a function of the magnitude of physical heterogeneity, geometry of the contaminant plume, and degree of biodegradation. Results revealed that the systematic effect always leads to an underestimation of the actual values of isotope enrichment factors, the extent of biodegradation, or first-order rate constants, especially in the dispersion-dominant region representing a higher degree of physical heterogeneity. A substantial systematic effect occurs especially for the quantification of first-order rate constants (up to 50% underestimation of actual rate) while it is relatively small for quantification of the extent of biodegradation (< 5% underestimation of actual degree of biodegradation). The magnitude of the systematic effect is in the same range as the uncertainty due to uncertainty of the analytical data, of the isotope enrichment factor, and the average travel time.

  8. Experimental investigation of sulphur isotope partitioning during outgassing of hydrogen sulphide from diluted aqueous solutions and seawater.

    Science.gov (United States)

    Baune, Claudia; Bottcher, Michael E

    2010-12-01

    The diffusion of hydrogen sulphide across the sediment-water interface and subsequent liberation to the atmosphere may occur in iron-deficient coastal marine environments with enhanced microbial activity in surface sediments and corresponding accumulation of dissolved H2S in near-surface pore waters. The involvement of analogue processes in periods of global mass extinctions during Earth's history (e.g. at the Permian-Triassic boundary) is currently in discussion [L.R. Kump, A. Pavlov, and M. Arthur,Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia, Geology 33, 397 (2005)]. The outgassing of H₂S is associated with a fractionation of the stable sulphur isotopes, which has so far only been investigated experimentally at selected acidic and neutral pH values, and no experiments with seawater had been carried out. In this communication, we report on sulphur isotope fractionation that takes place during the experimental degassing of H₂S from aqueous solution by an inert gas (N₂) at 21 °C. Experiments were conducted in the pH range between 2.6 and 10.8, corresponding to the dominance fields of dissolved hydrogen sulphide (H₂S(aq)), bisulphide (HS-(aq)), and mixtures of both sulphide species. Overall isotope enrichment factors between -1.6 and +3.0‰ were observed, with the residual dissolved sulphide being enriched or depleted in ³⁴S compared to the liberated H₂S at low and high pH values, respectively. The difference in the low and high pH isotope fractionation effects can be explained by isotope exchange between H₂S(aq) and HS-(aq) [B. Fry, H. Gest, and J.M. Hayes, Sulfur Isotope Effects Associated with Protonation of HS- and Volatilization of H₂S, Chem. Geol. (Isot. Geosci. Sec.) 58, 253 (1986); R. Geßler and K. von Gehlen, Investigation of Sulfur Isotope Fractionation Between H2S Gas and Aqueous Solutions, Fresenius J. Anal. Chem. 324, 130 (1986)] followed by the subsequent transfer of H

  9. Trace elements and Pb isotopes in soils and sediments impacted by uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    Cuvier, A., E-mail: alicia.cuvier@hotmail.fr [ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); IRSN/PRP-ENV/SESURE/Laboratoire d' études radioécologiques en milieu continental et marin, BP 1, 13108 Saint Paul Lez Durance Cedex (France); Pourcelot, L. [IRSN/PRP-ENV/SESURE/Laboratoire d' études radioécologiques en milieu continental et marin, BP 1, 13108 Saint Paul Lez Durance Cedex (France); Probst, A. [ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Prunier, J. [Observatoire Midi-Pyrénées, laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400 Toulouse (France); Le Roux, G., E-mail: gael.leroux@ensat.fr [ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France)

    2016-10-01

    The purpose of this study is to evaluate the contamination in As, Ba, Co, Cu, Mn, Ni, Sr, V, Zn and REE, in a high uranium activity (up to 21,000 Bq ∙ kg{sup −1}) area, downstream of a former uranium mine. Different geochemical proxies like enrichment factor and fractions from a sequential extraction procedure are used to evaluate the level of contamination, the mobility and the availability of the potential contaminants. Pb isotope ratios are determined in the total samples and in the sequential leachates to identify the sources of the contaminants and to determine the mobility of radiogenic Pb in the context of uranium mining. In spite of the large uranium contamination measured in the soils and the sediments (EF ≫ 40), trace element contamination is low to moderate (2 < EF < 5), except for Ba (5 < EF < 15), due to the precipitation of barium sulfate resulting from mining activities. Most of the trace elements are associated with the most mobile fractions of the sediments/soils, implying an enhanced potential availability. Even if no Pb enrichment is highlighted, the Pb isotopic signature of the contaminated soils is strongly radiogenic. Measurements performed on the sequential leachates reveal inputs of radiogenic Pb in the most mobile fractions of the contaminated soil. Inputs of low-mobile radiogenic Pb from mining activities may also contribute to the Pb signature recorded in the residual phase of the contaminated samples. We demonstrate that Pb isotopes are efficient tools to trace the origin and the mobility of the contaminants in environments affected by uranium mining. - Highlights: • Contamination of soils is evidenced by a multiproxy approach. • Enrichment factors highlight a low contamination except for U, S and Ba. • Pb isotope ratios point out inputs of radiogenic Pb from the mine. • Radiogenic Pb is mainly in the acid-soluble and the reducible fractions.

  10. Proton hopping mechanism in solid polymer electrolysis demonstrated by tritium enrichment and electro-osmotic drag measurement

    International Nuclear Information System (INIS)

    Saito, Masaaki; Imaizumi, Hiroshi; Kato, Norio; Ishii, Yoshiyuki; Saito, Keiichi

    2010-01-01

    Anomalies in tritium enrichment cannot be explained only by isotopic effects in water electrolysis. The temperature dependence of the enrichment factor had been reported as increasing with 1/T. However, the increase was difficult to explain on the basis of kinetics. In this study, electro-osmotic drag (EOD, number of water molecule accompanied by a proton) and tritium enrichment ratio were investigated using light water (H 2 O) and heavy water (D 2 O) by solid polymer electrolysis. The EOD decreased and tritium enrichment ratio increased at low temperature for H 2 O. Electrolysis showed no temperature dependence for D 2 O. It was revealed that proton hopping by a hydrogen bond network of water molecules (the Grotthuss mechanism) affects the temperature dependence of EOD and tritium enrichment in the case of H 2 O. (author)

  11. Proposal for implanting a magnetic stable isotope separator

    International Nuclear Information System (INIS)

    Lemos, O.F.

    1988-07-01

    The implantation of an electromagnetic isotope separator able to separate elements of mass from 20 to 250 a.m.u., with an enrichment factor from 10 to 200 times the initial concentration, depending on the elements, is proposed. The most suitable separator type for Brazilian CNEN, considering building installations and minimum conditions for the equipment facilities, the retinue chronogram, the infrastructure, and the personnel training for operation is defined. (M.C.K.) [pt

  12. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Otero, Neus; Soler, Albert [Departament de Cristal.lographia, Mineralogia i Diposits Minerals, Facultat de Geologia, Universitat de Barcelona, Barcelona, Spain 08028 (Spain)

    2013-09-15

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S{sub 2}O{sub 8}{sup 2−} was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio. •Base-catalyzed S{sub 2}O{sub 8}{sup 2−} can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S{sub 2}O{sub 8}{sup 2−}) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system.

  13. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  14. Stable-isotope studies

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Structures of bacteriochlorophyll b and the Krasnovskii photoreduction products of chlorophyll a are given. All 55 13 C and 4 15 N NMR transitions in chlorophyl a and its magnesium-free derivative pheophytin a were assigned. ESR of triplet states of chlorophylls a, b, c/sub z/, and c 2 and bacteriochlorophyll a are reported. Experiments in the cultivation of 13 C-enriched morning glory plants indicated that the isotope enrichment can produce observable morphological changes. (U.S.)

  15. In vivo synthesized 34S enriched amino acid standards for species specific isotope dilution of proteins

    DEFF Research Database (Denmark)

    Hermann, Gerrit; Moller, Laura Hyrup; Gammelgaard, Bente

    2016-01-01

    (ICP-MS) combined to anion exchange showed that very high concentrated spike material could be produced with [small mu ]mol amounts of proteinogenic sulfur containing amino acids per g cell dry weight. An enrichment of 34S to 96.3 +/- 0.4% (n = 3) and 98.5 +/- 0.4% (n = 3) for cysteic acid...... with the concept of species specific isotope dilution analysis (IDA). The method relies on the determination of the two sulfur containing amino acids, cysteine and methionine by sulfur speciation analysis and is hence applicable to any protein containing sulfur. In vivo synthesis using 34S as sulfur source...... and methionine sulfone, respectively, was assessed. The established IDA method was validated for the absolute quantification of commercially available lysozyme and ceruloplasmin standards including the calculation of a total combined uncertainty budget....

  16. Isotopic Anomalies in Organic Nanoglobules from Comet 81P/Wild 2: Comparison to Murchison Nanoglobules and Isotopic Anomalies Induced in Terrestrial Organics by Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, B.; Stroud, R; Nittler, L; Alexander, C; Kilcoyne, A; Zega, T

    2010-01-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with {sup 15}N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large {sup 15}N anomaly ({delta}{sup 15}N = 1120{per_thousand}). Associated, non-globular, organic matter from this track is less enriched in {sup 15}N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ({single_bond}C{triple_bond}N) and carboxyl ({single_bond}COOH) functional groups. It is significantly enriched in D ({delta}D = 1000{per_thousand}) but has a terrestrial {sup 15}N/{sup 14}N ratio. Experiments indicate that similar D enrichments, unaccompanied by {sup 15}N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large {sup 15}N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in {sup 15}N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K

  17. Process for isotope separation

    International Nuclear Information System (INIS)

    Emile, B.F.M.

    1983-11-01

    A process is claimed for isotopic separation applied to isotopes of elements that can be placed in at least a physicochemical form in which the isotopic atoms or the molecules containing these atoms can be easily displaced and for which there are selective radiations preferentially absorbed by the isotopes of a certain type or by the molecules containing them, said absorption substantially increasing the probability of ionization of said atoms or molecules relative to the atoms or molecules that did not absorb the radiation. The process consists of placing the isotopic mixture in such a form, subjecting it in a separation zone to selective radiations and to an electrical field that produces migration of positive ions toward the negative electrodes and negative ions toward the positive electrodes, and withdrawing from certain such zones the fractions thus enriched in certain isotopes

  18. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples

    NARCIS (Netherlands)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-01-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid

  19. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    1981-05-01

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  20. Radioactivity 85Kr in krypton enriched with light isotope

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskij, A.A.

    1992-01-01

    85 Kr content in krypton enriched with 78 Kr is measured within the frames of experiment for search of binary position decay and conversion of atomic electron into 78 Kr. Voluminous activity in krypton enriched up to 98% 78 Kr equal to 0.206 -0.004 +0.001 Bq/L is obtained which is by 4000 less as compared to natural krypton. 7 refs.; 1 fig.; 1 tab

  1. Process and device for U isotope separation

    International Nuclear Information System (INIS)

    Aubert, Jacques; Carles, Maurice; Neige, Roger.

    1976-01-01

    The description is given of a process for enriching uranium with one of its isotopes by isotopic exchange in sub-cascades assembled to form a cascade, each sub-cascade having facilities for bringing into contact an aqueous phase charged with uranium of a lower valency with an organic phase charged with uranium of a higher valency, in conditions that restrict the transfer of upper valency uranium into the aqueous phase. Each sub-cascade has the following stages at least: isotopic exchange in a set of contact systems between the aqueous phase and the organic phase where the aqueous phase depletes and the organic phase becomes enriched with isotope 235; uranium extraction until depletion of the organic phase in a first extractor; reduction of the liquid phase uranium and acidification before this reduced aqueous phase passes into the isotopic exchange system then oxidation of the uranium of this aqueous phase coming from the system; extraction of the aqueous phase uranium until depletion in the second extractor by the organic phase [fr

  2. SiV color centers in Si-doped isotopically enriched {sup 12}C and {sup 13}C CVD diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, Vadim; Bolshakov, Andrey [General Physics Institute, RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Boldyrev, Kirill [Institute of Spectroscopy, RAS, Troitsk, Moscow (Russian Federation); Krivobok, Vladimir; Nikolaev, Sergei [Lebedev Physical Institute, RAS, Moscow (Russian Federation); Khomich, Alex [Institute of Radio Engineering and Electronics, RAS, Fryazino (Russian Federation); Khomich, Andrew [General Physics Institute, RAS, Moscow (Russian Federation); Institute of Radio Engineering and Electronics, RAS, Fryazino (Russian Federation); Krasilnikov, Anatoly [Institution ' ' ProjectCenter ITER' ' , Moscow (Russian Federation); Ralchenko, Victor [General Physics Institute, RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Harbin Institute of Technology, Harbin (China)

    2017-11-15

    The effect of isotopic modification of diamond lattice on photoluminescence (PL) and optical absorption spectra of ensembles of SiV{sup -} centers was studied. Thin epitaxial diamond layers were grown by a microwave plasma CH{sub 4}/H{sub 2} mixtures using methane enriched to 99.96% for either {sup 12}C or {sup 13}C isotopes, while the Si doping was performed by adding a small percentage of silane SiH{sub 4} into the plasma. Temperature dependent SiV{sup -} ZPL spectra in absorption were measured at 3-80 K to monitor the evolution of the ZPL fine structure. It is found that the SiV{sup -} ZPL at 736.9 nm observed in PL for {sup 12}C diamond at T = 5 K, exhibits a blue shift of 1.78 meV, to 736.1 nm in {sup 13}C diamond matrix. Narrow ZPL with the width (FWHM) of 0.09 meV (21 GHz) was measured in absorption spectra at T = 3-30 K in the Si-doped {sup 13}C diamond. Besides the charged SiV{sup -} center, the absorption of the neutral SiV{sup 0} defect at 946 nm wavelength has also been detected. From changes observed in SiV{sup -} phonon band structure in PL with isotopic modification, the band at 64 meV was confirmed to be a local vibration mode (LVM) involving a Si atom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  4. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The geochemical and U-series isotopic characteristics of hydrothermal sulfide samples from the Jade site (127°04.5′E, 27°15′N, water depth 1300-1450 m) at Jade site in the Okinawa Trough were analyzed. In the hydrothermal sulfide samples bearing sulfate (samples HOK1 and HOK2), the LREEs are relatively enriched. All the hydrothermal sulfide samples except HOK1 belong to Zn-rich hydrothermal sulfide. In comparison with Zn-rich hydrothermal sulfides from other fields, the contents of Zn, Pb, Ag, Cd, Au and Hg are higher, the contents of Fe, Al, Cr, Co, Ni, Sr, Te, Cs, Ti and U lower, and the 210Pb radioactivity ratios and 210Pb/Pb ratios very low. In the hydrothermal sulfide mainly composed of sphalerite, the correlations between rare elements Hf and U, and Hf and Mn as well as that between dispersive elements Ga and Zn, are strongly positive; also the contents of Au and Ag are related to Fe-sulfide, because the low temperature promotes enrichment of Au and Ag. Meanwhile, the positive correlations between Fe and Bi and between Zn and Cd are not affected by the change of mineral assemblage. Based on the 210Pb/Pb ratios of hydrothermal sulfide samples (3.99×10-5-5.42×10?5), their U isotopic composition (238U content 1.15-2.53 ppm, 238U activity 1.07-1.87 dpm/g, 234U activity 1.15-2.09 dpm/g and 234U/238U ratio 1.07-1.14) and their 232Th and 230Th contents are at base level, and the chronological age of hydrothermal sulfide at Jade site in the Okinawa Trough is between 200 and 2000 yr.

  5. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  6. Treatment and storage of hydrogen isotopes

    International Nuclear Information System (INIS)

    Jung, H. S.; Lee, H. S.; An, D. H.; Kim, K. R.; Lee, S. H.; Choi, H. J.; Back, S. W.; Kang, H. S.; Eom, K. Y.; Lee, M. S.

    2000-01-01

    Storage of gaseous hydrogen isotopes in a cylinder is a well-established technology. However, Immobilization in the solid form is preferred for long-term storage of radioactive isotope gas because of the concern for leakage of the gas. The experimental thermodynamic p-c-T data show that Ti and U soak up hydrogen isotope gas at a temperature of a few hundred .deg. C and modest pressures. It was found that more hydrogen is dissolved in the metal than deuterium at constant pressure. Thus, the lighter isotope tends to be enriched in the solid phase

  7. Cascades for natural water enrichment in deuterium and oxygen-18 using membrane permeation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Matuszak, A.; Zakrzewska-Trznadel, G.; Van Hook, A.

    1991-01-01

    The enrichment of water in heavy isotopes by permeation through a hydrophobic membrane is described. Simple counter - current cascades are of no practical interest because of their high energy demand. A better solution is to employ a double counter - current cascade re-utilizing part of the heat of condensation. Currently employed methods of natural water enrichment in heavy isotopes are compared to the proposed membrane process. (author). 18 refs, 14 tabs, 21 figs

  8. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    Science.gov (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  9. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    -labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed......In batch experiments, we studied the isotope fractionation in N and O of dissolved nitrate during dentrification. Denitrifying strains Thauera aromatica and “Aromatoleum aromaticum strain EbN1” were grown under strictly anaerobic conditions with acetate, benzoate, and toluene as carbon sources. 18O...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  10. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  11. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  12. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  13. Isotopic shifts in chemical exchange systems. 1. Large isotope effects in the complexation of Na+ isotopes by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1981-01-01

    The complexation of 24 Na + and 22 Na + by 18 of the most widely used macrocyclic polyethers (crown ethers and monocyclic and bicyclic aminopolyethers) has been investigated in view of possible equilibrium isotope shifts. Solvated salts and polyether complexes were distributed differently into two phases and isotope ratios determined in both phases. Chloroform/water systems were shown to be particularly suitable to the investigations allowing favorable distribution for Na + and 13 of the 18 polyethers employed. With crown ethers 24 Na + enrichment varied from nonsignficant values (for large crown ethers) up to 3.1 +- 0.4% (18-crown-6). In the case of bicyclic aminopolyethers, ligands with cages of optimum size to accommodate Na + showed 24 Na + enrichment between O (nonsignificant) (2.2/sub B/2./sub B/) and 5.2 +- 1.8% (2.2.1). In contrast, for 2.2.2. and its derivatives, being too large for Na + , 22 Na + enrichment varying from O (nonsignificant) (2.2.2.p) up to 5.4 +- 0.5% (2.2.2.) has been observed. These values are remarkably high. They are explained by different bonding in solvate structure and polyether complex by using the theoretical approach of Bigeleisen

  14. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    Science.gov (United States)

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  15. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    Science.gov (United States)

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (solar system (solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  16. Isotope enrichment by photolysis on ordered surfaces

    International Nuclear Information System (INIS)

    Epling, G.A.; Florio, E.

    1981-01-01

    A surface was prepared as a micelle model which could be altered, by reacting trichlorododecylsilane with silica gel. Adsorption of dibenzyl ketone onto this surface followed by irradiation resulted in a recovered dibenzyl ketone enriched in 13 C. The plot of log S vs -log (1-f) had a slope of 1.66

  17. The use of environmental monitoring as a technique to identify isotopic enrichment activities

    International Nuclear Information System (INIS)

    Buchmann, Jose Henrique

    2000-01-01

    The use of environmental monitoring as a technique to identify activities related to the nuclear fuel cycle has been proposed, by international organizations, as an additional measure to the safeguards agreements in force. The elements specific for each kind of nuclear activity, or nuclear signatures, inserted in the ecosystem by several transfer paths, can be intercepted with better or worse ability by different live organisms. Depending on the kind of signature of interest, the anthropogenic material identification and quantification require the choice of adequate biologic indicators and, mainly, the use of sophisticated techniques associated with elaborate sample treatments. This work demonstrates the technical viability of using pine needles as bioindicators of nuclear signatures associated with uranium enrichment activities. Additionally, it proposes the use of a technique widely diffused nowadays in the scientific community, the High Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICP-MS), to identify the signature corresponding to that kind of activities in the ecosystem. It can be also found a description of a methodology recently being applied in analytical chemistry,based on uncertainties estimates metrological concepts, used to calculate the uncertainties associated with the obtained measurement results. Nitric acid solutions with a concentration of 0.3 mol.kg -1 , used to wash pine needles sampled near facilities that manipulate enriched uranium and containing only 0.1 μg.kg -1 of uranium, exhibit a 235 U: 238 U isotopic abundance ratio of 0.0092±0.0002, while solutions originated from samples collected at places located more than 200 km far from activities related to the nuclear fuel cycle exhibit a value of 0.0074±0.0002 for this abundance ratio. Similar results were obtained for samples collected in different places permit to confirm the presence of anthropogenic uranium and demonstrate the viability of using this technique and the

  18. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  19. Laboratory studies of 235U enrichment by chemical separation methods

    International Nuclear Information System (INIS)

    Daloisi, P.J.; Orlett, M.J.; Tracy, J.W.; Saraceno, A.J.

    1976-01-01

    Laboratory experiments on 235 U enrichment processes based on column redox ion exchange, electrodialysis, and gas exchange chromatography performed from August 1972 to September 1974 are summarized. Effluent from a 50 to 50 weight mixture of U +4 and U +6 (as UO 2 2+ ), at a total uranium concentration of 5 mg U per ml in 0.25N H 2 SO 4 -0.03N NaF solution, passing through a 100 cm length cation exchange column at 0.5 ml/min flow rates, was enriched in 235 U by 1.00090 +- .00012. The enriched fraction was mostly in the +6 valence form while the depleted fraction was U +4 retained on the resin. At flow rates of 2 ml/min, the enrichment factor decreases to 1.00033 +- .00003. In the electrodialysis experiments, the fraction of uranium diffusing through the membranes (mostly as +6 valence state) in 4.2 hours is enriched in 235 U by 1.00096 +- .00012. Gas exchange chromatography tests involved dynamic and static exposure of UF 6 over NaF. In dynamic tests, no significant change in isotopic abundance occurred in the initial one-half weight cut of UF 6 . The measured relative 235 U/ 238 U mole ratios were 1.00004 +- .00004 for these runs. In static runs, enrichment became evident. For the NaF(UF 6 )/sub x/-UF 6 system, there is 235 U depletion in the gas phase, with a single-stage factor of 1.00033 at 100 0 C and 1.00025 at 25 0 C after 10 days of equilibration. The single-stage or unit holdup time is impractically long for all three chemical processes

  20. Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil

    DEFF Research Database (Denmark)

    Mathieu, O.; Levegue, J.; Henault, C.

    2007-01-01

    Nitrous oxide, a greenhouse gas, is mainly emitted from soils during the denitrification process. Nitrogen stable-isotope investigations can help to characterise the N(2)O source and N(2)O production mechanisms. The stable-isotope approach is increasingly used with (15)N natural abundance...

  1. Carbonate Mineral Formation on Mars: Clues from Stable Isotope Variation Seen in Cryogenic Laboratory Studies of Carbonate Salts

    Science.gov (United States)

    Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.

    2013-01-01

    The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the

  2. Vacuum-arc plasma centrifuge applied to stable isotope separation

    International Nuclear Information System (INIS)

    Del Bosco, E.

    1989-09-01

    This work describes the results of a vacuum-arc plasma centrifuge experiment. A plasma centrifuge is an apparatus where a plasma column is produced due to the interaction of an electric current with an externally applied magnetic field, sup(→)J x sup(→)B. Among the applications of a rotating plasma, this work deals particularly with its utilization in an isotope enrichment device. The main characteristics of the plasma produced in this experiment are presented, with special attention to the plasma column rotation and the isotope enrichment. The analysis of the results is performed using a fluid model for a completely ionized rigid body rotating plasma column in steady state equilibrium. The main results are: a) rotation frequency of the plasma column in the range 2 x 10 sup(4) to 3 x 10 sup(5) rad/s; b) enrichment of 10 to 30% for the magnesium isotopes, and of 290 to 490% for the carbon 13 isotope; c) rigid body rotation of the plasma column only for radii smaller than the characteristic radius of the plasma column. re; d) linear dependence of the rotation frequency upon the magnetic field strength only for r < re; e) existence of an optimum value of the magnetic field for maximum enrichment; and f) dependence of the rotation frequency upon the inverse of the atomic mass. (author)

  3. Isotope enrichment by photolysis on ordered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Epling, G.A.; Florio, E.

    1981-03-11

    A surface was prepared as a micelle model which could be altered, by reacting trichlorododecylsilane with silica gel. Adsorption of dibenzyl ketone onto this surface followed by irradiation resulted in a recovered dibenzyl ketone enriched in /sup 13/C. The plot of log S vs -log (1-f) had a slope of 1.66. (DLC)

  4. Interim report on modeling studies of two-photon isotope separation

    International Nuclear Information System (INIS)

    Hwang, W.C.; Badcock, C.C.; Kamada, R.F.

    1975-01-01

    The two-photon or two-step dissociation method of laser induced isotope enrichment is being modeled for the HBrNO photochemical system. In the model, H 79 Br is selectively excited by resonance IR laser radiation and then dissociated by uv radiation. Selectively dissociated Br atoms are scavenged to form isotopically enriched BrNO and Br 2 . This model includes all kinetic and absorption processes found to be significant and the time-varying concentrations of any species involved in a significant process. Among these processes are vibrational energy transfer reactions (including isotopic exchange) involving HBr v = 0 - 3, rotational and translational (velocity) relaxation processes, dissociation of HBr in the v = 0 - 3 levels, and secondary chemical reactions of the dissociation products. The absorption and kinetic processes that are most important to 79 Br enrichment have been identified and the study of the effects on enrichment upon variation of external parameters (such as reactant pressure, ir or uv source intensity, and temperature) is in progress. Some preliminary results are: (1) intensity of the ir source is usually more important than the uv intensity; (2) chemical reactions are the dominant kinetic processes at lower pressures while energy transfer reactions dominate at higher pressures; (3) kinetic processes usually have greater effect on the absolute amount of enriched products; (4) isotopic abundance of 79 Br in the products can range from 0.55 to 0.80 for the conditions used in the model

  5. Isotopic Hg in an Allende carbon-rich residue

    Science.gov (United States)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  6. Enrichment situation outside the United States

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Different enrichment technologies are briefly characterized which include gaseous diffusion, which is presently the production mainstay of the United States and France; the gaseous centrifuge which is the production plant for Urenco and the technology for future United States enrichment expansion; the aero-dynamic processes which include the jet nozzle (also known as the Becker process) and the fixed-wall centrifuge (also known as the Helikon process); chemical processes; laser isotope separation processes (also referred to in the literature as LIS); and plasma technology

  7. Barium isotope fractionation during the experimental transformation of aragonite to witherite and of gypsum to barite, and the effect of ion (de)solvation.

    Science.gov (United States)

    Böttcher, Michael E; Neubert, Nadja; von Allmen, Katja; Samankassou, Elias; Nägler, Thomas F

    2018-06-01

    In this study, we present the experimental results for stable barium (Ba) isotope fractionation ( 137 Ba/ 134 Ba) during the transformation of aragonite (CaCO 3 ) and gypsum (CaSO 4 ·2H 2 O) in Ba-bearing aqueous solution to witherite (BaCO 3 ) and barite (BaSO 4 ), respectively. The process was studied at three temperatures between 4 and 60 °C. In all cases, the transformation leads to a relative enrichment of the lighter 134 Ba isotope in the solid compared to the aqueous solution, with 137/134 Ba enrichment factors between -0.11 and -0.17 ‰ for BaCO 3 , and -0.21 and -0.26 ‰ for BaSO 4 . The corresponding mass-dependent 138/134 Ba enrichment factors are -0.15 to -0.23 ‰ for BaCO 3 , and -0.28 to -0.35 ‰ for BaSO 4 . The magnitude of isotope fractionation is within the range of recent reports for witherite and barite formation, as well as trace Ba incorporation into orthorhombic aragonite, and no substantial impact of temperature can be found between 4 and 80 °C. In previous studies, ion (de)solvation has been suggested to impact both the crystallization process of Ba-bearing solids and associated Ba isotope fractionation. Precipitation experiments of BaSO 4 and BaCO 3 using an methanol-containing aqueous solution indicate only a minor effect of ion and crystal surface (de)solvation on the overall Ba isotope fractionation process.

  8. Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion

    International Nuclear Information System (INIS)

    Rueschenschmidt, K.; Bracht, H.; Stolwijk, N.A.; Laube, M.; Pensl, G.; Brandes, G.R.

    2004-01-01

    Diffusion of 13 C and 30 Si in silicon carbide was performed with isotopically enriched 4H- 28 Si 12 C/ nat SiC heterostructures which were grown by chemical vapor phase epitaxy. After diffusion annealing at temperatures between 2000 deg. C and 2200 deg. C the 30 Si and 13 C profiles were measured by means of secondary ion mass spectrometry. We found that the Si and C diffusivity is of the same order of magnitude but several orders of magnitude lower than earlier data reported in the literature. Both Si and C tracer diffusion coefficients are in satisfactory agreement with the native point defect contribution to self-diffusion deduced from B diffusion in SiC. This reveals that the native defect which mediates B diffusion also controls self-diffusion. Assuming that B atoms within the extended tail region of B profiles are mainly dissolved on C sites, we propose that B diffuses via the kick-out mechanism involving C interstitials. Accordingly, C diffusion should proceed mainly via C interstitials. The mechanism of Si diffusion remains unsolved but Si may diffuse via both Si vacancies and interstitials, with the preference for either species depending on the doping level

  9. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  10. Isotope separation by photodissociation of Van der Wall's molecules

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex is described. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam

  11. A consideration on laser enrichment module

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1983-09-01

    Several problems are discussed for designing a simplified enrichment module based on Atomic Laser Isotope Separation Method, which involve the vaporization of metal, laser excitation, laser ionization and ion recovery. The conditions at which the consumed energy has the minimum value are obtained by calculating the specific energy consumption for producing unit amount of enriched products. It is found that there should be an appropriate relationship between the processing atomic density and the electrode gap in order to avoid the enrichment loss caused by the charge exchange during the ion recovery. Moreover it is also found that this relation depends on the electrode length measured along both the atomic beam direction and the laser beam direction. (author)

  12. Great isotope effects in compounding of sodium isotopes by macrocyclic polyether

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1978-01-01

    Isotope effects appear in the compounding of the two sodium isotopes 24 Na + and 22 Na + with macrocyclic polyethers, whose value was determined for the 13 best known polyethers. A radiometric process was used for determining the different half life periods of the nuclides used. To separate the compound and non-compound types, these were distributed between water and chloroform. The isotope ratio in the chloroform phase was compared with the output isotope ratio and the separation facfor determined from this. When using crown ethers, there was enrichment of 24 Na + by a significant amount (large crown ether) up to 3.1 +- 0.4% for 18 crown 6. The remarkably high results can be correlated by Biegeleisen's theory with other chemical conditions. There is a report on the first results of transferring these conditions to the H + /T + system. (orig.) [de

  13. Isotope distribution program at the Oak Ridge National Laboratory with emphasis on medical isotopes

    International Nuclear Information System (INIS)

    Adair, H.L.

    1987-01-01

    The Isotope Distribution Program (IDP) is a group of individual activities with separate and diverse DOE sponsors which share the common mission of the production and distribution of isotope products and the performance of isotope-related services. Its basic mission is to provide isotope products and associated services to the user community by utilizing government-owned facilities that are excess to the primary mission of the DOE. The IDP is in its 41st year of operation. Initially, the program provided research quantities of radioactive materials, and through the 1950's it was the major supplier of radioisotopes for both research and commercial application. Distribution of enriched stable isotopes began in 1954. This paper discusses the use of radioisotopes in medicine and the role that ORNL plays in this field

  14. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  15. Monitoring of chemical and isotopic composition of the Euphrates river in Syria

    International Nuclear Information System (INIS)

    Kattan, Z.

    2008-11-01

    The ratios of stable isotopes ( 18 O and 2 H), tritium content, together with the chemical composition of major ions of the Euphrates and Balikh (Euphrates tributary) Rivers, and the groundwaters of four wells drilled close to the Euphrates River course, were measured on a monthly basis. The Euphrates River water was monitored at twelve stations along its course in Syria during the period from January 2004 to December 2006, whereas those of the Balikh and groundwaters were only investigated during 2005. Although, the spatial variations of heavy stable isotope concentrations are moderated with respect to other large rivers in the world, the concentrations of these isotopes increase generally downstream the Euphrates River, with a sharp enrichment at Al-Assad Lake. This sharp increase could be explained by the effect of direct evaporation from the river and its tributaries; and the effect of drainage return flows of irrigation waters, isotopically more enriched. Enrichment of stable isotopes in the Euphrates River water was used as a direct indicator of evaporation. Based on an experimental evaporation result of a Euphrates water sample and the integral enrichment of heavy stable isotopes in the Euphrates River system, the amount of water losses by evaporation from Al-Assad Lake was estimated to be about 1.26 to 1.62 billion m''3, according to 18 O and deuterium ( 2 H), respectively. This amount represents about 12-16% of the renewable surface water resources in the country. (author)

  16. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  17. Market implications of advanced enrichment techniques

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1987-01-01

    The only commercial outlet for uranium is for nuclear reactors and the uranium market will be closely linked to the nuclear power market for the forseeable future. Any production cost saving in the uranium cycle clearly, therefore, increases the chances for world-wide expansion of the nuclear industry. Thus, although there is overcapacity in enrichment, development of cheaper, new or more efficient established techniques, is important. The atomic vapour laser isotope separation process is considered and discussed against this background. Separative work units are explained for this technique. The problems of integrating laser isotope separation into the fuel cycle are discussed. The effects on the amount of natural uranium required for different recycling strategies, and for different laser tails assay and time schedules are illustrated. Over the next twenty years laser-based enrichment will have an important effect on the fuel cycle industry. COGEMA is expected to play a part in developing these new techniques. (U.K.)

  18. Isotopic Generation and Confirmation of the PWR Application Model?

    International Nuclear Information System (INIS)

    L.B. Wimmer

    2003-01-01

    The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO 2 fuel is also included in the database. The isotopic database covers enrichments of 235 U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2

  19. Enrichment of lithium isotope .sup.6./sup.Li by ion exchange resin with specific particle size

    Czech Academy of Sciences Publication Activity Database

    Mikeš, J.; Ďurišová, Jana; Jelínek, L.

    2017-01-01

    Roč. 312, č. 1 (2017), s. 13-18 ISSN 0236-5731 Institutional support: RVO:67985831 Keywords : lithium * isotope separation * elution chromatography * ion exchange chromatography Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  20. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  1. Isotope separation by selective photodissociation of glyoxal

    International Nuclear Information System (INIS)

    Marling, J.B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation in a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope

  2. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  3. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  4. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  5. A new feature in the internal heavy isotope distribution in ozone

    International Nuclear Information System (INIS)

    Bhattacharya, S. K.; Liang, Mao-Chang; Savarino, Joel; Michalski, G.

    2014-01-01

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition ( 18 O/ 16 O and 17 O/ 16 O ratio) which does not follow normal mass fractionation rule: δ 17 O ∼ 0.52 * δ 18 O, expressed as an anomaly Δ 17 O = δ 17 O − 0.52 * δ 18 O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ 18 O (s) or δ 18 O (as) (and similarly for δ 17 O) as well as position dependent isotope anomaly Δ 17 O (s) and Δ 17 O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ 17 O (s) is zero. Consequently, Δ 17 O (as) = 1.5 * Δ 17 O (bulk) (named here simply as the “1.5 rule”) which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure

  6. A new feature in the internal heavy isotope distribution in ozone

    Science.gov (United States)

    Bhattacharya, S. K.; Savarino, Joel; Michalski, G.; Liang, Mao-Chang

    2014-10-01

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition (18O/16O and 17O/16O ratio) which does not follow normal mass fractionation rule: δ17O ˜ 0.52*δ18O, expressed as an anomaly Δ17O = δ17O - 0.52*δ18O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ18O (s) or δ18O (as) (and similarly for δ17O) as well as position dependent isotope anomaly Δ17O (s) and Δ17O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ17O (s) is zero. Consequently, Δ17O (as) = 1.5 * Δ17O (bulk) (named here simply as the "1.5 rule") which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure.

  7. Effects of Enrichment Presentation and Other Factors on Behavioral Welfare of Pantropical Spotted Dolphin (Stenella attenuata).

    Science.gov (United States)

    Perez, Barbara C; Mehrkam, Lindsay R; Foltz, Amanda R; Dorey, Nicole R

    2018-01-01

    Environmental enrichment is a crucial element of promoting welfare for animals in captivity. However, enrichment programs are not always formally evaluated for their efficacy. Furthermore, there is little empirical evidence of enrichment evaluation for species of small cetaceans in zoological settings. A wide range of variables may potentially influence enrichment efficacy and how it in turn affects behavior. The purpose of this study was to determine the most preferred environmental enrichment, and method of presentation, for a species that has not been well studied in captivity, the pantropical spotted dolphin (Stenella attenuata). In order to determine which enrichment items and method of presentation were most effective at eliciting enrichment interaction, we systematically examined how several variables of enrichment influenced enrichment interaction. The results suggested that presenting enrichment after training sessions influenced interaction with the enrichment. The results also indicated preference for enrichment type and a specific enrichment device. Finally, factors that influenced interaction were also found to influence aberrant behavior. The results support the premise that enrichment be "redefined" for each species and each individual.

  8. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    Science.gov (United States)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  9. Isotopic Hg in an Allende carbon-rich residue

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body. 9 refs

  10. Enrichment supply and technology outside the United States

    International Nuclear Information System (INIS)

    Levin, S.A.; Blumkin, S.

    1977-01-01

    This is a review of foreign uranium enrichment capacity and uranium isotope separation technology, based on news items and articles in the public literature. Tables are included presenting capacity plans, growth, sales, research and development, etc

  11. Deproteinization assessment using isotopically enriched compounds to trace the coprecipitation of low-molecular-weight selenium species with proteins.

    Science.gov (United States)

    Godin, Simon; Bouzas-Ramos, Diego; Fontagné-Dicharry, Stéphanie; Bouyssière, Brice; Bueno, Maïté

    2017-08-01

    Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic ( 77 Se-selenite) and organic zwitterionic ( 76 Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  13. Optimal laser control of molecular wave packet dynamics under the influence of dissipation: possibility of isotope separation

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2004-01-01

    Possibility of fs-laser-pulse isotope separation is numerically investigated using optimal control theory. Optimal pulses that separate the 1:1 mixture of 79 Br 2 and 28 1 Br 2 are calculated. Quantum interferences induced by the optimally designed fs pulse efficiently enhance the isotope shifts through multiple electronic transitions, which results in a high enrichment factor. When utilizing vibrational multi-photon transitions (a virtual model), an optimal pulse can transfer the two isotopes to specified different vibrational states with almost 100% probability. In the presence of colored noises, the optimal pulse achieves the control with minimum loss of product yields within the bath correlation time. (author)

  14. Isotope pattern deconvolution as a tool to study iron metabolism in plants.

    Science.gov (United States)

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes

    2008-01-01

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.

  15. Isotope pattern deconvolution as a tool to study iron metabolism in plants

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Castrillon, Jose A.; Moldovan, Mariella; Garcia Alonso, J.I. [University of Oviedo, Department of Physical and Analytical Chemistry, Oviedo (Spain); Lucena, Juan J.; Garcia-Tome, Maria L.; Hernandez-Apaolaza, Lourdes [Autonoma University of Madrid, Department of Agricultural Chemistry, Madrid (Spain)

    2008-01-15

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using {sup 57}Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned {sup 57}Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low {sup 57}Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of {sup 57}Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample. (orig.)

  16. Water Metabolism of Walruses by Isotope Dilution

    DEFF Research Database (Denmark)

    Acquarone, M.; Born, E. W.; Chwalibog, A.

    was sampled via an epidural catheter, at regular intervals, for up to seven hours after the initial enrichment to assess isotope equilibration in the body water pools. Five individuals returned to the haul-out after feeding trips of varying duration (158±86 hr, 44-287 hr) where they were immobilized again......In August 2000, the hydrogen isotope dilution method was used on 7 adult male Atlantic walruses (Odobenus rosmarus rosmarus) (weight: 1197±148 kg, mean±SD, range 1013-1508 kg) at a terrestrial haul-out in Northeastern Greenland to determine their body water pool sizes and body water turnover rates....... During immobilization by use of etorphine HCl (reversed with diprenorphine HCl), a first blood sample was taken to measure background isotope levels. The animals were then enriched with deuterium oxide by infusion into the epidural vein. During recovery, while the animals were still on the beach, blood...

  17. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  18. Osmium isotope anomalies in chondrites: Results for acid residues and related leachates

    Science.gov (United States)

    Yokoyama, Tetsuya; O'D. Alexander, Conel M.; Walker, Richard J.

    2010-03-01

    We have investigated Os isotope anomalies in acid residues enriched in insoluble organic matter (IOM) extracted from ten primitive chondrites, acid leachates and residues of these fractions, as well as acid leachates of bulk chondrites. Osmium isotopic compositions of bulk carbonaceous, ordinary and enstatite chondrites are also reported. Consistent with prior results, bulk chondrites have homogeneous Os isotope compositions for s-, r-, and p-process nuclides that are indistinguishable from terrestrial, at the current level of resolution. In contrast, nearly all the IOM-rich residues are enriched in s-process Os, evidently due to the preferential incorporation of s-process enriched presolar grains (most likely presolar SiC). Presolar silicate grains that formed in red giant branch (RGB) or asymptotic giant branch (AGB) stars are also likely hosts of additional s-process Os in chondrites. Consistent with one prior study, Os released by weak acid leaching of bulk chondrites is slightly to strongly enriched in r-process nuclides, of which the carrier may be fine-grained presolar silicates formed in supernovae or unidentified solar phases. Collectively, the different, chemically concentrated components in these meteorites are variably enriched in s-, r-, and possibly p-process Os, of which the individual carriers must have been produced in multiple stellar environments. The lack of evidence for Os isotopic heterogeneity among bulk chondrites contrasts with evidence for isotopic heterogeneities for various other elements at approximately the same levels of resolution (e.g., Cr, Mo, Ru, Ba, Sm, and Nd). One possible explanation for this is that the heterogeneities for some elements in bulk materials reflect selective removal of some types of presolar grains as a result of nebular processes, and that because of the strong chemical differences between Os and the other elements, the Os was not significantly affected. Another possible explanation is that late-stage injection

  19. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    Science.gov (United States)

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  20. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  1. Fuel reprocessing data validation using the isotope correlation technique

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, and graphite reactors) operating in a variety of modes (power, research, and production reactors), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (- 0.02 ± 0.23)% for the measured U-235 and (+ 0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems

  2. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  3. Osmium Isotope Compositions of Komatiite Sources Through Time

    Science.gov (United States)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os

  4. Development of stable isotope manufacturing in Russia

    International Nuclear Information System (INIS)

    Pokidychev, A.; Pokidycheva, M.

    1999-01-01

    For the past 25 years, Russia has relied heavily on the electromagnetic separation process for the production of middle and heavy mass stable isotopes. The separation of most light isotopes had been centered in Georgia which, after the collapse of the USSR, left Russia without this capability. In the mid-1970s, development of centrifuge technology for the separation of stable isotopes was begun. Alternative techniques such as laser separation, physical-chemical methods, and ion cyclotron resonance have also been investigated. Economic considerations have played a major role in the development and current status of the stable isotope enrichment capabilities of Russia

  5. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    International Nuclear Information System (INIS)

    Grossmann, E.L.

    1984-01-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta 13 C of bicarbonate ion and thus aragonite-HCO 3 - and calcite-HCO 3 - isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in 18 O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar delta 13 C values and yield an average epsilonsub(cl-b) value of -0.2 +- 0.1 per mille between 8 deg and 10 deg C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B, argentea, Slope and Basin dwellers, are -0.7 +- 0.1 per mille enriched relative to ambient bicarbonate for 3 to 9 deg C. (author)

  6. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-01-01

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ 13 C and δ 15 N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13 C and 15 N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ 13 C and δ 15 N values. These data were compared to previously published δ 13 C and δ 15 N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ 13 C and δ 15 N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  7. Stable-isotope composition of the water of apple juice

    International Nuclear Information System (INIS)

    Bricout, Jacques; Merlivat, Liliane

    1973-01-01

    By deuterium and oxygen 18 analysis, it was shown that apples' water is enriched in heavier isotopes as compared to rain water. The isotopic composition of the water of reconstituted apple juice is closed to the isotopic content of the rain water used for dilution. Thus, deuterium and oxyden 18 analysis allows a good analytical distinction between natural apple juice and reconstituted juices [fr

  8. Analysis of isotope element by electrolytic enrichment method for ground water and surface water in Saurashtra region, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Sajal Singh

    2016-12-01

    Full Text Available The present study has been aimed for the assessment of isotope element Tritium (3H. It is a great threat to human health and environment for lengthy duration. The tritium exists in earth in diverse forms such as (1 small amounts of natural tritium are produced by alpha decay of lithium-7, (2 natural atmospheric tritium is also generated by secondary neutron cosmic ray bombardment of nitrogen, (3 atmospheric nuclear bomb testing in the 1950s, although the contribution from nuclear power plants is small. Tritium or 3H is a radioactive isotope of hydrogen with a half-life of 12.32 ± 0.02 years. Water samples from ground water, surface water, and precipitation were collected from different locations in Gujarat area and were analyzed for the same. Distillation of samples was done to reduce the conductivity. Deuterium and Hydrogen were removed by the process of physico-chemical fractionation in the tritium enrichment unit. The basis of physico-chemical fractionation is the difference in the strength of bonds formed by the light vs. the heavier isotope of a given element. A total of 10 cycles (runs were executed using Quintals process. Tritium concentration files were created with help of WinQ and Quick start software in Quintals process (Liquid Scintillation Spectrometer. The concentration of tritium in terms of tritium units (TU of various samples has been determined. The TU values of the samples vary in the range of 0.90–6.62 TU.

  9. Stable isotope discrimination factors and between-tissue isotope comparisons for bone and skin from captive and wild green sea turtles (Chelonia mydas).

    Science.gov (United States)

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Price, Mike; Kurle, Carolyn M

    2017-11-30

    The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ 13 C) and nitrogen (Δ 15 N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. We overcame these constraints and determined the Δ 13 C and Δ 15 N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ 13 C values) and nitrogen (δ 15 N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI ratios among studies using multiple tissues. The mean (±SD) Δ 13 C and Δ 15 N values (‰) between skin and bone from captive turtles and their diet (non-lipid-extracted) were 2.3 ± 0.3 and 4.1 ± 0.4 and 2.1 ± 0.6 and 5.1 ± 1.1, respectively. The mathematically predicted Δ 13 C and Δ 15 N values were similar (to within 1‰) to the experimentally derived values. The mean δ 15 N values from bone were higher than those from skin for captive (+1.0 ± 0.9‰) and wild (+0.8 ± 1.0‰) turtles; the mean δ 13 C values from bone were lower than those from skin for wild turtles (-0.6 ± 0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. For sea turtles, we provide the first (a) bone-diet SI discrimination factors, (b) comparison of SI ratios from individual-specific bone and skin, and (c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach

  10. An ideal cascade for uranium 235 enrichment by centrifuge jet nozzle process

    International Nuclear Information System (INIS)

    Santos, E.C. dos.

    1981-01-01

    The design of an ideal cascade for the process of isotope separation by centrifugation for the U 235 enrichment, is presented. A selection of building materials used in fabrication of isotope separation plants, showing the importance of aluminium, due the bauxite mines in Northern Brazil, is done. (M.C.K.) [pt

  11. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  12. Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curaçao

    Science.gov (United States)

    Walker, Richard J.; Storey, Michael; Kerr, Andrew C.; Tarney, John; Arndt, Nicholas T.

    1999-03-01

    Recent work has suggested that the mafic-ultramafic volcanism in evidence throughout portions of the Caribbean, Central America, and northern South America, including the islands of Gorgona and Curaçao, was generated as part of a middle-Cretaceous, large igneous province. New Re-Os isochron results for tholeiitic basalts from Gorgona and Curaçao indicate crystallization ages of 89.2 ± 5.2 and 85.6 ± 8.1 Ma, respectively, consistent with reported Ar ages. The Gorgona ultramafic suite shows a large range in initial Os isotopic composition, with γ Os values ranging from -0.5 to +12.4. This large range reflects isotopic heterogeneities in the mantle source similar to those observed for modern ocean island basalts. In contrast to ocean island basalts, however, Os isotopic compositions do not correlate with variations in Nd, Sr, or Pb isotopic compositions, which are within the range of depleted mid-ocean ridge basalts. The processes that produced these rocks evidently resulted in the decoupling of Os isotopes from the Nd, Sr, and Pb isotopic systems. Picrites from Curaçao have very uniform, chondritic initial Os isotopic compositions, with initial γ Os values ranging only from -0.4 to ±1.4. Basalts from Curaçao, however, define an isochron with a 187Os-enriched initial isotopic composition (γ Os = +9.5). In contrast to the 187Os-enriched ultramafic rocks from Gorgona, the enrichment in these basalts could have resulted from lithospheric contamination. If the Gorgona and Curaçao rocks were derived from the same plume, Os results, combined with Sr, Nd, and Pb data indicate a heterogeneous plume, with multiple compositionally and isotopically distinct domains. The Os isotopic results require derivation of Os from a minimum of two distinct reservoirs, one with a composition very similar to the chondritic average and one with long-term enriched Re/Os. Oceanic crustal recycling has been invoked to explain most of the 187Os enrichments that have been observed in

  13. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  14. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    ’s stratosphere is nearly mass dependent, and only a small fraction of the observed anomalous oxygen-17 excess can be attributed to N2O photolysis. In contrast, stratospheric photolysis produces a significant inverse clumped isotope effect.(ii) Stratospheric OCS photolysis significantly enrich the remaining OCS...

  15. Monitoring the degradation and solubilisation of butyltin compounds during in vitro gastrointestinal digestion using ''triple spike'' isotope dilution GC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Gonzalez, Pablo; Encinar, Jorge Ruiz; Alonso, J. Ignacio Garcia; Sanz-Medel, Alfredo [Department of Physical and Analytical Chemistry, Oviedo (Spain). Faculty of Chemistry

    2005-01-01

    An in vitro gastrointestinal digestion approach in combination with species-specific isotope dilution analysis has been employed for the first time to study the transformation reactions as well as the solubilisation of butyltin species throughout a simulated human digestion. Different sample preparation procedures were assayed in order to avoid problems derived from lack of isotope equilibration between the endogenous and the isotopically-enriched added species. A ''triple spike'' approach, which can be used to calculate the corrected concentrations of mono-, di-, and tributyltin (MBT, DBT and TBT, respectively), as well as six interconversions, was employed throughout this work. In order to calculate and compare the species degradation factors, a triple spike solution containing each butyltin species enriched in a different isotope was added to the simulated gastric and intestinal fluids before the digestion procedures in the presence and in the absence of a solid biological matrix (commercial mussel tissue). Additionally, by analysing the soluble and insoluble fractions resulting from the simulated digestion of a commercial mussel tissue (gastric and gastric plus intestinal digestion), total mass balances for each butyltin compound could be derived. For this purpose, the isotopically-enriched species were added after the enzymatic digestions in order to avoid problems derived from lack of isotope equilibration. The mass balances provided information not only about the solubilisation but also about the degradation of the butyltin species during the digestion procedures. Good agreement between the degradation factors calculated under all experiments performed in this work and between those reported in previous works were obtained. The most serious degradation observed was that of DBT to produce MBT, whereas slight degradations of TBT and MBT were detected. Moreover, a worrying 61% of the original total butyltin content present in a commercial

  16. Distinctive diet-tissue isotopic discrimination factors derived from the exclusive bamboo-eating giant panda.

    Science.gov (United States)

    Han, Han; Wei, Wei; Nie, Yonggang; Zhou, Wenliang; Hu, Yibo; Wu, Qi; Wei, Fuwen

    2016-11-01

    Stable isotope analysis is very useful in animal ecology, especially in diet reconstruction and trophic studies. Differences in isotope ratios between consumers and their diet, termed discrimination factors, are essential for studies of stable isotope ecology and are species-specific and tissue-specific. Given the specialized bamboo diet and clear foraging behavior, here, we calculated discrimination factors for carbon and nitrogen isotopes from diet to tissues (tooth enamel, hair keratin and bone collagen) for the giant panda (Ailuropoda melanoleuca), a species derived from meat-eating ancestors. Our results showed that carbon discrimination factor obtained from giant panda tooth enamel (ε 13 C diet-enamel = 10.0‰) and nitrogen discrimination factors from hair keratin (Δ 15 N diet-hair = 2.2‰) and bone collagen (Δ 15 N diet-collagen = 2.3‰) were lower, and carbon discrimination factors from hair keratin (Δ 13 C diet-hair = 5.0‰) and bone collagen (Δ 13 C diet-collagen = 6.1‰) were higher than those of other mammalian carnivores, omnivores and herbivores. Such distinctive values are likely the result of a low-nutrient and specialized bamboo diet, carnivore-like digestive system and exceptionally low metabolism in giant pandas. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. 37Cl/35Cl isotope ratio analysis in perchlorate by ion chromatography/multi collector -ICPMS: Analytical performance and implication for biodegradation studies.

    Science.gov (United States)

    Zakon, Yevgeni; Ronen, Zeev; Halicz, Ludwik; Gelman, Faina

    2017-10-01

    In the present study we propose a new analytical method for 37 Cl/ 35 Cl analysis in perchlorate by Ion Chromatography(IC) coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). The accuracy of the analytical method was validated by analysis of international perchlorate standard materials USGS-37 and USGS -38; analytical precision better than ±0.4‰ was achieved. 37 Cl/ 35 Cl isotope ratio analysis in perchlorate during laboratory biodegradation experiment with microbial cultures enriched from the contaminated soil in Israel resulted in isotope enrichment factor ε 37 Cl = -13.3 ± 1‰, which falls in the range reported previously for perchlorate biodegradation by pure microbial cultures. The proposed analytical method may significantly simplify the procedure for isotope analysis of perchlorate which is currently applied in environmental studies. Copyright © 2017. Published by Elsevier Ltd.

  18. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements

    NARCIS (Netherlands)

    van den Boorn, S.; Vroon, P.Z.; van Bergen, M.J.

    2009-01-01

    Sample preparation methods for MC-ICP-MS silicon-isotope measurements often involve a cation-exchange purification step. A previous study has argued that this would suffice for geological materials, as the occasional enrichment of anionic species would not compromise silicon-isotope analysis. Here

  20. Sulphur-induced offsets in MC-ICP-MS silicon-isotope measurements

    NARCIS (Netherlands)

    van den Boorn, S.; Vroon, P.Z.; van Bergen, M.J.

    2010-01-01

    Sample preparation methods for MC-ICP-MS silicon-isotope measurements often involve a cation-exchange purification step. A previous study has argued that this would suffice for geological materials, as the occasional enrichment of anionic species would not compromise silicon-isotope analysis. Here

  1. Study of the isotopic contamination with the Grenoble isotope separator

    International Nuclear Information System (INIS)

    Boge, Marc

    1970-01-01

    To know the limits of enrichment of the Grenoble electromagnetic isotope separator, we have studied the scattering of ions on the residual gas, and the chromatism. With Neodymium (Nd + ≅ 500 μA, NdO + ≅ 120 μA, Nd 2+ ≅ 70 μA) the second magnet has been used to analyse the ions which passed through the first stage slit. Therefore, we have measured the scattering with and without charge exchange of Nd + and the dissociation of NdO + . The chromatism has been studied by means of an electrostatic analyser, as a third stage. The limits of enrichment are obtained for Argon, Uranium and Neodymium. (author) [fr

  2. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  3. Isotopic discrimination during nitrous oxide loss processes: An important piece of the N2O global atmospheric budget

    International Nuclear Information System (INIS)

    Rahn, T.; Wahlen, M.; Zhang Hui; Blake, G.

    2002-01-01

    Nitrous oxide plays an important role in greenhouse forcing and stratospheric ozone regulation. It is destructed in the stratosphere mainly by UV photolysis. Laboratory studies of N 2 O-N 2 mixtures irradiated at 193 and 207 nm reveal a significant enrichment of the residual heavy nitrous oxide isotopomers. The isotopic signatures are well described by an irreversible Rayleigh distillation process, with large enrichment factors of ε 15,18 (193 nm) = -18.4, -14.5 per mil and ε 15,18 (207 nm) = -48.7, -46.0 per mil. These results, when combined with diffusive mixing processes might help to explain the stratospheric enrichments previously observed. (author)

  4. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  5. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  6. Ice-liquid isotope fractionation factors for O-18 and H-2 deduced from the isotopic correction constants for the triple point of water

    NARCIS (Netherlands)

    Wang, Xing; Meijer, Harro A. J.

    2018-01-01

    The stable isotopes of water are extensively used as tracers in many fields of research. For this use, it is essential to know the isotope fractionation factors connected to various processes, the most important of which being phase changes. Many experimental studies have been performed on phase

  7. Uranium isotope separation from 1941 to the present

    International Nuclear Information System (INIS)

    Maier-Komor, Peter

    2010-01-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239 Pu was included into the atomic bomb program. 235 U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  8. Uranium isotope separation from 1941 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Komor, Peter, E-mail: Peter@Maier-Komor.d [Retired from Physik-Department E12, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2010-02-11

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of {sup 239}Pu was included into the atomic bomb program. {sup 235}U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  9. Uranium isotope separation from 1941 to the present

    Science.gov (United States)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  10. Separation and enrichment of isotopes using laser photochemistry - fundamentals and prospectives

    International Nuclear Information System (INIS)

    Guesten, H.

    1978-01-01

    Basic knowledge is summed up on isotope separation by laser photochemistry. The principal prerequisites are explained of the application of atomic and molecular spectroscopy for this purpose. Practical examples are given of isotope separation of uranium, nitrogen, chlorine, carbon, sulfur, and molybdenum showing the application of two basic techniques, i.e., of gradual atom photoionization or gradual molecule photodissociation and of selective photochemical reactions. (L.K.)

  11. Isotopic study of water evaporation in a clayey soil, experimentation and modelling

    International Nuclear Information System (INIS)

    Mathieu, R.; Bariac, T.

    1995-01-01

    The isotopic theory of soil water evaporation in steady-state was applied to the quantification of shallow water table discharge rates in arid and semi-arid climates. This approach is limited by the time needed by the soil to reach the steady state after the last significant rain event. The 1D numerical model ''Moise'', proposed here, was developed for the simulation of the vertical profiles of water and stable isotope contents in a drying soil for any initial profile and atmospheric condition. Six non-perturbed soil columns of 1.1 m length were taken from Barogo, Burkina Faso and were saturated in the laboratory by infiltration and free drainage of pounding water and then allowed to evaporate freely. The columns were then sequentially sampled after 11, 42, 92, 162 and 253 days of drying for 18 O and 2 H isotopic analyses. 18 O profiles show an exponential shape during the first drying stage with a maximum isotopic enrichment at the surface. During the second drying stage, the penetration of very depleted atmospheric vapor tends to lower the isotopic content at the surface. The water and isotopic content were simulated with the Moise model. The model satisfactory reproduces the hydrodynamic evolution and the qualitative evolution of soil water isotopic content, but it largely overestimates the overall enrichment. It is thus plausible that a fraction of the soil water may keep its own isotopic composition with restricted exchanges with the surrounding mobile water and vapor, while a mobile phase can be affected by the isotopic enrichment. (J.S.). 27 refs., 6 figs., 3 tabs

  12. Laser isotope separation using selective inhibition and encouragement of dimer formation

    International Nuclear Information System (INIS)

    Kivel, B.

    1979-01-01

    Method and apparatus for inhibiting dimer formation of molecules of a selected isotope type in a cooled flow of gas to enhance the effectiveness of mass difference isotope separation techniques are described. Molecules in the flow containing atoms of the selected isotope type are selectively excited by infrared radiation in order to inhibit the formation of dimers and larger clusters of such molecules, while the molecules not containing atoms of the selected, excited type are encouraged to form dimers and higher order aggregates by the cooling of the gaseous flow. The molecules with the excited isotope will predominate in monomers and will constitute the enriched product stream, while the aggregated group comprising molecules having the unexcited isotope will predominate in dimers and larger clusters of molecules, forming the tails stream. The difference in diffusion coefficientts between particles of the excited and unexcited isotopes is enhanced by the greater mass differences resulting from aggregation of unexcited particles into dimers and larger clusters. Prior art separation techniques which exploit differences in isotopic diffusion rates will consequently exhibit enhanced enrichment per stage by the utilization of the present invention

  13. Oak Ridge Isotope Products and Services - Current and Expected Supply and Demand

    International Nuclear Information System (INIS)

    Aaron, W.S.; Alexander, C.W.; Cline, R.L.; Collins, E.D.; Klein, J.A.; Knauer, J.B. Jr.; Mirzadeh, S.

    1999-01-01

    Oak Ridge National Laboratory (ORNL) has been a major center of isotope production research, development, and distribution for over 50 years. Currently, the major isotope production activities include (1) the production of transuranium element radioisotopes, including 252 Cf; (2) the production of medical and industrial radioisotopes; (3) maintenance and expansion of the capabilities for production of enriched stable isotopes; and, (4) preparation of a wide range of custom-order chemical and physical forms of isotope products, particularly in accelerator physics research. The recent supply of and demand for isotope products and services in these areas, research and development (R ampersand D), and the capabilities for future supply are described in more detail below. The keys to continuing the supply of these important products and services are the maintenance, improvement, and potential expansion of specialized facilities, including (1) the High Flux Isotope Reactor (HFIR), (2) the Radiochemical Engineering Development Center (REDC) and Radiochemical Development Laboratory (RDL) hot cell facilities, (3) the electromagnetic calutron mass separators and the plasma separation process equipment for isotope enrichment, and (4) the Isotope Research Materials Laboratory (IRML) equipment for preparation of specialized chemical and physical forms of isotope products. The status and plans for these ORNL isotope production facilities are also described below

  14. Calcium isotope effects in ion exchange electromigration and calcium isotope analysis by thermo-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fujii, Y.; Hoshi, J.; Iwamoto, H.; Okamoto, M.; Kakihana, H.

    1985-01-01

    Calcium ions were made to electromigrate along a cation exchange membrane. The abundance ratios of the calcium isotopes (Ca-40, 42, 43, 44, 48) in the migrated bands were measured by thermo-ionization mass spectrometry. The lighter isotopes were enriched in the front part of the migrated band. The increments in the isotope abundance ratios were found to be proportional to the mass difference of the isotopes. The observed epsilon-values per unit mass difference (epsilon/ΔM) were 1.26 x 10 -4 (at 20 0 C), 1.85 x 10 -4 (at 25 0 C) and 2.4 x 10 -4 (at 40 0 C). The mass spectrometry was improved by using a low temperature for the evaporation of CaI 2 . (orig.)

  15. Hydrogen isotope fractionation in methane plasma

    OpenAIRE

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    Large variations in light element isotope ratios (H, N, C) are routinely observed in meteorite organic matter. The origin of these so-called anomalies is not accounted for by the classical theory of isotope fractionation. In the case of H, micrometer-size areas within the insoluble organic matter (IOM) isolated from meteorites by acid treatment, exhibit extreme deuterium enrichment. They are generally interpreted as components exogenous to the solar system and attributed to surviving interste...

  16. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    In the separation nozzle process, uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 -mixture. Due to the large excess in hydrogen the high ration of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low and a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future systems involving mechanical jet deflection were developed. However, promising results were also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Center of Karlsruhe. Since 1970 the German company STEAG has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil

  17. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  18. International Isotopes Markets

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available The paper studies world markets of stable and radioactive isotopes. Isotopes have found various applications in science, industry, agriculture and other sectors of the economy, but especially - in medicine. Nuclear medicine is developing intensively all over the world thanks to the success in the treatment of various diseases with the help of radioactive pharmaceuticals (radiopharmaceuticals. The article uses empirical data from a forecast study of the global radiopharmaceuticals market made in 2015 by a research company «Markets and Markets» for the European, North American and global markets. The paper also analyzes the statistical data on the global export and import of natural uranium, enriched and depleted uranium, plutonium, thorium and some stable isotopes of non-medical purposes, presented by a company «Trend economy» in 2014. Despite a unique industrial base for the production of isotopes created in the Soviet Union Russia occupies a modest position on the world market of nuclear medicine except for certain areas. More than 80% of isotopes, produced in USSR were consumed domestically, the export of the stable and radioactive isotopes was in equal proportions. Now the country's domestic radiopharmaceuticals market is poorly developed. To radically change the situation, it is necessary to carry out reforms that stimulate the development of nuclear medicine.

  19. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  20. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    International Nuclear Information System (INIS)

    Tang, Shunlin; Feng, Chaohui; Feng, Xinbin; Zhu, Jianming; Sun, Ruoyu; Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua; Zhou, Ting

    2017-01-01

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ 202 Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ 202 Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  1. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shunlin, E-mail: tangshunlin@hpu.edu.cn [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Chaohui [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China); Zhu, Jianming [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100086 (China); Sun, Ruoyu, E-mail: ruoyu.sun@tju.edu.cn [CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Zhou, Ting [State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China)

    2017-04-15

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ{sup 202}Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ{sup 202}Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  2. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  3. The centenary of the discovery of isotopes

    International Nuclear Information System (INIS)

    Soulie, Edgar

    2013-01-01

    This article recalls works performed by different scientists (Marckwald and Keetman, Stromholm and Svedberg, Soddy, Thompson, Aston) which resulted in the observation and identification of the existence of isotopes. The author also recalls various works related to mechanisms of production of isotopes, the discovery of uranium fission and the principle of chain reaction. The author notably evokes French scientists involved in the development of mass spectroscopy and in the research and applications on isotopes within the CEA after the Second World War. A bibliography of article and books published by one of them, Etienne Roth, is provided. References deal with nuclear applications of chemical engineering (heavy water and its production, chemical processes in fission reactors, tritium extraction and enrichment), isotopic fractioning and physical-chemical processes, mass spectrometry and isotopic analysis, isotopic geochemistry (on 07;Earth, search for deuterium in moon rocks and their consequences), first dating and the Oklo phenomenon, radioactive dating, water and climate (isotopic hydrology, isotopes and hailstone formation, the atmosphere), and miscellaneous scientific fields (nuclear measurements and radioactivity, isotopic abundances and atomic weight, isotopic separation and use of steady isotopes)

  4. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS.

    Science.gov (United States)

    Berg, Michael; Bolotin, Jakov; Hofstetter, Thomas B

    2007-03-15

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.

  5. Hf and Nd Isotope Evidence for Production of an Incompatible Trace Element Enriched Crustal Reservoir in Early Earth (Invited)

    Science.gov (United States)

    Brandon, A. D.; Debaille, V.; Lapen, T. J.

    2010-12-01

    The final significant stage of accretion of the Earth was likely a collision between proto-Earth and a Mars sized impactor that formed the Moon. This event is thought to have produced enough thermal energy to melt all or most of the Earth, with a consequent magma ocean (MO). During subsequent cooling, the Earth would have formed its protocrust and corresponding mantle lithosphere, consisting of solidified basalt-komatiitic melt, in combination with buoyant cumulates and late stage residual melts from the MO. Relative to the convecting mantle, portions of this protolithosphere are likely to have been enriched in incompatible trace elements (ITE) in sufficient quantities to contain a significant amount of the bulk Earth’s budget for rare earth elements, U, Th, and Hf. If the protolithosphere was negatively buoyant, it may have overturned at or near the final stages of MO crystallization and a significant portion of that material may have been transported into the deep mantle where it resided and remixed into the convecting mantle over Earth history [1,2]. If the protolithosphere remained positively buoyant, its crust would have likely begun to erode from surface processes, and subsequently recycled back into the mantle over time as sediment and altered crust, once a subduction mechanism arose. The Nd and Hf isotopic compositions of Earth’s earliest rocks support the idea that an early-formed ITE-enriched reservoir was produced. The maxima in 142Nd/144Nd for 3.85 to 3.64 Ga rocks from Isua, Greenland decreases from +20 ppm to +12 ppm relative to the present day mantle value, respectively [3]. This indicates mixing of an early-formed ITE enriched reservoir back into the convecting mantle. In addition, zircons from the 3.1 Ga Jack Hills conglomerate indicate that material with an enriched 176Lu/177Hf of ~0.02 and an age of 4.4 Ga or greater was present at the Earth’s surface over the first 2 Ga of Earth history, supporting the scenario of a positively buoyant

  6. Stable isotopes applied as water tracers for infiltration experiment

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Chen Jiansheng; Sun Xiaoxu; Su Zhiguo

    2011-01-01

    The δD and δ 18 O vertical profiles of soil water were measured prior to and after a rainfall event. Mechanisms of soil water movement were deciphered by comparing the soil water isotope profiles with the isotopic composition of precipitation. The results show that evaporation at the upper depth led to enrichment of the heavy isotopes. Compared to the loess profile, the shallow soil water of sand profile is relatively enriched in D and 18 O due to macro-pore and low water-holding capacity. The precipitation is infiltrated into soil in piston mode, accompanied with significant mixing of older soil water. The preferential fluid flow in loess was observed at depths of 0-20 cm, caused by cracks in the depths. The hydrogen and oxygen isotopic compositions in outflow are close to the precipitation, which shows a mixing of the precipitation and old soil water, and indicates that the isotopic composition of outflow water is mainly controlled by that of the precipitation. The δD and δ 18 O in outflow decreased with time until stable δ values of outflow are close to those of the precipitation. (authors)

  7. Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes

    Science.gov (United States)

    Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.

    2013-12-01

    Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si

  8. Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain

    International Nuclear Information System (INIS)

    Saha, Dipankar; Sinha, U.K.; Dwivedi, S.N.

    2011-01-01

    Research highlights: → Sub-regional scale aquifers delineated in arsenic-enriched belt in the Ganga Plain. Isotopic fingerprint of the groundwater, from arsenic-enriched and arsenic-safe aquifers established for the first time in the Ganga Plain. → Recharge processes and the water provenances of vertically separated Quaternary aquifers have been established. → Mean residence time of groundwater in the deeper aquifers has been worked out using C-14 isotope. → Water from the deeper aquifer has been correlated with the paleoclimatic model of the Middle Ganga Plain (Mid-Ganga Basin) for 6-2 ka. - Abstract: Arsenic concentrations in groundwater extracted from shallow aquifers in some areas of the Ganga Plain in the states of Bihar and Uttar Pradesh, exceed 50 μg L -1 and locally reach levels in the 400 μg L -1 range. The study covered 535 km 2 of active flood plain of the River Ganga, in Bihar where a two-tier aquifer system has been delineated in a multi-cyclic sequence of Quaternary sand, clay, sandy clay and silty clay all ≤∼250 m below ground surface. The research used isotopic signatures (δ 18 O, δ 2 Η, 3 H, 14 C) and major chemical constituents (HCO 3 - ,SO 4 2- ,NO 3 - ,Cl - ,Ca 2+ ,Mg 2+ ,Na + ,K + ,As total ) of groundwater to understand the recharge processes and groundwater circulation in the aquifers. Values of δ 18 O and δ 2 Η combined with 3 H data indicate that the recharge to the As-enriched top 40 m of the deposits is modern ( -1 ) is hydrologically isolated from the upper aquifer and is characterized by lower 14 C concentration and lower (more negative) δ 18 O values. Groundwater in the lower aquifer is ∼3 ka old, occurs under semi-confined to confined conditions, with hydrostatic head at 1.10 m above the head of the upper aquifer during the pre-monsoon. The recharge areas of the lower aquifer lies in Pleistocene deposits in basin margin areas with the exposed Vindhyan System, at about 55 km south of the area.

  9. Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism

    Science.gov (United States)

    Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.

    2017-10-01

    Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.

  10. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  11. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991 - September 14, 1995

    International Nuclear Information System (INIS)

    Guss, W.

    1996-01-01

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as 13 C, 17 O, 18 O, and 203 Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes (≤ 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of 26 Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation

  12. Isotope geochemistry of water in Gulf Coast Salt Domes

    International Nuclear Information System (INIS)

    Knauth, L.P.; Kumar, M.B.; Martinez, J.D.

    1980-01-01

    Water found as active leaks and isolated pools in the Weeks Island, Jefferson Island, and Belle Isle salt mines of south Louisiana has delta 18 O values ranging from -4 to +11.5% 0 and deltaD values from -2.3 to -53% 0 . One sample from Weeks Island and one from Jefferson Island are isotopically similar to local surface waters and are clearly of meteoric origin. All other samples are too enriched in 18 O to be meteoric waters. In the Weeks Island mine the isotopic data define a linear array given by deltaD=3.0delta 18 O-40.1. Active leaks define the positive end of this array. Isolated pools are interpreted as inactive leaks with initial delta 18 O and deltaD values of +9.1 +- 0.5% 0 and -11% 0 +- 7% 0 , which have subsequently exchanged with water vapor in the mine air to produce the linear array of delta values. The water derived from active leaks in these three mines is too enriched in 18 O and too depleted in D to be connate ocean water or evaporite connate water trapped in the salt. Isotopic composition of water derived from the dehydration of gypsum is probably dissimilar to that of the active leaks. It is unlikely that the water has originated from the dehydration of gypsum. It is also unlikely that isotopic exchange with anhydrite is responsible for observed 18 O enrichments. Nonmeteroric water from the active leaks displays the type of 18 O enrichments characteristic of saline formation waters, where water exchanges isotopically with calcite and clay minerals. It is concluded that the nonmeteoric waters are formation waters which have become incorporated in the salt. From the observed 18 O enrichment it is calculated that formation waters were incorporated during diapiric rise of the salt at a depth of 3--4 km and have been trapped within the salt for 10--13 m.y. Large volumes of salt within salt domes are not naturally penetrated by meteoric groundwaters but can contain limited amounts of trapped formation water

  13. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  14. 78 FR 17942 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-03-25

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... Administration. Enriched Uranium contained in 99.7 Reactor in the be processed for March 6, 2013 (93.35%)) kilograms Czech Republic to medical isotope March 11, 2013 uranium) the list of production at the XSNM3622...

  15. Isotopic Discrimination During Leaf Litter Decomposition

    Science.gov (United States)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to

  16. Using biofilms and grazing chironomids (Diptera: Chironomidae) to determine primary production, nitrogen stable isotopic baseline and enrichment within wetlands differing in anthropogenic stressors and located in the Athabasca oil sands region of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.; Ciborowski, J.J. [Windsor Univ., Windsor, ON (Canada); Wytrykush, C.M. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2009-07-01

    This presentation reported on a study that investigated the effects of oil sands process materials (OSPM) and construction disturbances on primary production and nitrogen stable isotope enrichment in reclaimed and reference wetlands at oil sands mines in the Athabasca basin. Productivity and food web analyses were instrumental in evaluating the succession and viability of reclaimed wetlands. Primary production was estimated through chlorophyll a (Chl a) concentrations and biomass. Carbon (C) and nitrogen (N) stable isotope ratios were used to identify energy sources, storage and the magnitude and direction of energy transfer within food webs. The objectives were to determine primary productivity, the N baseline, and N enrichment from biofilms and grazing invertebrates colonizing artificial substrates immersed in the water column of two OSPM-affected, two constructed reference and two natural reference wetlands. The lower biomass and Chl a concentrations in OSPM-affected and constructed wetlands suggests that both anthropogenic disturbance and OSPM have an adverse effect on primary productivity and overall wetland function.

  17. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  18. Isotopic analysis of uranium hexafluoride highly enriched in U-235; Analyse isotopique de l'hexafluorure d'uranium fortement enrichi en U 235

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L; Boyer, R [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1968-07-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment ({approx_equal}2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [French] L'analyse isotopique de l'uranium sous forme d'hexafluorure, par spectrometrie de masse, fournit des resultats bruts entaches d'inexactitude. Une methode d'interpolation lineaire entre deux etalons permet de corriger cette inexactitude, tant que les concentrations isotopiques sont inferieures a 10 pour cent en U-235 environ. Au-dessus de cette valeur, la formule d'interpolation surestime les resultats, notamment si l'enrichissement des echantillons analyses par rapport aux etalons est superieur a 1,3. On propose une formule de correction de l'equation d'interpolation qui etend son domaine d'application jusqu'a des valeurs elevees d'enrichissement ({approx_equal}2) et de concentration. On montre experimentalement que par cette correction, les resultats atteignent, a la precision des mesures, une exactitude qui ne depend pratiquement plus que de celles des etalons. (auteurs)

  19. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors

    Energy Technology Data Exchange (ETDEWEB)

    Kierepko, Renata, E-mail: Renata.Kierepko@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Mietelski, Jerzy W. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Ustrnul, Zbigniew [Jagiellonian University, Krakow (Poland); Institute of Meteorology and Water Management, National Research Institute, Krakow (Poland); Anczkiewicz, Robert [Institute of Geological Sciences, Polish Academy of Sciences, Krakow (Poland); Wershofen, Herbert [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Holgye, Zoltan [National Radiation Protection Institute, Prague (Czech Republic); Kapała, Jacek [Medical University of Bialystok (Poland); Isajenko, Krzysztof [Central Laboratory for Radiological Protection, Warsaw (Poland)

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000 km{sup 2}. We compared our original data sets from Krakow (Poland, 1990–2007) and Bialystok (Poland, 1991–2007) with the results from two other locations, Prague (Czech Republic; 1997–2004) and Braunschweig (Germany; 1990–2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for {sup 238}Pu and for {sup (239} {sup +} {sup 240)}Pu were estimated to be a few and some tens of nBq m{sup −} {sup 3}, respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of {sup 238}Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air. - Highlights: • Evidence of Pu isotopes in the lower part of the troposphere of Central Europe • The effective annual doses associated with Pu inhalation • New approach to the problem of solving mixed Pu origins in one sample (3SM) • Relationship between Pu isotopes activity concentration and circulation factors.

  20. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  1. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  2. Diet-to-female and female-to-pup isotopic discrimination in South American sea lions.

    Science.gov (United States)

    Drago, Massimiliano; Franco-Trecu, Valentina; Cardona, Luis; Inchausti, Pablo

    2015-08-30

    The use of accurate, species-specific diet-tissue discrimination factors is a critical requirement when applying stable isotope mixing models to predict consumer diet composition. Thus, diet-to-female and female-to-pup isotopic discrimination factors in several tissues for both captive and wild South American sea lions were estimated to provide appropriate values for quantifying feeding preferences at different timescales in the wild populations of this species. Stable carbon and nitrogen isotope ratios in the blood components of two female-pup pairs and females' prey muscle from captive individuals were determined by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) to calculate the respective isotopic discrimination factors. The same analysis was carried out in both blood components, and skin and hair tissues for eight female-pup pairs from wild individuals. Mean diet-to-female Δ(13) C and Δ(15) N values were higher than the female-to-pup ones. Pup tissues were more (15) N-enriched than their mothers but (13) C-depleted in serum and plasma tissues. In most of the tissue comparisons, we found differences in both Δ(15) N and Δ(13) C values, supporting tissue-specific discrimination. We found no differences between captive and wild female-to-pup discrimination factors either in Δ(13) C or Δ(15) N values of blood components. Only the stable isotope ratios in pup blood are good proxies of the individual lactating females. Thus, we suggest that blood components are more appropriate to quantify the feeding habits of wild individuals of this species. Furthermore, because female-to-pup discrimination factors for blood components did not differ between captive and wild individuals, we suggest that results for captive experiments can be extrapolated to wild South American sea lion populations. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Sulphur isotope variations in the atmosphere

    International Nuclear Information System (INIS)

    Newman, L.; Krouse, H.R.; Grinenko, V.A.

    1991-01-01

    The measurement of the isotope ratios of sulphur and oxygen can in principal be used to assess sulphur inputs into, transformation within, and removal from the atmosphere. Major inputs arise from both anthropogenic and biogenic activities. Transformations arise from oxidation, neutralization, and other chemical reactions. Advection causes dilution and the main removal processes are dry deposition (governed by gravitation and diffusion) and rain. The admixture of sources can be discerned from their isotopic signatures whereas transformations and removal can be followed from the isotopic fractionation that might occur. In this chapter, the atmospheric sulphur cycle and the associated chemistry are summarized. Also presented is information on natural isotopic variations and fundamental concepts relating to the use of isotopic data to delineate anthropogenic S in the atmosphere. Examples of successful applications of these concepts are given. Finally, consideration is given to the potential of using isotopically enriched sulphur to study transport and transformation of atmospheric S compounds. Refs, figs and tabs

  4. Isotopic evidence for identifying the mechanism of salinization of groundwater in Bacolod City,Negros Occidental

    International Nuclear Information System (INIS)

    Castaneda, Soledad S.; Almoneda, Rosalinda V.; Sucgang, Raymond J.; Desengano, Daisy; Lim, Fatima

    2008-01-01

    Saline water is easily identified by measurement of the conductivity of the ionic species in the water. In groundwater, it is important to identify the mechanism of salinization for proper management of the resource. Salinization may come from: a) leaching of salts by percolating water, b) intrusion of modern saltwater bodies of connate water, and c) concentration of dissolved salts due to evaporation. The salinity and isotopic concentrations of 18 O, 2 H, and 3 H of the water sources were used to assess the processes which lead to the salinization of groundwater in Bacolod City, Negros Occidental. The isotopic composition of deep groundwater, river water, and springs cluster along the LMWL with δ 18 O ranging from -7.9 ''promille'' to -6.5 ''promille'' and δ 2 H ranging from -52.6 ''promille'' to -39.1''promille''. Two isotopically distinct groups of deep groundwater were deleated; the higher elevation wells yielding isotopically depleted waters while the lowland wells yielding relatively enriched water with higher conductivity. The shallow coastal wells exhibited more enriched isotope values with δ 18 O values from 6.10 ''promille''-5.61''promille'' and δ 2 H from -43.1''promille'' to -38.8''promille'' and highest conductivity. The relative enrichment in the isotopic composition of the deep groundwater in the lowland and the shallow groundwater along the coast is attributed to saltwater intrusion. The process of salinization in these waters is differentiated based on the relationship between their isotopic compositions and the chlorine concentrations. The high salinity of the isotopically enriched and old deep groundwater inland is attributed to mixing with connate water. On the other hand , mixing with modern sea water is evident in the deep and shallow coastal wells. (author)

  5. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    International Nuclear Information System (INIS)

    Fischer, J.C. von; Tieszen, L.L.

    1995-01-01

    We examined natural abundances of 13 C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ 13 C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO 2 . Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more 13 C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO 2 , (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  6. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.C. von [Cornell University, Ithaca, NY (United States); Tieszen, L. L.

    1995-06-15

    We examined natural abundances of {sup 13}C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ{sup 13}C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO{sub 2}. Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more {sup 13}C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO{sub 2}, (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  7. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    Hartmann, F.X.; Hahn, R.L.

    1991-01-01

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  8. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin.

    Science.gov (United States)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from -29.0‰ to -26.5‰ in soil spiked with 2mg/kg lambda-cyhalothrin, and to -27.5‰ with 10mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as -2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Comparison of different enrichment factors to assess the natural accumulation of trace elements in sediment cores from Nhecolandia Pantanal, Brazil

    International Nuclear Information System (INIS)

    Santos, Levi F.; Damatto, Sandra R.; Barbiero, Laurent; Furian, Sonia M.; Rezende Filho, Ary T.

    2015-01-01

    Four sediment cores were collected at different lakes of salty water, commonly known as 'Salinas', in the Nhecolandia Wetland. In the collected cores, Salina A, Salina 6, Salina M and Salina V, the elements As, Ba, Co, Cr, Cs, Fe, Hf, K, Na, Rb, Sb, Se, U, Zn and rare earth elements Ce, Eu, La, Lu, Nd, Sc, Sm, Tb and Yb concentrations were determined by instrumental neutron activation analysis (INAA) technique. Aiming to verify the best criterion to evaluate the enrichment factor of minor and major elements in the sediment cores, three different calculations of the enrichment factor was employed. The first one, EF (Enrichment Factor), compares the normalized element concentrations with Upper Continental Crust normalized values, the second one, GNF (Geochemical Normalization Factor) compares the ratio between the element concentration and the normalizer with the depth in the sediment core; for these both factors the element Sc was used as a normalizer element. The third one factor, BEF (Base Enrichment Factor), compares the concentrations determined throughout the core with the results obtained in the base of it. With the results, it was possible to conclude that the best enrichment factor to evaluate the enhancement of elements in natural environments is the one that takes into account the core element concentration obtained in the base of it, BEF. (author)

  10. Comparison of different enrichment factors to assess the natural accumulation of trace elements in sediment cores from Nhecolandia Pantanal, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Levi F.; Damatto, Sandra R., E-mail: leyi@usp.br, E-mail: damatto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Barbiero, Laurent, E-mail: barbiero@ltmg.obs.mip.fr [Centro de Energia Nuclear na Agricultura (CENA/USP), Sao Paulo, SP (Brazil); Furian, Sonia M., E-mail: furian@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Geografia; Rezende Filho, Ary T., E-mail: ary.rezende@ufms.br [Universidade Federal do Mato Grosso do Sul (UFMS), MS (Brazil). Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia

    2015-07-01

    Four sediment cores were collected at different lakes of salty water, commonly known as 'Salinas', in the Nhecolandia Wetland. In the collected cores, Salina A, Salina 6, Salina M and Salina V, the elements As, Ba, Co, Cr, Cs, Fe, Hf, K, Na, Rb, Sb, Se, U, Zn and rare earth elements Ce, Eu, La, Lu, Nd, Sc, Sm, Tb and Yb concentrations were determined by instrumental neutron activation analysis (INAA) technique. Aiming to verify the best criterion to evaluate the enrichment factor of minor and major elements in the sediment cores, three different calculations of the enrichment factor was employed. The first one, EF (Enrichment Factor), compares the normalized element concentrations with Upper Continental Crust normalized values, the second one, GNF (Geochemical Normalization Factor) compares the ratio between the element concentration and the normalizer with the depth in the sediment core; for these both factors the element Sc was used as a normalizer element. The third one factor, BEF (Base Enrichment Factor), compares the concentrations determined throughout the core with the results obtained in the base of it. With the results, it was possible to conclude that the best enrichment factor to evaluate the enhancement of elements in natural environments is the one that takes into account the core element concentration obtained in the base of it, BEF. (author)

  11. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E.A.; Rolston, J.H.; Clermont, M.J.; Paterson, L.M.

    1983-01-01

    This invention provides a process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbons comprising: (a) bringing into contact a water stream, a halohydrocarbon stream, and a catalytic porous anion exchange resin so that the isotope-deficient halohydrocarbon stream is enriched; (b) decomposing the halohydrocarbon stream photolytically into two gaseous streams, one enriched and the other deficient; (c) removing as a product the first, enriched stream; and (d) recycling the second stream for enrichment. An apparatus is also provided

  12. Connection factor calculation for isotopic neutron flux measurements with foil detectors

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-01-01

    Thermal and resonance neutron self-shielding factors, neutron flux distortion and edge effects as well as a connection factor for neutron flux profile around a foil detector have been calculated. A general expression for resonance self shielding factor is presented in order to take into account the most important resonances for a given isotope. A computer program SPRESYTER.BAS was written and results for In-115 and Au-197 foils are given

  13. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  14. Lasers for isotope separation

    International Nuclear Information System (INIS)

    O'Hair, E.A.; Piltch, M.S.

    1976-01-01

    The Los Alamos Scientific Laboratory is conducting research on uranium enrichment. All processes being studied employ uranium molecules and use lasers to provide isotopic selectivity and enrichment. There are four well-defined infrared frequencies and two ultraviolet frequency bands of interest. The infrared frequencies are outside the range of the available lasers and an extensive research and development activity is currently underway. Lasers are available in the uv bands, however, much development work remains. The specification for the commercial uranium enrichment plant lasers will depend upon the results of the current enrichment experiments, the laser capital cost, reliability, and maintenance cost. For the processes under investigation there are specific photon requirements but latitude in how these requirements can be met. The final laser selections for the pilot plant need not be made until the mid-1980's. Between now and that time as extensive as possible a research and development effort will be maintained

  15. Isotope separation by photoselective dissociative electron

    International Nuclear Information System (INIS)

    Stevens, C.G.

    1978-01-01

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule is described. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, 235 UF 6 is separated from a UF 6 mixture by selective excitation followed by dissociative electron capture into 235 UF 5 - and F

  16. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    Science.gov (United States)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  17. Isotope anomalies in oxygen isotope exchange equilibrium systems

    International Nuclear Information System (INIS)

    Kotaka, M.

    1997-01-01

    The purpose of the present work is to elucidate the isotope anomalies in oxygen isotope exchange equilibrium systems, according to the calculations of the equilibrium constants for oxygen isotopic exchange reactions, and the calculations of the oxygen isotope separation factors between two phases. The equilibrium constants (K65, K67, K68 and K69) of 16 O- 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O exchange reactions between diatomic oxides were calculated in a wide temperature range on the basis of quantum statistical mechanics. Many equilibrium constants showed the anomalous mass effects, and then had the crossover temperatures and the mass independent fractionation (MIF) temperatures which held K67 = K65, K67 = K68, or K67 = K69, etc. For example, the equilibrium constants for the reactions between OH and the other diatomic oxides (MO) showed the anomalous mass effects, when M was Li, Na, Mg, K, Fe, Al, Ge, Zr, Pt, etc. The 16 O 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O oxygen isotope separation factors (S65, S67, S68 and S69) between two phases were calculated, when OH and CO were in the first phase, and SiO was in the second phase. Although the oxygen isotopic exchange equilibria in the two phases had no MIF and crossover temperatures, the separation factors showed the anomalous mass effects and had the temperatures. According to what is called the normal mass effects for the equilibrium constant of isotopic exchange reaction, the value of InK68/InK67 is 1.885. Therefore, the value of InS68/InS67 should be 1.885 too. The value calculated, however, widely changed. It can be concluded from the results obtained in the present work that some oxygen isotopic exchange equilibria cause the anomalous mass effects, the anomalous oxygen isotope separation factors, and then isotope anomalies

  18. Isotopic anomalies in high Z elements: Uranium?

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.; Essling, A.M.; Rauh, E.G.; Graczyk, D.G.

    1989-03-01

    Uranium in terrestrial volcanic ejecta from mantle-related sources has been analyzed mass spectrometrically. The objective was to seek supporting evidence for or refutation isotopic variations reported by Fried et al. (1985) for some such samples. The possibility that terrestrial U is not of constant isotopic composition is extraordinary. If true, mechanisms for creating the variation must be sought and the lack of homogenization within the earth addressed. Samples of 100 grams or more were processed in order to minimize reagent and environmental (laboratory) blank interference and to permit isolation of large amounts (several to tens of μg) of U for the mass spectrometer (MS) measurements, which utilizes aliquots of /approximately/1 μg. Aliquants from four volcanic samples gave data which indicate enrichments of 235 U ranging from 0.2% to 5.9% in the 235/238 ratio relative normal uranium ratios. These relative enrichments are consistent with, and in some cases, higher than the 0.18% enrichment reported by Fried et al. (1985) for two volcanic lava samples. However, we were not able to reproduce their results on the Kilauea lava for which they report 0.18% 235 U enrichment. The relative error in our MS ratios is 0.05% -- 0.07%. 1 tab

  19. Lasers for the SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  20. Deuterium enrichments in chondritic macromolecular material—Implications for the origin and evolution of organics, water and asteroids

    Science.gov (United States)

    Alexander, C. M. O.'D.; Newsome, S. D.; Fogel, M. L.; Nittler, L. R.; Busemann, H.; Cody, G. D.

    2010-08-01

    Here we report the elemental and isotopic compositions of the insoluble organic material (IOM) isolated from several previously unanalyzed meteorites, as well as the reanalyses of H isotopic compositions of some previously measured samples ( Alexander et al., 2007). The IOM in ordinary chondrites (OCs) has very large D enrichments that increase with increasing metamorphism and decreasing H/C, the most extreme δD value measured being almost 12,000‰. We propose that such large isotopic fractionations could be produced in the OC parent bodies through the loss of isotopically very light H 2 generated when Fe was oxidized by water at low temperatures (IOM of CV and CO chondrites with similar metamorphic grades and IOM H/C ratios because proportionately less water was consumed during metamorphism, and the remaining water buffered the H isotopic composition of the IOM even a H was being lost from it. Hydrogen would also have been generated during the alteration of CI, CM and CR carbonaceous chondrites. The IOM in these meteorites exhibit a considerable range in isotopic compositions, but all are enriched in D, as well as 15N, relative to terrestrial values. We explore whether these enrichments could also have been produced by the loss of H 2, but conclude that the most isotopically anomalous IOM compositions in meteorites from these groups are probably closest to their primordial values. The less isotopically anomalous IOM has probably been modified by parent body processes. The response of IOM to these processes was complex and varied, presumably reflecting differences in conditions within and between parent bodies. The D enrichments associated with H 2 generation, along with exchange between D-rich IOM and water in the parent bodies, means that it is unlikely that any chondrites retain the primordial H isotopic composition of the water ice that they accreted. The H isotopic compositions of the most water-rich chondrites, the CMs and CIs, are probably the least

  1. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  2. Isotope shift studies in gadolinium spectra

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Saksena, G.D.; Venugopalan, A.

    1976-01-01

    Isotope shift studies have been carried out in the gadolinium spectrum using a recording Fabry-Perot spectrometer and gadolinium samples enriched in 156 Gd and 160 Gd isotopes. Isotope shifts Δsigma(156-160) have been recorded in 134 lines in the region 3930-4140 A. Some of these lines involve the recently identified even configuration 4f 8 5d6s of Gd I and the newly classified transition 4f 8 6s-4f 8 6p of Gd II. From the isotope shift measurements of lines involving the 4f 8 6s-4f 8 6p transition in Gd II, the isotope shift, ΔT(156-160)=87 mK, has been obtained for the 4f 8 6s configuration. Electronic configurations have been suggested for a number of energy levels and configuration mixing has been pointed out in certain cases. (Auth.)

  3. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    Science.gov (United States)

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  5. A new high-quality set of singly (H-2) and doubly (H-2 and O-18) stable isotope labeled reference waters for biomedical and other isotope-labeled research

    NARCIS (Netherlands)

    Faghihi, V.; Verstappen-Dumoulin, B. M. A. A.; Jansen, H. G.; van Dijk, G.; Aerts-Bijma, A. T.; Kerstel, E. R. T.; Groening, M.; Meijer, H. A. J.

    2015-01-01

    RATIONALE: Research using water with enriched levels of the rare stable isotopes of hydrogen and/or oxygen requires well-characterized enriched reference waters. The International Atomic Energy Agency (IAEA) did have such reference waters available, but these are now exhausted. New reference waters

  6. Hf isotope evidence for a hidden mantle reservoir

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2002-01-01

    High-precision Hf isotopic analyses and U-Pb ages of carbonatites and kimberlites from Greenland and eastern North America, including Earth's oldest known carbonatite (3 Ga), indicate derivation from an enriched mantle source. This previously unidentified mantle reservoir-marked by an unradiogenic...... Hf isotopic composition and preserved in the deep mantle for at least 3 b.y.-may account for the mass imbalance in Earth's Hf-Nd budget. The Hf isotopic data presented here support a common mantle source region and genetic link between carbonatite and some oceanic-island basalt volcanoes....

  7. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  8. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1982-01-01

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  9. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  10. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    Science.gov (United States)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  11. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    Biodegradation of phenol and alkylphenols has been described under both oxic and anoxic conditions. In the absence of molecular oxygen, the degradation of phenolic compounds is initiated by microorganisms through carboxylation, fumarate addition to the methyl moiety or anoxic hydroxylation of the methyl moiety. Comparatively, under aerobic condition, the initiation mechanisms are revealed to be monoxygenation or dihydroxylation for phenol and ring hydroxylation or methyl group oxidation for cresols. While several studies biochemically characterized the enzymes and reaction mechanisms in the relevant degradation pathways, isotope fractionation patterns were rarely reported possibly due to constraints in current analytical methods. In this study, the carbon isotope fractionation patterns upon the degradation of phenol and cresols by several strains were analyzed by using isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). The corresponding enrichment factors for carbon (ƐC) have been obtained. Cresols degradation by various strains showed generally moderate carbon isotope fractionation patterns with notable differences. For p-cresol degradation, five strains were examined. The aerobic strain Acinetobacter calcoaceticus NCIMB8250 exploits ring hydroxylation by molecular oxygen as initial reaction, and a ƐC value of -1.4±0.2‰ was obtained. Pseudomonas pseudoalcaligenes NCIMB 9867, an aerobic strain initiating cresols degradation via oxygen-dependent side chain hydroxylation, yielded a ƐC value of -2.3±0.2‰. Under nitrate-reducing conditions, Geobacter metallireducens DSM 7210 and Azoarcus buckelii DSM 14744 attacks p-cresol at the side chain by monohydroxylation using water as oxygen source; the two strains produced ƐC values of -3.6±0.4‰ and -2±0.1‰, accordingly. The sulfate-reducing Desulfosarcina cetonica DSM 7267 activating cresols by fumarate addition to the methyl moiety yielded ƐC values of -1.9±0.2‰ for p

  12. Fractionation of nitrogen and carbon isotopes by means of urea chromatography

    International Nuclear Information System (INIS)

    Hirschberg, K.; Krumbiegel, P.; Faust, H.

    1981-01-01

    Between aqueous urea solutions and strongly acid cation exchange resins of the polystyrene-sulfoacid type a solid-liquid-phase distribution equilibrium develops with an isotope effect of nitrogen and carbon in urea. The [ 13 C, 15 N] urea molecules are preferably bound to the exchanger matrix. The elementary separation factors for 15 N and 13 C enrichment have been determined to be 1.00 per cent. Column chromatographic separation with the aid of Dowex 50 WX8 renders the preparation of double-labelled urea feasible. (author)

  13. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  14. Isotopically Anomalous Carbonaceous Nanoglobules in Meteorites and Comets

    Science.gov (United States)

    de Gregorio, B. T.; Alexander, C.; Bassim, N. D.; Cody, G. D.; Kilcoyne, D.; Nittler, L.; Stroud, R.; Zega, T. J.

    2009-12-01

    Sub-micron, spherical, organic globules are prevalent in primitive meteorites and interplanetary dust particles. Many of these globules are significantly enriched in 15N and/or D, relative to solar values, which suggest that they or their precursors formed in cold regions of the solar nebula or in interstellar molecular clouds. We have used correlated transmission electron microscopy (TEM), synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectrometry (SIMS) to determine the elemental and isotopic composition and organic functional group chemistry of individual carbonaceous nanoglobules in a suite of insoluble organic matter (IOM) residues prepared from carbonaceous and ordinary chondrites, and two additional organic globules from the Stardust comet 81P/Wild 2 sample collection. The majority of the meteoritic nanoglobules have a similar chemistry to the bulk IOM, with, on average, a small but significant enrichment in aromatic ketone (-C=O) and carboxyl (-COOH) functional groups. However, some of the meteoritic nanoglobules and one of the Stardust nanoglobules contain highly aromatic organic matter with no significant oxygen functionality. Preliminary measurements indicate that the highest 15N enrichments are associated with the highly aromatic nanoglobules and that aromatic nanoglobules are more prevalent in IOM from more primitive meteorites (e.g. Bells contains more aromatic globules than Murchison). For example, of two adjacent nanoglobules with nearly identical hollow morphologies from Murchison, one contains highly aromatic organic matter and the other contains oxidized IOM-like organic matter. SIMS analysis of these two globules reveals that the highly aromatic globule has the greatest 15N enrichment (δ15N ~ +500‰) of all meteoritic globules in which both XANES and SIMS was performed, whereas the adjacent IOM-like globule has a smaller 15N enrichment (δ15N ~ +300‰) but still greater than bulk IOM (δ15

  15. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  16. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules

    Science.gov (United States)

    Pringle, Emily A.; Moynier, Frédéric; Beck, Pierre; Paniello, Randal; Hezel, Dominik C.

    2017-06-01

    Volatile lithophile elements are depleted in the different planetary materials to various degrees, but the origin of these depletions is still debated. Stable isotopes of moderately volatile elements such as Zn can be used to understand the origin of volatile element depletions. Samples with significant volatile element depletions, including the Moon and terrestrial tektites, display heavy Zn isotope compositions (i.e. enrichment of 66Zn vs. 64Zn), consistent with kinetic Zn isotope fractionation during evaporation. However, Luck et al. (2005) found a negative correlation between δ66Zn and 1/[Zn] between CI, CM, CO, and CV chondrites, opposite to what would be expected if evaporation caused the Zn abundance variations among chondrite groups. We have analyzed the Zn isotope composition of multiple samples of the major carbonaceous chondrite classes: CI (1), CM (4), CV (2), CO (4), CB (2), CH (2), CK (4), and CK/CR (1). The bulk chondrites define a negative correlation in a plot of δ66Zn vs 1/[Zn], confirming earlier results that Zn abundance variations among carbonaceous chondrites cannot be explained by evaporation. Exceptions are CB and CH chondrites, which display Zn systematics consistent with a collisional formation mechanism that created enrichment in heavy Zn isotopes relative to the trend defined by CI-CK. We further report Zn isotope analyses of chondrite components, including chondrules from Allende (CV3) and Mokoia (CV3), as well as an aliquot of Allende matrix. All chondrules are enriched in light Zn isotopes (∼500 ppm on 66Zn/64Zn) relative to the bulk, contrary to what would be expected if Zn were depleted during evaporation, on the other hand the matrix has a complementary heavy isotope composition. We report sequential leaching experiments in un-equilibrated ordinary chondrites, which show sulfides are isotopically heavy compared to silicates and the bulk meteorite by ca. +0.65 per mil on 66Zn/64Zn. We suggest isotopically heavy sulfides were

  17. Uranium enrichment: heading for a cliff

    International Nuclear Information System (INIS)

    Norman, C.

    1987-01-01

    Thanks to drastic cost cutting in the past 2 years, US enrichment plants now have the lowest cost production in the world, but US prices are still higher than those of overseas competitors because the business is paying for past mistakes. The most serious difficulty is that the Department of Energy (DOE), which owns and operates the US enrichment enterprise, is paying more than $500 million a year to the Tennessee Valley Authority (TVA) for electricity it once thought it would need but no longer requires. Another is that billions of dollars were spent in the 1970s and early 1980s to build new capacity that is now not needed. As a result, the enrichment enterprise has accumulated a debt to the US Treasury that the General Accounting Office (GAO) estimates at $8.8 billion. This paper presents the background and current debate in Congress about the difficulties facing the enrichment industry. In the midst of this debate over the future of the enterprise, the development of the next generation of enrichment technology is being placed in jeopardy. Known as atomic vapor laser isotope separation, or AVLIS, the process was viewed as the key to the long-term competitiveness of US enrichment. As the federal deficit mounted, however, funding for the AVLIS program was cut back and the timetable was stretched out. The US enrichment program has reached the point at which Congress will be forced to make some politically difficult decisions

  18. Study of groundwater recharge in Rechna Doab using isotope techniques

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Ahmed, M.; Hussain, S.D.; Khan, I.H.; Akram, W.

    1992-04-01

    Isotopic studies were performed in the Rechna Doab area to understand the recharge mechanism, investigate the relative contributions from various sources such as rainfall, rivers and canal system and to estimate the turn over times and replenishment rate of groundwater. The isotopic data suggest that the groundwater in the project area can be divided into different zones each having its own characteristic isotopic composition. The enriched isotopic values show rain recharge and depleted isotopic values are associated with river/canal system while the intermediate isotopic values show a mixing of two or more sources of water. The major contribution, however, comes from canal system. The isotopic data suggest that there is no quick movement of groundwater in the area. 18 figs. (author)

  19. The 2-nd Conference on Isotopic and Molecular Processes. Abstracts

    International Nuclear Information System (INIS)

    Bogdan, Mircea

    2001-01-01

    The proceedings of the 2-nd Conference on Isotopic and Molecular Processes held on September 27 - 29, 2001 in Cluj - Napoca, Romania, contains contributions presented as: 11 plenary lectures, 24 oral presentations and 103 posters in two sections, namely, isotopic processes and molecular processes. The main topics treated in this conference were isotope production, separation and enrichment as well as stable isotope applications. Also, studies on isotope effects in different fields are reported. Besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Environmental studies by means of stable isotope and radon monitoring are described. Applications of radiation effects and different nuclear methods in medicine are also addressed

  20. Determination of lead isotopic composition of airborne particulate matter by ICPMS: implications for lead atmospheric emissions in Canada

    International Nuclear Information System (INIS)

    Celo, V.; Dabek-Zlotorzynska, E.

    2009-01-01

    Full text: Quadrupole ICPMS was used for determination of trace metal concentrations and lead isotopic composition in fine particulate matter (PM 2.5 ) collected at selected sites within the Canadian National Air Pollution Surveillance network, from February 2005 to February 2007. High enrichment factors indicated that lead is mostly of anthropogenic origin and consequently, the lead isotopic composition is directly related to that of pollution sources. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios were measured and the results were compared to the isotopic signatures of lead from different sources. Various approaches were used to assess the impact of relevant sources and the meteorological conditions in the occurrence and distribution of lead in Canadian atmospheric aerosols. (author)

  1. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    Science.gov (United States)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  2. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    Science.gov (United States)

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  3. Cd isotopes as a potential source tracer of metal pollution in river sediments

    International Nuclear Information System (INIS)

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-01-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from −0.35‰ to 0.07‰ in term of δ 114/110 Cd (the mean: −0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ 114/110 Cd 114/110 Cd > 0), and those δ 114/110 Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment. -- The information and application of Cd isotopic compositions will provide a new direction in tracing metal pollution in water environment

  4. Isotopic analysis of bullet lead samples

    International Nuclear Information System (INIS)

    Sankar Das, M.; Venkatasubramanian, V.S.; Sreenivas, K.

    1976-01-01

    The possibility of using the isotopic composition of lead for the identification of bullet lead is investigated. Lead from several spent bullets were converted to lead sulphide and analysed for the isotopic abundances using an MS-7 mass spectrometer. The abundances are measured relative to that for Pb 204 was too small to permit differentiation, while the range of variation of Pb 206 and Pb 207 and the better precision in their analyses permitted differentiating samples from one another. The correlation among the samples examined has been pointed out. The method is complementary to characterisation of bullet leads by the trace element composition. The possibility of using isotopically enriched lead for tagging bullet lead is pointed out. (author)

  5. Separation of isotopes by cyclical processes

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Weaver, K.

    1976-01-01

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope

  6. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  7. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  8. Numerical modelling of the jet nozzle enrichment process

    International Nuclear Information System (INIS)

    Vercelli, P.

    1983-01-01

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt

  9. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  10. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  11. Normalization of stable isotope data for carbonate minerals: implementation of IUPAC guideline

    Science.gov (United States)

    Kim, Sang-Tae; Coplen, Tyler B.; Horita, Juske

    2015-01-01

    Carbonate minerals provide a rich source of geochemical information because their δ13C and δ18O values provide information about surface and subsurface Earth processes. However, a significant problem is that the same δ18O value is not reported for the identical carbonate sample when analyzed in different isotope laboratories in spite of the fact that the International Union of Pure and Applied Chemistry (IUPAC) has provided reporting guidelines for two decades. This issue arises because (1) the δ18O measurements are performed on CO2 evolved by reaction of carbonates with phosphoric acid, (2) the acid-liberated CO2 is isotopically fractionated (enriched in 18O) because it contains only two-thirds of the oxygen from the solid carbonate, (3) this oxygen isotopic fractionation factor is a function of mineralogy, temperature, concentration of the phosphoric acid, and δ18O value of water in the phosphoric acid, (4) researchers may use any one of an assortment of oxygen isotopic fractionation factors that have been published for various minerals at various reaction temperatures, and (5) it sometimes is not clear how one should calculate δ18OVPDB values on a scale normalized such that the δ18O value of SLAP reference water is −55.5 ‰ relative to VSMOW reference water.

  12. Modified micro-diffusion method for 15N-enriched soil solutions

    International Nuclear Information System (INIS)

    Aigner, M.

    2000-01-01

    The preparation of solutions for determination of 15 N/ 14 N isotope ratios is described, with special reference to dilute samples. A micro-diffusion method has been simplified to be more suitable for rapid isotope-ratio determination in soil solutions collected in tensionics. Ammonia expelled during micro-diffusion is captured on acidified filter discs fixed to the caps of gas-tight vials. The discs are transferred to tin capsules for shipment to the Soil Science Unit for 15 N-enrichment determination. (author)

  13. Determination of tin equilibrium isotope fractionation factors from synchrotron radiation experiments

    NARCIS (Netherlands)

    Polyakov, VB; Mineev, SD; Clayton, RN; Hu, G; Mineev, KS

    2005-01-01

    A method of determination of the reduced isotopic partition function ratio (beta-factor) from the partial density of state (PDOS) obtained by inelastic nuclear resonant X-ray scattering (INRXS) in synchrotron radiation experiments has been established. The method has been demonstrated by the example

  14. Rate of uptake and distribution of Hg in dissolved organic carbon compounds in darkwater ecosystems by ICP-MS and enriched stable isotope spiking

    International Nuclear Information System (INIS)

    Telmer, Kevin; Dario Bermudez, Rafael; Veiga, Marcello M.; Souza, Terezinha Cid da

    2001-01-01

    The role of natural organic acids on mercury binding, transportation, net uptake rates and possibly net methylation rates will be evaluated by tracing these processes with isotope enriched mercury and ICP-MS technology. The correlation between dissolved organic matter and Hg in waters is well documented. It appears that organic acids can react with mercury residing in or emitted from different sources such as soils (particularly hydromorphic soils), laterites, natural degassing, forest fires, fuel combustion, gold mining activities, etc. to form soluble Hg-organo-complexes. The formation of these complexes is believed to greatly enhance Hg transport and be an important preliminary step in the formation of Methyl-Hg and biological uptake. The rates of these reactions and the key organic compounds involved in mercury binding will be determined by reacting isotopically-enriched Hg with samples containing a variety of concentrations and types of organic acids and subsequently analysing both reactants and organisms exposed to the reactants (bioassays) for Hg isotopes by ICP-MS. The Hg spike will allow the precise determination of rates of uptake and the most active agents of uptake. Initially, the method will be used to examine total Hg uptake and distribution but if technological limitations are overcome, this same approach can be used to determine net rates of methylation and net MeHg uptake. After the method is validated the experimental design can be altered to test the relative effects of such things as the addition of CO 2 (pH change), or adding a substrate such as Fe-Mn oxyhydroxides. The addition of synthetic materials such as mulched automobile tires, can also be tested with the goal developing a pragmatic remedial method for Hg containment. Ultimately, this research should contribute to an understanding of mercury mobilization, transport and bio-concentration mechanisms, and provide a basis for developing management and treatment strategies. Emphasis will be

  15. Summary of the Effort to Use Active-induced Time Correlation Techniques to Measure the Enrichment of HEU

    Energy Technology Data Exchange (ETDEWEB)

    McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Pena, Kirsten [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Sword, Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    This document summarizes the effort to use active-induced time correlation techniques to measure the enrichment of bulk quantities of enriched uranium. In summary, these techniques use an external source to initiate fission chains, and the time distribution of the detected fission chain neutrons is sensitive to the fissile material enrichment. The number of neutrons emitted from a chain is driven by the multiplication of the item, and the enrichment is closely coupled to the multiplication of the item. As the enrichment increases (decreases), the multiplication increases (decreases) if the geometry is held constant. The time distribution of fission chain neutrons is a complex function of the enrichment and material configuration. The enrichment contributes to the probability of a subsequent fission in a chain via the likelihood of fissioning on an even-numbered isotope versus an odd-numbered isotope. The material configuration contributes to the same probability via solid angle effects for neutrons inducing subsequent fissions and the presence of any moderating material. To simplify the ability to accurately measure the enrichment, an associated particle imaging (API) D-T neutron generator and an array of plastic scintillators are used to simultaneously image the item and detect the fission chain neutrons. The image is used to significantly limit the space of enrichment and material configuration and enable the enrichment to be determined unambiguously.

  16. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation

    International Nuclear Information System (INIS)

    Zhang, Wenjie; Tan, Hongbing; Zhang, Yanfei; Wei, Haizhen; Dong, Tao

    2015-01-01

    The Tibetan plateau is characterized by intense hydrothermal activity and abnormal enrichment of trace elements in geothermal waters. Hydrochemistry and B isotope samples from geothermal waters in Tibet were systematically measured to describe the fractionation mechanisms and provide constraints on potential B reservoirs. B concentrations range from 0.35 to 171.90 mg/L, and isotopic values vary between −16.57 ‰ and +0.52 ‰. Geothermal fields along the Indus-Yarlung Zangbo suture zone and N–S rifts are observed with high B concentrations and temperatures. The similar hydrochemical compositions of high-B geothermal waters with magmatic fluid and consistent modeling of B isotopic compositions with present δ"1"1B values imply that the B in high-B geothermal waters is mainly contributed by magmatic sources, probably through magma degassing. In contrast, geothermal fields in other regions of the Lhasa block have relatively low B concentrations and temperatures. After considering the small fractionation factor and representative indicators of Na/Ca, Cl/HCO_3, Na + K and Si, the conformity between modeling results and the isotopic compositions of host rocks suggests that the B in low-temperature geothermal fields is mainly sourced from host rocks. According to simulated results, the B in some shallow geothermal waters not only originated from mixing of cold groundwater with deep thermal waters, but it was also contributed by equilibration with marine sedimentary rocks with an estimated proportion of 10%. It was anticipated that this study would provide useful insight into the sources and fractionation of B as well as further understanding of the relationships between B-rich salt lakes and geothermal activities in the Tibetan plateau. - Highlights: • Chemical and boron isotopic data of geothermal waters in Tibetan plateau were introduced. • Unusual enrichment of boron in Tibetan geothermal waters is related to magmatic and host rocks. • Boron

  17. 136 Xe enrichment through cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Back, Henning O.; Bottenus, Daniel R.; Clayton, Christopher K.; Stephenson, David E.; TeGrotenhuis, Ward E.

    2017-09-01

    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  18. Intraspecific carbon and nitrogen isotopic variability in foxtail millet (Setaria italica).

    Science.gov (United States)

    Lightfoot, Emma; Przelomska, Natalia; Craven, Martha; O Connell, Tamsin C; He, Lu; Hunt, Harriet V; Jones, Martin K

    2016-07-15

    Isotopic palaeodietary studies generally focus on bone collagen from human and/or animal remains. While plant remains are rarely analysed, it is known that plant isotope values can vary as a result of numerous factors, including soil conditions, the environment and type of plant. The millets were important food crops in prehistoric Eurasia, yet little is known about the isotopic differences within millet species. Here we compare the stable isotope ratios within and between Setaria italica plants grown in a controlled environment chamber. Using homogenised samples, we compare carbon isotope ratios of leaves and grains, and nitrogen isotope ratios of grains, from 29 accessions of Setaria italica. We find significant isotopic variability within single leaves and panicles, and between leaves and panicles within the same plant, which must be considered when undertaking plant isotope studies. We find that the leaves and grains from the different accessions have a ca 2‰ range in δ(13) C values, while the nitrogen isotope values in the grains have a ca 6‰ range. We also find an average offset of 0.9‰ between leaves and grains in their δ(13) C values. The variation found is large enough to have archaeological implications and within- and between-plant isotope variability should be considered in isotope studies. The range in δ(15) N values is particularly significant as it is larger than the typical values quoted for a trophic level enrichment, and as such may lead to erroneous interpretations of the amount of animal protein in human or animal diets. It is therefore necessary to account for the variability in plant stable isotope values during palaeodietary reconstructions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Proceedings of the Conference on Isotopic and Molecular Processes

    International Nuclear Information System (INIS)

    Pamula, A.

    1999-01-01

    The proceedings of the Conference on Isotopic and Molecular Processes held on September 23 - 25, 1999 in Cluj - Napoca, Romania contains 8 plenary lectures, 12 oral presentations and 34 posters on isotopic processes (Section A) and 12 oral presentations plus 61 posters on molecular processes (Section B). The main topics treated in plenary lectures were isotope production, separation and enrichment as well as stable isotope applications. Also in this section studies on isotope effects in different fields are reported. In the section A, besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Also environmental studies by means of stable isotope and radon monitoring are described. In the section B several communications are treating the applications of radiation effects and different nuclear methods in medicine

  20. Feasibility of nondestructive assay measurements in uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Walton, R.B.

    1978-04-01

    Applications of nondestructive assay methods to measurement problems in uranium enrichment facilities are reviewed. The results of a number of test and evaluation projects that were performed over the last decade at ORGDP and Portsmouth are presented. Measurements of the residual holdup in the top enrichment portion of the shut-down K-25 cascade were made with portable neutron and gamma-ray detectors, and inventory estimates based on these data were in good agreement with ORGDP estimates. In the operating cascade, the tests showed that portable NaI detectors are effective for monitoring NaF and alumina media for gaseous effluent traps and that gas phase enrichments and inventories, as well as large deposits of uranium, can be detected with portable neutron and gamma-ray instrumentation. A wide variety of scrap and waste materials, including barrier and compressor blades, incinerator ash and trapping media, and miscellaneous waste, were measured using passive gamma-ray and neutron methods and 14-MeV neutron interrogation. Methods developed for rapid verification of UF/sub 6/ in shipping containers with portable neutron and gamma-ray instruments are now used routinely by safeguards inspectors. Passive assay methods can also be used to measure continuously the enrichments of /sup 235/U and /sup 234/U in the UF/sub 6/ product and tails withdrawals of a gaseous diffusion plant. A system that was developed and installed in the extended-range product withdrawal station of the Portsmouth facility measures enrichment with a relative accuracy of 0.5%. A stand-alone neutron detector has also been successfully evaluated for the measurement of the isotopic abundance of /sup 234/U in UF/sub 6/ in sample cylinders, an application of potential importance to Minor Isotope Safeguards Technology. Recommendations are made on the role of NDA measurements for enrichment plant safeguards, including additional tests and evaluations that may be needed, particularly for advanced uranium

  1. Isotopes and atomic weights

    International Nuclear Information System (INIS)

    Zhang Qinglian

    1990-01-01

    A review of the chemical and mass spectrometric methods of determining the atomic weights of elements is presented. A, special discussion is devoted to the calibration of the mass spectrometer with highly enriched isotopes. It is illustrated by the recent work on europium. How to choose the candidate element for new atomic weight determination forms the last section of the article

  2. Uranium enrichment by jet nozzle separation process in the German-Brazil cooperation program

    International Nuclear Information System (INIS)

    Becker, E.W.

    1991-01-01

    It presents a lecture on technical and commercial aspects of uranium isotopic enrichment by the Get Lozzle Method in Brazil. The analysis is presented regarding the context of bilateral agreement German-Brazil it discusses the technical problems of a demonstration plant design as well as the commercial exportation viability of enriched uranium produced in Brazil by the Jet Nozzle Method. (author)

  3. Advanced isotope separation

    International Nuclear Information System (INIS)

    1982-01-01

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems

  4. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  5. Changes in algal stable isotopes following nutrient and peat amendments in oil sands aquatic reclamation

    International Nuclear Information System (INIS)

    Farwell, A.; Chen, H.; Boutsivongskad, M.; Dixon, D.

    2010-01-01

    The processing of oil sands in Alberta generates large volumes of processed material that must be reclaimed. Processed water and solids (PW/S) contain higher levels of naturally occurring compounds such as naphthenic acids (NAs) and polycyclic aromatic compounds (PACs). Organic carbon and nitrogen are some of the constituents in PW/S that may provide nutrient sources for aquatic reclamation sites as they develop into viable ecosystems. This study was conducted to assess the modifying factors that may affect the stable carbon and nitrogen isotope values of primary production in oil sands aquatic reclamation. Both field-based microcosm studies and laboratory studies were used to evaluate the changes in the growth and stable isotope values of phytoplankton, periphyton and/or filamentous algae along gradients of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrogen and phosphorus. Various types of reclamation substrates were used in the study, including various combinations of sand, mature fine tailings, peat and process water. Results showed different levels of growth depending on both the water and substrate type. Typically, periphyton from oil sands reclamation sites were more enriched in 15N than the reference site. Periphyton from one site known as the MP site was more enriched in 13C than periphyton from another site know as the Shallow Wetland South Ditch (SWSD). However, periphyton in the demonstration pond (DP) was more 13C depleted than the reference site. Findings from this study indicate that carbon isotopes are influenced by other factors, such as nutrients.

  6. Factors controlling stable isotope composition of European precipitation

    International Nuclear Information System (INIS)

    Rozanski, K.; Sonntag, C.; Muennich, K.O.

    1982-01-01

    The seasonal and spatial variations of stable isotope ratios in present day European precipitation are simulated with a simple multibox model of the mean west-east horizontal transport of the atmospheric water vapour across the European continent. Isotope fractionation during the formation of precipitation leads to an increasing depletion of heavy isotopes in the residual air moisture as it moves towards the centre of the continent. This isotopic depletion is partly compensated, particularly in summer, by evapotranspiration, which is assumed to transfer soil water into the atmosphere without isotope fractionation. The model estimates are based on horizontal water vapour flux data, varying seasonally between 88 and 130 kg m -1 s -1 for the Atlantic coast region, and on the monthly precipitation, evapotranspiration and surface air temperature data available for various locations in Europe. Both continental and seasonal temperature effects observed in the stable isotope composition of European precipitation are fairly well reproduced by the model. The calculations show that the isotopic composition of local precipitation is primarily controlled by regional scale processes, i.e. by the water vapour transport patterns into the continent, and by the average precipitation-evapotranspiration history of the air masses precipitating at a given place. Local parameters such as the surface and/or cloud base temperature or the amount of precipitation modify the isotope ratios only slightly. Implications of the model predictions for the interpretation of stable isotope ratios in earlier periods as they are preserved in ice cores and in groundwater are also discussed. (Auth.)

  7. Thermal diffusion and separation of isotopes; Diffusion thermique et separation d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Andre

    1944-03-30

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  8. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    Science.gov (United States)

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  9. Are isotope pairs in inorganic electrolyte systems comparable with ion pairs

    International Nuclear Information System (INIS)

    Heumann, K.G.; Gindner, F.; Hoffmann, R.; Kloeppel, H.; Schwarz, A.

    1977-03-01

    Intensive studies on the causes of isotope effects in electrolyte studies have been carried out with the final target of making possible chemical pre-enrichment of stable isotopes which are of increasing importance for labelling purposes. The findings are also of general interest for the behaviour of ions in solutions. (orig.) [de

  10. A view of the uranium enrichment market of the late 1990's and beyond

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1991-01-01

    The author discusses the following topics related to the international uranium enrichment market: a market overview from the early 1980's, including price projections and the impact of new technologies; outlook for the market over the next decade, including military versus commercial requirements, supply and demand for enrichment services, uranium enrichment prices for the 1990's, utility procurement practices, new technologies, and an update on development and design activities related to laser isotope separation at CRISLA Technologies, Inc

  11. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Borysiuk, Maciek, E-mail: maciek.borysiuk@pixe.lth.se; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: {sup 16}O, {sup 17}O and {sup 18}O. We procured samples highly enriched with all three isotopes. Isotopes {sup 16}O and {sup 18}O were easily detected in the enriched samples, but no significant signal from {sup 17}O was detected in the same samples. The measured yield was too low to detect {sup 18}O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with {sup 16}O was clearly visible.

  12. A Cost-effective Amino-acid-type Selective Isotope Labeling of Proteins Expressed in Leishmania tarentolae

    Czech Academy of Sciences Publication Activity Database

    Foldynová-Trantírková, Silvie; Matulová, J.; Dötsch, V.; Löhr, F.; Cirstea, I.; Alexandov, K.; Breitling, R.; Lukeš, Julius; Trantírek, Lukáš

    2009-01-01

    Roč. 26, č. 6 (2009), s. 755-761 ISSN 0739-1102 R&D Projects: GA ČR GP204/08/P585; GA AV ČR 1QS600220554; GA AV ČR KAN200100801; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : NMR * isotope labeling * protein expression * Leishmania * low-level enrichment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.124, year: 2009

  13. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  14. Estimating wetland connectivity to streams in the Prairie Pothole Region: An isotopic and remote sensing approach

    Science.gov (United States)

    Brooks, J. R.; Mushet, David M.; Vanderhoof, Melanie; Leibowitz, Scott G.; Neff, Brian; Christensen, J. R.; Rosenberry, Donald O.; Rugh, W. D.; Alexander, L.C.

    2018-01-01

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding the reliance of stream flow on inputs from wetlands. We used the isotopic evaporation signal in water and remote sensing to examine wetland‐stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie‐pothole wetlands. Pipestem Creek exhibited an evaporated‐water signal that had approximately half the isotopic‐enrichment signal found in most evaporatively enriched prairie‐pothole wetlands. Groundwater adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment, indicating that enriched surface water did not contribute significantly to groundwater discharging into Pipestem Creek. The estimated surface water area necessary to generate the evaporation signal within Pipestem Creek was highly dynamic, varied primarily with the amount of discharge, and was typically greater than the immediate Pipestem Creek surface water area, indicating that surficial flow from wetlands contributed to stream flow throughout the summer. We propose a dynamic range of spilling thresholds for prairie‐pothole wetlands across the watershed allowing for wetland inputs even during low‐flow periods. Combining Landsat estimates with the isotopic approach allowed determination of potential (Landsat) and actual (isotope) contributing areas in wetland‐dominated systems. This combined approach can give insights into the changes in location and magnitude of surface water and groundwater pathways over time. This approach can be used in other areas where evaporation from wetlands results in a sufficient evaporative isotopic signal.

  15. Ratio of the dose factors of the isotopes of iodine

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Thomas, P.

    1977-12-01

    The ratio of dose factors occurring during inhalation and ingestion to the respective dose factors of I-129 is calculated for the isotopes of I-123 to I-126 and I-129 to I-135. All the dose factors refer to the thyroid as the critical organ. A distinction is made between adults and infants up to 1 year of age. To calculate the ratios only the effective energies and the effective half-lives in the human body and on grass are required. Most of the data have been taken from the literature. The effective energies of I-123 and I-125 have been calculated as examples. (orig.) [de

  16. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    Moran, B.W.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235 U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235 U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  17. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  18. Utilization of stable isotopes for the study of in vivo compartmental metabolism of poly-insaturate fatty acids

    International Nuclear Information System (INIS)

    Brossard, N.; Croset, M.; Lecerf, J.; Lagarde, M.; Pachiaudi, C.; Normand, S.; Riou, J.P.; Chirouze, V.; Tayot, J.L.

    1994-01-01

    In order to study the compartmental metabolism of the 22:6n-3 fatty acid, and particularly the role of the transport plasmatic forms for the tissue uptake (especially brain), a technique is developed using carbon 13 stable isotope and an isotopic mass spectrometry coupled to gaseous chromatography technique. This method has been validated in rat with docosahexaenoic acid enriched in 13 C and esterified in triglycerides. The compartmental metabolism is monitored by measuring the variation of 22:6n-3 isotopic enrichment in the various lipoprotein lipidic fractions, in blood globules and in the brain. 1 fig., 1 tab., 12 refs

  19. Tritium enrichment in aqueous phase by catalytic isotopic exchange

    International Nuclear Information System (INIS)

    Schindewolf, U.

    1983-01-01

    At normal pressure, the most promising enrichment method appears to be an inverse current exchanger system using electrolysis at the bottom of the inverse current column apparatus and recombination in an oxyhydrogen gas flame at the top of the column apparatus. A hydrophobic catalyst is used which is made of a pulverized mix of platinized activated carbon and PTFE. (DG) [de

  20. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr