WorldWideScience

Sample records for isotope composition measured

  1. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  2. Measurements of the isotopic composition of galactic cosmic rays

    International Nuclear Information System (INIS)

    Herrstroem, N.Y.

    1985-01-01

    The galactic cosmic-ray boron and carbon isotopic composition has been measured. The boron measurement is the first ever made in nuclear emulsion. The carbon measurement has substantially improved the statistical assuracy in the determination of the 13 C abundance as compared to an earlier measurement using the same technique. Mass-spectra of cosmic-ray carbon and oxygen in different zenith angle intervals have been compared with calculated spectra. The method makes it possible to study experimentally the atmospheric influence on the primary cosmic-ray isotopic composition. Photometric measurements on fragments from oxygen-induced interactions in nuclear emulsion have been made. Accurate charge assignments have been made on all heavy fragments which has made it possible to study the interaction exclusively event-by-event. Measurements on the isotopic composition of primary cosmic-ray neom have been made. The data are from the Danish-French instrument on the HEAO-3 satellite. The rigidity dependent filtering of the cosmic rays by the Earth's magnetic field has been used. The energy dependence of the 22 Ne/ 20 Ne-ratio and its astrophysical implications are discussed. (Author)

  3. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  4. Measurement of plutonium isotopic composition by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Kim, J. S.; Shin, J. S.; Ahn, J. S.

    1998-01-01

    The technology of the analysis of plutonium isotopic ratio is independent of the measurement geometry and applicable to samples of physical and chemical composition. Three standard plutonium samples were measured in the HPGe system. The results showed that CRM 136 and CRM 137 containing 238 Pu(0.223%) and 238 Pu(0.268%) were 18.4% and 14.2% error and CRM 138 of 238 Pu(0.01%) was 76% error. However the analysis represented less than 1.6% and 9% error in the three standard samples of highly involved 239 Pu and 240 Pu. Therefore, gamma-ray spectroscopy is very effective in the plutonium isotope analysis, having greater than 10% in content

  5. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  6. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    Science.gov (United States)

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  7. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  8. First measurements on the core and edge isotope composition using the JET isotope separator neutral particle analyser

    International Nuclear Information System (INIS)

    Bettella, D; Murari, A; Stamp, M; Testa, D

    2003-01-01

    Direct measurements of tokamak plasmas isotope composition are in general quite difficult and have therefore been very seldom performed. On the other hand, the importance of this measurement is going to increase, as future experiments will be progressively focused on plasmas approaching reactor conditions. In this paper, we report for the first time encouraging experimental evidence supporting a new method to determine the radial profile of the density ratio n H /(n H + n D ), based on neutral particle analyser (NPA) measurements. The measurements have been performed in JET with the ISotope SEParator (ISEP), a NPA device specifically developed to measure the energy spectra of the three hydrogen isotopes with very high accuracy and low cross-talk. The data presented here have been collected in two different experimental conditions. In the first case, the density ratio has been kept constant during the discharge. The isotope ratio derived from the ISEP has been compared with the results of visible spectroscopy at the edge and with the isotope composition derived from an Alfven eigenmodes active diagnostic (AEAD) system at about half the minor radius for the discharges reported in this paper. A preliminary evaluation of the additional heating effects on the measurements has also been carried out. In the second set of experiments, the isotope composition of deuterium plasmas has been abruptly changed with suitable short blips of hydrogen, in order to assess the capability of the method to study the transport of the hydrogen isotope species. Future developments of the methodology and its applications to the evaluation of hydrogen transport coefficients are also briefly discussed. The results obtained so far motivate further development of the technique, which constitutes one of the few candidate diagnostic approaches viable for ITER

  9. Measurement of natural carbon isotopic composition of acetone in human urine.

    Science.gov (United States)

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  10. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  11. A measurement of the carbon isotopic composition in primary cosmic radiation

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N.Y.; Jacobsson, L.; Joensson, G.; Kristiansson, K.

    1975-01-01

    The isotopic composition is measured in a stack of nuclear emulsions exposed in a balloon flight from Fort Churchill. The masses of the carbon nuclei have been determined from photometric track width measurements in the residual range interval 1 13 C/( 12 C + 13 C) = 0.10 +- 0.04 at the measuring point. The result indicates that 13 C will only be present in the cosmic ray source matter in small amounts. (orig./BJ) [de

  12. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  13. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    Science.gov (United States)

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  14. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  15. Balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    International Nuclear Information System (INIS)

    Zumberge, J.F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu -1 , using a balloon-borne instrument at an atmospheric depth of approx. 5 g cm -2 . The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approx. 0.3 amu at boron to approx. 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements

  16. Measurement of organic carbon stable isotope composition of different soil types by EA-IRMS system

    International Nuclear Information System (INIS)

    Qi Biao; Ding Lingling; Cui Jiehua; Wang Yanhong

    2009-01-01

    Element analyzer-isotope ratio mass spectrometers (EA-IRMS) is a rapid and precise method for measuring stable carbon isotope. Pure CO 2 reference gas was calibrated via international standard-Urea, and the δ 13 C us PDB value of pure CO 2 is (-29.523 ± 0.0181)%. Stability and linearity of the EA-IRMS system, precision of δ 13 C measurement for samples were tested through experimental comparison. Moreover, determination method of organic carbon stable isotope in soil was based on the system. The EA-IRMS system had well linearity when ion intensity ranged from 1.0 to 7.0V, and it excelled the total linearity when the ion intensity was from 1.5 to 5.0V, and the accurate result of δ 13 C for sample analysis could be obtained with precision of 0.015%. If carbon content in sample is more than 5μg, the requirement for analyzing accurate result of δ 13 C could be achieved. The organic carbon stable isotope was measured in 18 different types soil samples, the average natural abundance of 13 C was 1.082%, and the organic carbon stable isotope composition was significantly different among different type soils. (authors)

  17. Results of the international Pu-2000 exercise for plutonium isotopic composition measurements

    International Nuclear Information System (INIS)

    Morel, J.; Bickel, M.; Hill, C.; Verbruggen, A.

    2004-01-01

    An international comparison for plutonium isotopic composition measurement, known as the Pu-2000 exercise, was organized by the ESARDA NDA-WG (European Safeguards Research and Development Association, Working Group on Techniques and Standards for Non-Destructive Assay). The aim of this comparison was to test X- and γ-ray spectrometry methods over a large range of isotopic ratios. These methods are based on the complex analysis of several X- and γ-rays in the KX region of the plutonium spectrum and also in the 120-700 keV energy range. The results obtained by the participants with their corresponding uncertainties are presented in this document and compared to the declared values. The main conclusions of the work are also given. No important bias due to an inadequate knowledge of the nuclear data for plutonium isotopes was observed

  18. Paloma: In-situ Measurement of The Elemental and Isotopic Composition of The Mars Atmosphere

    Science.gov (United States)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Correia, J.-J.; Covinhes, J.; Goulpeau, G.; Leblanc, F.; Malique, Ch.; Sarda, P.; Schaetzel, P.; Sabroux, J.-C.; Ferry, C.; Richon, P.; Pineau, J.-F.; Desjean, M.-C.

    The PALOMA instrument, presently under study in the frame of the NASA/CNES Mars exploration program, is devoted to the accurate measurement of isotopic and el- emental ratios in Mars atmosphere. It consists of a mass spectrometer coupled with a gas preparation line for separation of reactive and noble gas species, and noble gas species (and reactive gases) from each other, by chemical and cryogenic trapping, and possibly permeation techniques. This instrument, ranked among the most important four types of measurement recommended by the US Committee on Planetary and Lu- nar Exploration (COMPLEX), will be proposed as a part of the payload of the 07 NASA smart landers. The general objectives of PALOMA are to provide instanta- neous and time-varying patterns of noble gas isotopic spectra, and stable isotopes. Such measurements will allow to improve our general understanding of volatile cy- cles on Mars, and to better decipher the history of the atmosphere and climate. Past escape processes, exchanges between solid planet and atmosphere, post-accretional addition of volatil-rich matter from comets, are expected to have imprinted specific isotopic signatures. Although these signatures are strongly interlocked, a compara- tive Earth-Mars approach may allow to discriminate between them, and therefore to reconstruct the history of Martian volatiles. The evolution of atmospheric mass and composition may have had a major impact on climate evolution, e.g. through massive escape of carbon dioxide and water. In addition, precise measurements of isotopes in the present Mars atmosphere are the most promising way on the short term to confirm that SNC meteorites are from Martian origin. PALOMA also includes a small separate device for measuring ambient natural radioactivity, which might provide information about the presence of a near subsurface permafrost, possible residual volcanic activity, vertical mixing rate in the boundary layer.

  19. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  20. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    Science.gov (United States)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  1. Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements

    Science.gov (United States)

    Falk, E. S.; Guo, W.; Paukert, A. N.; Matter, J. M.; Mervine, E. M.; Kelemen, P. B.

    2016-11-01

    Carbonate formation at hyperalkaline springs is typical of serpentinization in peridotite massifs worldwide. These travertines have long been known to exhibit large variations in their carbon and oxygen isotope compositions, extending from apparent equilibrium values to highly depleted values. However, the exact causes of these variations are not well constrained. We analyzed a suite of well-characterized fresh carbonate precipitates and travertines associated with hyperalkaline springs in the peridotite section of the Samail ophiolite, Sultanate of Oman, and found their clumped isotope compositions vary systematically with formation environments. Based on these findings, we identified four main processes controlling the stable isotope compositions of these carbonates. These include hydroxylation of CO2, partial isotope equilibration of dissolved inorganic carbon, mixing between isotopically distinct carbonate end-members, and post-depositional recrystallization. Most notably, in fresh crystalline films on the surface of hyperalkaline springs and in some fresh carbonate precipitates from the bottom of hyperalkaline pools, we observed large enrichments in Δ47 (up to ∼0.2‰ above expected equilibrium values) which accompany depletions in δ18O and δ13C, yielding about 0.01‰ increase in Δ47 and 1.1‰ decrease in δ13C for every 1‰ decrease in δ18O, relative to expected equilibrium values. This disequilibrium trend, also reflected in preserved travertines ranging in age from modern to ∼40,000 years old, is interpreted to arise mainly from the isotope effects associated with the hydroxylation of CO2 in high-pH fluids and agrees with our first-order theoretical estimation. In addition, in some fresh carbonate precipitates from the bottom of hyperalkaline pools and in subsamples of one preserved travertine terrace, we observed additional enrichments in Δ47 at intermediate δ13C and δ18O, consistent with mixing between isotopically distinct carbonate end

  2. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples ' ' Federico II' ' , I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Borisov, S.; Casolino, M.; De Pascale, M. P. [INFN, Sezione di Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); De Santis, C. [Department of Physics, University of Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  3. Measurement of the isotopic composition of the primary cosmic radiation for the elements B-Ne

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N-Y.; Jacobsson, L.; Joensson, G.; Kristiansson, K.

    1977-05-01

    The results are given from an investigation of the isotopic composition of primary cosmic ray B, C, N and O. Preliminary result is also given from an investigation of Ne. The mass measurements are made in nuclear emulsions exposed at about 3 g/cm 2 atmospheric depth. The results for B-O represented as quotients extrapolated to the top of the atmosphere, are: 11 B/B=0.61+-0.10; 13 C/C=0.06+-0.03; 15 N/N=0.33+-0.09; 17 O/O=0.05+-0.03; 18 O/O=0.08+-0.03. The preliminary result from the Ne-measurements shows that nuclei with masses larger than 20 exist among the primary neon nuclei. (Auth.)

  4. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  5. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  6. The precise measurement of TL isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites.

    Science.gov (United States)

    Rehkämper, Mark; Halliday, Alex N.

    1999-07-01

    The precision of Tl isotopic measurements by thermal ionization mass spectrometry (TIMS) is severely limited by the fact that Tl possesses only two naturally occurring isotopes, such that there is no invariant isotope ratio that can be used to correct for instrumental mass discrimination. In this paper we describe new chemical and mass spectrometric techniques for the determination of Tl isotopic compositions at a level of precision hitherto unattained. Thallium is first separated from the geological matrix using a two-stage anion-exchange procedure. Thallium isotopic compositions are then determined by multiple-collector inductively coupled plasma-mass spectrometry with correction for mass discrimination using the known isotopic composition of Pb that is admixed to the sample solutions. With these procedures we achieve a precision of 0.01-0.02% for Tl isotope ratio measurements in geological samples and this is a factor of ≥3-4 better than the best published results by TIMS. However, without adequate precautions, experimental artifacts can be generated that result in apparent Tl isotopic fractionations of up to one per mil. Analysis of five terrestrial samples indicate the existence of Tl isotopic variations related to natural fractionation processes on the Earth. Two of the three igneous rocks analyzed in this study display Tl isotopic compositions indistinguishable from our laboratory standard, the reference material NIST-997 Tl. A third sample, however, is characterized by ɛ Tl ≈ 2.5 ± 1.5, where ɛ Tl represents the deviation of the 205Tl/ 203Tl ratio of the sample relative to NIST-997 Tl in parts per 10 4. Even larger deviations were identified for two ferromanganese crusts from the Pacific Ocean, which display ɛ Tl-values of +5.0 ± 1.5 and +11.7 ± 1.3. We suggest that the large variability of Tl isotopic compositions in the latter samples are caused by low-temperature processes related to the formation of the Fe-Mn crusts by precipitation and

  7. Influence of size and surface structure of microparticles on accuracy of measurements of its uranium isotopic composition

    International Nuclear Information System (INIS)

    Stebelkov, V.; Kolesnikov, O.; Moulenko, D.; Sokolov, A.; Pavlov, A.; Simakin, S.

    2002-01-01

    Full text: One of the elements of the scheme for complex analysis of environmental samples, collected in the regions of location of nuclear facilities, is mass-spectrometry of microparticles of nuclear materials implemented for determination of isotopic composition of these materials. Widely used technique of mass-spectrometry of particles is secondary ion mass-spectrometry. This technique is characterized by successive acquisition of ions from different isotopes under gradual sputtering of microparticle during analysis. The purpose of this work was investigation of kinetic of size changing and changing of measured values of uranium-235 concentration as well as investigation of influence of size and surface structure of microparticle on measurement results. Method of investigation had been comprised to several sequential measurements of uranium isotopes content in the same particle and photography of this particle before every sequential measurement by using electron microscope. Analysis of each particle was finished when this particle was fully sputtered. There were investigated 33 particles of irregular shape and initial sizes from 0.5 μm to 3.5 μm. These particles had different types of surface structure and different isotopic composition. Besides there were investigated 22 spherical particles of UO 2 with 3.7% uranium-235 abundance with sizes from 0.7 μm to 2.4 μm. Thirteen particles of irregular shape were sputtered fully during first measurement of isotopic composition. Two sequential measurements were implemented for 12 particles, three sequential measurements were implemented for 7 particles. For 2 particles of sizes 3.5 μm x 2 μm and 1.2 μm there were implemented four sequential measurements of isotopic composition. During these investigations it was determined that the number of sequential measurements depends not only on size but also on surface structure of particle. With rare exception the sequential values of concentrations of uranium-235

  8. Measurement of plant and soil water isotope composition by direct equilibration methods

    Science.gov (United States)

    Scrimgeour, C. M.

    1995-11-01

    Water contained in plant and soil samples can be analysed for 2H and 18O content by direct equilibration while contained within the sample matrix. Methods for this are described and compared with the commonly used azeotropic distillation of samples before isotope analysis. For δ18O, direct equilibration with CO 2 gives results in good agreement with azeotropic distillation, i.e. within 0.5%o at natural abundance. Direct equilibration is a practical method for individual twig samples containing less than 0.5 ml of water, and offers significant operator time savings compared with azeotropic distillation. Batches of up to 100 samples can be prepared in less time than required for a single azeotropic distillation, and analysis by automated continuous-flow isotope ratio mass spectrometry after equilibration for 3 days again requires a minimum of operator time. Complete equilibration of plant water with H 2 for δ2H measurement occurs only after the plant material has been heated to 100°C under vacuum. The method described here is barely precise enough for natural abundance measurements ( δ 2H ± 15‰ ) but is well suited to field tracer studies with deuterium oxide.

  9. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  10. Measurement of isotopic composition of lanthanides in reprocessing process solutions by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC/ICP-MS)

    International Nuclear Information System (INIS)

    Okano, Masanori; Jitsukata, Shu; Kuno, Takehiko; Yamada, Keiji

    2011-01-01

    Isotopic compositions of fission products in process solutions and wastes in a reprocessing plant are valuable to proceed safety study of the solutions and research/development concerning treatment/disposal of the wastes. The amount of neodymium-148 is a reliable indication to evaluate irradiation history. The isotopic compositions of samarium and gadolinium in high radioactive wastes are referred to as essential data to evaluate environmental impact in geological repositories. However, pretreatment of analysis must be done with complicated chemical separation such as solvent extraction and ion exchange. The actual measurement data of isotopic compositions of lanthanides comparable to the one of actinides in spent fuel reprocessing process has not been obtained enough. Rapid and high sensitive analytical technique based on high-performance liquid chromatography (HPLC) with an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the measurement of isotopic compositions of lanthanides in spent fuel reprocessing solutions. HPLC/ICP-MS measurement system was customized for a glove-box to be applied to the radioactive solutions. The cation exchange chromatographic columns (Shim-pack IC-C1) and injection valve (20μL) were located inside of the glove-box except the chromatographic pump. The elements of lanthanide group were separated by a gradient program of HPLC with α-hydroxyisobutyric acid. Isotopic compositions of lanthanides in eluate was sequentially analyzed by a quadruple ICP-MS. Optimization of parameter of HPLC and ICP-MS measurement system was examined with standard solutions containing 14 lanthanide elements. The elements of lanthanides were separated by HPLC and detected by ICP-MS within 25 minutes. The detection limits of Nd-146, Sm-147 and Gd-157 were 0.37 μg L -1 , 0.69 μg L -1 and 0.47 μg L -1 , respectively. The analytical precision of the above three isotopes was better than 10% for standard solutions of 100 μg L -1 with

  11. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    Science.gov (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  12. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.

    2015-01-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  13. Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere

    Science.gov (United States)

    Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.

    2000-07-01

    Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.

  14. Spectral determination of thallium isotope composition

    International Nuclear Information System (INIS)

    Polyanskij, V.A.; Turkin, Yu.I.; Yakimova, N.M.

    1986-01-01

    The photoelectric non-standard method for determination of the thallium isotope composition is developed. The analysis is carried out by measuring the brightness of the Hfs components in the line Tl Iλ535.04 nm. The relative standard deviation of the results of the isotope analysis of thallium as metal is 0.02 and of thallium salts - 0.02-0.05

  15. A miniaturized laser-ablation mass spectrometer for in-situ measurements of isotope composition on solar body surfaces

    Science.gov (United States)

    Riedo, A.; Meyer, S.; Tulej, M.; Neuland, M.; Bieler, A.; Iakovleva, M.; Wurz, P.

    2012-04-01

    space instrument would have a cylindrical shape with a length of 120 mm, and a diameter of 60 mm, and a weight of about 1.5 kg (all electronics included). The mass analyzer supports high dynamic range of about 107 and a typical mass resolution of m/Δm~700. A computer-controlled optimizer controls the reproducibility of the performance of the mass analyzer, the laser fluence and the positioning of the sample. The system supports highly sensitive studies of elemental composition with sub-ppm detection limits. Our studies show that high accuracy and precision measurements can also be achieved in the investigations of isotopic patterns. Our initial studies of lead isotopic pattern indicated an accuracy and precision in the per mile range, which are comparable to that achieved by other - well known in isotopic analysis - mass spectrometric techniques, i.e., TIMS, SIMS, LA-ICP-MS used in the laboratory. The initial studies were conducted with Galena minerals and NIST standards. Hence, the miniaturized laser ablation time-of-flight mass spectrometer is a powerful instrument for in-situ measurements for the further investigation in surface characterization.

  16. Measurement of the body composition of living gray seals by hydrogen isotope dilution

    International Nuclear Information System (INIS)

    Reilly, J.J.; Fedak, M.A.

    1990-01-01

    The body composition of living gray seals (Halichoerus grypus) can be accurately predicted from a two-step model that involves measurement of total body water (TBW) by 2 H or 3 H dilution and application of predictive relationships between body components and TBW that were derived empirically by slaughter chemical analysis. TBW was overestimated by both 2 HHO and 3 HHO dilution; mean overestimates were 2.8 +/- 0.9% (SE) with 2H and 4.0 +/- 0.6% with 3 H. The relationships for prediction of total body fat (TBF), protein (TBP), gross energy (TBGE), and ash (TBA) were as follows: %TBF = 105.1 - 1.47 (%TBW); %TBP = 0.42 (%TBW) - 4.75; TBGE (MJ) = 40.8 (mass in kg) - 48.5 (TBW in kg) - 0.4; and TBA (kg) = 0.1 - 0.008 (mass in kg) + 0.05 (TBW in kg). These relationships are applicable to gray seals of both sexes over a wide range of age and body conditions, and they predict the body composition of gray seals more accurately than the predictive equations derived from ringed seals (Pusa hispida) and from the equation of Pace and Rathbun, which has been reported to be generally applicable to mammals

  17. A TIMS-based method for the high precision measurements of the three-isotope potassium composition of small samples

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel; Bizzarro, Martin

    2011-01-01

    A novel thermal ionization mass spectrometry (TIMS) method for the three-isotope analysis of K has been developed, and ion chromatographic methods for the separation of K have been adapted for the processing of small samples. The precise measurement of K-isotopes is challenged by the presence of ...

  18. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  19. Using semi-continuous, in-situ measurements of nitrous oxide isotopic composition at a suburban site to track emission processes

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Christoph, Hüglin; Christoph, Zellweger; Béla, Tuzson; Erkan, Ibraim; Lukas, Emmenegger; Joachim, Mohn

    2017-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the strongest ozone-destroying substance emitted this century. The atmospheric N2O mole fraction has been increasing at a rate of 0.2-0.3% per year over the past decades due to anthropogenic emissions; in addition, recent results suggest that the rate of increase is rising - therefore effective mitigation of N2O emissions is a critical point for environmental policy. However, N2O sources are poorly defined and disperse, complicating the development of targeted mitigation strategies. Online isotopic measurements using preconcentration and laser spectroscopy [1,2,3] have great potential to unravel spatial and temporal variations in sources, sinks and chemistry of trace gases such as N2O. Semi-continuous, real-time measurements of N2O isotopic composition (δ18O, site preference [SP = 14N15N16O - 15N14N16O] and δ15Nbulk) were performed at the suburban site of Dübendorf, Switzerland, for 19 months between July 2014 and February 2016. The data precision reached 0.1‰ in the final months, thus the results could clearly identify nocturnal build-up of N2O, with a corresponding decrease in δ18O, SP and δ15Nbulk due to isotopically depleted anthropogenic sources. Daily mean source isotopic composition was calculated by considering the measured and the background mole fraction and isotopic composition. Delta values of the mean emission source were highest in winter, with a seasonal cycle of 12, 8 and 5‰ for δ18O, SP and δ15Nbulk respectively. The chemical and meteorological parameters controlling source isotopic composition were considered using data from the Swiss National Air Pollution Monitoring Network (NABEL) as well as a transport regime cluster analysis. A clear spatial distribution for source isotopic composition was observed for δ18O, as well as a significant relationship with the level of urban pollution, indicating δ18O may be a strong indicator of combustion/industrial vs. agricultural N2O. In contrast

  20. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large Δ44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  1. Isotopic composition of past precipitation

    International Nuclear Information System (INIS)

    Edwards, T.W.D.

    1998-01-01

    The distribution of stable isotopes in precipitation provides critical quantitative information about the global water cycle. The first PAGES/IAEA ISOMAP workshop was held at the IAEA headquarters in Vienna, 24-26 August 1998, which gathered 32 participants. The presentation and discussions demonstrated that a high level of sophistication already exists in the development of transfer functions between measured parameters and precipitation, as a result of the extensive use of water isotope tracers in paleo-environmental investigations, but a major challenge facing both producers and users of paleo-isotope data is the effective management of data and meta-data, to permit ready retrieval of raw and inferred data for comparison and reinterpretation. This will be in important goal of future ISOMAP activities. The critical need for more paleo-data from low latitudes was clearly recognized

  2. Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser

    Science.gov (United States)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    1999-01-01

    A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured laser linewidth was 50 MHz. A CH4 concentration of 15.6 parts in 10(6) ( ppm) in 50 Torr of air was measured in a 43-cm path length with +/- 0.5-ppm accuracy when the signal was averaged over 400 scans. The minimum detectable absorption in such direct absorption measurements is estimated to be 1.1 x 10(-4). The content of 13CH4 and CH3D species in a CH4 sample was determined.

  3. Paloma: an instrument to measure the molecular, elemental and isotopic composition of the mars atmosphere from a landed platform (MSL 09, EXOMARS)

    Energy Technology Data Exchange (ETDEWEB)

    Sabroux, J.Ch

    2003-07-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (Payload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astro-biological interest, like CH{sub 4}, H{sub 2}CO, N{sub 2}O, H{sub 2}S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest. Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. (author)

  4. Paloma: an instrument to measure the molecular, elemental and isotopic composition of the mars atmosphere from a landed platform (MSL 09, EXOMARS)

    International Nuclear Information System (INIS)

    Sabroux, J.Ch.

    2003-01-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (Payload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astro-biological interest, like CH 4 , H 2 CO, N 2 O, H 2 S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest. Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. (author)

  5. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  6. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  7. Destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials for purposes of national safeguards in the German Democratic Republic

    International Nuclear Information System (INIS)

    Villun, K.; Gruner, V.; Siebert, Kh.U.; Hoffmann, D.

    1979-01-01

    The authors give a brief description of the destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials used in the nuclear materials accounting and control system of the German Democratic Republic. They cite examples of the use of gamma-spectrometry, X-ray fluorescence analysis, neutron activation, radiochemical techniques, mass-spectrometry and alpha-spectrometry. (author)

  8. PALOMA : An instrument to measure the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform (MSL 09, EXOMARS)

    Science.gov (United States)

    Chassefière, E.; Paloma Team

    2003-04-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astrobiological interest, like CH_4, H_2CO, N_2O, H_2S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest (a small fraction of ppbv). Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. The PALOMA instrument consists of : a gas purification and separation line, using techniques of chemical and cryogenic trapping, and possibly membrane permeation, a mass spectrometer working in static mode, a turbo-molecular pump that provides the

  9. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  10. The isotopic composition of CO in vehicle exhaust

    NARCIS (Netherlands)

    Naus, S.; Röckmann, T.; Popa, M.E.

    2018-01-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO 2 isotopes, and the CO:CO 2 , CH 4 :CO 2 and H 2 :CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench.

  11. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    International Nuclear Information System (INIS)

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-01-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ 17 O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil ( 2 O 3 ) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl 12 O 19 ) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ∼60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16 O-rich (Δ 17 O = -22.7 per mille ± 8.5 per mille, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3 per mille ± 1.9 per mille, 2σ), and solar wind returned by the Genesis spacecraft (-27 per mille ± 6 per mille, 2σ). One corundum grain is highly 17 O-enriched (δ 17 O ∼ +60 per mille, δ 18 O

  12. Isotope measurement techniques for atmospheric methane

    International Nuclear Information System (INIS)

    Lowe, D.; White, J.; Levin, I.; Wahlen, M.; Miller, J.B.; Bergamaschi, P.

    2002-01-01

    Measurement techniques for the carbon isotopic composition of atmospheric methane (δ 13 C) are described in detail as applied in several leading institutions active in this field since many years. The standard techniques with offline sample preparation and subsequent measurement by dual inlet isotope ratio mass spectrometry (IRMS) are compared with continuous flow IRMS. The potential use of infrared absorption spectroscopy is briefly discussed. Details on quality control and calibration are provided. Basic analytical aspects for the measurement of other species, 2 H and 14 C, are also given. (author)

  13. Magnesium isotopic composition of the mantle

    Science.gov (United States)

    Teng, F.; Li, W.; Ke, S.; Marty, B.; Huang, S.; Dauphas, N.; Wu, F.; Helz, R. L.

    2009-12-01

    Studies of Mg isotopic composition of the Earth not only are important for understanding its geochemistry but also can shed light on the accretion history of the Earth as well as the evolution of the Earth-Moon system. However, to date, the Mg isotopic composition of the Earth is still poorly constrained and highly debated. There is uncertainty in the magnitude of Mg isotope fractionation at mantle temperatures and whether the Earth has a chondritic Mg isotopic composition or not. To constrain further the Mg isotopic composition of the mantle and investigate the behavior of Mg isotopes during igneous differentiation, we report >200 high-precision (δ26Mg French Polynesian volcanoes (Society island and Cook Austral chain); 3) olivine grains from Hawaiian volcanoes (Kilauea, Koolau and Loihi) and 4) peridotite xenoliths from Australia, China, France, Tanzania and USA. Global oceanic basalts and peridotite xenoliths have a limited (<0.2 ‰) variation in Mg isotopic composition, with an average δ26Mg = -0.25 relative to DSM3. Olivines from Hawaiian lavas have δ26Mg ranging from -0.43 to +0.03, with most having compositions identical to basalts and peridotites. Therefore, the mantle’s δ26Mg value is estimated to be ~ -0.25 ± 0.1 (2SD), different from that reported by Wiechert and Halliday (2007; δ26Mg = ~ 0) but similar to more recent studies (δ26Mg = -0.27 to -0.33) (Teng et al. 2007; Handler et al. 2009; Yang et al., 2009). Moreover, we suggest the Earth, as represented by the mantle, has a Mg isotopic composition similar to chondrites (δ26Mg = ~-0.33). The need for a model such as that of Wiechert and Halliday (2007) that involves sorting of chondrules and calcium-aluminum-rich inclusions in the proto planetary disc is thus not required to explain the Mg isotopic composition of the Earth.

  14. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  15. Experimental study on isotope fractionation of evaporating water of different initial isotopic composition

    International Nuclear Information System (INIS)

    Pooja Devi; Jain, A.K.; Rao, M.S.; Kumar, B.

    2014-01-01

    The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan. (author)

  16. Semiempirical method to determine the uranium isotopic compositions

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2008-01-01

    In a nuclear reactor design calculation, some variations of U 235 enrichment are commonly needed. This will affect the isotopic compositions of the 3 main uranium isotopes i.e. U 234 , U 235 and U 238 for the respective enrichment. Due to the limited compositions data available, it is urgent to make an approximate way that can be used to determine the compositions of the 3 isotopes, for the desired enrichments. This paper presents the theoretical background used for constructing a semi empirical formula to estimate the composition of the 3 uranium isotopes as a function of U 235 enrichment, obtained based on the measurement data available. Based on the available data, and the lack of compositions data within the enrichment range between 3.5 % and around 12 %, it is concluded that 2 separate linear equations i.e. for ≤ 3.5 % and ≥ 3.5 % might be needed for U 235 isotope. For the U 234 isotope, a polynomial equation of 4 th order is well suited to be used for the whole range of enrichment between 0.711 % and 20 %, whilst for higher enrichment (> 20 %), a power function seems to give a better approach. The composition of U 238 can then be determined from the U 235 and U 234 composition at the desired enrichment of U 235 . (author)

  17. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  18. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  19. petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Subsurface samples of the predominantly carbonate Ewekoro Formation, obtained from Ibese core hole within the Dahomey basin were used in this study. Investigations entail petrographic, elemental composition as well as stable isotopes (carbon and oxygen) geochemistry in order to deduce the different microfacies and ...

  20. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  1. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  2. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  3. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  4. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer

    Directory of Open Access Journals (Sweden)

    Honglin Yuan

    2016-09-01

    Full Text Available Because Pb isotopes can be used for tracing, they are widely used in many disciplines. The detection and analysis of Pb isotopes of bulk samples are usually conducted using thermal ionization mass spectrometer (TIMS and multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, both of which need external reference materials with known isotopic compositions to correct for the mass discrimination effect produced during analysis. NIST NBS 981 is the most widely used reference material for Pb isotope analysis; however, the isotopic compositions reported by various analytical laboratories, especially those using TIMS, vary from each other. In this study, we statistically evaluated 229 reported TIMS analysis values collected by GeoReM in the last 30 years, 176 reported MC-ICP-MS analysis values, and 938 MC-ICP-MS analysis results from our laboratory in the last five years. After careful investigation, only 40 TIMS results were found to have double or triple spikes. The ratios of the overall weighted averages, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb, obtained from 40 spiked TIMS reports and 1114 MC-ICP-MS results of NIST NBS 981 isotopes were 16.9406 ± 0.0003 (2s, 15.4957 ± 0.0002 (2s, and 36.7184 ± 0.0007 (2s, respectively.

  5. Reproducibility of isotope ratio measurements

    International Nuclear Information System (INIS)

    Elmore, D.

    1981-01-01

    The use of an accelerator as part of a mass spectrometer has improved the sensitivity for measuring low levels of long-lived radionuclides by several orders of magnitude. However, the complexity of a large tandem accelerator and beam transport system has made it difficult to match the precision of low energy mass spectrometry. Although uncertainties for accelerator measured isotope ratios as low as 1% have been obtained under favorable conditions, most errors quoted in the literature for natural samples are in the 5 to 20% range. These errors are dominated by statistics and generally the reproducibility is unknown since the samples are only measured once

  6. Isotopic characterization of targets for nuclear measurements at CBNM

    International Nuclear Information System (INIS)

    Bievre, P. de

    1985-01-01

    Nuclear measurements for which ''nuclear'' targets are prepared are almost always isotope-specific i.e. they are normally related to a particular nuclide in the target. The amount of this nuclide must be accurately assessed. There are essentially two ways to determine the number of atoms of this particular nuclide. (1) By determination of the amount of element, to which the nuclide belongs, on the target via classsical means; weighing substraction of impurities, calculation of element amount using known of the chemical compound in which the element is incorporated and, finally, measurement of the isotopic composition in order to determine the fraction of the nuclide concerned in the element. An alternative way may be to perform an elemental assay on the target followed by determination of the isotopic composition. (2) Another approach is isotope dilution mass spectrometry where a change in the isotopic composition of the ''target'' is induced by adding a known number of atoms (called ''spike'') of the element with a quite different composition. Measurement of the resulting change in isotopic composition yields directly the number of atoms of the nuclide under investigation. The method is highly selective, accurate and isotope-specific. (orig.)

  7. H-Isotopic Composition of Apatite in Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  8. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  9. Isotopic composition and origin of the precipitation in Northern Chile

    International Nuclear Information System (INIS)

    Aravena, R.; Pena, H.; Grilli, A.; Pollastri, A.; Fuenzalida, H.

    1997-01-01

    Full text: A three years isotope data on precipitation collected in northern Chile show a very distinct pattern, with depleted δ 18 and -150/00 observed at high altitude stations, compared to δ 18 0 values ranging between - 10 and -6/00 measured at the lower altitude areas. The depleted δ 0 values observed in the high altitude area, the Altiplano, are related to different processes that affect the air masses as moved from the Atlantic, crossed the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated to air masses from the Pacific, explained the enriched isotopic values observed in the lower altitude areas. Similar isotopic pattern, documented in springs and groundwater, indicates that the rain data presented in this paper is an accurate representation of the long term behavior of the isotopic composition of the rain in northern Chile

  10. Ion detectors for isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, A.

    1978-12-15

    Detector development over the past two decades has been such that this is now the least likely part of the mass spectrometry equipment to give rise to the sort of measurement errors to cause concern. It is now possible to choose from a number of different types of device which can provide more or less 100% efficiency in ion beam detection under all conceivable experimental conditions required for isotopic analysis, from measurement of large samples using the traditional Faraday cage to measurement of exceedingly small ion currents by ion counting techniques. There are even methods of distinguishing one type of ionic species from another in the detector, thus improving the accuracy when unwanted isobaric species might otherwise grossly distort the measurement. Notable contributions to detector development for nuclear measurements have been made by Dietz at the Knolls Atomic Power Laboratory, by Barnett at Oak Ridge and by Daly at Atomic Weapons Research Establishment (AWRE), Aldermaston. This paper describes the detection methods which are currently in use at AWRE for isotopic analysis of solid samples for routine applications as well as non-routine applications. Other methods are merely mentioned as a stimulus for discussion.

  11. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2014-02-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near

  12. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  13. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  14. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    Science.gov (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  15. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    Science.gov (United States)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  16. BENCHMARKING ORTEC ISOTOPIC MEASUREMENTS AND CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R; Raymond Sigg, R; Vito Casella, V; Nitin Bhatt, N

    2008-09-29

    these cases the ISOTOPIC analysis program is especially valuable because it allows a rapid, defensible, reproducible analysis of radioactive content without tedious and repetitive experimental measurement of {gamma}-ray transmission through the sample and container at multiple photon energies. The ISOTOPIC analysis technique is also especially valuable in facility holdup measurements where the acquisition configuration does not fit the accepted generalized geometries where detector efficiencies have been solved exactly with good calculus. Generally in facility passive {gamma}-ray holdup measurements the acquisition geometry is only approximately reproducible, and the sample (object) is an extensive glovebox or HEPA filter component. In these cases accuracy of analyses is rarely possible, however demonstrating fissile Pu and U content within criticality safety guidelines yields valuable operating information. Demonstrating such content can be performed with broad assumptions and within broad factors (e.g. 2-8) of conservatism. The ISOTOPIC analysis program yields rapid defensible analyses of content within acceptable uncertainty and within acceptable conservatism without extensive repetitive experimental measurements. In addition to transmission correction determinations based on the mass and composition of objects, the ISOTOPIC program performs finite geometry corrections based on object shape and dimensions. These geometry corrections are based upon finite element summation to approximate exact closed form calculus. In this report we provide several benchmark comparisons to the same technique provided by the Canberra In Situ Object Counting System (ISOCS) and to the finite thickness calculations described by Russo in reference 10. This report describes the benchmark comparisons we have performed to demonstrate and to document that the ISOTOPIC analysis program yields the results we claim to our customers.

  17. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  18. Purdue Rare Isotope Measurement Laboratory

    Science.gov (United States)

    Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.

    2002-12-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.

  19. The feasibility of express in situ measurement of the isotopic composition of uranium in fresh WWER-1000 fuel

    International Nuclear Information System (INIS)

    Christoskov, I.; Tsankov, L.; Ivanov, N.

    2011-01-01

    A study of the feasibility and accuracy of measurement of the enrichment of fresh VVER-1000 fuel assemblies using a miniature CdZnTe probe is performed.The possibilities of improvement of the analytical procedure are briefly discussed. (authors)

  20. High-precision Mg isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—implications for the relative and absolute Mg isotope composition of the bulk silicate Earth

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Paton, Chad; Larsen, Kirsten Kolbjørn

    2011-01-01

    -isotope composition for Earth’s mantle – and hence that of the bulk silicate Earth – to be 25Mg/24Mg 1/4 0.126896 ¿ 0.000025 and 26Mg/24Mg 1/4 0.139652 ¿ 0.000033. Given the restricted range of m25Mg obtained for bulk planetary material by the sample-standard bracketing technique and the excellent agreement between...

  1. Tracing anthropogenic thallium in soil using stable isotope compositions.

    Science.gov (United States)

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.

  2. The Oxygen Isotopic Composition (18O/16O) in the Dust of Comet 67P/Churyumov-Gerasimenko Measured by COSIMA On-board Rosetta

    Science.gov (United States)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.

    2018-03-01

    The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4 which is consistent within errors with VSMOW.

  3. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    Science.gov (United States)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  4. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  5. Measuring the triple O2 isotopic composition of air trapped in ice cores and quantifying thecauses of δ18Oatm Millennial Scale Variations

    DEFF Research Database (Denmark)

    Reutenauer, Corentin

    of O2 isotopologues as global tracers of past changes in the climate system. The evolution of the past atmosphere can be retrieved from the air bubbles occluded n polar ice cores back to 800 kyr. However, elemental and isotopic fractionation processes alter O2 isotope ratios during the transport......, or the reproducibility of ice core δ18Oatm measurements is estimated with 21 Late Holocene Neem (Greenland) icecore samples from the same depth. A melt-extraction method is applied on these large samples (⋍ 30 g) and δ18Oatm , δO2/N2 and δ15N are measured in an O2 /N2/Ar mixture by isotope ratio mass spectrometry...... of the analytical system to reproduce δ18Oatm and δO2/N2 is estimated as 0.028‰ (1 σ) and 0.021‰ (1 σ), respectively. Fifth, thanks to improving isotope measurement techniques, millennial scale variations of δ18Oatm and 17Δatm preserved in polar ice cores have been revealed. In particular, a systematic δ18Oatm...

  6. Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea

    Science.gov (United States)

    Ryb, U.; Eiler, J. M.

    2017-12-01

    The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.

  7. Anomalous isotopic composition of cosmic rays

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of 22 Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables

  8. Stable-isotope composition of the water of apple juice

    International Nuclear Information System (INIS)

    Bricout, Jacques; Merlivat, Liliane

    1973-01-01

    By deuterium and oxygen 18 analysis, it was shown that apples' water is enriched in heavier isotopes as compared to rain water. The isotopic composition of the water of reconstituted apple juice is closed to the isotopic content of the rain water used for dilution. Thus, deuterium and oxyden 18 analysis allows a good analytical distinction between natural apple juice and reconstituted juices [fr

  9. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  10. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    Science.gov (United States)

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  11. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  12. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  13. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  14. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  15. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  16. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    2002-01-01

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO 2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  17. Precise measurement of chromium isotopes by MC-ICPMS

    DEFF Research Database (Denmark)

    Schiller, Martin; Van Kooten, Elishevah; Holst, Jesper Christian

    2014-01-01

    We report novel analytical procedures allowing for the concurrent determination of the stable and mass-independent Cr isotopic composition of silicate materials by multiple collector inductively coupled mass spectrometry (MC-ICPMS). In particular, we focus on improved precision of the measurement...

  18. Reorientation measurements on tungsten isotopes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J J; Saladin, J X; Baktash, C; Alessi, J G [Pittsburgh Univ., Pa. (USA)

    1977-11-14

    In a particle-..gamma.. coincidence experiment, a thick tungsten target, of natural isotopic abundance, was bombarded with ..cap alpha.. and /sup 16/O beams. From analysis of the deexcitation ..gamma..-rays following Coulomb excitation, the spectroscopic quadrupole moment of the second 2/sup +/ state (the 2/sup +/' state) was determined for /sup 186/W and /sup 184/W. In a separate Coulomb excitation experiment a thin, isotopically enriched /sup 186/W target was bombarded with /sup 16/O ions. From analysis of projectiles scattered elastically and inelastically the quadrupole moment of the 2/sup +/' state of /sup 186/W was extracted. The results of the two experiments are in good agreement. The quadrupole moment of the 2/sup +/' state is found to be opposite in sign to that of the first 2/sup +/ state for both isotopes studied. However, its magnitude decreases rapidly in going from /sup 186/W to /sup 184/W, in contrast to the predictions of the rotation-vibration of asymmetric rotor models. The microscopic theory of Kumar and Baranger does predict the experimental trend, qualitatively. Thus the present results are interpreted as being evidence of strong coupling between ..beta.. and ..gamma.. degrees of freedom in the tungsten isotopes, which, according to the theory of Kumar and Baranger, is the source of the reduced value of the quadrupole moment.

  19. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  20. Pb isotopic composition of the atmosphere of the Sao Paulo city, Brazil, and isotopic characterization of some pollutant sources

    International Nuclear Information System (INIS)

    Aily, C.; Babinski, M.; Ruiz, I.R.; Sato, K

    2001-01-01

    Lead isotopes are known to be good tools for surveying lead origin in atmospheric samples (Chow et al., 1975). Lead has four naturally occurring stable isotopes: 206 Pb, 207 Pb, 208 Pb and 204 Pb. The first three isotopes are end products of radioactive decay chains from 238 U, 235 U and 232 Th, respectively, and the last one is non-radiogenic. Therefore, their abundance and the ratios among the four isotopes gradually change with time. Lead in the atmosphere comes from various sources, such as leaded gasoline, industrial emissions and coal combustion. Thus, lead isotope ratios different from those of the mother rock in the region are often observed in the atmosphere (Tatsumoto and Patterson, 1963). Lead is emitted to the atmosphere in fine particles, which can be transported within air masses for very long distances, e. g. from mid latitude regions to the Artic and Antarctica (Sturges and Barrie, 1989). Lead isotopes have been used to trace the pollutant sources in many cities of the world. However, a systematic study using this methodology has not been done in any Brazilian city. The main purpose of the present work is to characterize the Pb isotope composition in the atmosphere in Sao Paulo city, and suggest the possible pollutant sources. For our study lead isotopes were measured in different samples: aerosols and rainwater which would yield the Pb isotope composition of the atmosphere. Samples of gasoline and ethanol, gutter sweepings, soot from vehicle exhaust pipes, and filters containing particulate material from industrial emissions were also analyzed, since they were considered potential pollutant sources of the atmosphere. In order to obtain the local geogenic Pb isotopic composition we also analyzed rock and K-feldspar samples. Lead concentrations were only determined on aerosols and rainwater samples (au)

  1. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  2. Magnesium isotopic composition of the Earth and chondrites

    Science.gov (United States)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites

  3. Isotopic composition of cosmic ray nuclei

    International Nuclear Information System (INIS)

    Enge, W.

    1976-01-01

    A review will be given on the role of cosmic ray isotopes as tracers of the astrophysical nucleo-synthesis. The products of every nuclear burning chain are first of all isotopes and not elements. Thus, it is the study of the isotopes rather than that of the elements that responds to the questions on these nucleo-synthetic reactions. The problems concerning the solar system isotopic abundances and the cosmic ray isotopic abundances as well as a comparison between both will be presented. Furthermore the present stage of the experimental techniques and the latest results will be discussed. (orig.) [de

  4. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  5. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  6. ICP magnetic sector multiple collector mass spectrometry and the precise measurement of isotopic compositions using nebulization of solutions and laser ablation of solids

    International Nuclear Information System (INIS)

    Halliday, A.N.; Lee, D-C.; Christensen, J.N.; Yi, W.; Hall, C.M.; Jones, C.E.; Teagle, D.A.H.; Freedman, P.A.

    1996-01-01

    Inductively-coupled plasma (ICP) sources offer considerable advantages over thermal sources because the high ionization efficiency facilitates measurements of relatively high sensitivity for elements such as Hf or Sn, which can be difficult to measure precisely with thermal ionization mass spectrometry (TIMS). The mass discrimination (bias) is larger than for TIMS, favours the heavier ions, and decreases in magnitude with increasing mass. However, in contrast to TIMS, this discrimination is largely independent of the chemical or physical properties of the element or the duration of the analysis. This has been demonstrated to high precision with a double focussing multiple collector magnetic sector mass spectrometer with an ICP source. The principle of this instrument is briefly described. The potential of the instrument for high precision isotopic measurements of a very broad range of elements, using solution aspiration or laser ablation, is indicated. 15 refs

  7. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  8. Nutritional assessment with body composition measurements

    International Nuclear Information System (INIS)

    Shizgal, H.M.

    1987-01-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes

  9. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  10. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    Gromov, Sergey S.

    2014-01-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The

  11. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    considerable variation in carbon isotopic composition. The Trambau ... One of the most significant changes in the ocean atmosphere .... cryogenic separation of water, CO2 was dynami- .... light condition, nutrients and temperature are low,.

  12. Osmium Isotope Compositions of Komatiite Sources Through Time

    Science.gov (United States)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os

  13. Uranium isotope ratio measurements in field settings

    International Nuclear Information System (INIS)

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-01-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% 235 U enrichment and above, the measurement precision for 235 U/( 235 U+ 238 U) isotope ratios was ±3%; it declined to ±15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described

  14. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    Science.gov (United States)

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  15. Factors controlling stable isotope composition of European precipitation

    International Nuclear Information System (INIS)

    Rozanski, K.; Sonntag, C.; Muennich, K.O.

    1982-01-01

    The seasonal and spatial variations of stable isotope ratios in present day European precipitation are simulated with a simple multibox model of the mean west-east horizontal transport of the atmospheric water vapour across the European continent. Isotope fractionation during the formation of precipitation leads to an increasing depletion of heavy isotopes in the residual air moisture as it moves towards the centre of the continent. This isotopic depletion is partly compensated, particularly in summer, by evapotranspiration, which is assumed to transfer soil water into the atmosphere without isotope fractionation. The model estimates are based on horizontal water vapour flux data, varying seasonally between 88 and 130 kg m -1 s -1 for the Atlantic coast region, and on the monthly precipitation, evapotranspiration and surface air temperature data available for various locations in Europe. Both continental and seasonal temperature effects observed in the stable isotope composition of European precipitation are fairly well reproduced by the model. The calculations show that the isotopic composition of local precipitation is primarily controlled by regional scale processes, i.e. by the water vapour transport patterns into the continent, and by the average precipitation-evapotranspiration history of the air masses precipitating at a given place. Local parameters such as the surface and/or cloud base temperature or the amount of precipitation modify the isotope ratios only slightly. Implications of the model predictions for the interpretation of stable isotope ratios in earlier periods as they are preserved in ice cores and in groundwater are also discussed. (Auth.)

  16. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Science.gov (United States)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  17. Precision Mass Measurement of Argon Isotopes

    CERN Multimedia

    Lunney, D

    2002-01-01

    % IS388\\\\ \\\\ A precision mass measurement of the neutron-deficient isotopes $^{32,33,34}$Ar is proposed. Mass values of these isotopes are of importance for: a) a stringent test of the Isobaric-Multiplet- Mass-Equation, b) a verification of the correctness of calculated charge-dependent corrections as used in super-allowed $\\beta$- decay studies aiming at a test of the CVC hypothesis, and c) the determination of the kinematics in electron-neutrino correlation experiments searching for scalar currents in weak interaction. The measurements will be carried out with the ISOLTRAP Penning trap mass spectrometer.

  18. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  19. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan; Wielandt, Daniel Kim Peel; Paton, Chad

    2016-01-01

    We report novel techniques allowing the measurement of Nd-isotope ratios with unprecedented accuracy and precision by multi-collector inductively coupled plasma mass spectrometry. Using the new protocol, we have measured the Nd-isotopic composition of rock and synthetic Nd standards as well as th...

  20. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  1. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  2. What Affects the Isotopic Composition of Precipitation - A New Interpretation?

    Energy Technology Data Exchange (ETDEWEB)

    Dody, A. [Nuclear Research Center, Negev, Beer Sheva (Israel)

    2013-07-15

    Rainfall events were sampled in high resolution for stable isotope analyses during four rainy seasons in the central negev of Israel. Each sample is equivalent to 1-2 mm of rain. High variability in the isotopic composition was found in fractions of rain during storms. Two modes of isotopic distribution were found. The first is a wave shaped distribution, where isotopic compositions showed enriched to depleted graded changes and vice versa. The second mode is a step function where each rain cell displayed a constant {delta}{sup 18}O value, but varied greatly from the other rain cells. New interpretation suggests that during the transport of the air parcel system three processes can occur. The first process is a complete blending among the rain cells. The second is a partial isotopic mixing between the rain cells. Finally the third case is when each rain cell maintains its own isotopic values separate from the other rain cells. The third case of no mixing showed unexpected results due to the high air turbulence, vertically and horizontally. There was no evidence of complete mixing among the rain cells of identical air parcel systems. The processes in the air parcel trajectory itself suggested here is put forward as a new way to explain the changes in the isotopic composition during the rain. (author)

  3. Liquid volumes measurements by isotopic dilution

    International Nuclear Information System (INIS)

    Herrera M, J.M.

    1981-01-01

    By the nuclear technique, isotopic dilution industrial liquid volumes may be measured in large size recipients of irregular shapes using radiotracers. In the present work laboratory and pilot test are made with 2 radiotracers for optimizing the technique and later done on an industrial scale, obtaining a maximum deviation of +-2%, some recommendations are given to improve the performance of the technique. (author)

  4. Spatiotemporal variation of stable isotopic composition in precipitation

    DEFF Research Database (Denmark)

    Müller, Sascha; Stumpp, Christine; Sørensen, Jens Havskov

    2017-01-01

    influences the isotopic composition at the study site. A simple model of evaporation on falling rain was applied with the aim to reproduce observational data and show the potential influence of changing humidity conditions on precipitation compositions. The rather simple model approach did not fully explain...

  5. Nuclear isotope measurement in the Hanford environment

    International Nuclear Information System (INIS)

    Wacker, J.F.; Stoffel, J.J.; Kelley, J.M.

    1995-01-01

    The Pacific Northwest Laboratory (PNL) is located at the federal government's Hanford Site in southeastern Washington State, which was built during World War II as part of the secret Manhattan Project to develop the atomic bomb. Monitoring of the Site itself and surrounding environs for Hanford-related radionuclides has been a routine part of the operations since 1944. One of the most sensitive analytical methods used is thermal ionization mass spectrometry (TIMS) with triple-sector mass spectrometers. Normal geometry instruments have an abundance sensitivity of 10 -9 for uranium while the authors' newest Triple-Sector Isotope Mass Spectrometer (TRISM), utilizing a new ion-optical design developed at PNL, has an abundance sensitivity of 10 -11 . In favorable cases, sensitivity is such that complete isotopic analyses are obtained on total samples in the femtogram range; and minor isotopes in the attogram range are measured

  6. The ruthenium isotopic composition of the oceanic mantle

    Science.gov (United States)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  7. Measurement of heavy particle and isotope

    International Nuclear Information System (INIS)

    Matsuoka, Masaru; Kohno, Takeshi; Imai, Takashi; Munakata, Kazuoki

    1987-01-01

    The report describes some achievements made so far in developing heavy particle and isotope measuring equipment that is planned to be mounted on the No.6 technical test satelite of the National Space Development Agency, ETS VI. Some ideas are proposed for such heavy particle and isotope measuring equipment that uses Astromag. The structure of SSD is shown which is planned to be incorporated in the sensor for the equipment. The planned charged particle detector consists of position sensitive detectors, PIN diodes and Si(Li) plates. Tests are made for the basic characteristics of such a detector. The characteristics of a PSD are also investigated. The PSD has a resolution of about 1 mm for 14 MeV He. Tests of a 0.3 mm PIN diode and 1.2 mm Si(Li) is carried out with 234 MeV-nucl Fe beams to determine their pulse height distribution. The PIN diode and Si(Li) are found to have a resolution of 6.79 and 17.6 MeV for energy loss of 158 and 710 MeV, respectively. If developed, a stripe-type Si PIN diode will serve for analysis of isotopes. A conceptual diagram of such a stripe device is proposed. The mechanism of measurement by a heavy particle and isotope detecting system incorporating Astromag is also illustrated. (Nogami, K.)

  8. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  9. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  10. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  11. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  12. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  13. Vadose Zone Infiltration Rates from Sr isotope Measurements

    Science.gov (United States)

    Maher, K.; Maher, K.; DePaolo, D. J.; DePaolo, D. J.; Conrad, M.

    2001-12-01

    Predicting infiltration rates and recharge through the vadose zone in arid regions is difficult and hence developing methods for the measurement of infiltration rates is important. We have been investigating the use of Sr isotope measurements for determining infiltration at the 200 Area plateau on the Hanford reservation in central Washington. In this context, infiltration affects the transport of contaminants to the water table as well as recharge of the groundwater system. Using Sr isotopes for this purpose requires drill core and water samples from the vadose zone, although leaches of the cores can substitute for water samples. Complementary information, including some constraints on regional recharge, can also be obtained using water samples from groundwater monitoring wells. The VZ method is based on the fact that the Sr isotope ratio of soil water just below the surface is often set by dissolution of aeolian material including carbonate, and this ratio is different from the average value in the deeper underlying vadose zone rock matrix. As water infiltrates, the Sr isotopic composition of the water changes toward the rock values as a result of Sr released from the rocks by weathering reactions. The rate of change with depth of the Sr isotope ratio of the vadose zone water is a function ultimately of q/R; the ratio of the infiltration flux (q) to the bulk rock weathering rate (R). Where it is possible to evaluate R, q can be estimated. As data accumulate it may be possible to improve the calibration of the method. At Hanford the vadose zone rock material is mostly unconsolidated sand, silt, and gravel of broadly granitic composition, which constitute the Hanford and Ringold formations. Annual precipitation is about 160 mm/yr. Drilling and coring of a ca. 70m hole to the water table in 1999 as part of the Hanford groundwater monitoring program, in a relatively undisturbed area of the site, allowed us to generate a unique Sr isotope data set. The Sr isotope

  14. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-01-01

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ 13 C and δ 15 N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13 C and 15 N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ 13 C and δ 15 N values. These data were compared to previously published δ 13 C and δ 15 N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ 13 C and δ 15 N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  15. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  16. The atomic weight and isotopic composition of nitrogen and their variation in nature

    International Nuclear Information System (INIS)

    Holden, N.E.

    1987-01-01

    Two stable isotopes of nitrogen exist in nature, 14 N and 15 N. The less abundant isotope, 15 N, was discovered in 1929 by Naude, who studied the band spectra of nitric oxide, NO. However, the main source of a standard for this element is the air in the atmosphere, which is made up of approximately 78% N 2 . Reviewed in this paper is the measurements of the isotopic composition in air and its variation around the world. Also investigated is the variation of the isotopic composition in the various compounds or sources of nitrogen compared to the value in air. Data on the atomic weight and non-terrestrial data for nitrogen is also reviewed

  17. Determination of isotopic composition of uranium in microparticles by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Veniaminov, N.N.; Kolesnikov, O.N.; Stebel'kov, V.A.

    1992-01-01

    Aerosol particles including uranium in their composition are specific atmospheric polutants. Uranium is used as nuclear fuel in atomic power stations and in spacecraft power units, and also as a component of nuclear warheads. In order to monitor the discharge of uranium-containing aerosol particles to the atmosphere, they must first be identified. As an example, one may cite an investigation of the elemental composition and radioactivity of particles formed in the accident at the Chernobyl atomic power station. One of the most informative indicators of the origin of uranium-containing aerosol particles is the isotopic composition of the uranium. Secondary ion mass spectrometry (SIMS) offers unique possibilities for the measurement of isotope ratios in individual microscopic objects. At the same time, a measurement of isotope ratios of sulfur in microsection of galenite PbS 2 has shown that the application of SIMS for these purposes is seriously limited by the difference in yield of secondary ions for isotopes with different masses. These discrimination effects, in the case of light elements such as boron, may result in distortion of the isotope ratios by several percent. In the case of heavy elements, however, the effect is less significant, amounting to about 0.5% for lead isotopes. 13 refs., 3 figs., 1 tab

  18. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition

    Science.gov (United States)

    Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.

    2018-03-01

    The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.

  19. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  20. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: Implications for biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bardhan, P.; Naqvi, S.W.A.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Naik, H.

    , 767–779, 2017 www.biogeosciences.net/14/767/2017/ doi:10.5194/bg-14-767-2017 © Author(s) 2017. CC Attribution 3.0 License. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications... basis. Samples for nitrate isotopic measurements were col- lected from 2011. The facility for nitrate isotope analysis was Biogeosciences, 14, 767–779, 2017 www.biogeosciences.net/14/767/2017/ P. Bardhan et al.: Isotopic composition of nitrate and POM...

  1. Stable isotope composition of cocoa beans of different geographical origin.

    Science.gov (United States)

    Perini, Matteo; Bontempo, Luana; Ziller, Luca; Barbero, Alice; Caligiani, Augusta; Camin, Federica

    2016-09-01

    The isotopic profile (δ(13) C, δ(15) N, δ(18) O, δ(2) H, δ(34) S) was used to characterise a wide selection of cocoa beans from different renowned production areas (Africa, Asia, Central and South America). The factors most influencing the isotopic signatures of cocoa beans were climate and altitude for δ(13) C and the isotopic composition of precipitation water for δ(18) O and δ(2) H, whereas δ(15) N and δ(34) S were primarily affected by geology and fertilisation practises. Multi-isotopic analysis was shown to be sufficiently effective in determining the geographical origin of cocoa beans, and combining it with Canonical Discriminant Analysis led to more than 80% of samples being correctly reclassified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The isotopic composition of CO in vehicle exhaust

    Science.gov (United States)

    Naus, S.; Röckmann, T.; Popa, M. E.

    2018-03-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO2 isotopes, and the CO:CO2, CH4:CO2 and H2:CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench. The spread in the results, even for a single vehicle, was large: for δ13 C in CO ∼ -60 to 0‰, for δ18 O in CO ∼ +10 to +35‰, and for all gas ratios several orders of magnitude. The results show an increase in the spread of isotopic values for CO compared to previous studies, suggesting that increasing complexity of emission control in vehicles might be reflected in the isotopic composition. When including all samples, we find a weighted mean for the δ13 C and δ18 O in CO of -28.7 ± 0.5‰ and +24.8 ± 0.3‰ respectively. This result is dominated by cold petrol vehicles. Diesel vehicles behaved as a distinct group, with CO enriched in 13C and depleted in 18O, compared to petrol vehicles. For the H2:CO ratio of all vehicles, we found a value of 0.71 ± 0.31 ppb:ppb. The CO:CO2 ratio, with a mean of 19.4 ± 6.8 ppb:ppm, and the CH4:CO2 ratio, with a mean of 0.26 ± 0.05 ppb:ppm, are both higher than recent literature indicates. This is likely because our sampling distribution was biased towards cold vehicles, and therefore towards higher emission situations. The CH4:CO2 ratio was found to behave similarly to the CO:CO2 ratio, suggesting that the processes affecting CO and CH4 are similar. The δ13 C values in CO2 were close to the expected δ13 C in fuel, with no significant difference between petrol and diesel vehicles. The δ18 O values in CO2 for petrol vehicles covered a range of 20-35‰, similar to the δ18 O of CO. The δ18 O values in CO2 for diesel vehicles were close to the δ18 O in atmospheric oxygen. A set of polluted atmospheric samples, taken near a highway and inside parking garages, showed an isotopic signature of CO and a H2:CO ratio that were

  3. Measuring hydrogen-isotope distribution profiles

    International Nuclear Information System (INIS)

    Poppe, C.H.

    1977-01-01

    A new nondestructive technique was developed for measuring the depth distribution of hydrogen isotopes absorbed or implanted near the surface of any material. The method allows real-time study of the inventory and diffusion of hydrogen, deuterium, and tritium. Briefly, the technique involves bombarding the surface with a monoenergetic beam of ions chosen for their ability to react with the hydrogen isotope in question and produce fast neutrons. The energy distribution of the neutrons is a sensitive indicator of the energy of the bombarding particles at the instant of reaction, and hence of the depth of the reaction sites below he surface of the material. A sensitivity of one part per million was obtained for tritium in copper. The technique is applicable to several energy-related materials problems. 5 figures

  4. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2007-05-01

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18 O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  5. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    Science.gov (United States)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  6. SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Olivier Chapleur

    Full Text Available In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH and nanoscale secondary ion mass spectrometry (nanoSIMS imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13C uptake during labelled methanol anaerobic degradation.

  7. SIMSISH Technique Does Not Alter the Apparent Isotopic Composition of Bacterial Cells

    Science.gov (United States)

    Chapleur, Olivier; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Mazéas, Laurent; Bouchez, Théodore

    2013-01-01

    In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS) measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine – iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific 13C uptake during labelled methanol anaerobic degradation. PMID:24204855

  8. Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES

    Science.gov (United States)

    Field, Robert; Kim, Daehyun; Kelley, Max; LeGrande, Allegra; Worden, John; Schmidt, Gavin

    2014-05-01

    Observational and theoretical arguments suggest that satellite retrievals of the stable isotope composition of water vapor could be useful for climate model evaluation. The isotopic composition of water vapor is controlled by the same processes that control water vapor amount, but the observed distribution of isotopic composition is distinct from amount itself . This is due to the fractionation that occurs between the abundant H216O isotopes (isotopologues) and the rare and heavy H218O and HDO isotopes during evaporation and condensation. The fractionation physics are much simpler than the underlying moist physics; discrepancies between observed and modeled isotopic fields are more likely due to problems in the latter. Isotopic measurements therefore have the potential for identifying problems that might not be apparent from more conventional measurements. Isotopic tracers have existed in climate models since the 1980s but it is only since the mid 2000s that there have been enough data for meaningful model evaluation in this sense, in the troposphere at least. We have evaluated the NASA GISS ModelE2 general circulation model over the tropics against water isotope (HDO/H2O) retrievals from the Aura Tropospheric Emission Spectrometer (TES), alongside more conventional measurements. A small ensemble of experiments was performed with physics perturbations to the cumulus and planetary boundary layer schemes, done in the context of the normal model development process. We examined the degree to which model-data agreement could be used to constrain a select group of internal processes in the model, namely condensate evaporation, entrainment strength, and moist convective air mass flux. All are difficult to parameterize, but exert strong influence over model performance. We found that the water isotope composition was significantly more sensitive to physics changes than precipitation, temperature or relative humidity through the depth of the tropical troposphere. Among the

  9. Development, optimisation, and application of ICP-SFMS methods for the measurement of isotope ratios

    International Nuclear Information System (INIS)

    Stuerup, S.

    2000-07-01

    The measurement of isotopic composition and isotope ratios in biological and environmental samples requires sensitive, precise, and accurate analytical techniques. The analytical techniques used are traditionally based on mass spectrometry, among these techniques is the ICP-SFMS technique, which became commercially available in the mid 1990s. This technique is characterised by high sensitivity, low background, and the ability to separate analyte signals from spectral interferences. These features are beneficial for the measurement of isotope ratios and enable the measurement of isotope ratios of elements, which it has not previously been possible to measure due to either spectral interferences or poor sensitivity. The overall purpose of the project was to investigate the potential of the single detector ICP-SFMS technique for the measurement of isotope ratios in biological and environmental samples. One part of the work has focused on the fundamental aspects of the ICP-SFMS technique with special emphasize on the features important to the measurement of isotope ratios, while another part has focused on the development, optimisation and application of specific methods for the measurement of isotope ratios of elements of nutritional interest and radionuclides. The fundamental aspects of the ICP-SFMS technique were investigated theoretically and experimentally by the measurement of isotope ratios applying different experimental conditions. It was demonstrated that isotope ratios could be measured reliably using ICP-SFMS by educated choice of acquisition parameters, scanning mode, mass discrimination correction, and by eliminating the influence of detector dead time. Applying the knowledge gained through the fundamental study, ICP-SFMS methods for the measurement of isotope ratios of calcium, zinc, molybdenum and iron in human samples and a method for the measurement of plutonium isotope ratios and ultratrace levels of plutonium and neptunium in environmental samples

  10. Determination of hydrogen isotope composition in organic compounds

    International Nuclear Information System (INIS)

    Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.; Tarielashvili, V.O.

    1989-01-01

    method for determination of hydrogen isotope composition just in organic compounds using mass-spectrometer of the second class is suggested. The method enables to determine atomic fraction of hydrogen without multiplet separation. The accuracy of determination of deuterium atomic fraction in acetone in 1-99% range was equal to 3-0.2% respectively

  11. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  12. Databook of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1993-03-01

    In the framework of the activity of the nuclide production evaluation WG in the sigma committee, we summarized the measurement data of the isotopic composition of LWR spent fuels necessary to evaluate the accuracy of the burnup calculation codes. The collected data were arranged to be classified into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples, in order to supply the information necessary to the benchmark calculation. This report describes the data collected from the 13 LWRs including the 9 LWRs (5 PWR and 4 BWR) in Europe and the USA, the 4 LWRs (2 PWR and 2 BWR) in Japan. Finally, the study on the burnup characteristics of the U, Pu isotopes is described. (author)

  13. Isotopic separation of nitrogen 15. Influence of the gaseous phase composition

    International Nuclear Information System (INIS)

    Lacoste, Germain; Routie, Rene; Mahenc, Jean

    1977-01-01

    A study has been made on the gas phase composition effect on the isotopic separation of nitrogen 15 for the two HNO 3 -NO and N 2 O 3 -NO systems. It was shown that the changes in composition of the gas phases could account for the increase in the overall separation; most accuracy, measurements of isotopic concentration along the separation column and of total enrichment exhibit how important are the reactions of oxydo-reduction between the two phases in such process [fr

  14. Nutritional assessment by isotope dilution analysis of body composition

    International Nuclear Information System (INIS)

    Szeluga, D.J.; Stuart, R.K.; Utermohlen, V.; Santos, G.W.

    1984-01-01

    The three components of body mass, body cell mass (BCM), extracellular fluid (ECF), and fat + extracellular solids (ECS: bone, tendon, etc) can be quantified using established isotope dilution techniques. With these techniques, total body water (TBW) and ECF are measured using 3H 2 O and 82 Bromine, respectively, as tracers. BCM is calculated from intracellular fluid (ICF) where ICF . TBW - ECF. Fat + ECS is estimated as: body weight - (BCM + ECF). TBW and ECF can be determined by either of two calculation methods, one requiring several timed plasma samples (extrapolation method) and one requiring a single plasma sample and a 4-h urine collection (urine-corrected method). The comparability of the two calculation methods was evaluated in 20 studies in 12 bone marrow transplant recipients. We found that for determination of TBW and ECF there was a very strong linear relationship (r2 greater than 0.98) between the calculation methods. Further comparisons (by t test, 2-sided) indicated that for the determination of ECF, the methods were not significantly (p greater than 0.90) different; however, TBW determined by the urine-corrected method was slightly (0.1 to 6%), but significantly (p less than 0.01) greater than that determined by the extrapolation method. Therefore, relative to the extrapolation method, the urine-corrected method ''over-estimates'' BCM and ''under-estimates'' fat + ECS since determination of these compartment sizes depends on measurement of TBW. We currently use serial isotope dilution studies to monitor the body composition changes of patients receiving therapeutic nutritional support

  15. Contribution of stable isotope to better understand breastfed infant nutritional status in burkina Faso: Longitudinal study with body composition measurement at one year

    International Nuclear Information System (INIS)

    Coulibaly, Nadine; Zeba, Augustin; Ouedraogo, Jean-Bosco; Somda, Serge Manituo

    2014-01-01

    Full text: Background and objectives: Exclusive breastfeeding for six months, followed by the introduction of appropriate complementary foods and continued breastfeeding, as recommended by the World Health Organization, are cornerstones in infant nutrition. In Burkina Faso, only limited information is available on the quantities of human milk consumed and the time of introduction of other foods into infants’ diets and the effect of feeding practice on the infant’s growth. In this work we analyzed infant’s nutritional status according to their feeding practice. Methods: We used the deuterium oxide (DO) dose-to-the mother technique to measure the human milk intake (HM) as well as the non-milk water intake (non-HM) by the babies at 3, 6, 9 and 12 mo. We also evaluated the infant body composition at 12 mo by giving a dose of DO to the babies in order to determine the fat-free mass (FFM) and the fat mass (FM). Saliva samples were collected from the babies and their mother and the DO enrichment in saliva was analyzed by FTIR. At each period, the anthropometric measurements were done to assess the infant nutritional status at 3,6, 9 and 12 mo according to the WHO standards. Results: The HM was maximum at 3 mo with a mean of 968.1 ml (95%CI = 847.2 ml-1089.1 ml), decreased at 6 mo to 918.4 ml (95%CI = 815.9 ml-1020.8 ml) that didn’t change until 12 mo. The non-HM that was 54.6 ml (95%CI = -12.6 ml-121.7 ml) increased significantly (p = 0.001) to 175.2 ml (95%CI = 100.2 ml-250.4 ml) at 6 mo. Exclusive breastfeeding was 32% at 3 mo and reduced to 16% at 6 mo. Breastfeeding was predominant after 6 mo and the contribution of HM in infant feeding was 80% at 9 mo and 69% at 12 mo. The anthropometric measurement showed that wasting was 1.5% at 3 mo but increase significantly (p = 0.04) to 8.7% at 6 mo. The DO dose to mother confirmed that all of the malnourished infants were not exclusive breastfed. At 9 mo the WHZ<-2 was reduced to 6.8%, but 4.5% of the children were

  16. Electric Dipole Moment Measurements with Rare Isotopes

    International Nuclear Information System (INIS)

    Chupp, Timothy

    2016-01-01

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  17. Electric Dipole Moment Measurements with Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, Timothy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-11-11

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic

  18. Modelling the regional climate and isotopic composition of Svalbard precipitation using REMOiso

    DEFF Research Database (Denmark)

    Divine..[], D.V.; Sjolte, Jesper; Isaksson, E.

    2011-01-01

    Simulations of a regional (approx. 50 km resolution) circulation model REMOiso with embedded stable water isotope module covering the period 1958-2001 are compared with the two instrumental climate and four isotope series (d18O) from western Svalbard. We examine the data from ice cores drilled...... than summer. The simulated and measured Holtedahlfonna d18O series agree reasonably well, whereas no significant correlation has been observed between the modelled and measured Lomonosovfonna ice core isotopic series. It is shown that sporadic nature as well as variability in the amount inherent...... in reproducing the local climate. The model successfully captures the climate variations on the daily to multidecadal times scales although it tends to systematically underestimate the winter SAT. Analysis suggests that REMOiso performs better at simulating isotope compositions of precipitation in the winter...

  19. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  20. Hydrogen-isotopic composition of some hydrous manganese minerals

    International Nuclear Information System (INIS)

    Hariya, Y.; Tsutsumi, M.

    1981-01-01

    Initial data on the hydrogen-isotopic compositions in hydrous Mn minerals from various occurrences fall in a wide range from -298 to -84per thousand, relative to SMOW. deltaD-values of todorokite and cryptomelane from Tertiary deposits show -89 and -150per thousand. 10 A-manganite and delta-MnO 2 from deep-sea nodules have relatively restricted deltaD-values ranging from -96 to -84per thousand. The deltaD-values for manganese bog ores from recent hot springs show almost -105per thousand. It is recognized that the isotopic values obtained for the deep-sea nodules and recent bog ores are slightly different ranged. Manganite and groutite are unique in their hydrogen-isotopic compositions, having the most depleted deltaD-values ranging from -298 to -236per thousand. MnO(OH) minerals are more deuterium-depleted hydrous minerals than any other hydrothermal minerals from various ore deposits. Hydrogen-isotope fractionation factors between manganite and water were experimentally determined to be 0.7894, 0.7958 and 0.8078 at 150 0 , 200 0 and 250 0 C respectively. The present experimental results indicate that if manganites were formed at temperatures below 250 0 C, under isotopic equilibrium conditions most of the manganite mineralization in the Tertiary manganese deposits must have precipitated from meteoric hydrothermal solutions. (Auth.)

  1. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  2. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2008-01-01

    13 meteoric stations were selected in syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the syrian or local meteoric line (SMWL) was estimated with a slope of 6.63 and that of both syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude was determined by 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14% and - 0.84%/100 m elevation respectively). The spatial variability of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content of precipitation, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern mediterranean climate type over this region. (author)

  3. The atomic weight and isotopic composition of boron and their variation in nature

    International Nuclear Information System (INIS)

    Holden, N.E.

    1993-01-01

    The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation

  4. Karst springs as 'natural' pluviometers: Constraints on the isotopic composition of rainfall in the Apennines of central Italy

    International Nuclear Information System (INIS)

    Minissale, A.; Vaselli, O.

    2011-01-01

    Highlights: → Isotopic compositions of karstic springs in central Italy have been reviewed. → Isotopic gradients of rainfalls for elevations have been evaluated in an Alpine valley. → Karstic drops have been calculated by using isotopic compositions of springs. → Isotopic compositions of rainfalls in central Italy have been re-calculated using the isotopic compositions of karstic springs. - Abstract: This paper describes an indirect method to calculate the isotopic composition of rainfall by using the isotopic composition of karst springs fed by waters circulating in the most important regional aquifer of central Italy, i.e. the Mesozoic limestone sequence that forms the backbone of the Apennines. By using δ 18 O and δD data and the δ 18 O (and/or δD) average gradient for elevation, evaluated through the use of literature rainfall data and new measurements from a typical Alpine valley in northern Italy, the altitude of precipitation of their parent water has been re-calculated. Vertical descents of more than 2000 m, from recharge to discharge, have been assessed in some high flow-rate cold springs in the morphologically steep Adriatic sector of central Italy. A clear correlation between the vertical descents and more negative isotopic compositions at their relative emergence elevations is highlighted. In contrast, in the Tyrrhenian sector lower karstic drops (generally lower than 500 m) correlate with less negative isotopic composition of recharge areas. The δ 18 O iso-contour map of the 'recalculated' parent rainfall in central Italy is more detailed than any possible isotopic map of rainfall made using pluviometers, unless large number of rainfall collectors were deployed on mountaintops. The data also show that the isotopic composition of rainfall depends on the source of the storm water. In particular, precipitation is isotopically heavier when originating in the Mediterranean Sea, and lighter when formed in the Atlantic Ocean. Consequently, the

  5. Isotopic composition of chemical elements in natural cycles

    International Nuclear Information System (INIS)

    Wetzel, K.

    1977-12-01

    Mathematical models developed for planning and evaluating tracer experiments have been applied in investigations of the isotopic composition of carbon in its natural cycle through various periods of the last billion years. The influence on the natural isotope ratio due to industrial combustion of fossil fuels is shown. In order to describe regional differences from the global behaviour of carbon a parameter has been introduced, which represents the time needed for one total exchange of the atmosphere in a certain region with the global atmosphere

  6. Isotopic composition of steam samples from Lanzarote, Canary Islands

    Energy Technology Data Exchange (ETDEWEB)

    Arana, V. (CSIC, Madrid); Panichi, C.

    1974-12-01

    The isotopic analysis of the steam samples collected in the geothermal area of Lanzarote show that the values of delta D are practically constant, and those of delta /sup 18/O range in a shift of 17 /sup 0///sub 00/ reaching a maximum of +14.7 /sup 0///sub 00/ versus SMOW, this last value being the highest found in steam samples. This composition can be explained as a consequence of the isotopic exchange at high temperature between limestones and a mixture of marine and local meteoric waters. This interpretation agrees with previous geological and geophysical studies which consider that a promising geothermal field could exist in Lanzarote. (auth)

  7. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    Science.gov (United States)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  8. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  9. Reply to Comment by Cole-dai Et Al. on "Climatic Impact of the Long-lasting Laki Eruption: Inapplicability of Mass-independent Sulfur Isotope Composition Measurements"

    Science.gov (United States)

    Schmidt, Anja; Thordarson, Thorvaldur; Oman, Luke D.; Robock, Alan; Self, Stephen

    2014-01-01

    -only" scenario [Stevenson et al., 2003]. We acknowledge that there is uncertainty on the volatile release height for Laki; however, it is worth considering that those climate model simulations that used an injection altitude between 9 km and 13 km for the Laki SO2 [Highwood and Stevenson, 2003; Oman et al., 2006a, 2006b; Schmidt et al., 2012] best match the observed temperature changes during summer of 1783 [Angell and Korshover, 1985; Brázdil et al., 2010; Briffa et al., 1998; D'Arrigo and Jacoby, 1999; Jacoby et al., 1999; Kington, 1988; Manley, 1974; Parker et al., 1992; Thordarson and Self, 2003]. Based on these model simulations, a climatic impact during the winter of 1783-1784, albeit weaker than during the climactic phases of Laki, is expected (and our argument here does not exclude the role of natural variability in contributing to the cold winter of 1783-1784 as discussed in Schmidt et al. [2012]). Therefore, we continue to argue that for high-latitude eruptions such as Laki, the applicability of sulfur isotopic measurements to interpret the climatic relevance has yet to be demonstrated. Itmay transpire that the interpretation of MIF signals for the climate-relevance of an eruption is valid and unambiguous only for short-lived explosive eruptions in the tropics. In terms of the processes producing a MIF anomaly (section 3.3 in Cole-Dai et al. [2014]), the works by Hattori et al. [2013] and Ono et al. [2013] suggest that there are remaining issues not discussed by Cole-Dai et al. [2014], for instance, self-shielding of SO2 due to high column densities typical for eruptions of Pinatubo-scale and greater, and the preservation of the MIF signature in general.

  10. ICP-MS for isotope ratio measurement

    Science.gov (United States)

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  11. Deuterium isotope composition of palaeoinfiltration water trapped in speleothems

    International Nuclear Information System (INIS)

    Rozanski, K.

    1987-05-01

    Analytical and methodological aspects of combined isotope investigations of carbonate cave deposits are thoroughly discussed in the report. Weight is put on isotope analyses of fluid inclusions (D and 18 O content) extracted from speleothems of known age. Dating was done by the 230 Th/ 234 U ratio method. Isotopic analyses of speleothems originating from European caves allowed some important conclusions to be formulated regarding past climatic and environmental conditions prevailing over the European continent during the last 300,000 yrs: a) δD values of fluid inclusions suggest a remarkable constancy of the heavy-isotope content of European palaeoinfiltration waters recharged during interglacial periods, b) a climate-induced, long-term changes in isotopic composition of precipitation and surface air temperature over Europe can be characterized by the deuterium gradient of ca.1 4 deg./oo/deg. C, c) an apparent constancy of the continental gradient in deuterium content of European palaeoinfiltration waters as judged from the fluid inclusion data suggests that atmospheric circulation over Europe did not undergo substantial changes for at least 300,000 years

  12. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  13. Penning trap mass measurements on nobelium isotopes

    International Nuclear Information System (INIS)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-01-01

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes 252-254 No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a 48 Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  14. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  15. Isotopic composition of water in precipitation in a region or place

    International Nuclear Information System (INIS)

    Singh, B.P.

    2013-01-01

    Stable isotopes of water molecules in hydrology, the water cycle and Craig's global meteoric water line (GMWL) relating δ 18 O and δ 2 H are well established with a slope of around 8 and an intercept of around 10. However, in many situations the slope is less than 8 and the intercept is smaller or even negative. These observations need to be understood and a method is suggested to correlate with the global meteoric water line (GMWL). How to find the isotopic composition of water at a particular place is also suggested. - Highlights: ► A best fit line is drawn between slopes of plots on δ 18 O and δ 2 H line versus intercept of the measurement in a region. ► A new approach is suggested to understand this experimental best fit line. ► The new method is suggested to achieve the isotopic composition of meteoric water in region or a place

  16. Methane Carbon Isotopic Composition Reveals Changing Production Pathways Across a Gradient of Permafrost Thaw

    Science.gov (United States)

    Rocci, K.; Burke, S. A.; Clariza, P.; Malhotra, A.; McCalley, C. K.; Verbeke, B. A.; Werner, S. L.; Roulet, N. T.; Varner, R. K.

    2017-12-01

    Methane (CH4) emission in areas of discontinuous permafrost may increase with warming temperatures resulting in a positive feedback to climate change. Characterizing the production pathways of CH4, which may be inferred by measuring carbon isotopes, can help determine underlying mechanistic changes. We studied CH4 flux and isotopic composition of porewater (δ13C-CH4) in a sub-arctic peatland in Abisko, Sweden to understand controls on these factors across a thaw gradient during four growing seasons. Methane chamber flux measurements and porewater samples were collected in July 2013, and over the growing seasons of 2014 to 2016. Samples were analyzed on a Gas Chromatograph with a Flame Ionization Detector for CH4 concentrations and a Quantum Cascade Laser for carbon isotopes. Increased emission rates and changing isotopic signatures were observed across the thaw gradient throughout the growing season. While CH4 flux increased with increases in temperature and shallower water table, δ13C-CH4 exhibited a seasonal pattern that did not correlate with measured environmental variables, suggesting dependence on other factors. The most significant controlling factor for both flux and isotopic signature was plant community composition, specifically, the presence of graminoid species. Graminoid cover increases with thaw stage so both CH4 emissions and δ13C-CH4 are likely to increase in a warmer world, suggesting a shift toward the acetoclastic pathway of methane production.

  17. Partitioning evapotranspiration fluxes with water stable isotopic measurements: from the lab to the field

    Science.gov (United States)

    Quade, M. E.; Brueggemann, N.; Graf, A.; Rothfuss, Y.

    2017-12-01

    Water stable isotopes are powerful tools for partitioning net into raw water fluxes such as evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T). The isotopic methodology for ET partitioning is based on the fact that E and T have distinct water stable isotopic compositions, which in turn relies on the fact that each flux is differently affected by isotopic kinetic effects. An important work to be performed in parallel to field measurements is to better characterize these kinetic effects in the laboratory under controlled conditions. A soil evaporation laboratory experiment was conducted to retrieve characteristic values of the kinetic fractionation factor (αK) under varying soil and atmospheric water conditions. For this we used a combined soil and atmosphere column to monitor the soil and atmospheric water isotopic composition profiles at a high temporal and vertical resolution in a nondestructive manner by combining micro-porous membranes and laser spectroscopy. αK was calculated by using a well-known isotopic evaporation model in an inverse mode with the isotopic composition of E as one input variable, which was determined using a micro-Keeling regression plot. Knowledge on αK was further used in the field (Selhausen, North Rhine-Westphalia, Germany) to partition ET of catch crops and sugar beet (Beta vulgaris) during one growing season. Soil and atmospheric water isotopic profiles were measured automatically across depths and heights following a similar modus operandi as in the laboratory experiment. Additionally, a newly developed continuously moving elevator was used to obtain water vapor isotopic composition profiles with a high vertical resolution between soil surface, plant canopy and atmosphere. Finally, soil and plant samples were collected destructively to provide a comparison with the traditional isotopic methods. Our results illustrate the changing proportions of T and E along the growing season and demonstrate the

  18. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  19. Measurement control for plutonium isotopic measurements using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Fleissner, J.G.

    1985-01-01

    A measurement control (MC) program should be an integral part of every nondestructive assay measurement system used for the assay of special nuclear materials. This report describes an MC program for plutonium isotopic composition measurements using high-resolution gamma-ray spectroscopy. This MC program emphasizes the standardization of data collection procedures along with the implementation of internal and external measurement control checks to provide the requisite measurement quality assurance. This report also describes the implementation of the MC program in the isotopic analysis code GRPAUT. Recommendations are given concerning the importance and frequency of the various MC checks in order to ensure a successful implementation of the MC procedures for the user's application

  20. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation

    Science.gov (United States)

    Bonnand, P.; Williams, H. M.; Parkinson, I. J.; Wood, B. J.; Halliday, A. N.

    2016-02-01

    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average δ53 Cr values of - 0.118 ± 0.040 ‰ and - 0.143 ± 0.074 ‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average δ53 Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

  1. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  2. The features of the isotope composition of carbon in the Paleozoic and Mesozoic oils of Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, S.I.; Lebedena, L.V.

    1984-01-01

    The isotope composition of the carbon in the oils from the Mesozoic and Paleozoic deposits is measured. The variations in the isotope composition of carbon for the Paleozoic oils is between 27.5 and 30.8 percent, while for the oils from the lower Jurassic and Triassic levels it is between 27.7 and 31.2 percent and for the upper Jurassic oils it is between 30.1 and 34.5 percent. The dependence of the isotope composition of the carbon in the oils on the type of original organic matter and its metamorphosis conditions during lithogenesis is analyzed. A softening in the isotope composition of the carbon in the oils from the oceanic deposits relative to continental deposits is found, together with a genetic individualism of the oils from the Paleozoic deposits and their difference from the oils in the Mesozoic deposits.

  3. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  4. Isotopic composition of carbon in vinegars

    International Nuclear Information System (INIS)

    Krueger, D.A.; Krueger, H.W.

    1985-01-01

    Measurements of delta 13 C and 14 C-activity were performed on vinegars from various known sources. Natural vinegar can be distinguished from petrochemical acetic acid by 14 C-analysis: Natural vinegar currently gives values of greater than 112% of modern activity; petrochemical acetic acid yields values of 0% of modern activity. Apple cider vinegar can be distinguished from corn-derived vinegar by delta 13 C-analysis: Cider vinegar gives delta 13 C-values near -26%; corn-derived vinegars yield delta 13 C-values near -10%. These techniques are applied to a series of retail vinegars

  5. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    International Nuclear Information System (INIS)

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Formato, V.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Santis, C. De; Castellini, G.; Donato, C. De; Simone, N. De; Felice, V. Di

    2016-01-01

    The cosmic-ray hydrogen and helium ( 1 H, 2 H, 3 He, 4 He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes 2 H and 3 He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December

  6. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  7. The hydrogen isotopic composition of kaolin minerals in Japan

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Nagasawa, Keinosuke; Kuroda, Yoshimasu.

    1979-01-01

    Hydrogen isotopic composition (D/H ratio) was determined for kaolin minerals from geothermal areas and sedimentary and hydrothermal kaolin deposits in Japan. On the Ohnuma, Matsukawa, and Ohtake geothermal areas, the hydrogen isotopic fractionation factor between kaolin minerals and water was calculated to fall between 0.97 and 0.99 for the temperature range of 50 to 200 0 C, a fact which shows that the temperature of formation has no important effect on the D/H ratio of kaolin minerals. D/H ratio of kaolinites and dickites from many kaolin deposits shows local variation, and seems to correlate with isotopic variation of the present-day meteoric surface water. Exceptions are seen in some kaolin deposits such as Shokozan, Hiroshima Prefecture, where kaolinite and dickite have considerably high values of D/H ratio, and seem to have reacted with water rich in deuterium. D/H ratio of halloysite is not correlated with that of the present-day meteoric surface water. As Lawrence and Taylor (1971) pointed out, the original D/H ratio of constitutional water of halloysite is not preserved because of the isotopic exchange between the interlayer water and the constitutional water. (author)

  8. Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

    Science.gov (United States)

    Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.

    2015-12-01

    Chondrichthyan teeth (sharks, rays, and chimaeras) are mineralized in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are generally consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

  9. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    International Nuclear Information System (INIS)

    Davis, A.M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G.J.

    1982-01-01

    Thirty-seven major, minor and trace elements were determined by INAA and RNAA in samples of hibonite, black rim and portions of friable rim from an unusual Allende inclusion, HAL. The peculiar isotopic, mineralogical and textural properties of HAL are accompanied by very unusual trace element abundances. The most striking feature of the chemistry is the virtual absence of Ce from an inclusion otherwise highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os and Ir, relative to other refractory elements. Of the lithophile elements determined which are normally considered to be refractory in a gas of solar composition, Sr, Ba, Ce, U and V are the most volatile in oxidizing gases. The distribution of REE between hibonite and rims seems to have been established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. On the basis of HAL's chemical and isotopic composition, possible locations for the chemical and mass dependent isotopic fractionation are discussed. (author)

  10. Evaluating the reliability of uranium concentration and isotope ratio measurements via an interlaboratory comparison program

    International Nuclear Information System (INIS)

    Oliveira Junior, Olivio Pereira de; Oliveira, Inez Cristina de; Pereira, Marcia Regina; Tanabe, Eduardo

    2009-01-01

    The nuclear fuel cycle is a strategic area for the Brazilian development because it is associated with the generation of electricity needed to boost the country economy. Uranium is one the chemical elements in this cycle and its concentration and isotope composition must be accurately known. In this present work, the reliability of the uranium concentration and isotope ratio measurements carried out at the CTMSP analytical laboratories is evaluated by the results obtained in an international interlaboratory comparison program. (author)

  11. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    International Nuclear Information System (INIS)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M.F.; Castano, S.

    2011-01-01

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over Spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a Digital Elevation Model using GIS tools. Application of the resulting map to several case studies in Spain has shown it to be useful as a reference of the isotope input function to groundwater recharge and surface runoff. The results obtained so far show a good fit between modelled stable isotope values and those measured in surface and ground waters from different aquifers and recharge areas. The GIS tools applied to a continuous digital layer of spatial isotope are able to provide accurate information at detailed scales that are not affordable by other means. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is going on.

  12. Monitoring of chemical and isotopic composition of the Euphrates river in Syria

    International Nuclear Information System (INIS)

    Kattan, Z.

    2008-11-01

    The ratios of stable isotopes ( 18 O and 2 H), tritium content, together with the chemical composition of major ions of the Euphrates and Balikh (Euphrates tributary) Rivers, and the groundwaters of four wells drilled close to the Euphrates River course, were measured on a monthly basis. The Euphrates River water was monitored at twelve stations along its course in Syria during the period from January 2004 to December 2006, whereas those of the Balikh and groundwaters were only investigated during 2005. Although, the spatial variations of heavy stable isotope concentrations are moderated with respect to other large rivers in the world, the concentrations of these isotopes increase generally downstream the Euphrates River, with a sharp enrichment at Al-Assad Lake. This sharp increase could be explained by the effect of direct evaporation from the river and its tributaries; and the effect of drainage return flows of irrigation waters, isotopically more enriched. Enrichment of stable isotopes in the Euphrates River water was used as a direct indicator of evaporation. Based on an experimental evaporation result of a Euphrates water sample and the integral enrichment of heavy stable isotopes in the Euphrates River system, the amount of water losses by evaporation from Al-Assad Lake was estimated to be about 1.26 to 1.62 billion m''3, according to 18 O and deuterium ( 2 H), respectively. This amount represents about 12-16% of the renewable surface water resources in the country. (author)

  13. Stable bromine isotopic composition of methyl bromide released from plant matter

    Science.gov (United States)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  14. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    Science.gov (United States)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  15. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  16. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.

    Science.gov (United States)

    Hashizume, Ko; Chaussidon, Marc

    2005-03-31

    The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.

  17. Precise and accurate isotope ratio measurements by ICP-MS.

    Science.gov (United States)

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  18. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  19. Isotopic composition and origin of the precipitation in Northern Chile

    International Nuclear Information System (INIS)

    Aravena, R.; Suzuki, O.; Pena, H.; Pollastri, A.; Fuenzalida, H.; Grilli, A.

    1999-01-01

    A 3 a data set of isotopes in precipitation from northern Chile show a very distinct pattern, with δ 18 O values ranging between -18 and -15per thousand at high altitude stations, compared to δ 18 O values between -10 and -6per thousand at the lower altitude areas. The 18 O-depleted values observed in the high altitude area, the Altiplano, are related to processes that affect the air masses that originated over the Atlantic, cross the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated with air masses from the Pacific, may contribute to the 18 O-enriched values observed in the lower altitude areas. Similar isotopic patterns are documented in springs and groundwater indicating that the data presented in this paper are an accurate representation of the long term behavior isotopic composition of rain in northern Chile. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Isotopic composition and origin of the precipitation in Northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Aravena, R. [Department of Earth Sciences, University of Waterloo, Waterloo (Canada); Suzuki, O. [Exploracion y Desarrollo de Recursos Hidricos, Santiago (Chile); Pena, H. [Direccion General de Aguas, Ministerio de Obras Publicas, Santiago (Chile); Pollastri, A. [Comision Chilena de Energia Nuclear, Santiago (Chile); Fuenzalida, H. [Departamento de Geofisica, Universidad of Chile, Santiago (Chile); Grilli, A. [Empresa Metropolitana de Obras Sanitarias, Santiago (Chile)

    1999-06-01

    A 3 a data set of isotopes in precipitation from northern Chile show a very distinct pattern, with {delta}{sup 18}O values ranging between -18 and -15per thousand at high altitude stations, compared to {delta}{sup 18}O values between -10 and -6per thousand at the lower altitude areas. The {sup 18}O-depleted values observed in the high altitude area, the Altiplano, are related to processes that affect the air masses that originated over the Atlantic, cross the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated with air masses from the Pacific, may contribute to the {sup 18}O-enriched values observed in the lower altitude areas. Similar isotopic patterns are documented in springs and groundwater indicating that the data presented in this paper are an accurate representation of the long term behavior isotopic composition of rain in northern Chile. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2016-08-01

    Full Text Available High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS and a quantum cascade laser absorption spectroscopy (QCLAS-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands and performed in situ, high-frequency (approx. hourly measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04 ‰ for δ13C and (−4.3 ± 0.4 ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for

  2. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)

    Science.gov (United States)

    Zambardi, T.; Sonke, J. E.; Toutain, J. P.; Sortino, F.; Shinohara, H.

    2009-01-01

    Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg (fum)T, plume gaseous elemental Hg (g)0 and plume particulate Hg (p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on Hg T/SO 2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y - 1 , in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1-3), 115-121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO 2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg (p)II increases with distance from the fumarole vent, at the expense of Hg (g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg (fum)T. Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ 202Hg (fum)T = - 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg (fum)T, δ 202Hg (g)0 = - 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg (g)0 at the F0 fumarole, and δ 202Hg (p)II = - 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg (p)II. The enrichment of Hg (p)II in the heavy isotopes and Hg (g)0 in the light isotopes relative to the total condensed fumarolic Hg (fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor α cond-gas of 1.00135 ± 0.00058.

  3. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  4. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  5. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    Deines, P.

    1984-01-01

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta 13 C P-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , Cr 2 O 3 , MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta 13 C E-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , MgO, Mg/(Mg + Fe), Na 2 O, K 2 O, TiO 2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  6. Origin of the Moon Unveiled by its Heavy Iron Isotope Composition

    Science.gov (United States)

    Poitrasson, F.; Halliday, A. N.; Lee, D.; Levasseur, S.; Teutsch, N.

    2002-12-01

    The origin of the Moon has long been of interest and although the Giant Impact theory is currently the preferred explanation, unequivocal supporting evidence has been lacking. We have measured the iron isotope compositions of Shergotty-Nakhla-Chassigny meteorites and eucrites thought to come from Mars and Vesta, as well as samples from the Moon and the mafic Earth using high precision plasma source mass spectrometry. The mean iron isotope composition of the lunar samples, expressed in the conventional delta notation (d57Fe/54Fe) with respect to the IRMM-14 isotopic standard, is heavier (0.221 per mil (0.041: one standard deviation, 10 samples)) than those of the Earth (0.119 per mil (0.044, 7 samples)), which themselves are heavier than Martian meteorites (0.009 per mil (0.024, 6 samples)) and the eucrites measured (0.033 per mil (0.038, 7 samples)). Student's t-test calculations show that the Moon and Earth means are different from each other and from those of the other planetary bodies at >99% level of significance. The iron isotope compositions show no simple relationship with planetary heliocentric position, mantle oxygen fugacity, volatile content, or planet size. Similarly, these results do not support an origin of the Moon through co-accretion with the Earth, or as a fragment ejected from the Earth's mantle, or as another planet captured by the early Earth. In contrast, these data can be explained if the Earth, and especially the Moon, went through partial vaporisation and condensation leading to kinetic iron isotopic fractionation. Our data are also consistent with the suggested levels of enrichment of refractory elements for the bulk Earth and Moon. These new iron isotope results thus provide strong support for the origin of the Moon through a giant impact between the proto-Earth and another planet. Raleigh kinetic fractionation calculations indicate that only 1% loss of the current Fe budget of the Moon is required to explain its heavier isotopic

  7. Development and validation of an analytical method for the determination of lead isotopic composition using ICP-QMS

    OpenAIRE

    Rodríguez-Salazar, M. T.; Morton Bermea, O.; Hernández-Álvarez, E.; García-Arreola, M. E.; Ortuño-Arzate, M. T.

    2010-01-01

    This work reports a method for the precise and accurate determination of Pb isotope composition in soils and geological matrices by ICP-QMS. Three reference materials (AGV-2, SRM 2709 and JSO-1) were repeatedly measured, using ICP-QMS instruments in order to assess the quality of this analytical procedure. Mass discrimination was evaluated for Pb/Pb with Pb isotope reference material NIST SRM 981, and the correction applied to the above mentioned reference materials to achieve good accuracy o...

  8. Stable-carbon isotopic composition of maple sap and foliage

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1985-01-01

    The 13 C/ 12 C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13 C/ 12 C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13 C/ 12 C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13 C/ 12 C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. (author)

  9. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  10. Raman spectroscopic studies of isotopic diatomic molecules and a technique for measuring stable isotope ratios using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    A method for measuring stable isotope ratios using Raman scattering has been developed. This method consists of simultaneously counting photons scattered out of a high-intensity laser beam by different isotopically-substituted molecules. A number of studies of isotopic diatomic molecules have been made. The Q-branches of the Raman spectra of the isotopic molecules 14 N 15 N and 16 O 18 O were observed at natural abundance in nitrogen and oxygen samples. Comparison of the ratios of the intensities of the Q-branches of the major nitrogen and oxygen isotopic molecules with mass spectrometric determinations of the isotopic compositions yielded scattering cross sections of 14 N 15 N relative to 14 N 14 N and 16 O 18 O relative to 16 O 16 O. These cross section ratios differ from unity, a difference which can be explained by considering nuclear mass effects on the Franck-Condon factors of the molecular transitions. The measured intensities of the 14 N 15 N and 16 O 18 O Q-branches provided the baseline data needed to make the previously-mentioned extrapolation. High-resolution (approximately 0.15 cm -1 ) spectra of the Q-branches of 14 N 14 N and 16 O 16 O yielded a direct determination of α/sub e/ (the difference between the rotational constant in the ground and first excited vibrational states) for these molecules. The measured values are in excellent agreement with those obtained by other means. Complete Raman spectra (pure rotation, rotation-vibration, and high-resolution Q-branch) were obtained on a sample of pure 18 O 18 O. Analysis of this data yielded the molecular parameters: the equilibrium internuclear separation r/sub e/, the moment of inertia I/sub e/, and the energy parameters α/sub e/, B/sub e/, and ΔG/sub 1 / 2 /. These are in good agreement with data obtained by microwave spectroscopy

  11. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    DEFF Research Database (Denmark)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.

    2017-01-01

    -NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100...... it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies...... - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C...

  12. Changes in Isotopic Composition of Bottled Natural Waters Due to Different Storage Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ferjan, T. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Brencic, M. [Faculty of Natural Sciences and Engineering, Department of Geology, and Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Vreca, P. [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2013-07-15

    To establish the influence of environmental conditions on processes affecting the stable isotopic composition of bottled water during storage, various brands of bottled water were exposed for 2 years in different conditions. Selected low mineralized natural mineral water of one particular brand stored in polyethylene terephthalate (PET) bottles was placed at three different locations with different physical conditions (temperature, relative humidity, air pressure, exposure to sunlight). For comparison, bottles of three other low mineralized natural mineral water brands, each from a different aquifer source, were placed in parallel at one of the locations. Each location was characterized by temperature, relative humidity and air pressure measurements. pH, conductivity and stable isotopic composition of oxygen, hydrogen and carbon in dissolved inorganic carbon ({delta}{sup 18}O, {delta}{sup 2}H, {delta}{sup 13}C{sub DIC}) were measured in regular intervals for nearly two years. Preliminary results from each location show noticeable changes in isotopic composition as well as the physical parameters of water with time of storage.

  13. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs.

  14. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2014-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author)

  15. Stable isotope geochemistry: definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2015-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  16. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2012-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 89 refs., 12 figs., 2 tabs.

  17. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2008-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  18. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  19. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2016-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  20. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2013-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 91 refs., 12 figs., 2 tabs.

  1. On-line stable isotope measurements during plant and soil gas exchange

    International Nuclear Information System (INIS)

    Yakir, D.

    2001-01-01

    Recent techniques for on-line stable isotope measurements during plant and soil exchange of CO 2 and/or water vapor are briefly reviewed. For CO 2 , these techniques provide means for on-line measurements of isotopic discrimination during CO 2 exchange by leaves in the laboratory and in the field, of isotopic discrimination during soil respiration and during soil-atmosphere CO 2 exchange, and of isotopic discrimination in O 2 during plant respiration. For water vapor, these techniques provide means to measure oxygen isotopic composition of water vapor during leaf transpiration and for the analysis of sub microliter condensed water vapor samples. Most of these techniques involve on-line sampling of CO 2 and water vapor from a dynamic, intact soil or plant system. In the laboratory, these systems also allow on-line isotopic analysis by continuous-flow isotope ratio mass spectrometry. The information obtained with these on-line techniques is becoming increasingly valuable, and often critical, for ecophysiologial research and in the study of biosphere-atmosphere interactions. (author)

  2. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Claire M., E-mail: claire.thompson@anu.edu.au; Ellwood, Michael J., E-mail: michael.ellwood@anu.edu.au; Wille, Martin, E-mail: martin.wille@uni-tuebingen.de

    2013-05-02

    Graphical abstract: -- Highlights: •A new sample preparation method for seawater copper isotopic analysis (δ{sup 65}Cu). •Solvent-extraction was used to pre-concentrate metals from seawater samples. •Anion-exchange was used to purify copper from the metal-rich extract. •δ{sup 65}Cu was measured in the north Tasman Sea. •Seawater δ{sup 65}Cu may be linked to marine biological activity. -- Abstract: Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater.

  3. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  4. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies

    International Nuclear Information System (INIS)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-01-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  5. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  6. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS

    DEFF Research Database (Denmark)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin

    2012-01-01

    studies demonstrate that it is possible to measure the mass-dependent Ca isotope composition of terrestrial materials using HR-MC-ICPMS with an external reproducibility comparable to that typically obtained with double spike TIMS techniques. The resolution of the mass-independent 43Ca, 46Ca and 48Ca data...

  7. Improvement of sample preparation for input plutonium accountability measurement by isotope dilution gammy-ray spectroscopy

    International Nuclear Information System (INIS)

    Nishida, K.; Kuno, Y.; Sato, S.; Masui, J.; Li, T.K.; Parker, J.L.; Hakkila, E.A.

    1992-01-01

    The sample preparation method for the isotope dilution gamma-ray spectrometry (IDGS) technique has been further improved for simultaneously determining the plutonium concentration and isotopic composition of highly irradiated spent-fuel dissolver solutions. The improvement includes using ion-exchange filter papers (instead of resin beads, as in two previous experiments) for better separation and recovery of plutonium from fission products. The results of IDGS measurements for five dissolver solutions are in good agreement with those by mass spectrometry with ∼0.4% for plutonium concentration and ∼0.1% for 239 Pu isotopic composition. The precision of the plutonium concentration is ∼1% with a 1-h count time. The technique could be implemented as an alternative method for input accountability and verification measurements in reprocessing plants

  8. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    Science.gov (United States)

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  9. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  10. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  11. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    International Nuclear Information System (INIS)

    HOLDEN, N.E.

    2005-01-01

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS

  12. Absolute Ca Isotopic Measurement Using an Improved Double Spike Technique

    Directory of Open Access Journals (Sweden)

    Jason Jiun-San Shen

    2009-01-01

    Full Text Available A new vector analytical method has been developed in order to obtain the true isotopic composition of the 42Ca-48Ca double spike. This is achieved by using two different sample-spike mixtures combined with the double spike and natural Ca data. Be cause the natural sample (two mixtures and the spike should all lie on a single mixing line, we are able to con strain the true isotopic composition of our double spike using this new approach. Once the isotopic composition of the Ca double spike is established, we are able to obtain the true Ca isotopic composition of the NIST Ca standard SRM915a, 40Ca/44Ca = 46.537 ± 2 (2sm, n = 55, 42Ca/44Ca = 0.31031 ± 1, 43Ca/44Ca = 0.06474 ± 1, and 48Ca/44Ca = 0.08956 ± 1. De spite an off set of 1.3% in 40Ca/44Ca between our result and the previously re ported value (Russell et al. 1978, our data indicate an off set of 1.89__in 40Ca/44Ca between SRM915a and seawater, entirely consistent with the published results.

  13. Evolution of the hafnium isotopic composition in the RBMK reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2002-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) program from the package SCALE 4.4A and the HELIOS code system were used for calculations. It has been obtained that the overall neutron absorption rates in hafnium for the sensors located in the 2.4 % and 2.6 % enrichment uranium-erbium nuclear fuel assemblies are by 16 % and 19 % lower than in the 2.0 % enrichment uranium nuclear fuel assemblies. The overall neutron absorption rate in hafnium decreases 2.70-2.75 times due to the sensor burnup to 5800 MW d. The sensitivity of the Hf sensors to the thermal neutron flux increases twice due to the nuclear fuel assembly burnup to 3000 MW d. The corrective factors ξ d (I) at the different integral current I of the sensors and ξ td (E) at the different burnup E of the nuclear fuel assemblies were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by comparing signals of the fresh sensor and the sensor with the integral current I and by processing repeated calibration results of Hf sensors in RBMK-1500 reactors. The relative relationship coefficients K T (T FA ) were found for all RBMK-1500 nuclear fuel types. (author)

  14. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    Science.gov (United States)

    Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.

    1982-01-01

    Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.

  15. Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Juelich, Germany

    International Nuclear Information System (INIS)

    Freyer, H.D.

    1978-01-01

    Data are presented on nitrogen isotope composition in ammonium and nitrate from rain-water collected over 2 years in an interior area at Juelich, Germany. The seasonal trends in these data are discussed relative to natural and anthropogenic emissions of nitrogen compounds which additionally have been measured or estimated in their isotope composition, e.g. ammonia from animal urine, fuel combustion, fertilizer use and organic soil nitrogen, and natural and anthropogenic nitric oxides from automobile exhausts as well. The 15 N content of Juelich rain ammonium is found to be different from values of Hoering (1957) and Moore (1974) and from other rain samples collected in coastal areas. (Auth.)

  16. The isotope composition of inorganic germanium in seawater and deep sea sponges

    Science.gov (United States)

    Guillermic, Maxence; Lalonde, Stefan V.; Hendry, Katharine R.; Rouxel, Olivier J.

    2017-09-01

    Although dissolved concentrations of germanium (Ge) and silicon (Si) in modern seawater are tightly correlated, uncertainties still exist in the modern marine Ge cycle. Germanium stable isotope systematics in marine systems should provide additional constraints on marine Ge sources and sinks, however the low concentration of Ge in seawater presents an analytical challenge for isotopic measurement. Here, we present a new method of pre-concentration of inorganic Ge from seawater which was applied to measure three Ge isotope profiles in the Southern Ocean and deep seawater from the Atlantic and Pacific Oceans. Germanium isotopic measurements were performed on Ge amounts as low as 2.6 ng using a double-spike approach and a hydride generation system coupled to a MC-ICP-MS. Germanium was co-precipitated with iron hydroxide and then purified through anion-exchange chromatography. Results for the deep (i.e. >1000 m depth) Pacific Ocean off Hawaii (nearby Loihi Seamount) and the deep Atlantic off Bermuda (BATS station) showed nearly identical δ74/70Ge values at 3.19 ± 0.31‰ (2SD, n = 9) and 2.93 ± 0.10‰ (2SD, n = 2), respectively. Vertical distributions of Ge concentration and isotope composition in the deep Southern Ocean for water depth > 1300 m yielded an average δ74/70Ge = 3.13 ± 0.25‰ (2SD, n = 14) and Ge/Si = 0.80 ± 0.09 μmol/mol (2SD, n = 12). Significant variations in δ74/70Ge, from 2.62 to 3.71‰, were measured in the first 1000 m in one station of the Southern Ocean near Sars Seamount in the Drake Passage, with the heaviest values measured in surface waters. Isotope fractionation by diatoms during opal biomineralization may explain the enrichment in heavy isotopes for both Ge and Si in surface seawater. However, examination of both oceanographic parameters and δ74/70Ge values suggest also that water mass mixing and potential contribution of shelf-derived Ge also could contribute to the variations. Combining these results with new Ge isotope data

  17. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  18. Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods

    Science.gov (United States)

    Fibiger, D.; Hastings, M.

    2012-04-01

    We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary

  19. Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation

    Science.gov (United States)

    Martin, N. J.; Conroy, J. L.; Noone, D.; Cobb, K. M.; Konecky, B. L.; Rea, S.

    2018-01-01

    The origin of stable isotopic variability in precipitation over time and space is critical to the interpretation of stable isotope-based paleoclimate proxies. In the eastern equatorial Pacific, modern stable isotope measurements in precipitation (δ18Op and δDp) are sparse and largely unevaluated in the literature, although insights from such analyses would benefit the interpretations of several regional isotope-based paleoclimate records. Here we present a new 3.5 year record of daily-resolved δ18Op and δDp from Santa Cruz, Galápagos. With a prior 13 year record of monthly δ18Op and δDp from the island, these new data reveal controls on the stable isotopic composition of regional precipitation on event to interannual time scales. Overall, we find Galápagos δ18Op is significantly correlated with precipitation amount on daily and monthly time scales. The majority of Galápagos rain events are drizzle, or garúa, derived from local marine boundary layer vapor, with corresponding high δ18Op values due to the local source and increased evaporation and equilibration of smaller drops with boundary layer vapor. On monthly time scales, only precipitation in very strong, warm season El Niño months has substantially lower δ18Op values, as the sea surface temperature threshold for deep convection (28°C) is only surpassed at these times. The 2015/2016 El Niño event did not produce strong precipitation or δ18Op anomalies due to the short period of warm SST anomalies, which did not extend into the peak of the warm season. Eastern Pacific proxy isotope records may be biased toward periods of high rainfall during strong to very strong El Niño events.

  20. Isotope-dilution mass spectrometry in the measurement of plutonium isotope half-lives

    International Nuclear Information System (INIS)

    Abernathey, R.M.; Marsh, S.F.

    1981-01-01

    Isotope-dilution mass spectrometry has been used at Los Alamos to measure the half-lives of 239 Pu, 240 Pu, and 241 Pu. The latter was determined by measuring the rate of decrease of the 241 Pu/ 242 Pu ratio in an appropriate isotopic mixture over a period of several years. The half-lives of the two lighter isotopes are too long to be determined in this manner. They were determined by measuring the rate of production of the uranium daughter relative to a known added 233 U spike. Experimental procedures were designed to control sources of error and to permit a detailed statistical treatment which included all known sources of error and accounted for all covariances. The uncertainties, at the 95% confidence level, associated with the measured half-lives were less than 0.4% for 241 Pu and less than 0.2% for 239 Pu and 240 Pu

  1. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, A., E-mail: anton.wallner@univie.ac.at [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria); Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra (Australia); Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights (Australia); Melber, K. [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria); Merchel, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01314 Dresden (Germany); Ott, U. [Max-Planck-Institut fuer Chemie, Joh.-J.-Becherweg 27, D-55128 Mainz (Germany); Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P. [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria)

    2013-01-15

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of {sup 198}Pt/{sup 195}Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.

  2. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    International Nuclear Information System (INIS)

    Wallner, A.; Melber, K.; Merchel, S.; Ott, U.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of 198 Pt/ 195 Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.

  3. Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G)

    NARCIS (Netherlands)

    Elburg, M.A.; Vroon, P.Z.; van der Wagt, R.A.C.A.; Tchalikian, A.

    2005-01-01

    Sr isotopic compositions and Rb/Sr ratios of three USGS glasses (BHVO-2G, BIR-1G, BCR-2G) are identical to those of the original USGS reference materials. NKT-1G and TB-1G give values of 0.70351 and 0.70558, respectively. Pb isotopic ratios were measured by the standard-sample bracketing technique

  4. Measurement of environmental tritium for isotope hydrology studies

    International Nuclear Information System (INIS)

    1973-01-01

    The Section of Isotope Hydrology of the IAEA Division of Research and Laboratories gains valuable hydrological information from studies of the concentration of environmental tritium in precipitation, surface and groundwater samples from various sites around the world. This photo story shows the steps in the measurement of these very low levels of tritium in water as performed in the Isotope Hydrology Laboratory of the Agency. (author)

  5. Karst springs as 'natural' pluviometers: Constraints on the isotopic composition of rainfall in the Apennines of central Italy

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, A., E-mail: minissa@igg.cnr.it [CNR - Italian Council for Research, Institute of Geosciences and Earth Resources (Section of Florence) - Via La Pira 4, 50121 Firenze (Italy); Vaselli, O. [CNR - Italian Council for Research, Institute of Geosciences and Earth Resources (Section of Florence) - Via La Pira 4, 50121 Firenze (Italy)] [Department of Earth Sciences, University of Florence - Via La Pira 4, 50121 Firenze (Italy)

    2011-05-15

    Highlights: > Isotopic compositions of karstic springs in central Italy have been reviewed. > Isotopic gradients of rainfalls for elevations have been evaluated in an Alpine valley. > Karstic drops have been calculated by using isotopic compositions of springs. > Isotopic compositions of rainfalls in central Italy have been re-calculated using the isotopic compositions of karstic springs. - Abstract: This paper describes an indirect method to calculate the isotopic composition of rainfall by using the isotopic composition of karst springs fed by waters circulating in the most important regional aquifer of central Italy, i.e. the Mesozoic limestone sequence that forms the backbone of the Apennines. By using {delta}{sup 18}O and {delta}D data and the {delta}{sup 18}O (and/or {delta}D) average gradient for elevation, evaluated through the use of literature rainfall data and new measurements from a typical Alpine valley in northern Italy, the altitude of precipitation of their parent water has been re-calculated. Vertical descents of more than 2000 m, from recharge to discharge, have been assessed in some high flow-rate cold springs in the morphologically steep Adriatic sector of central Italy. A clear correlation between the vertical descents and more negative isotopic compositions at their relative emergence elevations is highlighted. In contrast, in the Tyrrhenian sector lower karstic drops (generally lower than 500 m) correlate with less negative isotopic composition of recharge areas. The {delta}{sup 18}O iso-contour map of the 'recalculated' parent rainfall in central Italy is more detailed than any possible isotopic map of rainfall made using pluviometers, unless large number of rainfall collectors were deployed on mountaintops. The data also show that the isotopic composition of rainfall depends on the source of the storm water. In particular, precipitation is isotopically heavier when originating in the Mediterranean Sea, and lighter when formed in

  6. High burn-up plutonium isotopic compositions recommended for use in shielding analysis

    International Nuclear Information System (INIS)

    Zimmerman, M.G.

    1977-06-01

    Isotopic compositions for plutonium generated and recycled in LWR's were estimated for use in shielding calculations. The values were obtained by averaging isotopic values from many sources in the literature. These isotopic values should provide the basis for a reasonable prediction of exposure rates from the range of LWR fuel expected in the future. The isotopic compositions given are meant to be used for shielding calculations, and the values are not necessarily applicable to other forms of analysis, such as inventory assessment or criticality safety. 11 tables, 2 figs

  7. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru [Russian Academy of Sciences, Space Materials Science Laboratory, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Kaluga Branch (Russian Federation); Voloshin, A. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Ralchenko, V. G.; Bolshakov, A. P. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Romanov, D. A. [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation); Khomich, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Sozontov, E. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  8. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  9. Correlated silicon and titanium isotopic compositions of presolar SiC grains from the Murchison CM2 chondrite

    Science.gov (United States)

    Gyngard, Frank; Amari, Sachiko; Zinner, Ernst; Marhas, Kuljeet Kaur

    2018-01-01

    We report correlated Si, and Ti isotopic compositions and elemental concentrations of 238 presolar SiC grains from the Murchison CM2 meteorite. Combined with measurements of the C and N isotopic compositions of these 238 grains, 220 were determined to be of type mainstream, 10 type AB, 4 type Y and 4 type Z. SiC grains of diameter ≳2.5 μm, to ensure enough material to attempt Ti measurements, were randomly chosen without any other prejudice. The Ti isotopic compositions of the majority of the grains are characterized by enrichments in 46Ti, 47Ti, 49Ti, and 50Ti relative to 48Ti, and show linear isotopic correlations indicative of galactic chemical evolution and neutron capture of the grains parent stars. The variability in the observed Ti signal as a function of depth in most of the grains indicates the presence of distinct subgrains, likely TiC that have been previously observed in TEM studies. Vandium-51 concentrations correlate with those of Ti, indicating V substitutes for Ti in the TiC matrix in many of the grains. No isotopic anomalies in 52Cr/53Cr ratios were observed, and Cr concentrations did not correlate with those of either Ti or V.

  10. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    Science.gov (United States)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  11. An isotope method for the measurement of creaming

    International Nuclear Information System (INIS)

    Wiechen, A.; Heine, K.

    1974-01-01

    The principle of a method is described which allows the course of creaming to be recorded continously and automatically by means of isotopes. Without affecting the colloidal system of milk, an isotope is added in hydrosoluble form and with only small amounts of carriers. A small detector sensitive to the respective radiation of the isotope is used to measure the decrease of counting rate on the head of the creaming cylinder, the decrease of rate being due to the effective recess of the radiation source and to the absorption of rays in the cream layer. The choice of the isotope, i.e. kind and energy of its radiation, and of the detector allows to adapt the sensitivity of the method to the rate of creaming. The method described appears to be superior to those techniques in which sedimentation balances are used; it could therefore supply useful information in research work on the process of creaming. (orig.) [de

  12. The evaporation pan technique revisited: Old theory and a new application for time-weighted synoptic tracing of the isotopic composition of atmospheric vapour

    International Nuclear Information System (INIS)

    Gibson, J.J.; Edwards, T.W.D.

    1999-01-01

    Reliable and consistent characterization of the stable isotope composition of atmospheric water vapour and its temporal variability are important prerequisites to the wider application of isotope mass balance methods in atmospheric and water balance studies. A new approach is proposed which utilizes standard class-A evaporation pans, which have sufficient volume to buffer short-term transient variations in atmospheric conditions, justifying the assumption of constant kinetic isotopic fractionation effects in concert with precisely measured temperature and relative humidity to derive vapour isotopic composition. The results of the studies suggest that isotopic sampling of existing, conventionally operated class-A evaporation pans could offer a straightforward and cost-effective solution to the problem of documenting the shifting isotopic distribution in atmospheric moisture

  13. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  14. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  15. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  16. The isotopic composition of methane in polar ice cores

    Science.gov (United States)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  17. Concentration and isotope composition of atmospheric methane in Walbrzych Coal District

    International Nuclear Information System (INIS)

    Korus, A.; Necki, J.; Kotarba, M.

    2002-01-01

    The closure of hard coal mines in the Walbrzych Coal District led to the reconstruction of carboniferous groundwater horizon and migration of carbon dioxide and methane upward to the surface. Migration of methane is facilitated by systems of fractures, faults and by dense network of shafts, which still remain in connection with the surface. Measurement of the isotopic composition (δ 13 CH 4 ) of methane together with its concentration in atmosphere, yield useful information on the contribution of anthropogenic sources to regional budget of methane. A two component-mixing model was applied to distinguish anthropogenic source. The result of the study, current parameters of anthropogenic source are presented. (author)

  18. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic

    Science.gov (United States)

    Lowe, David C.; Brenninkmeijer, Carl A. M.; Tyler, Stanley C.; Dlugkencky, Edward J.

    1991-01-01

    A procedure for establishing the C-13/C-12 ratio and the C-14 abundance in the atmospheric methane is discussed. The method involves air sample collection, measurement of the methane mixing ratio by gas chromotography followed by quantitative conversion of the methane in the air samples to CO2 and H2O, and analysis of the resulting CO2 for the C-13/C-12 ratio by stable isotope ratio mass spectrometry and measurement of C-14 content by accelerator mass spectrometry. The carbon isotropic composition of methane in air collected at Baring Head, New Zealand, and in air collected on aircraft flights between New Zealand and Antarctica is determined by the method, and no gradient in the composition between Baring Head and the South Pole station is found. As the technique is refined, and more data is gathered, small seasonal and long-term variations in C-13 are expected to be resolved.

  19. A measurement control program for plutonium isotopic gamma-ray systems at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Fleissner, J.G.

    1986-01-01

    A sound measurement control (MC) program should be an integral part of every nondestructive assay measurement system used for the assay of special nuclear materials. This paper describes a measurement control program for plutonium isotopic composition measurements, using high-resolution gamma-ray spectroscopy, that has been implemented in the Analytical Laboratories and the Chemistry Standards Laboratory at the Rocky Flats Plant. This MC program emphasizes the standardization of data collection procedures along with the implementation of internal and external measurement control checks to provide the requisite measurement quality assurance

  20. Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi

    International Nuclear Information System (INIS)

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K.; Wu, Michael

    2016-01-01

    Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead concentrations were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the period of leaded petrol use in Australian automobiles from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in "2"0"6Pb/"2"0"7Pb ratios from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi "2"0"6Pb/"2"0"7Pb ratios increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region. - Highlights: • Total lead and isotopic composition can be measured in historic lichen and fungi. • Historic lichen and fungi samples can distinguish polluted and unpolluted areas. • Former leaded petrol depositions remain a significant environmental contaminant. - Analysis of a 120-year record of lichens and fungi from the Greater Sydney basin reveal marked shifts in total lead concentrations and lead isotope ratios in response to geogenic inputs

  1. Coexistence of galenas with different Pb isotopic composition in Los Pedroches batholith area (Spain)

    Science.gov (United States)

    García de Madinabeitia, S.; Santos Zalduegui, J. F.; Larrea, F. J.; Carracedo, M.; Gil Ibarguchi, J. I.

    2003-04-01

    The Los Pedroches batholith region (S Spain) includes three separated mining districts: Linares, La Carolina and Los Pedroches. The Pb isotopic composition of thirty-three galenas from this sector has been measured. On the basis of the Pb data two types of mineralization are established. A first type including: (i) the Linares and La Carolina districts where ore-bearing filons cut Hercynian granites or their hostrocks (SE of the batholith), and (ii) the so-called "peribatholithic" ore bodies represented by scarce mines in the host-rock of the batholith; all of them exhibit homogeneous Pb isotopic compositions of: 206Pb/204Pb = 18.236, 207Pb/204Pb = 15.615, 208Pb/204Pb = 38.347 and a model age of ca. 324 Ma. The second type is represented by a huge N120^oE hydrotermal vein (the El Zumajo vein) intrusive in granitoid bodies of the batholith; the Pb isotopic composition of the vein is: 206Pb/204Pb = 18.457, 207Pb/204Pb = 15.636, 208Pb/204Pb = 38.611 and a model age of ca. 201 Ma. Analysed K-feldspars from batholithic granodiorite and granites have Pb isotopic compositions similar to those reported previously from Hercynian granites of the area (1) and to the galenas of Linares, La Carolina and "peribatholithic" ores. The whole dataset reveals a Pb evolution curve with μ_2 = 9.8 and ω_2 = 38.3, close to the model curve for the "orogen" (2). This suggests for Linares, La Carolina and the "peribatholithic" mineralizations a Pb source related to that of the granites. The pre-Tremadoc metasedimentary rocks of the area, with Pb isotopic composition (3) very close to that of feldspars and galenas studied is proposed as a possible source of Pb for both the granites and associated mineralizations, although the Pb isotopic composition of El Zumajo calls for a different origin. The observed difference in Pb isotopic ratios of the studied galenas points to, at least, two ore-forming events: (i) one relating older mineralizations and granitoid intrusives, in agreement with

  2. Determination of lead isotopic composition of airborne particulate matter by ICPMS: implications for lead atmospheric emissions in Canada

    International Nuclear Information System (INIS)

    Celo, V.; Dabek-Zlotorzynska, E.

    2009-01-01

    Full text: Quadrupole ICPMS was used for determination of trace metal concentrations and lead isotopic composition in fine particulate matter (PM 2.5 ) collected at selected sites within the Canadian National Air Pollution Surveillance network, from February 2005 to February 2007. High enrichment factors indicated that lead is mostly of anthropogenic origin and consequently, the lead isotopic composition is directly related to that of pollution sources. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios were measured and the results were compared to the isotopic signatures of lead from different sources. Various approaches were used to assess the impact of relevant sources and the meteorological conditions in the occurrence and distribution of lead in Canadian atmospheric aerosols. (author)

  3. Development of a portable mass spectrometric system for determination of isotopic composition of solid uranium samples using fluorine volatilization

    Science.gov (United States)

    Loge, G.

    1994-09-01

    Using hardware and materials supplied by LANL, a prototype quadrupole mass spectrometer system designed for portable field analysis of isotopic composition of solid uranium samples was assembled and tested. The system contained the capability for fluorine volatilization of solid uranium samples with gas introduction, which was successfully tested and demonstrated using 100 mg samples of U3O8. Determination of precision and accuracy for measuring isotopic composition was performed using isotopic standards. Use with soil samples containing uranium were also attempted. Silicates in the soil forming SiF4 were found to be a kinetic bottleneck to the formation of UF6. This could be avoided by performing some sort of chemical separation as a pre-treatment step, which was demonstrated using nitric acid.

  4. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  5. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  6. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  7. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  8. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Directory of Open Access Journals (Sweden)

    J. D. Hemingway

    2017-11-01

    Full Text Available Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E, a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  9. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Science.gov (United States)

    Hemingway, Jordon D.; Rothman, Daniel H.; Rosengard, Sarah Z.; Galy, Valier V.

    2017-11-01

    Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  10. Nucleosynthesis in Wolf-Rayet stars and galactic cosmic-ray isotopic composition

    International Nuclear Information System (INIS)

    Prantzos, N.

    1984-01-01

    An explanation of the isotopic composition of galactic cosmic rays could provide some clues to the mystery of their origin. It seems now that the strong stellar winds of Wolf-Rayet stars could account for most of the isotopic anomalies that have been observed in cosmic rays. Some results are presented, obtained by detailed nucleosynthesis computations. 25 references

  11. Effects of climatic seasonality on the isotopic composition of evaporating soil waters

    Directory of Open Access Journals (Sweden)

    P. Benettin

    2018-05-01

    Full Text Available Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.

  12. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  13. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    International Nuclear Information System (INIS)

    Dody, A.

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system's inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the δ 18O values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs

  14. Soil drying effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  15. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    Energy Technology Data Exchange (ETDEWEB)

    Dody, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system`s inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the {delta}{sup 18O} values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs.

  16. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  17. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  18. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Koch, L.

    1996-01-01

    A double-focusing glow discharge mass spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from thermal ionization mass spectrometry (TIMS). For boron and lithium at μg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques. (orig.). With 2 figs., 4 tabs

  19. Mass measurements on radioactive isotopes using the ISOLTRAP spectrometer

    CERN Document Server

    Dilling, J; Kluge, H J; Kohl, A; Lamour, E; Marx, G; Schwarz, S C; Bollen, G; Kellerbauer, A G; Moore, R B; Henry, S

    2000-01-01

    ISOLTRAP is a Penning trap mass spectrometer installed at the on line isotope separator ISOLDE at CERN. Direct measurements of the masses of short lived radio isotopes are performed using the existing triple trap system. This consists of three electromagnetic traps in tandem: a Paul trap to accumulate and bunch the 60 keV dc beam, a Penning trap for cooling and isobar separation, and a precision Penning trap for the determination of the masses by cyclotron resonance. Measurements of masses of unknown mercury isotopes and in the vicinity of doubly magic /sup 208/Pb are presented, all with an accuracy of delta m/m approximately=1*10/sup -7/. Developments to replace the Paul trap by a radiofrequency quadrupole ion guide system to increase the collection efficiency are presently under way and the status is presented. (10 refs).

  20. A Time-Measurement System Based on Isotopic Ratios

    International Nuclear Information System (INIS)

    Vo, Duc T.; Karpius, P.J.; MacArthur, D.W.; Thron, J.L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the 241 Pu- 241 Am parent-daughter pair. However, this 241 Pu- 241 Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes 210 Pb and 241 Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of 210 Pb to the 60-keV peak of 241 Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  1. Conceptual model: possible changes of the seawater uranium isotopic composition through time

    Energy Technology Data Exchange (ETDEWEB)

    Nowitzki, Hannah; Frank, Norbert; Fohlmeister, Jens [Universitaet Heidelberg (Germany)

    2015-07-01

    U behaves in seawater like a conservative element. More than 99% of the oceanic U content is {sup 238}U, whereas {sup 234}U is only present in trace amounts. As the residence time of U is significantly longer than the mixing time of the ocean, the ocean is well mixed with respect to U and its isotopic composition (Dunk 2002). Moreover, living corals incorporate U without isotopic fractionation. Therefore, the past seawater isotopic evolution of ({sup 234}U/{sup 238}U) can be accessed via U/Th age-dating of corals and the subsequent calculation of the initial ({sup 234}U/{sup 238}U) value. The isotopic ({sup 234}U/{sup 238}U) composition of seawater during the last 360 ka scatters around the modern seawater value (δ{sup 234}U ∼ (145±15) %, Henderson 2002). As these variations in the δ{sup 234}U value are rather small, a 'constant seawater isotopic composition hypothesis' is often used to validate U/Th ages of fossil corals. However, some authors find that the variability of the isotopic composition exceeds the expected range and suggest that it provides valuable information on variations in continental weathering and global run-off fluctuations or sea-level changes. This work will attempt to compare literature data of the seawater U isotopic composition to the results of a conceptual box-model of the oceanic U budget.

  2. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    International Nuclear Information System (INIS)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I.

    2015-01-01

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  3. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.; Kasprzyk, G.; Gumolka, L.; Staedter, W.

    1993-01-01

    The 13 C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H 3 PO 4 has been studied in the temperature interval of 60-150 deg C. The values of the 13 C (1) isotope effects in the decarbonylation of lactic acid in 100% H 3 PO 4 , in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C (1)- OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13 C fractionation factors determined in concentrated PA approach quite closely the 13 C fractionation corresponding to C (2)- C (1) bond scission. The 13 C (1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13 C isotope effects calculated assuming that the frequency corresponding to the C (1) -OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H 3 PO 4 has been suggested. A possible secondary 18 O and a primary 18 O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  4. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    Science.gov (United States)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  5. Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy

    International Nuclear Information System (INIS)

    Cortini, M.; De Vivo, B.; Somma, R.; Ayuso, R.A.; Holden, P.

    2004-01-01

    We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: 'Protohistoric' (3550 y B.P. to 79 A.D.), 'Ancient Historic' (79 to 472 A.D.) and 'Medieval' (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analyzed for Th isotopes. 232 Th/ 238 U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the earth; they range from 3.9 to 4.1. 232 Th/ 238 U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behavior of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic

  6. Neutron capture cross section measurements: case of lutetium isotopes

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Belier, G.

    2011-01-01

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu 173 , Lu 175 , Lu 176 and Lu 177m , the measurement of the probability of gamma emission in the substitution reaction Yb 174 (He 3 ,pγ)Lu 176 . The measurement of neutron cross sections on Lu 177m have permitted to highlight the process of super-elastic scattering

  7. Use of lead isotopic composition in sulfides for the mineral-formation geochronology

    International Nuclear Information System (INIS)

    Ordynets, G.E.

    1977-01-01

    A study of the isotopic composition of lead in pyrites and galenites of a hydrothermal uranium deposit makes it possible to determine the time of ore formation. A few types of lead ores are distinguished. Each type corresponds to a definite period of mineralization and is characterized by a specific isotopic composition. The Cimmerian age of carbonate-sulphide veins has been established, the deposit being formed over a period of 150-200 million years

  8. Improvements to SFCOMPO - a database on isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, Kenya; Nouri, Ali; Mochizuki, Hiroki; Nomura, Yasushi

    2003-01-01

    Isotopic composition is one of the most relevant data to be used in the calculation of burnup of irradiated nuclear fuel. Since autumn 2002, the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) has operated a database of isotopic composition - SFCOMPO, initially developed in Japan Atomic Energy Research Institute. This paper describes the latest version of SFCOMPO and the future development plan in OECD/NEA. (author)

  9. The use of stable isotope compositions of selected elements in food origin control

    International Nuclear Information System (INIS)

    Wierzchnicki, R.

    2002-01-01

    Stable isotope ratios have been used widely for authentication of foodstuffs especially for detection of added water and sugar in fruit juices and wines. Hydrogen and oxygen composition are particularly interesting probes for geographical origin and authenticity identification. Carbon and nitrogen composition of fruits contains the finger-print of their metabolism and growing condition. Exemplary data are presented which demonstrated the usefulness of the Isotope Ratio Mass Spectrometry (IRMS) methods for authenticating wines and fruits (juice and pulp). (author)

  10. Gas chromatographic/mass spectrometric determination of carbon isotope composition in unpurified samples: methamphetamine example.

    Science.gov (United States)

    Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L

    1986-10-01

    A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.

  11. Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    International Nuclear Information System (INIS)

    Streletskiy, Dmitry A; Shiklomanov, Nikolay I; Nyland, Kelsey E; Tananaev, Nikita I; Opel, Thomas; Streletskaya, Irina D; Tokarev, Igor’; Shiklomanov, Alexandr I

    2015-01-01

    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months. (letter)

  12. Isotopic compositions of potassium and calcium in magnetic spherulesfrom marine sediments

    International Nuclear Information System (INIS)

    Shimarura, T.; Yanagita, S.; Yamakoshi, K.; Nogami, K.; Arai, O.; Tazawa, Y.; Kobayashi, K.

    1979-01-01

    Isotopic compositions of potassium and calcium in individual magnetic spherules were determined. No significant anomaly was observed for potassium within twice the statistical error (2sigma), although for calcium isotopes enrichment of 46 Ca, 44 Ca and 42 Ca were observed in one spherule. The relative excess of 46 Ca, 44 Ca and 42 Ca in the spherule agrees with the relative yield of spallogenic calcium isotopes observed in iron meteorites. This fact indicates that the enrichment in the calcium isotopes was caused by cosmic ray irradiation of the spherule in outer space. (Auth.)

  13. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2004-01-01

    Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: thermometry, tracers, reaction mechanisms and chemostratigraphy. 52 refs., 11 figs., 2 tabs

  14. Evaluation of water balance parameters from isotopic measurements in evaporation pans

    International Nuclear Information System (INIS)

    Allison, G.B.

    1979-01-01

    The evaluation of the parameters governing the isotopic composition of evaporating water bodies was attempted by means of evaporation pans. The instability of the meteorological conditions, however, makes it virtually impossible to evaluate the atmospheric relative humidity and its isotopic composition with pans. Pans are only suitable to obtain seasonal trends of the isotopic composition of the net evaporated water. For this, a technique based on two pans is also proposed. (author)

  15. Characterizing agricultural soil nitrous acid (HONO) and nitric oxide (NO) emissions with their nitrogen isotopic composition

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Guo, F.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2017-12-01

    Nitrous acid (HONO) is a major source of atmospheric hydroxyl radical (OH), which greatly impacts air quality and climate. Fertilized soils may be important sources of HONO in addition to nitric oxide (NO). However, soil HONO emissions are especially challenging to quantify due to huge spatial and temporal variation as well as unknown HONO chemistry. With no in-situ measurements available, soil HONO emissions are highly uncertain. Isotopic analysis of HONO may provide a tool for tracking these sources. We characterize in situ soil HONO and NO fluxes and their nitrogen isotopic composition (δ15N) across manure management and meteorological conditions during a sustainable dairy cropping study in State College, Pennsylvania. HONO and NO were simultaneously collected at hourly resolution from a custom-coated dynamic soil flux chamber ( 3 LPM) using annular denuder system (ADS) coupled with an alkaline-permanganate NOx collection system for offline isotopic analysis of δ15N with ±0.6 ‰ (HONO) and ±1.5 ‰ (NO) precision. The ADS method was tested using laboratory generated HONO flowing through the chamber to verify near 100% collection (with no isotopic fractionation) and suitability for soil HONO collection. Corn-soybean rotation plots (rain-fed) were sampled following dairy manure application with no-till shallow-disk injection (112 kg N ha-1) and broadcast with tillage incorporation (129 kg N ha-1) during spring 2017. Soil HONO fluxes (n=10) ranged from 0.1-0.6 ng N-HONO m-2 s-1, 4-28% of total HONO+NO mass fluxes. HONO and NO fluxes were correlated, with both declining during the measurement period. The soil δ15N-HONO flux weighted mean ±1σ of -15 ± 6‰ was less negative than δ15N of simultaneously collected NO (-29 ± 8‰). This can potentially be explained by fractionations associated with microbial conversion of nitrite, abiotic production of HONO from soil nitrite, and uptake and release with changing soil moisture. Our results have implications for

  16. The measurement of the isotope ratios and concentrations of zinc by thermal ionization mass spectrometry using double isotope dilution

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1994-01-01

    The isotope ratios and concentrations of zinc are measured by silicagel-thermal ionization mass spectrometry using the double isotope spikers. The double isotope spikers ( 70 Zn and 67 Zn-enriched isotopes) are used to correct the isotope mass fractionation for the zinc isotope ratios, and to certify the zinc concentrations in the unknown samples. The zinc concentrations of these double isotope spikers are surveyed by a spiker made of pure (99.99%) natural zinc metal powder. The correcting factors (f a , f t and f n ) of the zinc isotope ratios in the spiked mixture, spike and unspiked samples for the isotope mass fractionation, and the spike-to-unspiked ratios (X r ) of the zinc isotope r in the spiked mixture samples can be obtained to solve the matrix equations by numerical approximation. The natural zinc isotope ratios are: 64 Zn/ 67 Zn = 11.8498, 66 Zn/ 67 Zn = 6.7977, 68 Zn/ 67 Zn = 4.5730 and 70 Zn/ 67 Zn = 0.1520. The uncertainties determined of the isotope ratios and concentrations of zinc are +- 0.16% and +-0.31%, respectively

  17. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.; Puscas, R.; Radu, S.; Mirel, V. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Cordea, D. V.; Mihaiu, M. [University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca (Romania)

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  18. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    International Nuclear Information System (INIS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Cordea, D. V.; Mihaiu, M.

    2013-01-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ 18 O and δ 2 H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ 18 O and δ 2 H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source

  19. A Procedure to Determine the Coordinated Chromium and Calcium Isotopic Composition of Astromaterials Including the Chelyabinsk Meteorite

    Science.gov (United States)

    Tappa, M. J.; Mills, R. D.; Ware, B.; Simon, J. I.

    2014-01-01

    The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite.

  20. Isotopic composition of Danube water in the pre-delta section from the years 2009 - 2012

    Directory of Open Access Journals (Sweden)

    RANK Dieter

    2013-12-01

    Full Text Available The isotopic composition of river water in the Danube Basin is mainly governed by the isotopic composition of precipitation in the catchment area, evaporation effects play only a minor role. Short-term and long-term isotope signals from precipitation are thus transmitted through the whole catchment. The isotopic composition of Danube water in the Delta region so provides an integrated isotope signal for climatic/hydrological conditions and changes in the whole catchment. The aim of this investigation was to establish a representative isotope monitoring near the Danube Delta. The results showed that the Danube River is regarding isotope content fully mixed at the bifurcation of the Danube Delta arms. Therefore routine sampling at only one location in the pre-delta region should be sufficient to obtain a representative isotope record for the whole Danube Basin. The δ 18 O time series from November 2009 to May 2012 (sampling twice a month shows seasonal variations in the range of -9.8 ‰ ± 0.7 ‰ with a minimum in spring and a maximum in autumn. The tritium results exhibit the influence of short term contaminations due to human activities. The expected “environmental” tritium content of river water in Central Europe would be about 10 TU. During this investigation 3 H values up to 100 TU were observed in the pre-delta section. This indicates short terms releases of tritium from local sources such as nuclear power plants in the Danube river system.

  1. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Gunnink, R.

    1973-11-01

    A method is reported for analysis of isotopic and total plutonium by detecting and analyzing gamma rays emitted by the sample. A computerized prototype-system was developed and is now being routinely used at the Savannah River Plant for the nondestructive assay of solution samples. The analyses for 238 Pu, 239 Pu, 240 Pu, 241 Pu, and for 241 Am, when it is present, can be made in counting times as short as 10 to 15 minutes under optimum conditions. Comparison of isotopic ratio values with mass spectrometry generally shows agreement within 0.1 percent for 239 Pu and about 1 percent for 240 Pu and 241 Pu. Some preliminary isotopic measurements on solids are also discussed. (U.S.)

  2. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  3. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Pribil, Michael J.; Van Metre, Peter C.; Borrok, David M.; Thapalia, Anita

    2013-01-01

    Highlights: ► Hg and Pb concentration and isotopic compositions traced anthropogenic sources. ► Concentrations and metal loadings of Hg and Pb increased during the smelting period. ► Hg isotopic compositions changed during smelting compared to the pre-smelting period. ► Data indicate mass independent fractionation of Hg isotopes. - Abstract: Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ 202 Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ 202 Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206 Pb/ 207 Pb and 208 Pb/ 207 Pb isotopic compositions during these periods. Data for Δ 199 Hg and Δ 201 Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ 199 Hg and Δ 201 Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger

  4. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    Science.gov (United States)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  5. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS.

    Science.gov (United States)

    Kappel, S; Boulyga, S F; Dorta, L; Günther, D; Hattendorf, B; Koffler, D; Laaha, G; Leisch, F; Prohaska, T

    2013-03-01

    Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. 'point-by-point', 'integration' and 'linear regression slope' method) for the computation of (235)U/(238)U isotope ratios measured in single particles by LA-MC-ICPMS was investigated. The analyzed uranium oxide particles (i.e. 9073-01-B, CRM U010 and NUSIMEP-7 test samples), having sizes down to the sub-micrometre range, are certified with respect to their (235)U/(238)U isotopic signature, which enabled evaluation of the applied strategies with respect to precision and accuracy. The different strategies were also compared with respect to their expanded uncertainties. Even though the 'point-by-point' method proved to be superior, the other methods are advantageous, as they take weighted signal intensities into account. For the first time, the use of a 'finite mixture model' is presented for the determination of an unknown number of different U isotopic compositions of single particles present on the same planchet. The model uses an algorithm that determines the number of isotopic signatures by attributing individual data points to computed clusters. The (235)U/(238)U isotope ratios are then determined by means of the slopes of linear regressions estimated for each cluster. The model was successfully applied for the accurate determination of different (235)U/(238)U isotope ratios of particles deposited on the NUSIMEP-7 test samples.

  6. The Purdue Rare Isotope Measurement Laboratory

    International Nuclear Information System (INIS)

    Elmore, D.; Dep, L.; Flack, R.; Hawksworth, M.J.; Knies, D.L.; Ma, X.Z.; Michlovich, E.S.; Miller, T.E.; Mueller, K.A.; Rickey, F.A.; Sharma, P.; Simms, P.C.; Woo, H.-J.; Lipschutz, M.E.; Vogt, S.; Wang, M.-S.; Monaghan, M.C.

    1994-01-01

    Purdue University has brought into operation a new NSF/NASA facility dedicated to accelerator mass spectrometry. Based on a 7.5 MV FN tandem, 10 Be, 26 Al, and 36 Cl are being measured at a rate of 1500 samples per year. Research involves primarily 1) earth science studies using cosmogenic radionuclides produced in the atmosphere and measured in rain, groundwater, and soils, 2) Quaternary geomorphology and climatology studies using in-situ produced radionuclides, 3) planetary science studies using a wide variety of meteorites and radionuclides, and 4) biomedical tracer studies using 26 Al. ((orig.))

  7. Elemental and iron isotopic composition of aerosols collected in a parking structure

    International Nuclear Information System (INIS)

    Majestic, Brian J.; Anbar, Ariel D.; Herckes, Pierre

    2009-01-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM) 2.5 μm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m -3 ) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be + 0.15 ± 0.03 per mille and + 0.18 ± 0.03 per mille for the PM 2.5 μm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average = + 0.02 per mille ) and the ceramic brake linings (average = + 0.65 per mille ). Differences in isotopic composition were also observed between the metallic (average = + 0.18 per mille ) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  8. Skin Dose Equivalent Measurement from Neutron-Deficient Isotopes

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hua; Costigan, Steve A.; Romero, Leonard L.; Whicker, Jeffrey J.

    1997-12-01

    Neutron-deficient-isotopes decay via positron emission and/or electron capture often followed by x-ray, gamma-ray, and 0.511 MeV photons from positron annihilation. For cases of significant area and/or personnel contamination with these isotopes, determination of skin dose equivalent (SDE) is required by 10CFR835. For assessment of SDE, we evaluated the MICROSPEC-2(TM) system manufactured by Bubble Technology Industries of Canada which uses three different probes for dose measurement. We used two probes: (1) the X-probe which measures lower energy (4 - 120 keV) photon energy distributions and determines deep dose equivalent, SDE and dose equivalent to eyes, and (2) the B-probe which measures electron (positron) energy distributions, and determines skin dose equivalent. Also, the measured photon and beta spectra can be used to identify radioactive isotopes in the contaminated area. Measurements with several neutron-deficient sources showed that this system provided reasonably accurate SDE rate measurements when compared with calculated benchmark SDE rates with an average percent difference of 40%. Variations were expected because of differences between the assumed geometries used by MlCROSPEC-2 and the calculations when compared to the measurement conditions

  9. Isotopic composition of carbon of natural gases in the sedimentary basins of Kamchatka and Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lobkov, V.A.; Kudriavtseva, E.I.

    1981-01-01

    A study was carried out on the chemical and isotopic compositions of carbon of natural gases, which are prospective for oil and gas structures. An isotopic composition of the carbon of gases, covered by wells in possible oil and gas bearing basins (Eastern Kamchatka Central Kamchatka, Western Kamchatka, Anadyrsk, and Khatyrsk), created by terrigenic rock of the cretaceous, paleogenic, and neogenic ages, with dimensions of three to six kilometers, is presented. Investigation is made of the isotopic carbon of methane, ethane, and propane in 36 gas specimens. The plan of the distribution of the tested structures is shown, and an analysis is given of the chemical and isotopic composition of carbon of the prospected areas of Kamchatka and Chukotka and the interconnection of the isotopic composition of the carbon of methane with ethane and propane. A supposition is made concerning the existence of a single equilibrious volumetric system of CH/sub 4/--C/sub 2/H/sub 6/--C/sub 3/H/sub 8/--CO/sub 2/, in which ethane and propane are by-products, and owing to this, equilibrium establish according to this more slowly. The study of the isotopic composition of carbon of methane shows, that at various areas of depth formation of hydrocarbon gases is different. A conclusion is made that the gases formed at high temperatures. This points to a significant distance in the vertical migration of gases in the given region.

  10. Normality test for determining the correction factor of isotopic composition in PWR spent fuel

    International Nuclear Information System (INIS)

    Lee, Y. H.; Shin, H. S.; Noh, S. K.; Seo, K. S.

    2001-01-01

    Normality test has been carried out for the ratios of the measured-to-calculated isotopic compositions in PWR spent fuel, using Shapiro-Wilk W, Lilliefors D, Cramer-von Mises and Anderson-Darling. All 38 istopices have been evaluated by means of the 1.5xIQR rule and then outliers have been discarded. As result, it seems that only 20 nuclides are satisfied with the normality at significance level 5 %. 18 Nuclides(samples) including U-235 have higher significance probability(p-value) than 25 % in W-test and p-values obtained by other three tests exceed the upper limit. Besides, in 6 nuclides including Pu-239, it seems that the p-values are between 5 % and 25 % in W test. From these results, in order to predict the isotopic compositions in the conservative point of view, it is decided that the correction factors for the nuclides are determined at the 95/95 probability and confidence level by using tolerance limit-methods with the assumption that only 18 nuclides are satisfied with thr normality

  11. The origin of hailstone embryos deduced from isotope measurements

    International Nuclear Information System (INIS)

    Federer, B.; Thalmann, B.; Oesch, A.; Brichet, N.; Waldvogel, A.; Jouzel, J.; Merlivat, L.

    1980-07-01

    A refined interpretation of the growth history of 30 hailstones is presented. The stones are analysed by the simultaneous determination of D and O 18 on the same samples, the application of a new isotopic cloud model and a more accurate determination of the isotope content of vapor at cloud base (R 0 ). Three questions are specifically addressed. 1) Are the frequently observed big-drop hailstones embryos a) merely melted and recirculated graupel, or b) drops grown by the coalescence process. Evidence is provided by the isotope measurements that interpretation b) is more likely. 2) What is the extent of recirculation of hailstones in severe storms. It is shown that by combining isotope, radar and crystallographic measurements, the presence or absence of recirculation can be demonstrated and consistent trajectories and updrafts can be obtained. 3) What are the temperatures of origin of graupel and drop embryos. By comparing the time sequence of these temperatures in hailstones fallen before and after seeding in the same storm, a possible seeding effect is discussed

  12. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  13. The isotopic composition of lead in man and the environment in Finland: isotope ratios of lead as indicators of pollutant source

    International Nuclear Information System (INIS)

    Keinonen, M.

    1989-01-01

    The isotopic composition of lead was determined in samples from the Helsinki area: in emission sources (gasoline, incinerator and lead smelter emissions, coal), in sources of intake to man (air, diet), in samples representing long-term deposition (lichen, soil, lake sediments) and in human tissue. The measurements of the isotope ratios 206 Pb/ 204 Pb and 206 Pb/ 207 Pb were done by thermal ionization mass spectrometry after chemical separation of lead by anion exchange and cathodic electrodeposition. The origin of lead in man and the environment in the Helsinki area was evaluated by using the differences in the measured isotope ratios as an indicator. The means of the ratios in gasoline ( 206 Pb/ 207 Pb 1.124+-0.026, 206 Pb/ 204 Pb 17.45+-0.42) and the ratios in other emission sources in Helsinki ( 206 Pb/ 207 Pb 1.149-1.226, 206 Pb/ 204 Pb 17.94-19.24) were significantly different. Lead in air samples from Helsinki (1.123+-0.013) could be attributed to gasoline, as lead in soil near a highway (1.136+-0.003). By contrast, isotope ratios measured in lichen (1.148+-0.006) indicated considerable amounts of lead from sources with higher 206 Pb abundances, evidently industrial sources. The isotope ratios in human liver, lung, and bone ( 206 Pb/ 207 Pb 1.142+-0.015, 1.151+-0.011, and 1.156+-0.013, respectively and 206 Pb/ 204 Pb 17.76+-0.28, 17.91+-0.20, and 17.96+-0.09, respectively) were practically the same and no significant dependence of the isotope ratios on age or concentration of lead was seen. In lake sediment cores a correlation was found between the isotope ratios, lead concentration, and depth. The non-anthropogenic lead of high isotope ratios from bedrock was the major component at depths dated older than 100 years. At the surface of the sediment atmospheric lead prevailed, with ratios similar to those of gasoline, air samples and lichen. In the post-1900 layers, anthropogenic lead made up about 40-60% of the total sedimentary lead

  14. Effects of different water storage procedures on the dissolved Fe concentration and isotopic composition of chemically contrasted waters from the Amazon River Basin.

    Science.gov (United States)

    Mulholland, Daniel S; Poitrasson, Franck; Boaventura, Geraldo R

    2015-11-15

    Although recent studies have investigated the Fe isotopic composition of dissolved, colloidal and particulate phases from continental and oceanic natural waters, few efforts have been made to evaluate whether water sample storage and the separation of different pore-size fractions through filtration can cause any change to the Fe isotopic compositions. The present study investigates the possible biases introduced by different water storage conditions on the dissolved Fe concentration and isotopic composition of chemically different waters. Water samples were collected from an organic-rich river and from mineral particulate-rich rivers. Filtered and unfiltered water samples were stored either at room temperature or frozen at -18°C in order to assess possible biases due to (i) different water storage temperature, and (ii) storage of bulk (unfiltered) vs filtered water. Iron isotope measurements were performed by Multicollector Inductively Coupled Plasma Mass Spectrometry with a Thermo Electron Neptune instrument, after Fe purification using anion-exchange resins. Our data reveal that bulk water storage at room temperature without filtration produces minor changes in the dissolved Fe isotopic composition of mineral particulate-rich waters, but significant isotopic composition changes in organic-rich waters. In both cases, however, the impact of the different procedures on the Fe concentrations was strong. On the other hand, the bulk water stored frozen without filtration produced more limited changes in the dissolved Fe concentrations, and also on isotopic compositions, relative to the samples filtered in the field. The largest effect was again observed for the organic-rich waters. These findings suggest that a time lag between water collection and filtration may cause isotopic exchanges between the dissolved and particulate Fe fractions. When it is not possible to filter the samples in the field immediately after collection, the less detrimental approach is to

  15. The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso

    Directory of Open Access Journals (Sweden)

    K. Yoshimura

    2012-02-01

    Full Text Available Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMOiso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ18O observations. COSMOiso very accurately reproduces the statistical distribution of δ18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ18O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.

  16. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  17. Uranium in open ocean: concentration and isotopic composition

    International Nuclear Information System (INIS)

    Ku, T.L.; Knauss, K.G.; Mathieu, G.G.

    1977-01-01

    Uranium concentrations and 234 U/ 238 U activity ratios have been determined in 63 seawater samples (nine vertical profiles) from the Atlantic, and Pacific, and Arctic, and the Antarctic oceans, using the alpha-spectrometric method for their determinations. Correlation between uranium and salinity is well manifested by the data from the Arctic and the Antarctic oceans, but such a relation cannot be clearly defined with the +-(1 to 2)% precision of uranium measurements for the Atlantic and Pacific data. At the 95% confidence level: (1) the uranium/salinity ratio is (9.34 + - 0.56) x 10 -8 g/g for the seawater analyzed with salinity ranging from 30.3 to 36.2 per thousand; the uranium concentration of seawater of 35 per thousand salinity is 3.3 5 + - 0.2 μ g l -1 ; (2) the 234 U/ 238 U activity ratio is 1.14 +- 0.03. Uranium isotopes in interstitial waters of the Pacific surface sediments analyzed do not show large concentration differences across the sediment-water interface as suggested by previous measurements. Current estimations of the average world river uranium concentration (0.3 to 0.6 μ g l -1 ) and 234 U/ 238 U ratio (1.2 to 1.3) and of the diffusional 234 U influx from sediments 0.3 dpm cm -2 10 -3 yr -1 ) are essentially consistent with a model which depicts a steady state distribution of uranium in the ocean. However, the 0.3 to 0.6 μ g l -1 value for river uranium may be an upper limit estimate. (author)

  18. Iron Isotopic Compositions of Troilite (FeS) Inclusions from Iron Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch [Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2017-10-01

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with those in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.

  19. Magnesium and Titanium Isotopic Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: It Is Fun

    Science.gov (United States)

    Liu, M.-C.; Keller, L. P.; McKeegan, K. D.

    2016-01-01

    Introduction: Hibonite-rich refractory inclusions are among the first solids that formed in the solar nebula, and thus provide constraints on the earliest environment in the Solar System. An unusual hibonite-perovskite inclusion from Allende, SHAL, consists of a large (approximately 500 by 200 microns) single hibonite crystal and coexisting blocky perovskite (approximately 200 microns in size). The hibonite is characterized by chemical and oxygen isotopic compositions similar to those in the FUN (Fractionated and Unknown Nuclear anomalies) inclusion HAL. However, the rare earth element (REE) patterns measured at different spots of SHAL hibonite are highly variable, ranging from Group II-like (light REEs enriched relative to heavy REEs) to Group III-like (relatively flat with slight Eu depletions), but overall contrast largely with that of HAL, especially in the Ce and Yb abundances. This implies that SHAL hibonite formed and underwent distillation processes under more reducing conditions. Interestingly, the accompanying perovskite has uniform, unfractionated oxygen isotopic compositions (averaging delta (sup 17) O equals delta (sup 18) O equals -7 per mille) and REE abundances that are completely different from those of SHAL hibonite. This has been interpreted that perovskite and hibonite may not be co-genetic. Here we performed Al-Mg and Ti isotopic measurements of SHAL hibonite and perovskite to determine if the FUN characteristics are observed in these two isotope systems, and to further constrain the origin and evolution of SHAL. Results: Isotopic measurements of Al-Mg and Ti in SHAL were performed on the UCLA CAMECA ims-1290 ion microprobe by following the analytical protocols described in [1]. The Al-Mg and Ti data obtained in both terrestrial standards and SHAL hibonite and perovskite are shown below. Both SHAL hibonite and perovskite, despite very high (sup 27) Al to (sup 24) Mg ratios, are devoid of (sup 26) Mg excesses that can be attributed to the decay

  20. Characterizing the impact of diffusive and advective soil gas transport on the measurement and interpretation of the isotopic signal of soil respiration

    Science.gov (United States)

    Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond

    2010-01-01

    By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...

  1. A new method of accurate determination of isotopic composition and concentration of strontium in a spike solution used for geochronological works

    International Nuclear Information System (INIS)

    Yanagi, Takeru

    1990-01-01

    A new method of accurate determination of isotopic composition and concentration of a strontium-84 spike solution was devised for simultaneous determination of strontium contents and isotopic compositions in rocks and minerals by measuring strontium isotopic ratios in spiked samples. In this method, the isotopic composition of strontium in the spike were determined so as to minimize the sum of squares of deviations of spike strontium-84 concentrations which were calculated from measured isotopic ratios of strontium in five different mixtures of the spike and the standard solution. The method can eliminate all mass discriminations occurred during the measurements on a surface ionization mass spectrometer. The results were tested by measuring 87 Sr/ 86 Sr ratios of Eimer and Amend SrCO 3 and JB-1 geochemical reference material, and by determining the strontium content in JB-1. The measurements of strontium isotope ratios in spiked samples give average values of 0.708007±0.000052 and 0.70417±0.00004 for 87 Sr/ 86 Sr ratios of E and A SrCO 3 and JB-1, respectively. The strontium content in JB-1 was estimated at 457.1±1.3 ppm. These values are very close to reported respective values. (author)

  2. Isotope correlation verification of analytical measurements for dissolver materials

    International Nuclear Information System (INIS)

    Satkowski, J.

    1988-01-01

    An independent verification of analytical results for accountability measurements of dissolver materials can be performed using the Iosotop Correlation Technique (ICT). ICT is based on the relationships that exist between the initial and final elemental concentration and isotopic abundances of the nuclear fuel. Linear correlation functions between isotopic ratios and plutonium/uranium ratios have been developed for specific reactor fuels. The application of these correlations to already existing analytical data provides a laboratory additional confidence in the reported results. Confirmation is done by a test of consistancy with historical data. ICT is being utilized with dissolver accountability measurements at the Savannah River Plant Laboratory. The application, implementation, and operating experience of this technique are presented

  3. Measurement of boron isotope ratios in groundwater studies

    International Nuclear Information System (INIS)

    Porteous, N.C.; Walsh, J.N.; Jarvis, K.E.

    1995-01-01

    Boron is present at low levels in groundwater and rainfall in the UK, ranging between 2 and 200 ng ml -1 . A sensitive technique has been developed using inductively coupled plasma mass spectrometry (ICP-MS) to measure boron isotope ratios at low concentrations with a precision (s r ) of between 0.1 and 0.2%. Samples were evaporated to increase elemental boron concentrations to 200 ng ml -1 and interfering matrix elements were removed by an adapted cation-exchange separation procedure. The validity of measuring boron isotopic ratios by ICP-MS at this concentration level is discussed in relation to the theoretical instrument precision attainable based on counting statistics. (author)

  4. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas

    2015-10-01

    The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of

  5. Stable Isotopic Composition of Rainfall in Western Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ketchemen-Tandia, B.; Ngo Boum, S.; Ebonji Seth, C. R.; Nkoue Ndong, G. R.; Wonkam, C. [Universite de Douala, Douala (Cameroon); Huneau, F. [Universite de Bordeaux, EA Georessources and Environnement, Talence (France); Celle-Jeanton, H. [Clermont Universite, Clermont-Ferrand (France)

    2013-07-15

    Monthly rainfall collected at the douala station (Western cameroon) from 2006 to 2008 was analysed for oxygen-18 and deuterium content. The dataset, which is now integrated into the GNIP database, was compared to the local groundwater record in order to define the input function of regional hydrosystems. The isotope data displays a wide range of values from -0.59 to -6.14 per mille for oxygen-18 and from -7.75 to -38.8 per mille for deuterium, closely following the GMWL (global Meteoric Water line), suggesting that rain formation processes occurred under isotopic equilibrium conditions between the condensate and the corresponding vapour. No significant evaporation tendency was found. The comparison with the previous studies in the area provides a realistic pattern of isotope concentrations in both surface and groundwater throughout Cameroon. (author)

  6. Study on the meat isotopic composition for origin identification

    Directory of Open Access Journals (Sweden)

    Irina Chernukha

    2018-03-01

    Full Text Available Russian consumer and governmental authorities are equally concerned to know where food products come from. This requires more accurate and specialized methods for the evaluation of geographical location. The following methods are used: chemometrics, histological and histochemical, genomic and proteomic, microbiological, immunochemical and mass spectrometric. Method of stable isotope analysis is becoming increasingly promising nowadays for the identification of meat and meat products' place of origin. The isotope ratios of the four elements - carbon, nitrogen, oxygen and hydrogen, are mainly determined. The method is successfully used to identify a country of origin of wines, juices and water. The aim of the research was to study the stable isotope ratios for pork and beef samples purchased in Moscow supermarkets (Russian Federation. The country of production of meat samples was determined according to specifications and/or labels. The geography of countries of meat samples origin includes Europe, both America continents and Australia. Databases collected by the All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industrywere used for the analysis and interpretation of the results. Values of 13С/12С, δ13С, 18О/16О, δ18О, 2Н/1Н, δ2Н for 30 pork and beef samples from 13 countries were obtained. Differences in stable isotope ratios were found depending on place of origin. The data correlated with the oxygen isotope characteristics for wine, which were in the range from 2.5 to 4.5 ppm. According to the 13С/12С, δ13С results, the assumption was made about a false indication of the region for the beef sample. Despite the fact that beef was labeled as a product of Lithuania, the region of origin was most probably defined as Germany. The studies carried out showed the possibility to identify the region of raw meat origin by the stable isotope ratio.

  7. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  8. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  9. Transition of the Isotopic Composition of Leaf Water to the Isotopic Steady State in Soybean and Corn

    Science.gov (United States)

    Kim, K.; Lee, X.; Welp, L. R.

    2007-12-01

    The isotope composition of leaf water (δL) plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. The objective of this study is to improve our understanding of environmental and biological controls on the transition of δL to steady state through laboratory experiments. Plants (soybean, Glycine max; corn, Zea mays) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. In the first set of experiments, humidity inside the container was saturated to mimic dew events in field conditions. In the second set, humidity was controlled at approximately 95%. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of δL in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of δL differ between the C3 and C4 photosynthesis pathways.

  10. Aragonite-Calcite Inversion During Biogenic Carbonate Sampling: Considerations for Interpreting Isotopic Measurements in Paleoclimate Studies

    Science.gov (United States)

    Waite, A. J.; Swart, P. K.

    2011-12-01

    As aragonite is the metastable polymorph of calcium carbonate, it lends itself to monotropic inversion to the more stable polymorph, calcite. This inversion is possible through an increase in the temperature and pressure conditions to which the sample is exposed and, although first noted nearly a century ago, has been primarily discussed in the context of sample roasting prior to analyses in paleoclimatological studies. Over the last several decades, however, researchers have found evidence to suggest that the friction associated with the sampling of biogenic carbonates via milling/drilling also induces inversion. Furthermore, this inversion may be associated with a shift in measured oxygen isotopic values and ultimately have significant implications for the interpretation of paleoclimatic reconstructions. Despite this, the isotopic heterogeneity of biogenic aragonite skeletons makes the effects of inversion challenging to test and the subject remains underrepresented in the literature. Here we present a first order study into the effects of milling on both the mineralogy and isotopic compositions measured in sclerosponges, corals, and molluscs. X-Ray diffraction analysis of samples hand ground with a mortar and pestle reveal 100% aragonitic skeletons. Conversely, samples milled with a computerized micromill show measurable inversion to calcite. On average, percent inversion of aragonite to calcite for individual specimens was 15% for sclerosponges, 16% for corals, and 9% for molluscs. Isotopic data from these specimens show that the higher the percentage of aragonite inverted to calcite, the more depleted the measured oxygen isotopic values. In the largest of the datasets (sclerosponges), it is evident that the range of oxygen isotope values from milled samples (-0.02 to +0.84%) exceeds the range in values for those samples which were hand ground and showed no inversion (+0.53 to +0.90%). This, coupled with the strong correlation between the two variables

  11. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M. F. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Castano, S. [Geological Survey of Spain (IGME), Madrid (Spain)

    2013-07-15

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a digital elevation model using GIS tools. Application of the resulting map to several groundwater case studies in spain has shown it to be useful as a reference of the input function to recharge. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is ongoing through comparison of model results with isotope data from the GNIP database and from isotope studies in hydrogeology and climate change taking place in spain. (author)

  12. Boron isotopic compositions in growing corals from the South China Sea

    Science.gov (United States)

    Xiao, Jun; Xiao, Yingkai; Jin, Zhangdong; Liu, Congqiang; He, Maoyong

    2013-01-01

    In order to determine incorporation of boron species, boron isotopic fractionation, and influence of trace elements on isotopic compositions of boron in corals (δ11Bcoral), concentrations of Mg, Sr, Na, B and δ11Bcoral in growing corals from the South China Sea were measured. Relative to seawater, Sr enriched while Mg depleted in corals in the South China Sea. Although the δ11Bcoral values were different from various species and were not closely correlated with the element concentrations in corals in the South China Sea, Mg(OH)2 existed in corals can result in high δ11Bcoral. Thus, it is necessary to examine the existence of Mg(OH)2 and to choose the same species when δ11Bcoral is used in the δ11B-pH proxy. Based on the measured δ11B values of corals and coexisting seawater as well as the seawater pH in the South China Sea, a new isotopic fractionation factor a4-3 between B(OH)4- and B(OH)3 was determined to be 0.979. Besides B(OH)4- into corals, our results showed that B(OH)3 may also be incorporated into corals with variable proportions. The incorporation of B(OH)3 into corals may challenge the hypothesis of δ11Bcoral = δ11B4, resulting in increasing uncertainty to the calculated seawater pH values to the δ11B-pH proxy. We suggested that a best-fit empirical equation between δ11B of bio-carbonates and seawater pH needs to be established by the precipitation experiments of inorganic carbonates or culture experiments of corals or foraminifera.

  13. ISOMAX: a balloon-borne instrument to measure cosmic ray isotopes

    International Nuclear Information System (INIS)

    Hof, M.; Bremerich, M.; Goebel, H.; Hams, T.; Menn, W.; Simon, M.; Barbier, L.M.; Christian, E.R.; Geier, S.; Gupta, S.K.; Krizmanic, J.F.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Davis, A.J.; Nolfo, G.A. de; Mewaldt, R.A.; Schindler, S.M.

    2000-01-01

    The Isotope Magnet Experiment (ISOMAX) is a new balloon-borne instrument developed to measure the isotopic composition of the light elements in the cosmic radiation, in particular to obtain the ratio of the radioactive 10 Be to stable 9 Be. ISOMAX was first flown in August 4-5, 1998, from Lynn Lake, Manitoba, Canada. ISOMAX has a geometry factor of 450 cm 2 sr and was configured for this flight with a large, Helmholtz-like, superconducting magnet in combination with a drift-chamber tracking system, a state-of-the-art time-of-flight system and two aerogel Cherenkov detectors to measure light isotopes with a mass resolution of better than 0.25 amu. In the 1998 flight the obtained maximum detectable rigidity of the magnetic spectrometer was 970 GeV/c for helium at 60% of the full magnetic field. ISOMAX took data for more than 16 h at float altitudes above 36 km. We here present the performance of the individual detectors and initial isotopic results of the instrument

  14. Determination of integrated neutron flux by the measurement of the isotopic ratios of cadmium and gadolinium

    International Nuclear Information System (INIS)

    Tomiyoshi, Irene Akemy

    1982-01-01

    In this work, the possibility of the indirect determination of the integrated neutron flux, through the change of isotopic ratios of cadmium and gadolinium was investigated. The samples of cadmium we/e gadolinium were irradiated in the IEA-Rl reactor. These elements were chosen because they have high thermal neutron absorption cross section which permit the change in the isotopic composition during a short irradiation time to be measured accurately. The isotopic ratios were measured with a thermionic mass spectrometer the silica-gel technique and arrangement with single filament were used for the cadmium analysis, where as the oxi - reduction technique and arrangement with double filaments were used for gadolinium analysis. The mass fractionation effects for cadmium and gadolinium were corrected respectively by the exponential and potential expansion of the isotopic fractionation factor per atomic mass unit. The flux values supplied by the Centro de Operacao e Utilizacao do Reator de Pesquisas do IPEN were extrapolated. These values and the integrated flux values obtained experimentally were compared. (author)

  15. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  16. 61 stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    Mgina

    isotope record from Lake Ndutu shows a general downcore decrease in δ. 13C values ... in bulk δ13C of the terrestrial biomass in the tropics may ... CO2, temperature, moisture conditions and ... A map showing location of sampling sites of Ngorongoro Crater, Lake Ndutu and .... the Lakes Makat and Masek records cannot.

  17. Carbon and oxygen isotope compositions of the carbonate facies

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  18. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    sulphide mineralization and their chemical evo- lution in relative .... properties and chemical compositions. Electron ..... from the sulphide lode provide clues to the chang- ing fluid ..... Raymond O L 1996 Pyrite composition and ore geneis in.

  19. Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes

    International Nuclear Information System (INIS)

    Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    1998-01-01

    Two new isotopes, 145 Tm and 140 Ho and three isomers in previously known isotopes, 141m Ho, 150m Lu and 151m Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation

  20. Isotope ratio measurements of uranium by LA-HR-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Rafael C.; Sarkis, Jorge E.S., E-mail: rafael.marin@usp.b, E-mail: jesarkis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the utilization of Laser Ablation High Resolution Inductively Mass Spectrometry (LA-HR-ICP-MS) technique for the determination of uranium isotope composition in a UO{sub 2} pellet (CRM -125A) supplied and certified by the New Brunswick Laboratory (NBL). To carry out the adjustments of the parameters was used a glass standard NIST 610, supplied and certified by National Institute of Standards and Technology (NIST). The precision of the measurements were improved by adjusting the following parameters: RF power, laser beam diameter, defocusing of laser beam, laser energy, laser energy-density, auxiliary gas and sample gas. The measurements were performed on a continuous ablation with low energy density and defocusing, which demonstrated to be the optimum to reach the best signal stability. Isotope ratios, {sup 234}U/{sup 238}U, {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U were measured, reaching relative standard deviations (RSD) from 1.55% to 7.60%. The parameters which caused the greatest impact in order to improve the signal stability were RF power, defocusing and laser beam diameter. The results presented by the measurements revealed that the Laser ablation ICP-MS technique offers a rapid and accurate way to perform uranium isotope ratios without any sample preparation, since it allows carrying out the measurements straight on the sample, besides to preserve the testimony that is very important for safeguards and nuclear forensics purposes. (author)

  1. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    Science.gov (United States)

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  2. Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau

    International Nuclear Information System (INIS)

    Xia Zhonghuan; Xu Baiqing; Wu Guangjian; Zhu Liping; Muegler Ines; Gleixner, Gerd; Sachse, Dirk

    2009-01-01

    The hydrogen isotopic composition (δD) of leaf water used for biosynthesis of n-alkanes can be modified by climate. Therefore, the δD can be considered as potential paleolimatic proxy to explore. We compared measured δD values of alkanes (n-C 25 to n-C 31 ) extracted from a short sediment profile spanning the past 50 years with a 7-year resolution from Lake Yamzho, southern Tibetan Plateau. Climatic control was reconstructed using meteorological records of the nearby Langkazi and Lhasa weather stations. We found that the δD values of the n-alkanes correlated with the mean annular air temperature and significantly correlated with the mean growing season air temperature. On the other hand, the δD values show poor correlations with both rainfall amount and relative humidity. These results indicate that stable isotope composition of n-alkanes could be an excellent proxy for paleotemperature reconstruction. (author)

  3. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  4. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roback, Robert Clifford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace (238Pu ,241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am-241Pu model ages and interpretations.

  5. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors

    Energy Technology Data Exchange (ETDEWEB)

    Kierepko, Renata, E-mail: Renata.Kierepko@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Mietelski, Jerzy W. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Ustrnul, Zbigniew [Jagiellonian University, Krakow (Poland); Institute of Meteorology and Water Management, National Research Institute, Krakow (Poland); Anczkiewicz, Robert [Institute of Geological Sciences, Polish Academy of Sciences, Krakow (Poland); Wershofen, Herbert [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Holgye, Zoltan [National Radiation Protection Institute, Prague (Czech Republic); Kapała, Jacek [Medical University of Bialystok (Poland); Isajenko, Krzysztof [Central Laboratory for Radiological Protection, Warsaw (Poland)

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000 km{sup 2}. We compared our original data sets from Krakow (Poland, 1990–2007) and Bialystok (Poland, 1991–2007) with the results from two other locations, Prague (Czech Republic; 1997–2004) and Braunschweig (Germany; 1990–2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for {sup 238}Pu and for {sup (239} {sup +} {sup 240)}Pu were estimated to be a few and some tens of nBq m{sup −} {sup 3}, respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of {sup 238}Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air. - Highlights: • Evidence of Pu isotopes in the lower part of the troposphere of Central Europe • The effective annual doses associated with Pu inhalation • New approach to the problem of solving mixed Pu origins in one sample (3SM) • Relationship between Pu isotopes activity concentration and circulation factors.

  6. Stable isotope composition of environmental water and food products as a tracer of origin

    International Nuclear Information System (INIS)

    Wierzchnicki, R.; Owczarczyk, A.; Soltyk, W.

    2004-01-01

    The paper is the review of Institute of Nuclear Chemistry and Technology (INCT) activity in application of stable isotope ratios (especially D/H and 18 O/ 16 O) for environmental studies and food origin control. INCT has at disposal since 1998, a high class instrument - Isotope Ratio Mass Spectrometer, Delta Plus, Finnigan MAT, Germany - suitable to perform such measurements. (author)

  7. Isotopic composition of primary xenon and the fission of Pu-244

    Energy Technology Data Exchange (ETDEWEB)

    Levskii, L K

    1983-05-01

    The hypothesis that the origin of xenon on earth is due to the fission of uranium and/or transuranium elements is examined. The isotopic composition of primary xenon on earth is calculated using a model (Levskii, 1980) of the isotopic composition of rare gases which is based on the hypothesis of the heterogeneity of the isotopic composition of the elements of the solar system. The isotopic composition of fission-produced xenon in the atmosphere and solid earth is determined to correspond to the abundance of xenon isotopes as a result of the spontaneous fission of Pu-244 (half-life of 8.2 x 10 to the 7th years). The amount of fission-produced xenon in the atmosphere is shown to amount to about 30 percent (Xe-136). Under certain conditions, the degree of the degassing of the solid earth for xenon is 25 percent, which corresponds to a ratio of Kr-84/Xe-130 45 for the earth as a whole.

  8. The carbon isotopic compositions of individual compounds from ancient and modern depositional environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, K.H.

    1991-01-01

    This work examines factors influencing the isotopic compositions of individual compounds and, consequently, that of preserved sedimentary organic matter. Specifically, isotope effects associated with reactions resulting in the production and degradation of organic matter in the water column and reactions affecting preservation during diagenesis are considered in three projects. The first documents the preservation of the isotopic compositions of hydrocarbons altered by diagenetic reaction. Isotopic compositions of structurally-related polycyclic aromatic hydrocarbons (PAH) from the Messel Shale show little variation with increased unsaturation. The influence of environmental conditions on the isotopic composition of sedimentary organic carbon is documented by a comparison of the {delta}{sup 13}C of hydrocarbons in the marine Julia Creek Oil Shale and the lacustrine Condor Oil Shale. A model is proposed for identifying relative degrees of oxygenation and productivity within a paleoenvironment based on the observed {sup 13}C contents of biomarkers. Effects of processes proposed in the environmental model are documented by an examination of hydrocarbons from the waters and sediments of the Black Sea and of the Cariaco Trench. Sources of individual compounds are identified by comparison of their {sup 13}C content with that predicted for autotrophic biomass calculated from the concentration and {sup 13}C content of CO{sub 2}(aq) in the surface waters.

  9. Influence of temporal variations in water chemistry on the Pb isotopic composition of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Miller, Jerry R.; Anderson, Jamie B.; Lechler, Paul J.; Kondrad, Shannon L.; Galbreath, Peter F.; Salter, Emory B.

    2005-01-01

    Field and laboratory investigations were undertaken to determine (1) the relations between discharge, Pb concentration, and the Pb isotopic composition of the dissolved load in Richland Creek, western North Carolina, and (2) the potential influence of varying Pb water chemistry on the Pb isotopic abundances in liver and bone tissues of rainbow trout (Oncorhynchus mykiss). Stream waters were characterized by relatively low Pb concentrations during periods of base flow exceeding 10 days in length. Moreover, greater than 65% of the Pb was derived from orchard soils located upstream of the monitoring site which are contaminated by lead arsenate. During small to moderate floods, the dissolved load exhibited Pb concentrations more than twice as high as those measured during base flow, but the contribution of Pb from lead arsenate was relatively low and varied directly with discharge. In contrast to smaller events, Pb from lead arsenate in an 8- to 10-year (overbank) event in May 2003 was minimal during peak flow conditions, suggesting that discharge-source relations are dependent on flood magnitude. The hydrologic and geochemical data demonstrate that aquatic biota in Richland Creek are subjected to short-term variations in Pb concentrations and Pb isotopic abundances within the dissolved load ranging from a few hours to few a weeks. Laboratory studies demonstrated that when rainbow trout were exposed to elevated Pb concentrations with a distinct isotopic fingerprint, the bone and liver rapidly acquire isotopic ratios similar to that of the water. Following exposure, bone retains Pb from the contaminant source for a period of months, while the liver excreted approximately 50% of the accumulated Pb within a few days and nearly all of the Pb within a few weeks. Differences in the rates of excretion resulted in contrasting isotopic ratios between the tissues. It seems plausible, then, that previously observed differences between the isotopic composition of bone and liver in

  10. Effect of microtopography on isotopic composition of methane in porewater and efflux at a boreal peatland

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnikov, M.; Wilmking, M. [Greifswald Univ. (Georgia). Inst. of Botany and Landscape Ecology; Marushchak, M.; Biasi, C. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science, Bioteknia 2], E-mail: maxim.dorodnikov@uef.fi

    2013-09-01

    The application of stable isotopes is an approach to identify pathways of methanogenesis, methane (CH{sub 4}) oxidation and transport in peatlands. We measured the stable C isotopic characteristics ({delta}C-13) of CH{sub 4} in peat profiles below hummocks, lawns and hollows of a Finnish mire to study the patterns of CH{sub 4} turnover. Porewater CH{sub 4} concentrations ([CH{sub 4}]; at 0.5-2 m) increased with depth below all microforms. Emissions of CH{sub 4} from hummocks were the lowest, and increased with the increasing water-saturated zone, being {approx}10 times higher from hollows. Thus, the microtopography of the peatland did not affect the porewater [CH{sub 4}] in the water-saturated part of the peat profile, but the CH{sub 4} emissions were affected due to differences in the oxidative potential of the microforms. There was a decrease in {delta}C-13-CH{sub 4} with depth below all microforms indicating dominance of CO{sub 2}-reduction over acetate cleavage pathway of methanogenesis at deep peat layers. However, estimated potential portions of transported CH{sub 4} comprised 50%-70% of the {delta}C-13-CH{sub 4} enrichment on microforms at the 0.5-m depth, hereby masking the acetate cleavage pathway of methanogenesis. Stable C composition ({delta}C-13) of CH{sub 4} proved to be a suitable (but not sufficient) tool to differentiate between types of methanogenesis in continuously water-saturated layers below microforms of a peatland. Combined flux-based and multi-isotopic approaches are needed to better understand the CH{sub 4} turnover process. (orig.)

  11. Determination of Pu isotopic composition and 241Am by high resolution gamma spectrometry on solid samples

    International Nuclear Information System (INIS)

    Sarkar, Arnab; Paul, Sumana; Aggarwal, Suresh K.; Tomar, Bhupendra S.

    2011-08-01

    The present report gives a detailed account of the development of non-destructive assay technique using high resolution gamma-ray spectrometry (HRGS) for determination of plutonium (Pu) isotopic composition and the 241 Am content in solid Pu samples. Energy range 120-420 keV was used in this study. The methodology involves in situ relative efficiency calibration during the measurement process itself, to reduce the errors and increase the reliability of the method. Twenty solid Pu samples of power reactor and research reactor grade were analyzed by this method and the results were compared with those obtained by thermal ionization mass spectrometry. The accuracy of the final results depends strongly upon the accuracy of the available nuclear data (decay constant, gamma abundance etc.). MATLAB based programme was written to perform the analysis. A counting time of 4 hour was chosen for achieving good statistics on the results for samples having 100-200 mg of Pu. The attainable accuracy is found to be 0.5-1% for the fissile isotopes ( 239 Pu + 241 Pu) and 5-10% for 241 Am content. (author)

  12. Comparison of Pu isotopic composition between gamma and mass spectrometry: Experience from IAEA-SAL

    International Nuclear Information System (INIS)

    Parus, J.L.; Raab, W.

    1998-01-01

    About 2000 Pu containing samples have been analysed during the last 8 years at SAL using gamma spectrometry (GS) in parallel with mass spectrometry (MS). Four different detectors have been used for the measurement of gamma-ray spectra and several versions of the MGA program have been used for spectra evaluation. The results of Pu isotopic composition obtained by both methods have neem systematically compared. Attempts to improve the agreement between GS and MS are described. This was done by adjustment of the emission probabilities for some gamma energies and the development of a new correlation equation for 242 Pu. These improvements have been applied for evaluation of two sets containing 320 and 404 samples, respectively analysed in 1991 and in 1992-93. The mean differences and their standard deviations between MS and GS were calculated, showing mean relative differences for 238-241 Pu isotopes in the range from 0.1 to 0.5% with standard deviations within ± 0.4 to ±1%. For 242 Pu these values are about 0.5% and ± 5%, respectively. (author)

  13. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.

    Science.gov (United States)

    Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H

    2018-05-03

    Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.

  14. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  15. A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes

    Science.gov (United States)

    Ghosh, S.; Odom, A. L.

    2007-12-01

    Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg

  16. Measurement of radium isotopes with the ANU AMS facility

    International Nuclear Information System (INIS)

    Tims, S.G.; Fifield, L.K.

    2003-01-01

    In contaminated environments the spatial distribution of thorium should be far more uniform than that for uranium. Accordingly, measurements of the 228 Ra/ 226 Ra ratio may provide a probe with which to assess variations in the amount of uranium-process derived 226 Ra. Furthermore, for contaminated or rehabilitated areas where the 226 Ra/ 228 Ra ratio is anomalous, measurements of the transport of material away from the site via the ratio could provide information on the local erosion rate. Accelerator Mass Spectrometry (AMS) adds a tandem ion accelerator and additional analysis stages to a conventional mass spectrometry arrangement, in order to facilitate ultra-trace level abundance measurements of selected isotopes. In doing so, it also makes use of the detection and analysis techniques of traditional nuclear physics. For the 226,228 Ra isotopes AMS offers a number of advantages over the more traditional techniques of a-and γ- spectroscopy. AMS requires less sample mass, and because of its very high selectivity provides excellent discrimination against potential interferences. The smaller sample size (∼1g) also allows a considerable simplification of the radio-chemical processing compared with α-spectroscopy. Two major advantages are the ability to measure both isotopes with the one technique without the necessity of waiting for 228 Th to grow in and, that once prepared, the 228 Ra/ 226 Ra ratio for ∼30 samples can be determined in about a day. This paper will describe the AMS technique, and highlight recent developments in the measurement of 226,228 Ra with the ANU system

  17. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  18. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  19. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  20. Isotope Compositions Of Mekong River Flow Water In The South Of Vietnam

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Huynh Long; Le Danh Chuan; Nguyen Van Nhien; Tran Thi Bich Lien

    2008-01-01

    As a part of the Research Contract No. VIE/12569, isotope composition of Mekong river flow water in the South of Vietnam has been monitored to provide information on water origin and residence times, surface-groundwater exchange in the monitoring area. According to the primary results obtained, a seasonal variation as well as the dependence on local precipitation and on the river water level of isotopic composition of two distributaries of Mekong river water have been observed. At the same time a slight change on season of tritium in rivers water and the difference between tritium content in local rainy water and river water has been recorded. (author)

  1. Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification Followed by Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yan Tiezhu; Lee Zhi Yi, Amelia; Heiling, Maria; Weltin, Georg; Toloza, Arsenio; Resch, Christian

    2016-01-01

    Nitrate (NO 3 - ) pollution is a prevalent problem that can cause water quality degradation and eutrophication of water bodies. Quantifying the nitrogen and oxygen isotopic composition of nitrates will allow for better identification of their potential sources, which in turn will assist in remediation of contaminated water and the designing of future water management practices. In this research bacterial denitrification followed by laser spectroscopy are used to determine isotopic composition of δ 15 N and δ 18 O of dissolved nitrates. The objective of the project is to establish a standard operating procedure (SOP) that outlines the best practices for both methods in sequence and designed to be used as a technical guideline

  2. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  3. Investigation of the isotopic composition of lead and of trace elements concentrations in natural uranium materials as a signature in nuclear forensics

    Energy Technology Data Exchange (ETDEWEB)

    Svedkauskaite-LeGore, J. [European Commission, Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements; Institute of Physics, Vilnius (Lithuania); Mayer, K.; Millet, S.; Nicholl, A.; Rasmussen, G. [European Commission, Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements; Baltrunas, D. [Institute of Physics, Vilnius (Lithuania)

    2007-07-01

    Lead is contained as trace element in uranium ores and propagates throughout the production process to intermediate products like yellow cake or uranium oxide. The lead isotopes in such material originate from two sources: natural lead and radiogenic lead. The variability of the isotopic composition of lead in ores and yellow cakes was studied and the applicability of this parameter for nuclear forensic investigations was investigated. Furthermore, the chemical impurities contained in these materials were measured in order to identify characteristic differences between materials from different mines. For the samples investigated, it could be shown, that the lead isotopic composition varies largely from mine to mine and it may be used as one of the parameters to distinguish between materials of different origins. Some of the chemical impurities show a similar pattern and support the conclusions drawn from the lead isotope data. (orig.)

  4. Automatic measurement system for light element isotope analysis

    International Nuclear Information System (INIS)

    Satake, Hiroshi; Ikegami, Kouichi.

    1990-01-01

    The automatic measurement system for the light element isotope analysis was developed by installing the specially designed inlet system which was controlled by a computer. The microcomputer system contains specific interface boards for the inlet system and the mass spectrometer, Micromass 602 E. All the components of the inlet and the computer system installed are easily available in Japan. Ten samples can be automatically measured as a maximum of. About 160 minutes are required for 10 measurements of δ 18 O values of CO 2 . Thus four samples can be measured per an hour using this system, while usually three samples for an hour using the manual operation. The automatized analysis system clearly has an advantage over the conventional method. This paper describes the details of this automated system, such as apparatuses used, the control procedure and the correction for reliable measurement. (author)

  5. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.

    2013-01-01

    Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle.......Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce...... such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact...

  6. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235 U/ 238 U, 236 U/ 238 U, 145 Nd/ 143 Nd, 146 Nd/ 143 Nd, 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred μm to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146 Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235 U/ 238 U and 236 U/ 238 U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus

  7. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    Science.gov (United States)

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  8. Calcium Isotope (δ44/40Ca) Composition of Morozovella Velascoensis During the Paleocene Eocene Thermal Maximum Ocean Acidification Event

    Science.gov (United States)

    Kitch, G. D.; Jacobson, A. D.; Hurtgen, M.; Sageman, B. B.; Harper, D. T.; Zachos, J. C.

    2017-12-01

    Ocean acidification (OA) events are transient disruptions to the carbonate chemistry of seawater that involve decreases in pH, [CO32-] and carbonate mineral saturation states (Ω). Numerical modeling studies predict that the Ca isotope (δ44/40Ca) composition of primary marine carbonate should be sensitive to OA1, and recent evidence from the rock record may support this hypothesis2. Boron isotope (δ11B) data for the planktonic foraminifera Morozovella velascoensis indicate that the Paleocene-Eocene Thermal Maximum (PETM; 55 Mya) was an interval of pronounced OA3, although the Ca isotope composition of the bulk carbonate record appears to show post-burial diagenetic effects4. To further evaluate the Ca isotope proxy, we used a high-precision (2σSD=±0.04‰), double-spike (43Ca-42Ca) TIMS method5 to measure δ44/40Ca values of well-preserved M. velascoensis tests spanning the PETM. M. velascoensis tests (250-355 µm) were picked from samples recovered during ODP Leg 198, Site 1209 on Shatsky Rise in the equatorial Pacific. Five M. velascoensis tests were combined per sample, dissolved, spiked, and analyzed using a Triton TIMS. Repeat dissolutions of ten samples gave δ44/40Ca values within ±0.04‰ of the original measurements. Method and procedural blanks were negligible. δ44/40Ca values are elevated, even before the negative carbon isotope excursion (CIE) that marks the PETM. When δ11/10B values decrease during the CIE, δ44/40Ca values remain elevated, but then decrease by 0.10‰ as δ11B values return to pre-CIE levels. The apparent inverse correlation between δ44/40Ca and δ11B values suggests that Ca isotope fractionation by M. velascoensis was sensitive to OA. A decrease in pH indicated by lower δ11B values is consistent with higher δ44/40Ca values (decreased fractionation) due to elevated [Ca2+]/[CO32-] ratios and reduced W. The Ca isotope composition of pristine foraminiferal calcite may have potential for reconstructing [CO32-]. The current

  9. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  10. SFCOMPO: A new database of isotopic compositions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Michel-Sendis, Franco; Gauld, Ian

    2014-01-01

    The numerous applications of nuclear fuel depletion simulations impact all areas related to nuclear safety. They are at the basis of, inter alia, spent fuel criticality safety analyses, reactor physics calculations, burn-up credit methodologies, decay heat thermal analyses, radiation shielding, reprocessing, waste management, deep geological repository safety studies and safeguards. Experimentally determined nuclide compositions of well-characterised spent nuclear fuel (SNF) samples are used to validate the accuracy of depletion code predictions for a given burn-up. At the same time, the measured nuclide composition of the sample is used to determine the burn-up of the fuel. It is therefore essential to have a reliable and well-qualified database of measured nuclide concentrations and relevant reactor operational data that can be used as experimental benchmark data for depletion codes and associated nuclear data. The Spent Fuel Isotopic Composition Database (SFCOMPO) has been hosted by the NEA since 2001. In 2012, a collaborative effort led by the NEA Data Bank and Oak Ridge National Laboratory (ORNL) in the United States, under the guidance of the NEA Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF) of the Working Party on Nuclear Criticality Safety (WPNCS), has resulted in the creation of an enhanced relational database structure and a significant expansion of the SFCOMPO database, which now contains experimental assay data for a wider selection of international reactor designs. The new database was released online in 2014. This new SFCOMPO database aims to provide access to open experimental SNF assay data to ensure their preservation and to facilitate their qualification as evaluated assay data suitable for the validation of methodologies used to predict the composition of irradiated nuclear fuel. Having a centralised, internationally reviewed database that makes these data openly available for a large selection of international reactor designs is of

  11. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    Science.gov (United States)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  12. Lead isotopic compositions of environmental certified reference materials for an inter-laboratory comparison of lead isotope analysis

    International Nuclear Information System (INIS)

    Aung, Nyein Nyein; Uryu, Tsutomu; Yoshinaga, Jun

    2004-01-01

    Lead isotope ratios, viz. 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, of the commercially available certified reference materials (CRMs) issued in Japan are presented with an objective to provide a data set, which will be useful for the quality assurance of analytical procedures, instrumental performance and method validation of the laboratories involved in environmental lead isotope ratio analysis. The analytical method used in the present study was inductively coupled plasma quadrupole mass spectrometry (ICPQMS) presented by acid digestion and with/without chemical separation of lead from the matrix. The precision of the measurements in terms of the relative standard deviation (RSD) of triplicated analyses was 0.19% and 0.14%, for 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, respectively. The trueness of lead isotope ratio measurements of the present study was tested with a few CRMs, which have been analyzed by other analytical methods and reported in various literature. The lead isotopic ratios of 18 environmental matrix CRMs (including 6 CRMs analyzed for our method validation) are presented and the distribution of their ratios is briefly discussed. (author)

  13. Stable carbon and nitrogen isotopic measurements of the wild animals hunted by the Norse and the Neo-Eskimo people of Greenland

    DEFF Research Database (Denmark)

    Nelson, D. Erle; Møhl, Jeppe; Heinemeier, Jan

    2012-01-01

    Isotopic measurements of the terrestrial and marine wild animal species of greatest importance to Greenlandic Norse and Neo-Eskimo people were obtained to provide a solid basis for undertaking isotopic dietary analyses of these two human groups. The samples studied were animal bones from...... archaeological excavations of Norse and Neo-Eskimo middens. As expected, the values for the terrestrial and marine species were found to have characteristic isotopic composition, but there is sufficient variation within each group to require detailed consideration in interpreting isotopic information...

  14. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  15. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  16. The isotopic composition of precipitation on the Andes and Amazon of Bolivia

    International Nuclear Information System (INIS)

    Roche, M.A.; Gonfiantini, R.; Fontes, J.C.; Abasto, N.; Noriega, L.

    1999-01-01

    In the years 1983-1985, the isotopic composition of precipitation was determined in monthly and annual samples collected from stations at different altitude along two transects from the Bolivian Altiplano to the Amazon basin. The data show variations with amount (in rainy season δ-values are more negative) and altitude. The isotopic gradient with altitude changes seasonally, being higher (in absolute value) in rainy months (January-February). The influence of the 1983 drought is clearly shown, with less negative δ-values and smaller isotopic gradients vs. altitude with respect to 1984. The drought was supposed to be connected with El Nino, very strong in 1982-1983, but this has not been confirmed in 1997-1998, when El Nino was even stronger. The isotopic contrast between the dry 1983 and the very humid 1984 can be identified in the ice core from the Sahama glacier. (author)

  17. Isotopic composition of groundwater in semi-arid regions of Southern Africa

    International Nuclear Information System (INIS)

    Vogel, J.C.; Urk, H. van

    1975-01-01

    Although the isotope content of precipitation in the semi-arid regions of southern Africa is extremely variable, groundwater samples from the same district are found to have a remarkably constant isotopic composition. The oxygen-18 content of the underground water, in general, varies by about 0.5% in a given area. The differences that occur between different regions are sufficiently large to allow the groundwater of an area to be characterized by means of its oxygen-18 content. In order to localize the infiltration area of an aquifer, radiocarbon dating of the water is used. It appears that the groundwater contains, in general, less of the heavy isotopes than does the precipitation in the recharge area. This indicates that infiltration only takes place during periods of heavy rainfall. Examples are given where the isotope content of the groundwater is used to distinguish between different aquifers in the same region

  18. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  19. Stable isotope compositions (O-C) of reef fish otoliths from the Taiaro lagoon (Tuamotu, French Polynesia): isotopic and biologic implications

    International Nuclear Information System (INIS)

    Blamart, D.; Juillet-Leclerc, A.; Ouahdi, R.; Escoubeyrou, K.; Lecomte-Finiger, R.

    2002-01-01

    Nuclei (larval stage) and outer parts (adult stage) of fish otoliths from the Taiaro closed lagoon (French Polynesia) and adjacent ocean have been analysed for the C-O isotopic compositions. δ 18 O values of the nuclei of both populations indicate that isotopic equilibrium is reached. This implies that the lagoonal fish population has done its complete biological cycle in the lagoon and represents an adaptation in a closed system. δ 18 O values of the outer parts show a slight isotopic disequilibrium ( 13 C values exhibit a strong isotopic disequilibrium related to metabolic activity. (authors)

  20. Isotope determinations of renal clearance equivalent with physiological clearance measurements

    International Nuclear Information System (INIS)

    Junges, R.

    1983-01-01

    The concept of renal clearance in nuclear medicine describes the tubular secretion and glomerular filtration of a substance being removed from the blood plasma. The concept of clearance as used physiologically is rather wider and includes consideration of the outflow of the substances remained back in the kidneys. The present paper discusses clearance measurements as seen from a thermodynamic point of view, in which isotope clearances become equivalent with the physiological concept of clearance. In addition, it is possible to quantify each single step of the excretory function of each kidney separately. (orig.) [de

  1. Magnesium isotope compositions of Solar System materials determined by double spiking

    Science.gov (United States)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  2. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    Directory of Open Access Journals (Sweden)

    N. Le Duy

    2018-02-01

    Full Text Available This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i MLR can better explain the isotopic variation in precipitation (R2  =  0.8 compared to single-factor linear regression (R2  =  0.3; (ii the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (∼ 70 % compared to local climatic conditions (∼ 30 %; (iii the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv the influence of local precipitation amount and temperature is not significant during the rainy season, unlike the regional precipitation amount effect; (v secondary fractionation processes (e.g., sub-cloud evaporation can be identified through the d-excess and take

  3. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    Science.gov (United States)

    Le Duy, Nguyen; Heidbüchel, Ingo; Meyer, Hanno; Merz, Bruno; Apel, Heiko

    2018-02-01

    This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R2 = 0.8) compared to single-factor linear regression (R2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (˜ 70 %) compared to local climatic conditions (˜ 30 %); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not significant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either locally

  4. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  5. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    Science.gov (United States)

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  6. Pooled versus separate measurements of tree-ring stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dorado Linan, Isabel, E-mail: isabel@gfz-potsdam.de [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Gutierrez, Emilia, E-mail: emgutierrez@ub.edu [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); Helle, Gerhard, E-mail: ghelle@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Heinrich, Ingo, E-mail: heinrich@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Andreu-Hayles, Laia, E-mail: laiandreu@ub.edu [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades NY (United States); Planells, Octavi, E-mail: leocarpus@hotmail.com [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); Leuenberger, Markus, E-mail: leuenberger@climate.unibe.ch [Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Oeschger Centre of Climate Change Research, University of Bern, Zaehringerstrasse 25, 3012 Bern (Switzerland); Buerger, Carmen, E-mail: buerger@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Schleser, Gerhard, E-mail: schleser@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany)

    2011-05-01

    {delta}{sup 13}C and {delta}{sup 18}O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the {delta}{sup 13}C and the {delta}{sup 18}O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing {delta}{sup 18}O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences. - Research Highlights: {yields} Pooled {delta}{sup 13}C and {delta}{sup 18}O chronologies are expected to be similar to the mean. {yields} Empirical pooled chronologies {delta}{sup 13}C and

  7. Pooled versus separate measurements of tree-ring stable isotopes

    International Nuclear Information System (INIS)

    Dorado Linan, Isabel; Gutierrez, Emilia; Helle, Gerhard; Heinrich, Ingo; Andreu-Hayles, Laia; Planells, Octavi; Leuenberger, Markus; Buerger, Carmen; Schleser, Gerhard

    2011-01-01

    δ 13 C and δ 18 O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the δ 13 C and the δ 18 O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing δ 18 O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences. - Research Highlights: → Pooled δ 13 C and δ 18 O chronologies are expected to be similar to the mean. → Empirical pooled chronologies δ 13 C and δ 18 O and the mean show a high synchronicity. → Pooled chronologies differ

  8. Sensor platform for gas composition measurement

    NARCIS (Netherlands)

    De Graaf, G.; Bakker, F.; Wolffenbuttel, R.F.

    2011-01-01

    The gas sensor research presented here has a focus on the measurement of the composition of natural gas and gases from sustainable resources, such as biogas. For efficient and safe combustion, new sensor systems need to be developed to measure the composition of these new gases. In general about 6

  9. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water

    Science.gov (United States)

    de La Rocha, Christina L.

    2003-05-01

    The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.

  10. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Dowell, M.R.W.

    1985-05-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented. 4 refs., 4 tabs

  11. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy gamma-ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma-ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented

  12. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  13. Isotopic composition of reduced and oxidized sulfur in the Canary Islands: implications for the mantle S cycle

    Science.gov (United States)

    Beaudry, P.; Longpre, M. A.; Wing, B. A.; Bui, T. H.; Stix, J.

    2017-12-01

    The Earth's mantle contains distinct sulfur reservoirs, which can be probed by sulfur isotope analyses of volcanic rocks and gases. We analyzed the isotopic composition of reduced and oxidized sulfur in a diverse range of volcanically derived materials spanning historical volcanism in the Canary Islands. Our sample set consists of subaerial volcanic tephras from three different islands, mantle and sedimentary xenoliths, as well as lava balloon samples from the 2011-2012 submarine El Hierro eruption and associated crystal separates. This large sample set allows us to differentiate between the various processes responsible for sulfur isotope heterogeneity in the Canary archipelago. Our results define an array in triple S isotope space between the compositions of the MORB and seawater sulfate reservoirs. Specifically, the sulfide values are remarkably homogeneous around d34S = -1 ‰ and D33S = -0.01 ‰, while sulfate values peak at d34S = +4 ‰ and D33S = +0.01 ‰. Lava balloons from the El Hierro eruption have highly enriched sulfate d34S values up to +19.3 ‰, reflecting direct interaction between seawater sulfate and the erupting magma. Several sulfate data points from the island of Lanzarote also trend towards more positive d34S up to +13.8 ‰, suggesting interaction with seawater sulfate-enriched lithologies or infiltration of seawater within the magmatic system. On the other hand, the modal values and relative abundances of S2- and S6+ in crystal separates suggest that the Canary Island mantle source has a d34S around +3 ‰, similar to the S-isotopic composition of a peridotite xenolith from Lanzarote. We infer that the S2- and S6+ modes reflect isotopic equilibrium between those species in the magmatic source, which requires 80 % of the sulfide to become oxidized after melting, consistent with measured S speciation. This 34S enrichment of the source could be due to the recycling of hydrothermally-altered oceanic crust, which has been previously suggested

  14. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  15. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  16. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; hide

    2011-01-01

    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  17. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  18. An IBM-1620 code for calculaton of isotopic composition of irradiated uranium (ISOCOM-1)

    International Nuclear Information System (INIS)

    Soliman, R.H.; Karchava, G.; Hamouda, I.

    1974-01-01

    The present work gives a description of an IBM-1620 code to calculate the isotopic composition during the irradiation of a nuclear fuel, which initially consists of 235 U and 238 U. The numerical results of test calculations as well as the ET-RR-1 reactor calculations are presented. The code is in operation since 1968

  19. An IBM-1620 code for calculation of isotopic composition of irradiated thorium (ISOCOM-2)

    International Nuclear Information System (INIS)

    Soliman, R.H.; Karchava, G.; Hamouda, I.

    1978-01-01

    The present work gives a description of an IBM-1620 code to calculate the isotopic composition during the irradiation of a nuclear fuel, which initially contains 232 Th. The numerical results on test calculations are presented. The code has been in operation since 1968

  20. Review of data of oxygen and hydrogen isotope composition in thermal waters in China

    International Nuclear Information System (INIS)

    Fan Zhicheng; Wang Jiyang

    1988-01-01

    Based on the data of δD and δ 18 O content from more than 600 water samples, this paper reviews the stable isotope composition of thermal waters in China. Data to be used in this paper were mostly collected from published literatures with a few by authors. 9 figs, 2 tabs

  1. Habitat use and trophic position effects on contaminant bioaccumulation in fish indicated by stable isotope composition

    Science.gov (United States)

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in a Great Lakes coastal food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Bl...

  2. Soil moisture effects on the carbon isotopic composition of soil respiration

    Science.gov (United States)

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  3. Interpretation of groundwater origin in the Velenje coal mine on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janko Urbanc

    2002-12-01

    Full Text Available The aim of the investigation was to determine the isotopic properties of cave waters from the Velenje coal mine and define the recharge areas of individual aquifers. With regard to the oxygen isotope composition, groundwater in the Velenje coal mine can beclassified into three types. Typical d18O values of the first type are around -9 ‰ and are found in surface waters in the vicinity of the mine, therefore it is supposed that these waters are recharged locally. The second type is represented mainly by waters from thelower part of the pliocene aquifer. The average oxygen composition of these waters is about -11 ‰. This isotope composition is considerably different from the isotope composition of recent waters from the mine’s vicinity, which leads to the conclusion that these are older, fossile waters. These waters also have a very high degree of mineralization and consequently conductivity. Waters of the third type have average δ18O values around -10 ‰ and originate mainly from triassic dolomites. These waters could be a mixture of recentand old waters, but it is also possible that they flow into the coal mine from the higher areas of Paški Kozjak.

  4. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  5. The isotopic composition of soil organic carbon on a north - south transect in western Canada

    Czech Academy of Sciences Publication Activity Database

    Bird, M.; Šantrůčková, Hana; Lloyd, J.; Lawson, E.

    2002-01-01

    Roč. 53, - (2002), s. 393-403 ISSN 1351-0754 Institutional research plan: CEZ:AV0Z6066911 Keywords : isotopic composition * soil organic carbon * western Canada Subject RIV: EH - Ecology, Behaviour Impact factor: 1.452, year: 2002

  6. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D.; Äystö, J.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Jokinen, A.; Kellerbauer, A.; Kluge, H.-J.; Kolhinen, V.S.; Oinonen, M.; Sauvan, E.; Schwarz, S.

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  7. Establishing Ideal Conditions for Complete Denitrification by Pseudomonas Aureofaciens - An Update on Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification and Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yi, Amelia Lee Zhi; Heiling, Maria; Toloza, Arsenio; Heng, Lee K.

    2017-01-01

    This serves as update on research entitled “Determining isotopic composition of dissolved nitrate using bacterial denitrification and laser spectroscopy” first published in the Vol. 39, No. 1, July 2016 SWMCN Soils Newsletter. In this research, isotopic δ"1"5N and δ"1"8O composition of dissolved nitrates is measured by laser spectroscopy after reduction of nitrate to N_2O by Pseudomonas aureofaciens. Quantifying the isotopic composition of nitrates in aqueous samples allows for better identification of potential nitrate sources, which in turn assists in remediation of nitrate-contaminated water and design of future agricultural management practises. The overall objective of the project is to establish a technical guide in the form of a standard operating procedure outlining best practises for denitrification method.

  8. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    Science.gov (United States)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  9. Estimation of percolating water dynamics through the vadose zone of the Postojna cave on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janja Kogovšek

    2007-12-01

    Full Text Available Within the scope of monitoring water percolation through the 100-m thick vadose zone in the area of Postojnska jama continuous measurements of precipitation were carried out on the surface, and continuous measurements of water flowandphysicalandchemicalparametersof selected water trickles were performed under the surface. Occasional samples of percolating waters were taken for the analysis of water oxygen isotope composition. An exponential model of groundwater flowwaselaborated,bymeansofwhichtheretentiontime of water in individual trickles was estimated. Modelled retention times of groundwater range from 2.5 months to over one year.

  10. Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): Terrestrial serpentinization or mixing with brine?

    International Nuclear Information System (INIS)

    Boschetti, Tiziano; Etiope, Giuseppe; Pennisi, Maddalena; Romain, Millot; Toscani, Lorenzo

    2013-01-01

    Highlights: ► First data on boron and lithium isotope on waters from ophiolites are described. ► High boron and lithium isotope composition may be related to terrestrial serpentinization. ► Methane isotope data show unusual biotic signature. - Abstract: Spring waters issuing from serpentinized ultramafic rocks of the Taro-Ceno Valleys (Northern Apennine, Emilia-Romagna region, Italy) were analyzed for major element, trace element and dissolved gas concentrations and δ 11 B, δ 7 Li, δ 18 O(H 2 O), δ 2 H(H 2 O), δ 13 C(CH 4 ) and δ 2 H(CH 4 ) isotope compositions. Similar to other springs worldwide that issue from serpentinites, the chemical composition of the waters evolves with water–rock interaction from Ca-HCO 3 , through Mg-HCO 3 and ultimately to a hyperalkaline Na-(Ca)-OH composition. Most of the Ca- and Mg-HCO 3 springs have δ 11 B ranging between +16.3‰ and +23.7‰, consistent with the range of low P–T serpentinites. Very high δ 11 B in two springs from Mt. Prinzera (PR10: +39‰; PR01: +43‰) can be related to isotopic fractionation during secondary phase precipitation, as also inferred from δ 7 Li values. In contrast to typical abiogenic isotope signatures of CH 4 from serpentinized rocks, dissolved CH 4 from the Taro-Ceno hyperalkaline springs has an apparent biotic (thermogenic and/or mixed thermogenic-microbial) signature with δ 13 C(CH 4 ) ranging from −57.5‰ to −40.8‰, which is similar to that of hydrocarbons from production wells and natural seeps in adjacent hydrocarbon systems. The data suggest that CH 4 in the hyperalkaline springs investigated in this study may derive from organic matter of the sedimentary (flysch and arenaceous) formations underlying the ophiolite unit. However, small amounts of H 2 were detected in one hyperalkaline spring (PR10), but for two springs with very low CH 4 concentrations (PR01 and UM15) the δ 2 H value could not be measured, so the occurrence of some abiotic CH 4 cannot be excluded

  11. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    Science.gov (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  12. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Haas, F.X.; Lemming, J.F.

    1976-01-01

    A nondestructive technique is described for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects were minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios is dependent on the half-lives, branching intensities, and measured peak areas. The data presented describe the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. Most of the data analyzed were obtained from plutonium material containing 6 percent plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods were also applied to plutonium samples containing up to 23 percent plutonium-240 with weights of 0.25 to 200 g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples

  13. Report of International Workshop on tracing isotopic composition of past and present precipitation - opportunities for climate and water studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Workshop on Tracing Isotopic Composition of Past and Present Precipitation - Opportunities for Climate and Water Studies, was jointly organized by the World Meteorological Organization (WMO), the International Atomic Energy Agency (IAEA), Past Global Changes (PAGES) - a core project of the International Geosphere - Biosphere Programme (IGBP), and the International Association of Hydrological Sciences (IAHS). The Global Network ``Isotopes in Precipitation`` (GNIP) was initiated by IAEA in 1958 and became operational in 1961. The main objective was to collect systematic data on isotopic content of precipitation on a global scale and to establish temporal and spatial variations of environmental isotopes in precipitation. The network is now expected to serve additional purposes, namely as a benchmark for the interpretation of paleo-records, as a validation tool for Global Circulation Models, and for establishing large-scale regional (and continental-scale) waster balances. Furthermore, the structure of GNIP should be strengthened. This includes the build-up of: stations located close to major natural climatic archives (e.g. Greenland, mountain areas); stations which represent climatically sensitive areas (indicated by GCM`s and biome models). Isotope monitoring of river outflow from major continental basins should be initiated. This could be realized in co-operation with the UNEP/WHO Global Environmental Monitoring System-Water (GEMS-Water). The deuterium excess parameter ({delta}) is of particular importance in climate modelling and in the understanding of hydro-meteorological pathways. The use of the deuterium excess imposes strict requirements on the accuracy of deuterium and oxygen-18 analysis. A GNIP-based worldwide documentation of quality control regarding sampling, shipping and measurements is needed. The IAEA/WMO database and other isotope data sets should be included in the World Data Center A for palaeo-climatology. Refs, figs, tabs.

  14. Report of International Workshop on tracing isotopic composition of past and present precipitation - opportunities for climate and water studies

    International Nuclear Information System (INIS)

    1995-01-01

    The Workshop on Tracing Isotopic Composition of Past and Present Precipitation - Opportunities for Climate and Water Studies, was jointly organized by the World Meteorological Organization (WMO), the International Atomic Energy Agency (IAEA), Past Global Changes (PAGES) - a core project of the International Geosphere - Biosphere Programme (IGBP), and the International Association of Hydrological Sciences (IAHS). The Global Network ''Isotopes in Precipitation'' (GNIP) was initiated by IAEA in 1958 and became operational in 1961. The main objective was to collect systematic data on isotopic content of precipitation on a global scale and to establish temporal and spatial variations of environmental isotopes in precipitation. The network is now expected to serve additional purposes, namely as a benchmark for the interpretation of paleo-records, as a validation tool for Global Circulation Models, and for establishing large-scale regional (and continental-scale) waster balances. Furthermore, the structure of GNIP should be strengthened. This includes the build-up of: stations located close to major natural climatic archives (e.g. Greenland, mountain areas); stations which represent climatically sensitive areas (indicated by GCM's and biome models). Isotope monitoring of river outflow from major continental basins should be initiated. This could be realized in co-operation with the UNEP/WHO Global Environmental Monitoring System-Water (GEMS-Water). The deuterium excess parameter (δ) is of particular importance in climate modelling and in the understanding of hydro-meteorological pathways. The use of the deuterium excess imposes strict requirements on the accuracy of deuterium and oxygen-18 analysis. A GNIP-based worldwide documentation of quality control regarding sampling, shipping and measurements is needed. The IAEA/WMO database and other isotope data sets should be included in the World Data Center A for palaeo-climatology. Refs, figs, tabs

  15. Strontium-isotope composition in the Tethys Sea, Euboea, Greece

    International Nuclear Information System (INIS)

    Tremba, E.L.; Faure, G.; Summerson, C.H.

    1975-01-01

    The 37 Sr/ 36 Sr ratios of the Tethys Sea have been determined by analyzing limestones of Permian to Late Cretaceous age from the overthrusted sequence of central and northern Euboea. The results are in satisfactory agreement with ratios obtained by other investigators on unreplaced fossil shells of similar age collected elsewhere. The 37 Sr/ 36 Sr ratios of Mesozoic marbles from the autochtone metamorphic rocks of southern Euboea are more variable, perhaps because of increases in this ratio during regional metamorphism. Nevertheless, the lowest values of suites of isochronous samples may approach the correct ratio. Four samples of the Argyron Marble taken at different localities in southern Euboea and on the Attic peninsula have a concordant 87 Sr/ 86 Sr ratio of 0.70688+-0.00006 relative to 0.7080 for the Eimer and Amend isotope standard. This value indicates a Jurassic age for this formation even though the fragmentary fossil evidence favors a Late Cretaceous (Turonian) age

  16. Analytical developments in the measurements of boron, nitrate, phosphate and sulphate isotopes and case examples of discrimination of nitrogen and sulphur sources in pollution studies

    International Nuclear Information System (INIS)

    Aggarwal, J.; Sheppard, D.S.; Robinson, B.W.

    1998-01-01

    Methods are documented for the analysis of B isotopes, O and N isotopes in nitrates. B isotopes can be measured by negative ion thermal ionisation mass spectrometry. Nitrate is recovered from groundwaters by ion exchange and the resulting silver nitrate combusted for stable isotope gas analysis. Oxygen isotope analysis of phosphates can be determined by generating and analysing CO 2 gas from the combustion of silver phosphate produced from aqueous samples. Sulphate in ground and surface waters can be separated and concentrated by ion exchange and precipitated as barium sulphate. This is reacted with graphite to yield CO 2 and CO, the latter being spark discharged to CO 2 and the total CO 2 measured for oxygen isotope analysis. Barium sulphide from this reaction is converted to silver sulphide which is reacted with cuprous oxide to give SO 2 gas for sulphur isotope measurements. A case study of the semi-rural Manakau area in New Zealand was conducted to see if nitrate isotopes could be used to detect the source of nitrate contamination (groundwater nitrate - 3- N). Nitrogen isotope (+4 to +12 per mille) coupled with oxygen isotope measurements (+5 to +9 per mille) demonstrated that the nitrogen is not sources from fertilisers but from some combination of septic tank and animal waste. For the case study of sulphate isotope use, sulphur and oxygen isotopic compositions of sulphate in river and lake water from seven major catchments of New Zealand were determined. The isotope analyses have allowed the distinction between natural (geological, geothermal and volcanic) and anthropogenic (fertiliser) sulphur sources. (author)

  17. Late Pliocene - Early Pleistocene paleoenvironmental reconstruction based on stable isotope compositions of Stephanorhinus sp. and Mammut sp. teeth

    Science.gov (United States)

    Szabó, Péter; Kovács, János; Kocsis, László; Gasparik, Mihály; Vennemann, Torsten; Demény, Attila; Virág, Attila

    2014-05-01

    Stable isotope measurements of skeletal apatite from herbivorous mammals are often used to provide information on the terrestrial paleoenvironment and paleoclimate. In this study fossil teeth of Stephanorhinus Kretzoi 1942 (rhinoceros) and Mammut Blumenbach 1799 (mastodon), amongst others, were investigated from the Carpathian Basin. According to the biostratigraphy, the age of the samples has a range from Late Pliocene to Early Pleistocene. Reconstructing paleoclimate and paleoenvironment of this era is important as it can be an analogue for the future climate. Oxygen and carbon isotopic compositions were measured from the tooth enamel, because it is believed to be the most resistant to diagenetic alteration (e.g., Kohn & Cerling, 2002). The carbon isotopic composition in the carbonate fraction of apatite can be related to the diet of the animal (Kohn & Cerling, 2002). Hence, it can reflect the photosynthetic pathway (C3 or C4) of the plants consumed by these herbivores. The δ18O values were determined in the phosphate fraction of apatite. In the case of large mammals that are obligate drinkers, the δ18O values closely track those of the environmental water (Bryant & Froelich, 1995). Knowing the δ18O values of environmental water and relating it to local precipitation, the mean annual temperature (MAT) of the site can be calculated (Dansgaard, 1964). The δ13C values range from -10 to -15 o (VPDB). The result clearly shows that these animals consumed C3 plants. Most of the δ13C values indicate mixed grassland-open woodland rather than a closed canopy forest. Although there is variation in the δ18O values (mean 14.2 ± 1.0 o VSMOW, n=17), most of the samples would support a MAT range of 8-12 ° C. This is in good agreement with other proxies for the localities and time period (Kovács et al., 2013). Bryant, D.J. & Froelich, P.N. (1995) A model of oxygen-isotope fractionation in bodywater of large-mammals. Geochimica et Cosmochimica Acta 59, 4523

  18. Strontium and neodymium isotopic compositions in sediments from Godavari, Krishna and Pennar rivers

    International Nuclear Information System (INIS)

    Masood Ahmad, S.; Padmakumari, V.M.; Anil Babu, G.

    2009-01-01

    We report here strontium (Sr) and neodymium (Nd) isotopic compositions in bed sediments from the Godavari, Krishna and Pennar rivers, draining into the Bay of Bengal. The isotopic compositions of these sediments range from 0.7190 to 0.7610 for 87 Sr/ 86 Sr and -12.04 to -23.68 for ε Nd . This wide range in Sr and Nd isotopes is derived from variable proportions of sediments from different rock types in their drainage basins. All the three rivers have their characteristic isotopic signatures. The results display highest 87 Sr/ 86 Sr (0.7610) and most negative ε Nd values (-23.68) for the sediments of Pennar river. This is attributed to the chemical weathering of gneisses and granites in its drainage basin. The 87 Sr/ 86 Sr and ε Nd values for the Godavari river sediments range from 0.7196 to 0.7210 and -15.31 to -18.22 respectively. 87 Sr/ 86 Sr and ε Nd values in Krishna river sediments lie from 0.7217 to 0.7301 and -12.04 to -12.78 respectively. Our results show that the sedimentary load from the Godavari and Krishna rivers is primarily derived from the older rocks in their drainage basins. It is possible that the sediments transported through peninsular Indian rivers predominantly control Sr and Nd isotope sedimentary budget in the western Bay of Bengal. (author)

  19. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  20. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  1. A novel procedure for Rubidium separation and its isotope measurements on geological samples by MC-ICP-MS

    Science.gov (United States)

    Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.

    2017-12-01

    A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.

  2. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  3. Hydrochemical and Isotopic Composition of The Water Resources In The Po Delta Plain (northern Italy) and Its Environmental Impact

    Science.gov (United States)

    Rapti Caputo, D.; Martinelli, G.

    Groundwater samples from wells were collected to examine the hydrochemical char- acteristics and isotopic composition of the water resources in the Ferrara area (delta Po plain). Electrical conductivity (EC), pH, total dissolved solid (TDS), temperature of the water were directly measured in the field. Subsequently, in the laboratory, the samples were analysed for the determination of major ions such as Ca, Mg, K, Na, SO4, Cl, NO3 and HCO3. Also, oxygen, deuterium and tritium isotopic composition, of the same samples were analysed for the isotopic characterisation of the waters. Three principal water groups can be distinguished on the basis of the distribution of the values of 18O and 2H. The first group (A), include the waters from the wells that exploit the unsatured shallow aquifer, developing in mainly sandy or sandy-silty lenses. These are large diameter wells, whose depth does not exceed the 7 m, while their piezometric level is at depth varying between 2 and 3 m from the soil surface. The isotopic composition of such wells is strongly affected by meteorological events (local recharge). Indeed, the main supply to the aquifer occurs through infiltration, mainly from rainwaters and, secondly, from the waters contained in the drainage channels. The hydrochemical characteristics of the waters coming from those wells present a very high sulphate concentration (up to 508 mg/l). To the second group (B) belong the waters with an 18O and 2H content lower than the previously described group and varying, respectively, between -9.6 Ferrara plain (Po and Po di Volano rivers). In group C, are the waters of the Po River, where low values can be 1 observed both in oxygen and deuterium contents, with values equal to -9.90 s´ 0.03 and -71.3 s´ 0.9, respectively.

  4. Measurement of the activity of electron capturing isotopes

    International Nuclear Information System (INIS)

    Szoerenyi, A.

    1980-01-01

    In order to measure precisely the activity of electron capturing isotopes, an equipment was constructed for the detection the X-photons, the Auger- and the conversing electrons by a high-pressure, gas-flow 4π proportional counter. The proportional counter and the NaI(Tl) scintillation counter are placed in a common lead-shielding, thus, the equipment is suited for the measurement of radioisotopes decaying in coincidence. The structure of the proportional counter and of the pressure-control system are detailed. As an example, the energy spectra of a 109 Cd solution, taken at different pressures, are published. At a pressure of 1.1 MPa the 3 peaks are well separated. The results of an international test, in which the radioactivity of a 57 Co sample was determined, are published, too. (L.E.)

  5. The distribution of lead concentrations and isotope compositions in the eastern Tropical Atlantic Ocean

    Science.gov (United States)

    Bridgestock, Luke; Rehkämper, Mark; van de Flierdt, Tina; Paul, Maxence; Milne, Angela; Lohan, Maeve C.; Achterberg, Eric P.

    2018-03-01

    Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600-900 m, 35 pmol kg-1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818-1.1824, 208Pb/207Pb = 2.4472-2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50-60 years. In contrast, North Atlantic Deep Water (2000-4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762-1.184, 208Pb/207Pb = 2.4482-2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80-100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the

  6. IDMS analysis of blank swipe samples for uranium quantity and isotopic composition

    International Nuclear Information System (INIS)

    Ryjinski, M.; Donohue, D.

    2001-01-01

    Since 1996 the IAEA has started routine implementation of environmental sampling. During the last 5 years more than 1700 swipe samples were collected and analyzed in the Network of Analytical Laboratories (NWAL). One sensitive point of analyzing environmental samples is evidence of the presence of enriched U. The U content on swipes is extremely low and therefore there is a relatively high probability of a false positive, e.g. small contamination or a measurement bias. In order to avoid and/or control this the IAEA systematically sends to the laboratories blind blank QC samples. In particular more than 50 blank samples were analyzed during the last two years. A preliminary analysis of blank swipes showed the swipe material itself contains up to 10 ng of NU per swipe. However, about 50% of blind blank swipes analyzed show the presence of enriched uranium. A source of this bias has to be clarified and excluded. This paper presents the results of modeling of IDMS analysis for quantity and isotopic composition of uranium in order to identify the possible contribution of different factors to the final measurement uncertainty. This modeling was carried out based on the IAEA Clean Laboratory measurement data and simulation technique

  7. Wet deposition at the base of Mt Everest: Seasonal evolution of the chemistry and isotopic composition

    Science.gov (United States)

    Balestrini, Raffaella; Delconte, Carlo A.; Sacchi, Elisa; Wilson, Alana M.; Williams, Mark W.; Cristofanelli, Paolo; Putero, Davide

    2016-12-01

    The chemistry of wet deposition was investigated during 2012-2014 at the Pyramid International Laboratory in the Upper Khumbu Valley, Nepal, at 5050 m a.s.l., within the Global Atmosphere Watch (GAW) programme. The main hydro-chemical species and stable isotopes of the water molecule were determined for monsoon rain (July-September) and snow samples (October-June). To evaluate the synoptic-scale variability of air masses reaching the measurement site, 5 day back-trajectories were computed for the sampling period. Ion concentrations in precipitation during the monsoon were low suggesting that they represent global regional background concentrations. The associations between ions suggested that the principal sources of chemical species were marine aerosols, rock and soil dust, and fossil fuel combustion. Most chemical species exhibited a pattern during the monsoon, with maxima at the beginning and at the end of the season, partially correlated with the precipitation amount. Snow samples exhibited significantly higher concentrations of chemical species, compared to the monsoon rainfall observations. Particularly during 2013, elevated concentrations of NO3-, SO42- and NH4+ were measured in the first winter snow event, and in May at the end of the pre-monsoon season. The analysis of large-scale circulation and wind regimes as well as atmospheric composition observations in the region indicates the transport of polluted air masses from the Himalayan foothills and Indian sub-continent up to the Himalaya region. During the summer monsoon onset period, the greater values of pollutants can be attributed to air-mass transport from the planetary boundary layer (PBL) of the Indo-Gangetic plains. Isotopic data confirm that during the monsoon period, precipitation occurred from water vapor that originated from the Indian Ocean and the Bay of Bengal; by contrast during the non-monsoon period, an isotopic signature of more continental origin appeared, indicating that the higher

  8. CISOCUR - Hydrodynamic circulation in the Curonian Lagoon inferred through stable isotope measurements and numerical modelling

    Science.gov (United States)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas

    2013-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model

  9. Innovative method for ultra-sensitive measurement of krypton isotopes

    International Nuclear Information System (INIS)

    Lavielle, B.; Gilabert, E.; Thomas, B.; Rebeix, R.; Canchel, G.; Moulin, C.; Topin, S.; Pointurier, F.

    2015-01-01

    Kr 81 (T 1/2 = 2.29*10 5 y), that is produced in the atmosphere by cosmic rays and Kr 85 (T 1/2 = 10.77 y), that is produced in the fission of nuclear fuels, are considered as the right chronometer elements for the dating of underground waters, polar ice, of for tracking civil and military nuclear activities. The use of Kr 81 and Kr 85 implies the development of extracting lines and detection devices with so high accuracy that only a few thousands of krypton atoms can be detected. The approach developed aims at detecting Kr 81 and Kr 85 in 1 liter of air and 20 liters of water. 3 steps are necessary. The first step consists in separating and purifying the krypton. The extraction of gases from water is made by helium bubbling. Chemically active gases like N 2 , CO 2 , CH 4 and O 2 are eliminated by chemical traps while Ar si separated by cryogenics. The second step involves a double focus mass spectrometer designed to perform an important enrichment in Kr 81 and Kr 85 . The last step is the high-accuracy measurement of krypton isotopes performed with the new tool named FAKIR (Facility for Analyzing Krypton Isotopic Ratios) that is based on UV laser ionization and on the mass-discrimination of the ions through their time of flight

  10. A proposal of comparative Maunder minimum cosmogenic isotope measurements

    International Nuclear Information System (INIS)

    Attolini, M.R.; Nanni, T.; Galli, M.; Povinec, P.

    1989-01-01

    There are at present contraddictory conclusions about solar activity and cosmogenic isotope production variation during Maunder Minimum. The interaction of solar wind with galactic cosmic rays, the dynamic behaviour of the Sun either as a system having an internal clock, and/or as a forced non linear system, are important aspects that can shed new light on solar physics, the Earth-Sun relationship and the climatic variation. An essential progress in the matter might be made by clarifying the cosmogenic isotope production during the mentioned interval. As it seems that during Maunder Minimum the Be10 production oscillates of about a factor of two, the authors have also to expect short scale enhanced variations in tree rings radiocarbon concentrations for the same interval. It is therefore highly desirable that for the same interval, that the authors would identify with 1640-1720 AD, detailed concentration measurements both of Be10 (in dated polar ice in addition to those of Beer et al.) and of tree ring radiocarbon, be made with cross-checking, in samples of different latitudes, longitudes and within short and large distance of the sea. The samples could be taken, as for example in samples from the central Mediterranean region, in the Baltic region and in other sites from central Europe and Asia

  11. On the accuracy of gamma spectrometric isotope ratio measurements of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ramebäck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg (Sweden); Lagerkvist, P.; Holmgren, S.; Jonsson, S.; Sandström, B.; Tovedal, A. [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Vesterlund, A. [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg (Sweden); Vidmar, T. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Kastlander, J. [Swedish Defence Research Agency, FOI, Defence and Security, Systems and Technology, SE-164 90 Stockholm (Sweden)

    2016-04-11

    The isotopic composition of uranium was measured using high resolution gamma spectrometry. Two acid solutions and two samples in the form of UO{sub 2} pellets were measured. The measurements were done in close geometries, i.e. directly on the endcap of the high purity germanium detector (HPGe). Applying no corrections for count losses due to true coincidence summing (TCS) resulted in up to about 40% deviation in the abundance of {sup 235}U from the results obtained with mass spectrometry. However, after correction for TCS, excellent agreement was achieved between the results obtained using two different measurement methods, or a certified value. Moreover, after corrections, the fitted relative response curves correlated excellently with simulated responses, for the different geometries, of the HPGe detector.

  12. Changes in Chemical and Isotopic Composition of Groundwater During a Long Term Pumping Test in Brestovica Karst Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Mezga, K.; Urbanc, J. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia)

    2013-07-15

    A pumping test of the Klarici water supply near Brestovica was performed in August 2008, in order to determine the karst groundwater resource capacity. Groundwater was pumped for a month with a total capacity of 470 L/s. During the experiment, sampling for chemical and isotopic composition of groundwater and surface water was carried out. Intensive pumping in dry meteorological conditions caused a lowering of the water table and changes in the chemical and isotopic composition of pumped water. Local meteoric waters are infiltrated into the aquifer at a lower mean altitude; therefore the {delta}{sup 18}O is enriched with the heavy oxygen isotope. The duration of pumping resulted in changes in the isotopic composition of oxygen due to a greater impact of the intergranular Soca River aquifer on the karst aquifer. On the basis of isotope composition it was possible to quantify the impact of the Soca River on the karst aquifer. (author)

  13. Data book of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1994-03-01

    In the framework of the activity of the working group on Evaluation of Nuclide Generation and Depletion in the Japanese Nuclear Data Committee, we summarized the assay data of the isotopic composition of LWR spent fuels in order to verify the accuracy of the burnup calculation codes. The report contains the data collected from the 13 light water reactors (LWRs) including the 9 LWRs (5 PWRs and 4 BWRs) in Europe and USA, the 4 LWRs (2 PWRs and 2 BWRs) in Japan. The collected data were sorted into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples. (author)

  14. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...

  15. Boron Isotopic Composition of Metasomatized Mantle Xenoliths from the Western Rift, East Africa

    Science.gov (United States)

    Hudgins, T.; Nelson, W. R.

    2017-12-01

    The Western Branch of the East African Rift System is known to have a thick lithosphere and sparse, alkaline volcanism associated with a metasomatized mantle source. Recent work investigating the relationship between Western Branch metasomatized mantle xenoliths and associated lavas has suggested that these metasomes are a significant factor in the evolution of the rift. Hydrous/carbonated fluids or silicate melts are potent metasomatic agents, however gaining insight into the source of a metasomatic agent proves challenging. Here we investigate the potential metasomatic fluid sources using B isotope analysis of mineral separates from Western Branch xenoliths. Preliminary SIMS analyses of phlogopite from Katwe Kikorongo and Bufumbira have and average B isotopic composition of -28.2‰ ± 5.1 and -16.4‰ ± 3.6, respectively. These values are are dissimilar to MORB (-7.5‰ ± 0.7; Marschall and Monteleone, 2015), primitive mantle (-10‰ ± 2; Chaussidon and Marty, 1995), and bulk continental crust (-9.1‰ ± 2.4; Marschall et al., 2017) and display significant heterogeneity across a relatively short ( 150km) portion of the Western Branch. Though displaying large variability, these B isotopic compositions are indicative of a metasomatic agent with a more negative B isotopic composition than MORB, PM, or BCC. These results are consistent with fluids that released from a subducting slab and may be related to 700 Ma Pan-African subduction.

  16. Pb isotope composition in lichens and aerosols from eastern Sicily: Insights into the regional impact of volcanoes on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Monna, F. (Institut FA Forel (Switzerland)); Aiuppa, A.; Varrica, D. (Dipt. C.F.T.A., Palermo (Italy)); Dongarra, G. (Dipt. C.F.T.A., Palermo (Italy) CNR, Palermo (Italy). Istituto Geochimica dei Fluidi)

    1999-08-01

    A total of 25 lichen thalli of Parmelia conspersa (Ehrh), collected at Vulcano island and at Mt. Etna, during a one-year biogeochemical survey, were analyzed for Pb, br, Al, Sc,[sup 206]Pb/[sup 207]Pb, and [sup 208]Pb/[sup 206]Pb ratios. Lead isotope ratios were also measured on aerosol samples from urban areas and industrial sites of Sicily. The observed [sup 206]Pb/[sup 207]Pb range for urban and industrial aerosols matches the anthropogenic signature. Lichens instead, are closer to the compositional field of [sup 206]Pb rich geogenic sources. This natural input is more evident at Vulcano island than at Mt. Etna, where the anthropogenic activities are considerably more effective. On the basis of lead isotope data, Pb/Br ratios and calculated lead enrichment factors, a natural lead pollution from volcanoes is suggested. Volcanic lead contribution ranges from 10 to 30% at Mt. Etna to 10--80% at Vulcano island.

  17. Stable isotope compositions and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan

    Science.gov (United States)

    Dobson, P.F.; O'Neil, J.R.

    1987-01-01

    Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.

  18. Oxigen isotope compositions as indicators of epidote granite genesis in the Borborema Provinces, NE Brazil

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Valley, J.W; Sial, A.N; Spicuzza, M.J

    2001-01-01

    Neoproterozoic magmatic epidote-bearing granitoids intrude low-grade metapelites in the Cachoeirinha-Salgueiro terrane (CST), and gneisses and migmatites in the Serido terrane (ST), in the Borborema structural province, northeastern Brazil. Granitoids in both terranes contain biotite and hornblende, and are metaluminous, calc-alkalic, and oxidized I-type granites according to White's (1992) classification. However, in spite of these similarities, this work shows that mineral oxygen isotope data from plutons of the two terranes indicate different magma sources, and that magmatic epidote besides crystallizing at different pressure conditions, can have variable isotopic composition (au)

  19. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  20. LITHIUM-BERYLLIUM-BORON ISOTOPIC COMPOSITIONS IN METEORITIC HIBONITE: IMPLICATIONS FOR ORIGIN OF 10Be AND EARLY SOLAR SYSTEM IRRADIATION

    International Nuclear Information System (INIS)

    Liu, Ming-Chang; Nittler, Larry R.; Alexander, Conel M. O'D.; Lee, Typhoon

    2010-01-01

    NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that 10 B excesses correlate with the 9 Be/ 11 B ratios in 26 Al-free PLAty hibonite Crystals. From these data, an initial 10 Be/ 9 Be = (5.5 ± 1.6) x 10 -4 (2σ) and 10 B/ 11 B = 0.2508 ± 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in 26 Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No 7 Li excesses due to 7 Be decay were observed. When combined with previously reported data, the new data yield the best defined 10 Be/ 9 Be = (5.3 ± 1.0) x 10 -4 (2σ) and 10 B/ 11 B = 0.2513 ± 0.0012 for PLACs. A comparison of this value and the best constrained 10 Be/ 9 Be = (8.8 ± 0.6) x 10 -4 in CV Ca-Al-rich inclusions supports a heterogeneous distribution of 10 Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

  1. Climatic controls on the isotopic composition and availability of soil nitrogen in mountainous tropical forests

    Science.gov (United States)

    Weintraub, S. R.; Cole, R. J.; Schmitt, C. G.; All, J.

    2014-12-01

    Tropical forests in mountainous regions are often assumed to be nitrogen (N) limited, yet N dynamics across rugged terrain can be complex due to gradients in climate and topography. Elucidating patterns of N availability and loss across such gradients is necessary to predict and manage tropical forest response to environmental changes such as increasing N deposition and rising temperatures. However, such data is currently lacking, particularly in remote locations that are of high conservation value. To address this gap, a research expedition organized by the American Climber Science Program recently made a coast-to-coast journey across a remote region of Costa Rica, travelling over the Cordillera Talamanca and through La Amistad International Park. Numerous biological, chemical and hydrologic measurements were made en-route across montane to premontane wet tropical forests, spanning nearly 2,000 m in elevation and 200 km. Surface soil samples collected at regular intervals along this transect illuminate environmental drivers of N dynamics across the region. The dataset reveals strong links between soil natural abundance N isotopic composition (δ15N) and elevation and temperature parameters, and weaker links to precipitation and topography. This is in general agreement with global scale observations, but divergence from some previously published works is apparent and will be discussed. δ15N mass balance models suggest that N isotope patterns reflect differences in forms of N loss and the relative importance of fractionating and non-fractionating pathways. When combined with data on several other edaphic properties, especially C:N stoichiometry, the results points toward notable variation in soil N availability and N constraints across the transect. This study illustrates large, but predictable, variation in key N cycle traits across the premontane to montane wet tropical forest transition. These findings have management-relevant implications for tropical regions.

  2. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  3. Uncertainty assessment in gamma spectrometric measurements of plutonium isotope ratios and age

    Energy Technology Data Exchange (ETDEWEB)

    Ramebaeck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden); Nygren, U.; Tovedal, A. [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Ekberg, C.; Skarnemark, G. [Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden)

    2012-09-15

    A method for the assessment of the combined uncertainty in gamma spectrometric measurements of plutonium composition and age was evaluated. Two materials were measured. Isotope dilution inductively coupled plasma sector field mass spectrometry (ID-ICP-SFMS) was used as a reference method for comparing the results obtained with the gamma spectrometric method for one of the materials. For this material (weapons grade plutonium) the measurement results were in agreement between the two methods for all measurands. Moreover, the combined uncertainty in all isotope ratios considered in this material (R{sub Pu238/Pu239}, R{sub Pu240/Pu239}, R{sub Pu241/Pu239}, and R{sub Am241/Pu241} for age determination) were limited by counting statistics. However, the combined uncertainty for the other material (fuel grade plutonium) were limited by the response fit, which shows that the uncertainty in the response function is important to include in the combined measurement uncertainty of gamma spectrometric measurements of plutonium.

  4. A review of isotopic composition as an indicator of the natural and anthropogenic behavior of mercury

    International Nuclear Information System (INIS)

    Ridley, W. Ian; Stetson, Sarah J.

    2006-01-01

    There are seven stable isotopes of Hg that can be fractionated as a result of inorganic and organic interactions. Important inorganic reactions involve speciation changes resulting from variations in environmental redox conditions, and phase changes resulting from variations in temperature and/or atmospheric pressure. Important organic reactions include methylation and demethylation, reactions that are bacterially mediated, and complexing with organic anions in soils. The measurement of Hg isotopes by multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) is now sufficiently precise and sensitive that it is potentially possible to develop the systematics of Hg isotopic fractionation. This provides an opportunity to evaluate the utility of Hg isotopes in identifying source processes, transport mechanisms, and sinks. New values are provided for, 201 Hg/ 198 Hg, 200 Hg/ 198 Hg, 199 Hg/ 198 Hg for three standard materials (IRMM-AE639, SRM 1641c, SRM 3133) that can be used to make inter-laboratory data comparisons, and these values are tabulated with published isotopic information. Overall, the isotopic data for these standards agree to approximately 0.2 per mille . The paper reviews Hg isotope studies that deal with hydrothermal ore deposits, sediments, coal and organic complexing

  5. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    Science.gov (United States)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  6. Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul; Webster, Chris R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie, A.; Manning, Heidi; hide

    2013-01-01

    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks.

  7. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  8. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  9. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas

    Science.gov (United States)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2015-12-01

    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth

  10. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Science.gov (United States)

    Bartrons, M.; Camarero, L.; Catalan, J.

    2010-05-01

    Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN) between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover) vary considerably with elevation. The isotopic composition of nitrogen (δ15N) is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio. We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW) and sediment pore water (SPW) from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰), with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes. In the water column, the range of δ15N values was larger for ammonium (-9.4‰ to 7.4‰) than for nitrate (-11.4‰ to -3.4‰), as a result of higher variation both between and within lakes (epilimnetic vs. DCM water). For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion). Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil interaction; and another highly influenced by soil conditions. The snow-type flow path contributes low DIN

  11. Stable isotope and chemical compositions of European and Australasian ciders as a guide to authenticity.

    Science.gov (United States)

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-01-28

    This paper presents a data set derived from the analysis of bottled and canned ciders that may be used for comparison with suspected counterfeit or substitute products. Isotopic analysis of the solid residues from ciders (predominantly sugar) provided a means to determine the addition of C4 plant sugars. The added sugars were found to comprise cane sugar, high-fructose corn syrup, glucose, or combinations. The majority of ciders from Australia and New Zealand were found to contain significant amounts of added sugar, which provided a limited means to distinguish these ciders from European ciders. The hydrogen and oxygen isotopic compositions of the whole ciders (predominantly water) were shown to be controlled by two factors, the water available to the parent plant and evaporation. Analysis of data derived from both isotopic and chemical analysis of ciders provided a means to discriminate between regions and countries of manufacture.

  12. The application of scanning electron microscopy to the determination of elemental and isotopic composition in individual actinide particles

    International Nuclear Information System (INIS)

    Vatter, I.; Cattle, G.; Tushingham, J.

    2000-01-01

    Techniques for the determination of both elemental and isotopic composition of actinides within single particles are required by the IAEA in support of their environmental safeguards programme. SEM and SIMS are valuable techniques for the measurement of elemental and isotopic composition, respectively, on the particle scale. The potential for effective combination of SEM and SIMS has been investigated at Harwell Laboratory. In trials, copper finder grids have been successfully used to enable re-identification of particles between SEM and SIMS instruments. Use of the grids enables rapid relocation of particles pre-selected by SEM for SIMS measurement. The work has highlighted a possible matrix effect in plutonium measurement that results in variable sensitivity dependent on the presence of other elements (including uranium). This effect would limit the use of SIMS to obtain elemental ratios, and highlights the requirement to use both SEM and SIMS to gain full and accurate information. The possible use of autoradiography as an adjunct to SEM has been investigated. In principle, autoradiography could be used to identify higher enrichments of uranium and enable pre-selection of particles for SIMS measurement. During trials, practical problems have been encountered which have demonstrated this particular approach to be unsuitable. (author)

  13. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    Science.gov (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa

    2017-12-01

    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope