WorldWideScience

Sample records for isothermal temperature coefficients

  1. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Trkov, A.

    2002-01-01

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  2. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  3. Measuring device for the temperature coefficient of reactor moderators

    International Nuclear Information System (INIS)

    Nakano, Yuzo.

    1987-01-01

    Purpose: To rapidly determine by automatic calculation the temperature coefficient for moderators which has been determined so far by a log of manual processings. Constitution: Each of signals from a control rod position indicator, a reactor reactivity, instrument and moderator temperature meter are inputted, and each of the signals and designed valued for the doppler temperature coefficients are stored. Recurling calculation is conducted based on the reactivity and the moderator temperature at an interval where the temperature changes of the moderators are equalized at an identical control rod position, to determine isothermic coefficient. Then, the temperature coefficient for moderator are calculated from the isothermic coefficient and the doppler temperature coefficient. The relationship between the reactivity and the moderator temperature is plotted on a X-Y recorder. The stored signals and the calculated temperature coefficient for moderators are sequentially displayed and the results are printed out when the measurement is completed. According to the present device, since the real time processing is conducted, the processing time can be shortened remarkably. Accordingly, it is possible to save the man power for the test of the nuclear reactor and improve the reactor operation performance. (Kamimura, M.)

  4. Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene

    International Nuclear Information System (INIS)

    Zhou, X; Zhang, Z Y; Zhang, Q M; Liu, Q; Ding, Y Y; Zhou, L; Cao, J

    2015-01-01

    We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed. (paper)

  5. Experimental determination of the total isothermal reactivity feedback coefficient for the University of Arizona TRIGA research reactor

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Nelson, George W.

    1976-01-01

    An experiment was performed to measure the total isothermal (or bath) feedback coefficient of reactivity for the University of Arizona TRIGA Research Reactor (UARR). It was found that the bath coefficient was temperature-dependent and may be represented by the expression α iso .2634 x 10 -2 + .3428 x 10 -3 T - 2.471 x 10 -5 T 2 + 3.476 x 10 -7 T 3 for the temperature range of 7 C to 43 C. (author)

  6. Experimental Adsorption Isotherm of Methane onto Activated Carbon at Sub- and Supercritical Temperatures

    KAUST Repository

    Rahman, Kazi Afzalur

    2010-11-11

    This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study adsorbed natural gas (ANG) storage systems when the low temperature natural gas regasified from the liquid phase is considered to charge in the storage chamber. Adsorption parameters were evaluated from the isotherm data using the Tóth and Dubinin-Astakhov models. The isosteric heat of adsorption, which is concentration- and temperature-dependent, is extracted from the data. The Henry\\'s law coefficients for the methane/Maxsorb III pairs are evaluated at various temperatures. © 2010 American Chemical Society.

  7. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    International Nuclear Information System (INIS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-01-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions

  8. Liquid phase PVTx properties of (water + tert-butanol) binary mixtures at temperatures from 278.15 to 323.15 K and pressures from 0.1 to 100 MPa. II. Molar isothermal compressions, molar isobaric expansions, molar thermal pressure coefficients, and internal pressure

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.; Kolker, Arkadiy M.

    2013-01-01

    Highlights: ► Molar isothermal compressions and molar isobaric expansions were evaluated. ► Coefficients of thermal pressure and internal pressure were obtained. ► Concentration dependences of coefficients under study display extremes. ► Temperature and pressure dependences of internal pressure of the mixture were linear. -- Abstract: Molar isothermal compressions, molar isobaric expansions, molar coefficients of thermal pressure, and internal pressure were calculated over the whole concentration range of {water (1) + tert-butanol (2)} mixture at pressures from 0.1 to 100 MPa and temperatures from 278.15 to 323.15 K. It was revealed that the extremes, observed on concentration dependences of molar isothermal compression K T,m and molar isobaric expansion E P,m of the mixture, became more pronounced with pressure growth and temperature lowering. Values of molar thermal pressure coefficients of the mixture sharply rose at compositions with small TBA mole fraction and then decreased practically linearly with the alcohol content increasing. Temperature and pressure dependences of the mixture internal pressure were almost linear, and at low TBA concentrations changed significantly from the dependences of water, tert-butanol and their mixtures at large alcohol content

  9. The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    International Nuclear Information System (INIS)

    Garai, J.; Laugier, A.

    2007-01-01

    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

  10. Room temperature isotherms for Mo and Ni

    International Nuclear Information System (INIS)

    Masse, J.L.

    1986-11-01

    Isotherms at room temperature for Mo and Ni are proposed. They are of three types: BIRCH, KEANE and BORN-MIE. The adjustable constants appearing in these isotherms have been determined from experimental quantities at zero pressure. An evaluation of the limit of (δB T /δP) T as P #-> # ∞, where B T is the isothermal bulk modulus, has been also used. These three isotherms obtained for Mo and Ni are compared with isotherms derived from shock-wave data according to the PRIETO's model. There is a good agreement between these and these derived from shock-wave data. The three isotherms proposed for Mo and Ni can be considered as valid until pressures of several B To , where B To is the bulk modulus B T at P = o [fr

  11. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2010-01-01

    austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...... with a continuation of the martensitic transformation. On prolonged isothermal holding a volume reduction was observed for AISI 52100, but not for AISI 1070. A mechanism is proposed that explains the occurrence of isothermal martensite formation....

  12. Measurements of the isothermal temperature reactivity coefficient of KUCA C-Core with a D{sub 2}O tank

    Energy Technology Data Exchange (ETDEWEB)

    Pyeon, Cheol Ho [Research Reactor Institute, Kyoto Univ., Osaka (Japan); Shim, Hyung Jin; Choi, Sung Hoon; Jeon, Byoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Ryu, Eun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The Kyoto University Critical Assembly (KUCA) is a multi-core type critical assembly consisting of three independent cores in the Kyoto University Research Reactor Institute. The light-water-moderated core (Ccore) is a tank type reactor, and the experiments of the isothermal temperature reactivity coefficient (ITRC) of C-core with a D{sub 2}O tank were carried out with the use of six 10 kW heaters and a radiator system in a dump tank, one 10 kW heater in a core tank, and one 5 kW heater in the D{sub 2}O tank. The ITRCs of the C-core with the D{sub 2}O tank immersed in the core tank are considered important to investigate the mechanism of moderation and reflection effects of H{sub 2}O and D{sub 2}O in the core on the evaluation by numerical simulations. The objectives of this paper are to report the ITRC measurements for C-core with D{sub 2}O tank ranging between 26.7 .deg. C and 58.5 .deg. C, and to examine the accuracy of the numerical simulations by the Seoul National University Monte Carlo code, McCARD, through the comparison between measured and calculated results.

  13. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2012-01-01

    , quenched in oil, and thereafter investigated with vibrating sample magnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the sub-zero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5 K...... with a continuation of the martensitic transformation. On prolonged isothermal holding, a volume reduction was observed for AISI 52100, but not for AISI 1070. Copyright © 2011 by ASTM International....

  14. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  15. Contribution to the study of the temperature reactivity coefficient for light water reactors; Contribution a l`etude du coefficient de temperature des reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Mounier, C.

    1994-05-01

    In this work, we looked for the error sources in the calculation of the isothermal temperature coefficient for light water lattices. We studied three fields implied: the nuclear data, the calculation methods and the temperature coefficient measurement. About the measurement, we pointed out the difficulties of he interpretation. So we used an indirect approach by the mean of critical states at various temperatures. In that way, we can say that if the errors in the effective multiplication factor are constants with temperature then the temperature coefficient is correctly calculated. We studied the neutronic influence of light water models which are used in the thermal scattering cross-section computation. This cross-section determines the thermalization process of neutrons. We showed that the actual model (JEF2) is satisfactory of the needs of the reactors physics. Concerning the majors isotopes ({sup 235}U, {sup 238}U, {sup 239}Pu), the uncertainties on the nuclear data do not seem as a preponderant cause of errors, without to be totally negligible. We also studied, with the neutron transport code Apollo-2, the influence of difference approximations for cell calculation . The new possibilities of the code has been used to represent the critical experiments, particularly the improvement of the resonance self-shielding formalism. The calculation scheme adopted permits to remove partially the fundamental mode approximation by the mean of a two-dimensional transport calculation with the SN method, the axial leakage being treated as an absorption in DB{sup 2}{sub Z}. The agreement between theory and experiment is good both for the reactivity and the temperature coefficient. (author). 114 refs., 40 figs., 163 tabs., 1 append.

  16. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  17. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  18. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  19. Impact of the thermal scattering law of H in H_2O on the isothermal temperatures reactivity coefficients for UOX and MOX fuel lattices in cold operating conditions

    International Nuclear Information System (INIS)

    Scotta, J.P.; Noguere, G.; Bernard, D.; Santamarina, A.; Damian, J.I.M.

    2016-01-01

    The contribution of the thermal scattering law of hydrogen in light water to isothermal temperature reactivity coefficients for UOX and MOX lattices was studied in the frame of the MISTRAL critical experiments carried out in the zero power reactor EOLE of CEA Cadarache (France). The interpretation of the core residual reactivity measured between 6 to 80 C. degrees (by step of 5 C. degrees) was performed with the Monte-Carlo code TRIPOLI-4"R. The nuclear data from the JEFF-3.1.1 library were used in the calculations. 3 different thermal scattering laws of hydrogen in light water were tested in order to evaluate their impact on the MISTRAL calculations. The thermal scattering laws of interest were firstly those recommended in JEFF-3.1.1 and ENDF/BVII.1 and also that recently produced at the atomic center of Bariloche (CAB, Argentina) with molecular dynamic simulations. The present work indicates that the calculation-to-experimental bias is (0.4 ± 0.3) pcm/C. degree in the UOX core and (1.0 ± 0.3) pcm/C. degree in the MOX cores, when the JEFF-3.1.1 library is used. An improvement is observed over the whole temperature range with the CAB model. The calculation-to-experimental bias vanishes for the UOX core (0.02 pcm/C. degree) and becomes close to 0.7 pcm/C. degree for the MOX cores. The magnitude of these bias have to be connected to the typical value of the temperature reactivity coefficient that ranges from 5 pcm/C. degree at Beginning Of Cycle (BOC) up to 50 pcm/C. degrees at End Of Cycle (EOC), in PWR conditions. (authors)

  20. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Laboratory; Luhan, Roger W [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  1. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments

    Directory of Open Access Journals (Sweden)

    Benjamin Milkereit

    2014-03-01

    Full Text Available Time-temperature-precipitation (TTP diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.

  2. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  3. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  4. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    International Nuclear Information System (INIS)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A.; Mondal, K.

    2012-01-01

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M S ) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T 0 ) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M S temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  6. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mondal, K., E-mail: kallol@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2012-12-15

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M{sub S}) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T{sub 0}) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M{sub S} temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  7. Temperature stability limits for an isothermal demagnetization refrigerator

    Science.gov (United States)

    Kittel, P.

    1984-01-01

    It is pointed out that magnetic refrigeration can provide additional cooling for infrared detectors on space missions, taking into account the Shuttle Infrared Telescope Facility (SIRTF) and the Large Deployable Reflector (LDR). From a temperature of 2 K provided by the primary cryogens, magnetic refrigerators could cool bolometers or pumped photoconductors to 0.1 K or below. Such a reduction in operating temperature would increase the sensitivity for bolometers, while the response at longer wavelengths for pumped photoconductors would be improved. Two types of magnetic refrigeration cycles have been proposed. One type uses a complete demagnetization. The present investigation is concerned with the second type, which uses a feedback-controlled isothermal demagnetization, taking into account the temperature stability limits. Attention is given to control system resolution, thermometer noise, reaction time, and thermal time constants.

  8. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    International Nuclear Information System (INIS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-01-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3

  9. Review of low-temperature vapour power cycle engines with quasi-isothermal expansion

    OpenAIRE

    Igobo, Opubo N.; Davies, Philip A.

    2014-01-01

    External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requi...

  10. Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

    OpenAIRE

    Nasser Mohamed Ramli; Mohamad Syafiq Mohamad

    2017-01-01

    Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of...

  11. A study of the water vapor sorption isotherms of hardened cement pastes: Possible pore structure changes at low relative humidity and the impact of temperature on isotherms

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    cement paste samples and a model material MCM-41. The pronounced impact of temperature on desorption isotherms of cement based materials as reported in literature was not found in this investigation. The results suggest that the differences between the sorption isotherms measured at different...

  12. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  13. Isothermal transitions of a thermosetting system

    Science.gov (United States)

    Gillham, J. K.; Benci, J. A.; Noshay, A.

    1974-01-01

    A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.

  14. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): a stochastic TMDSC study

    OpenAIRE

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus Solé, Yolanda; Fraga Rivas, Iria

    2012-01-01

    The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures Tc has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature Tg as a function of isothermal cure time is determined by co...

  15. Measurement and analysis of adsorption isotherms of CO_2 on activated carbon

    International Nuclear Information System (INIS)

    Singh, Vinod Kumar; Anil Kumar, E.

    2016-01-01

    In the present work CO_2 adsorption isotherms of a commercially available activated carbon, Norit Darco type obtained from lignite granular material, were measured. Adsorption isotherms were measured at different temperatures 298 K, 308 K, 318 K and 338 K and over a pressure range of 0–45 bar using Sievert's type experimental setup. Experimental data of CO_2 adsorption isotherms were modelled using Langmuir and Dubinin–Astakhov (D–A) isotherm models. Based on coefficient of correlation and normalized standard deviation it was found that D–A isotherm model was well suited with the experimental data of CO_2 adsorption isotherms. The important thermodynamic properties viz., limiting heat of adsorption at zero coverage, entropy, Gibbs free energy and isosteric heat of adsorption as a function of surface coverage were evaluated using van't Hoff and Clausius–Clapeyron equations. These thermodynamic properties were indicating that CO_2 uptake by activated carbon is a physisorption phenomenon. The adsorption isotherms data and the thermodynamic parameters estimated in the present study are useful for designing of an adsorption based gas storage systems.

  16. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    International Nuclear Information System (INIS)

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-01-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  17. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): A stochastic TMDSC study

    International Nuclear Information System (INIS)

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus, Yolanda; Fraga, Iria

    2012-01-01

    Highlights: ► First evaluation of T g of tri-functional epoxy resin TGAP by DSC. ► Clearly shows advantages of TOPEM for isothermal and non-isothermal cure analysis. ► Evidence of highly non-linear enthalpy relaxation in partially cured TGAP system. - Abstract: The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures T c has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature T g as a function of isothermal cure time is determined by conventional DSC from a second (non-isothermal) scan, and the vitrification time t v is obtained as the time at which T g = T c . In parallel, TOPEM experiments at the same T c lead directly to the determination of t v from the sigmoidal change in the quasi-static heat capacity. It is not possible to identify the glass transition temperature of the fully cured system, T g∞ , in a third scan by conventional DSC. In contrast, with TOPEM a second (non-isothermal) scan at 2 K/min after the isothermal cure gives rise to three separate transitions: devitrification of the partially cured and vitrified material; almost immediate vitrification as the T g of the system again rises; finally another devitrification, at a temperature approximating closely to T g∞ . Thus with TOPEM it is possible to obtain a calorimetric measure of the glass transition temperature of this fully cured system.

  18. Amide temperature coefficients in the protein G B1 domain

    International Nuclear Information System (INIS)

    Tomlinson, Jennifer H.; Williamson, Mike P.

    2012-01-01

    Temperature coefficients have been measured for backbone amide 1 H and 15 N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283–313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK a values. 1 H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide 15 N coefficients have no clear relationship with structure.

  19. Water sorption isotherms of skimmed milk powder within the temperature range of 5–20 °C

    Directory of Open Access Journals (Sweden)

    Jitka Langová

    2012-01-01

    Full Text Available Moisture sorption isotherms (MSI’s of skimmed milk powder in the temperature range of 5–20 °C were determined using manometric method. MSI’s, which show the water content versus water activity (Aw at a constant temperature, are used to describe relationships between water content and equilibrium state relative vapour pressure (RVP. The equilibrium moisture content (EMC of skimmed milk powder samples is growing with an increase of Aw at a constant temperature both for water adsorption and desorption. Isotherms were found to be type II of Brunauer-Emmett-Teller classification. It is the type most common for foods. The shape of created isotherms was sigmoid. Structural modifications of crystals were observed during adsorption in the microscope, too. Critical value of EMC of tested samples corresponding to the Aw equal to 0.6 for adsorption was 6.50% MC (w.b. at temperature 5 °C, 9.15% MC (w.b. at temperature 10 °C, and 7.71% MC (w.b. at temperature 20 °C. These values determine optimal conditions for storage from the point of view microorganisms grow, Aw<0.6.

  20. Isothermal and non-isothermal conditions of isotope separation by chemical exchange method

    International Nuclear Information System (INIS)

    Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.

    1992-01-01

    The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)

  1. Determining the baking isotherm temperature of Söderberg electrodes and associated structural changes

    OpenAIRE

    Shoko, L.; Beukes, J.P.; Strydom, C.A.

    2013-01-01

    One of the most commonly employed electrode systems in industrial metal smelting applications is continuous self-baking electrodes, i.e. the Söderberg electrode system. In this system, the temperature at which transition from a liquid/soft paste to a solid carbonaceous electrode takes place is termed the baking isotherm temperature. This temperature is extremely important within the context of electrode management. In this paper, thermo mechanical analysis (TMA) was used to measure the dimens...

  2. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample

    International Nuclear Information System (INIS)

    Saha, B.; Maiti, A.K.; Ghoshal, A.K.

    2006-01-01

    Pyrolysis, one possible alternative to recover valuable products from waste plastics, has recently been the subject of renewed interest. In the present study, the isoconversion methods, i.e., Vyazovkin model-free approach is applied to study non-isothermal decomposition kinetics of waste PET samples using various temperature integral approximations such as Coats and Redfern, Gorbachev, and Agrawal and Sivasubramanian approximation and direct integration (recursive adaptive Simpson quadrature scheme) to analyze the decomposition kinetics. The results show that activation energy (E α ) is a weak but increasing function of conversion (α) in case of non-isothermal decomposition and strong and decreasing function of conversion in case of isothermal decomposition. This indicates possible existence of nucleation, nuclei growth and gas diffusion mechanism during non-isothermal pyrolysis and nucleation and gas diffusion mechanism during isothermal pyrolysis. Optimum E α dependencies on α obtained for non-isothermal data showed similar nature for all the types of temperature integral approximations

  3. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  4. Experimental Adsorption Isotherm of Methane onto Activated Carbon at Sub- and Supercritical Temperatures

    KAUST Repository

    Rahman, Kazi Afzalur; Loh, Wai Soong; Yanagi, Hideharu; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon

    2010-01-01

    This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study

  5. Adsorption isotherms of pear at several temperatures

    OpenAIRE

    Mitrevski Vangelče; Lutovska Monika; Mijakovski Vladimir; Pavkov Ivan S.; Babić Mirko M.; Radojčin Milivoje T.

    2015-01-01

    The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for...

  6. Amide proton temperature coefficients as hydrogen bond indicators in proteins

    International Nuclear Information System (INIS)

    Cierpicki, Tomasz; Otlewski, Jacek

    2001-01-01

    Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures

  7. Thermal conductivity coefficients of water and heavy water in the liquid state up to 3700C

    International Nuclear Information System (INIS)

    Le Neindre, B.; Bury, P.; Tufeu, R.; Vodar, B.

    1976-01-01

    The thermal conductivity coefficients of water and heavy water of 99.75 percent isotopic purity were measured using a coaxial cylinder apparatus, covering room temperature to their critical temperatures, and pressures from 1 to 500 bar for water, and from 1 to 1000 bar for heavy water. Following the behavior of the thermal conductivity coefficient of water, which shows a maximum close to 135 0 C, the thermal conductivity coefficient of heavy water exhibits a maximum near 95 0 C and near saturation pressures. This maximum is displaced to higher temperatures when the pressure is increased. Under the same temperature and pressure conditions the thermal conductivity coefficient of heavy water was lower than for water. The pressure effect was similar for water and heavy water. In the temperature range of our experiments, isotherms of thermal conductivity coefficients were almost linear functions of density

  8. Analysis of a self-propelling sheet with heat transfer through non-isothermal fluid in an inclined human cervical canal.

    Science.gov (United States)

    Walait, Ahsan; Siddiqui, A M; Rana, M A

    2018-02-13

    The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.

  9. Improvement of calculation method for temperature coefficient of HTTR by neutronics calculation code based on diffusion theory. Analysis for temperature coefficient by SRAC code system

    International Nuclear Information System (INIS)

    Goto, Minoru; Takamatsu, Kuniyoshi

    2007-03-01

    The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)

  10. Isothermal solidification based packaging of biosensors at low temperatures

    International Nuclear Information System (INIS)

    Sharma, R.P.; Khanna, P.K.; Kumar, D.

    2010-01-01

    Thick film Au printed square contact pads are interconnected to Cu substrates at constant pressure and temperature using the isothermal solidification of Bi-In alloy on the joining surfaces. The effect of reaction time on the mechanical strength of the package has been analyzed. Thermal stability of the fabricated specimens have been measured and discussed. The delaminated surfaces examined optically reveal the morphology of the metallization zones on the joining substrates. The scanning electron microscopy of these surfaces is reported in this paper. Tests for thermal shock, pH resistivity and shelf life have been carried out to predict the reliability of the packaging for long term applications.

  11. Temperature dependence of Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal

    Directory of Open Access Journals (Sweden)

    Qieni Lu

    2015-08-01

    Full Text Available We measure temperature dependence on Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal simultaneously in this work, based on digital holographic interferometry (DHI. And the spatial distribution of the field-induced refractive index change can also be visualized and estimated by numerically retrieving sequential phase maps of Mn:Fe:KTN crystal from recording digital holograms in different states. The refractive indices decrease with increasing temperature and quadratic polarized optical coefficient is insensitive to temperature. The experimental results suggest that the DHI method presented here is highly applicable in both visualizing the temporal and spatial behavior of the internal electric field and accurately measuring electro-optic coefficient for electrooptical media.

  12. Adsorption isotherms of pear at several temperatures

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelče

    2015-01-01

    Full Text Available The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for estimation and selection of the best sorption isotherm equations were used. For each equation and experimental data set, the average performance index was calculated and models were ranked afterwards. After that, some statistical rejection criteria were checked (D’Agostino-Pearson test of normality, single-sample run test and significance and precision of the model parameters. The performed statistical analysis shows that the Guggenheim-Anderson-de Boer (GAB equation has the highest value of average performance index, but higher correlation between pair of parameters leads to lower precision of estimated parameters.[Projekat Ministarstva nauke Republike Srbije, br. TR 31058

  13. Study of Temperature Coefficients for Parameters of Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Daniel Tudor Cotfas

    2018-01-01

    Full Text Available The temperature is one of the most important factors which affect the performance of the photovoltaic cells and panels along with the irradiance. The current voltage characteristics, I-V, are measured at different temperatures from 25°C to 87°C and at different illumination levels from 400 to 1000 W/m2, because there are locations where the upper limit of the photovoltaic cells working temperature exceeds 80°C. This study reports the influence of the temperature and the irradiance on the important parameters of four commercial photovoltaic cell types: monocrystalline silicon—mSi, polycrystalline silicon—pSi, amorphous silicon—aSi, and multijunction InGaP/InGaAs/Ge (Emcore. The absolute and normalized temperature coefficients are determined and compared with their values from the related literature. The variation of the absolute temperature coefficient function of the irradiance and its significance to accurately determine the important parameters of the photovoltaic cells are also presented. The analysis is made on different types of photovoltaics cells in order to understand the effects of technology on temperature coefficients. The comparison between the open-circuit voltage and short-circuit current was also performed, calculated using the temperature coefficients, determined, and measured, in various conditions. The measurements are realized using the SolarLab system, and the photovoltaic cell parameters are determined and compared using the LabVIEW software created for SolarLab system.

  14. CH3Cl self-broadening coefficients and their temperature dependence

    International Nuclear Information System (INIS)

    Dudaryonok, A.S.; Lavrentieva, N.N.; Buldyreva, J.V.

    2013-01-01

    CH 3 35 Cl self-broadening coefficients at various temperatures of atmospheric interest are computed by a semi-empirical method particularly suitable for molecular systems with strong dipole–dipole interactions. In order to probe the dependence on the rotational number K, the model parameters are adjusted on extensive room-temperature measurements for K≤7 and allow reproducing fine features of J-dependences observed for K≤3; for higher K up to 20, the fitting is performed on specially calculated semi-classical values. The temperature exponents for the standard power law are extracted and validated by calculation of low-temperature self-broadening coefficients comparing very favorably with available experimental data. An extensive line-list of self-broadening coefficients at the reference temperature 296 K and associated temperature exponents for 0≤J≤70, 0≤K≤20 is provided as Supplementary material for their use in atmospheric applications and spectroscopic databases. -- Highlights: • We calculated methyl chloride self-broadening coefficients using two methods. • Rotational quantum numbers were J from 0 till 70 and K from 0 till 20. • The temperature exponents were calculated for every mentioned line

  15. Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics

    2017-05-15

    Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.

  16. Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Goede, P.

    2014-01-01

    This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)

  17. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    Directory of Open Access Journals (Sweden)

    E. E. Louvaris

    2017-10-01

    Full Text Available A method is developed following the work of Grieshop et al. (2009 for the determination of the organic aerosol (OA volatility distribution combining thermodenuder (TD and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS and a scanning mobility particle sizer (SMPS. In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60–75 % of the cooking OA (COA at concentrations around 500 µg m−3 consisted of low-volatility organic compounds (LVOCs, 20–30 % of semivolatile organic compounds (SVOCs, and around 10 % of intermediate-volatility organic compounds (IVOCs. The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol−1 and the effective accommodation coefficient was 0.06–0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  18. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    Science.gov (United States)

    Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.

    2017-10-01

    A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  19. Sorption isotherms modeling approach of rice-based instant soup mix stored under controlled temperature and humidity

    Directory of Open Access Journals (Sweden)

    Yogender Singh

    2015-12-01

    Full Text Available Moisture sorption isotherms of rice-based instant soup mix at temperature range 15–45°C and relative humidity from 0.11 to 0.86 were determined using the standard gravimetric static method. The experimental sorption curves were fitted by five equations: Chung-Pfost, GAB, Henderson, Kuhn, and Oswin. The sorption isotherms of soup mix decreased with increasing temperature, exhibited type II behavior according to BET classification. The GAB, Henderson, Kuhn, and Oswin models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of water was determined from the equilibrium data at different temperatures. It decreased as moisture content increased and was found to be a polynomial function of moisture content. The study has provided information and data useful in large-scale commercial production of soup and have great importance to combat the problem of protein-energy malnutrition in underdeveloped and developing countries.

  20. Measurement and analysis of reactivity temperature coefficient of CEFR

    International Nuclear Information System (INIS)

    Chen Yiyu; Hu Yun; Yang Xiaoyan; Fan Zhendong; Zhang Qiang; Zhao Jinkun; Li Zehua

    2013-01-01

    The reactivity temperature coefficient of CEFR was calculated by CITATION program and compared with the results calculated by correlative programs and measured from experiments for temperature effects. It is indicated that the calculation results from CITATION agree well with measured values. The reactivity temperature coefficient of CEFR is about -4 pcm/℃. The deviation of the measured values between the temperature increasing and decreasing processes is about 11%, which satisfies the experiment acceptance criteria. The measured results can validate the calculation ones by program and can provide important reference data for the safety operation of CEFR and the analysis of the reactivity balance in the reactor refueling situation. (authors)

  1. NdFeB magnets with zero temperature coefficient of induction

    International Nuclear Information System (INIS)

    Ma, B.M.; Narasimhan, K.S.V.L.; Hurt, J.C.

    1986-01-01

    Temperature compensation for the induction of NdFeB type magnets has been investigated. A computer assisted alloy selection method was adopted to identify composition of zero temperature coefficient of induction over -50 to 200 0 C. Selected alloys were processed into magnet by the conventional powder metallurgy method. The experimental temperature coefficient on the sintered magnet correlated with the prediction satisfactory. Holmium is an essential ingredient required for temperature compensation of NdFeB magnets. A magnet, (Nd/sub 0.23/Ho/sub 0.64/Dy/sub 0.13/)/sub 15/Fe/sub 79/B/sub 6/ with B/sub r/ of 7,700 Gauss, H/sub c/ of 7,700 Oe, H/sub ci/ of 20,600 Oe, Bh/sub max/ of 14.8 MGOe and temperature coefficient of -0.029% per 0 C over -50 to +150 was obtained

  2. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  3. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  4. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  5. Temperature coefficients in the Dragon low-enriched power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1972-05-15

    The temperature coefficient of the fuel and of the moderator have been evaluated for the Dragon HTR design for different stages in reactor life, initial core, end of no-refuelling period and equilibrium conditions. The investigation has shown the low-enriched HTR to have a strong, positive moderator coefficient. In some cases and for special operating conditions, even leading to a positive total temperature coefficient. This does not imply, however, that the HTR is an unsafe reactor system. By adequate design of the control system, safe and reliable operating characteristics can be achieved. This has already been proved satisfactory through many years of operation of other graphite moderated systems, such as the Magnox stations.

  6. The significance level and repeatability for isotope-temperature coefficient of precipitation in China

    International Nuclear Information System (INIS)

    Wang Dongsheng; Wang Jinglan

    2003-01-01

    The good linear relationship with significance level α = 0.01 exists between isotope in precipitation and surface air temperature with multi-year average in 32 stations of China, and the yearly δD-temperature coefficient = 3.1‰/1℃ and the yearly δ 18 O-temperature coefficient = 0.36‰/1℃, and its determination coefficient R 2 = 0.67 and 0.64 respectively. So the isotope-temperature coefficient with yearly average can serve as the temperature yearly measure. But the monthly average isotope-temperature coefficient in each station is variable according to both of space and time, and its repeatability is determined by the meteorological regimes. According to the monthly isotope-temperature coefficient (B) and the coefficient of determination (R 2 ) and its α, all of China can be zoned the following three belts: (1) In the North Belt, B>O, R 2 ≈ 0.3-0.65, α = 0.01, the relation between monthly isotope in precipitation and surface air temperature (RMIT) belongs to a direct correlation and is closer in 99% probability; (2) In the South Belt, Btemperature coefficient with both of yearly average and monthly average and its statistical attribution is site-specific, it may be used to reconstruct past surface air temperatures or to diagnose regional climate models. (authors)

  7. The HD+ dissociative recombination rate coefficient at low temperature

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2015-01-01

    Full Text Available The effect of the rotational temperature of the ions is considered for low-energy dissociative recombination (DR of HD+. Merged beams measurements with HD+ ions of a rotational temperature near 300 K are compared to multichannel quantum defect theory calculations. The thermal DR rate coefficient for a Maxwellian electron velocity distribution is derived from the merged-beams data and compared to theoretical results for a range of rotational temperatures. Good agreement is found for the theory with 300 K rotational temperature. For a low-temperature plasma environment where also the rotational temperature assumes 10 K, theory predicts a considerably higher thermal DR rate coefficient. The origin of this is traced to predicted resonant structures of the collision-energy dependent DR cross section at few-meV collision energies for the particular case of HD+ ions in the rotational ground state.

  8. On the second-order temperature jump coefficient of a dilute gas

    Science.gov (United States)

    Radtke, Gregg A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K.

    2012-09-01

    We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.

  9. Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Yuan, Shuai; Song, Jia-liang

    2014-01-01

    PTC (positive temperature coefficient) material is a kind of thermo-sensitive material. In this study, a series of novel PTC materials adapted to thermal control of electron devices are prepared. By adding different low-melting-point blend matrixes into GP (graphite powder)/LDPE (low density polyethylene) composite, the Curie temperatures are adjusted to 9 °C, 25 °C, 34 °C and 41 °C, and the resistance–temperature coefficients are enhanced to 1.57/°C–2.15/°C. These PTC materials remain solid in the temperature region of PTC effect, which makes it possible to be used as heating element to achieve adaptive temperature control. In addition, the adaptive thermal control performances of this kind of materials are investigated both experimentally and theoretically. The result shows that the adaptive effect becomes more significant while the resistance–temperature coefficient increases. A critical heating power defined as the initial heating power which makes the equilibrium temperature reach terminal temperature is presented. The adaptive temperature control will be effective only if the initial power is below this value. The critical heating power is determined by the Curie temperature and resistance–temperature coefficient of PTC materials, and a higher Curie temperature or resistance–temperature coefficient will lead to a larger critical heating power. - Highlights: • A series of novel PTC (positive temperature coefficient) materials were prepared. • The Curie point of PTC material can be adjusted by choosing different blend matrixes. • The resistance–temperature coefficient of PTC materials is enhanced to 2.15/°C. • The material has good adaptive temperature control ability with no auxiliary method. • A mathematical model is established to analyze the performance and applicability

  10. Determination of the temperature coefficients and the kinetic parameters for the HTTR safety analysis

    International Nuclear Information System (INIS)

    Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.

    1991-01-01

    This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From

  11. Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies of Temperature Effects, as Applied to Metastable Titanium Alloy β-21S

    International Nuclear Information System (INIS)

    Martin, Brian; Colorado School of Mines, Golden, CO; Samimi, Peyman; Colorado School of Mines, Golden, CO; Collins, Peter

    2017-01-01

    A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175 °C.

  12. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  13. Estimation of moderator temperature coefficient of actual PWRs using wavelet transform

    International Nuclear Information System (INIS)

    Katsumata, Ryosuke; Shimazu, Yoichiro

    2001-01-01

    Recently, an applicability of wavelet transform for estimation of moderator temperature coefficient was shown in numerical simulations. The basic concept of the wavelet transform is to eliminate noise in the measured signals. The concept is similar to that of Fourier transform method in which the analyzed reactivity component is divided by the analyzed component of relevant parameter. In order to apply the method to analyze measured data in actual PWRs, we carried out numerical simulations on the data that were more similar to actual data and proposed a method for estimation of moderator temperature coefficient using the wavelet transform. In the numerical simulations we obtained moderator temperature coefficients with the relative error of less than 4%. Based on this result we applied this method to analyze measured data in actual PWRs and the results have proved that the method is applicable for estimation of moderator temperature coefficients in the actual PWRs. It is expected that this method can reduce the required data length during the measurement. We expect to expand the applicability of this method to estimate the other reactivity coefficients with the data of short transient. (author)

  14. Experimental study of natural convection adjacent to an isothermal vertical ice cylinder in cold pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee

    1991-01-01

    A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)

  15. Isothermal and isochronal annealing methodology to study post-irradiation temperature activated phenomena

    International Nuclear Information System (INIS)

    Chabrerie, C.; Autran, J.L.; Paillet, P.; Flament, O.; Leray, J.L.; Boudenot, J.C.

    1997-01-01

    In this work, the evolution of the oxide trapped charge has been modeled, to predict post-irradiation behavior for arbitrary anneal conditions (i.e., arbitrary temperature-time profiles). Using experimental data obtained from a single isochronal anneal, the method consists of calculating the evolution of the energy distribution of the oxide trapped charge, in the framework of a thermally activated charge detrapping model. This methodology is illustrated in this paper by the prediction of experimental isothermal data from isochronal measurements. The implications of these results to hardness assurance test methods are discussed

  16. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  17. A study of temperature coefficients of reactivity for a Savannah River Site tritium-producing charge

    International Nuclear Information System (INIS)

    George, D.L.; Frost, R.L.

    1991-01-01

    Temperature coefficients of reactivity have been calculated for the Mark 22 assembly in the K-14 charge at the Savannah River Site. Temperature coefficients are the most important reactivity feedback mechanism in SRS reactors; they are used in all safety analyses performed in support of the Safety Analysis Report, and in operations to predict reactivity changes with control rod moves. The effects of the radial location of the assembly in the reactor, isotope depletion, and thermal expansion of the metal components on the temperature coefficients have also been investigated. With the exception of the dead space coefficient, all of the regional temperature coefficients were found to be negative or zero. All of the temperature coefficients become more negative with isotopic depletion over the fuel cycle. Coefficients also become more negative with increasing radial distance of the assembly from the center of the core; this is proven from first principles and confirmed by calculations. It was found that axial and radial thermal expansion effects on the metal fuel and target tubes counteract one another, indicating these effects do not need to be considered in future temperature coefficient calculations for the Mark 22 assembly. The moderator coefficient was found to be nonlinear with temperature; thus, the values derived for accidents involving increases in moderator temperature are significantly different than those for decreases in moderator temperature, although the moderator coefficient is always negative

  18. Monitoring of the temperature reactivity coefficient at the PWR nuclear plant

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1996-01-01

    For monitoring temperature coefficient of reactivity of pressurized water reactor a method based on the correction of fluctuation in signals of i-core neutron detectors and core-exit thermocouples and neural network paradigm is used it is shown that the moderator temperature coefficient of relativity can be predicted with the aid of the back propagation neural network technique by measuring the frequency response function between the in-core neutron flux and the core-exit coolant temperature

  19. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  20. Molar volume, thermal expansivity and isothermal compressibility of trans-decahydronaphthalene up to 200MPa and 446K

    Institute of Scientific and Technical Information of China (English)

    Zhu Hu-Gang; Liu Zhi-Hua; Tian Yi-Ling; Xue Yuan; Yin Liang

    2005-01-01

    The molar volume isotherms of trans-decahydronaphthalene (C10H18) between 293 and 446 K and at pressures from 10 to 200 MPa have been determined. A modified Tait equation of state is used to fit each experimental molar volume isotherm with a maximum average deviation of 0.029%. The thermal expansivity (cubic expansion coefficient) α and isothermal compressibility κ were determined by fitting the slopes of the isobaric curves and isotherms, respectively.The coefficients in the equation Vm = C1 + C2T + C3T2 - C4p - C5pT have been fitted with an average deviation of 1.03%.

  1. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  2. Thermodynamic and transport properties of (1-Butanol + 1,4-Butanediol) at temperatures from (298.15 to 318.15) K

    International Nuclear Information System (INIS)

    Zorebski, Edward; Geppert-Rybczynska, Monika

    2010-01-01

    Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg-Nissan and McAllister equations for viscosities of mixtures have also been examined.

  3. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  4. Sorption isotherms for oat flakes (Avena sativa L.

    Directory of Open Access Journals (Sweden)

    José Edgar Zapata M.

    2014-04-01

    Full Text Available Moisture sorption isotherms of oat flakes were determined at temperatures of 5, 25 and 37°C, using a gravimetric technique in an a w range of between 0.107 and 0.855. These curves were modeled using six equations commonly applied in food. The quality of the fit was assessed with the regression coefficient (r² and the mean relative percentage error (MRPE. The best fit were obtained with the Caurie model with r² of 0.996, 0.901 and 0.870, and MRPE of 7.190, 17.878 and 16.206, at 5, 25 and 37°C, respectively. The equilibrium moisture presented a dependence on temperature in the studied a w range, as did the security moisture (X S. These results suggest that the recommended storage conditions of oat flakes include: a relative air humidity of 50% between 5 and 25°C and of 38% up to 37°C.

  5. Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25°C.

    Science.gov (United States)

    Cervenka, L; Kubínová, J; Juszczak, L; Witczak, M

    2012-02-01

    Sorption isotherms of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) root samples were obtained at 25 °C. Elecampe exhibited hysteresis loop in the range of 0.35-0.90 a(w) , whereas burdock roots showed significant differences between adsorption and desorption isotherms from 0.65 to 0.80 a(w) . Blahovec-Yanniotis was considered to give the best fit over the whole range of a(w) tested. Various parameters describing the properties of sorbed water derived from GAB, Henderson and Blahovec-Yanniotis models have been discussed. Differential scanning calorimetric method was used to measure the glass transition temperature (T (g)) of root samples in relation to water activity. The safe moisture content was determined in 12.01 and 14.96 g/100 g d. b. for burdock and elecampe root samples at 25 °C, respectively. Combining the T (g) line with sorption isotherm in one plot, it was found that the glass transition temperature concept overestimated the temperature stability for both root samples.

  6. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  7. Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets

    Science.gov (United States)

    Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.

    2016-11-01

    The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.

  8. Distribution of temperature coefficient density for muons in the atmosphere

    Directory of Open Access Journals (Sweden)

    Kuzmenko V.S.

    2017-12-01

    Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.

  9. Temperature dependence of the dispersion of single crystals SrCl/sub 2/. [Temperature coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, M P [L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1976-01-01

    The dispersion of the refractive index of SrCl/sub 2/ monocrystals in the spectral range 300-700 nm at temperatures of 223, 295 adn 373 K has been studied. The temperature coefficient of the refractive index as a function of the wave length has been determined for the room temperature. The function resembles the corresponding dependence for alkali-halide crystals.

  10. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  11. Static pressure and temperature coefficients of laboratory standard microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1996-01-01

    of the microphone. The static pressure and temperature coefficients were determined experimentally for about twenty samples of type BK 4160 and BK 4180 microphones. The results agree almost perfectly with the predictions for BK 4160, while some modifications of the lumped parameter values are called for to make......-order approximation of resonances in the back cavity. It was found that each of the coefficients, for a given type of microphone, can be expressed by a single function when the coefficients are normalized by their low-frequency value and the frequency axis normalized by the individual resonance frequency...

  12. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography.

    Science.gov (United States)

    Kondor, Anett; Dallos, András

    2014-10-03

    Adsorption isotherm data of some alkyl aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) measured in the temperature range of 423-523K on a partially dealuminated faujasite type DAY F20 zeolite by inverse gas chromatography are presented in this work. The temperature dependent form of Tóth's equation has been fitted to the multiple temperature adsorption isotherms of benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene with standard deviations of 4.6, 5.0, 5.9, 4.3, 5.1 and 6.3mmolkg(-1) and coefficients of determinations (r(2)) of 0.977, 0.971, 0.974, 0.975, 0.991 and 0.991, respectively. The gas-solid equilibria and modeling were interpreted on the basis of the interfacial properties of the zeolite, by dispersive, specific and total surface energy heterogeneity profiles and distributions of the adsorbent measured by surface energy analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A study of the irradiation temperature coefficient for L-alanine and DL-alanine dosemeters

    International Nuclear Information System (INIS)

    Desrosiers, M. F.; Lin, M.; Cooper, S. L.; Cui, Y.; Chen, K.

    2006-01-01

    Alanine dosimetry is now well established both as a reference and routine dosemeter for industrial irradiation processing. Accurate dosimetry under the relatively harsh conditions of industrial processing requires a characterisation of the parameters that influence the dosemeter response. The temperature of the dosemeter during irradiation is a difficult quantity to measure so that the accuracy of the temperature coefficient that governs the dosemeter response becomes a critical factor. Numerous publications have reported temperature coefficients for several types of alanine dosemeters. The observed differences in the measured values were commonly attributed to the differences in the polymer binder or the experimental design of the measurement. However, the data demonstrated a consistent difference in the temperature coefficients between L-alanine and DL-alanine. Since there were no commonalities in the dosemeter composition or the measurement methods applied, a clear conclusion is not possible. To resolve this issue, the two isomeric forms of alanine dosemeters were prepared and irradiated in an identical manner. The results indicated that the DL-alanine temperature coefficient is more than 50% higher than the L-alanine temperature coefficient. (authors)

  14. Simultaneous determination of reference free-stream temperature and convective heat transfer coefficients

    International Nuclear Information System (INIS)

    Jeong, Gi Ho; Song, Ki Bum; Kim, Kui Soon

    2001-01-01

    This paper deals with the development of a new method that can obtain heat transfer coefficient and reference free stream temperature simultaneously. The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and free stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature

  15. Assessment of Salmonella spp. and Escherichia coli O157:H7 growth on lettuce exposed to isothermal and non-isothermal conditions.

    Science.gov (United States)

    de Oliveira Elias, Susana; Noronha, Tiago Baptista; Tondo, Eduardo Cesar

    2018-06-01

    This study aimed to assess the growth of Salmonella and Escherichia coli O157:H7 on lettuce exposed to isothermal and non-isothermal conditions. Pathogens were inoculated on lettuce separately and stored under isothermal condition at 5 °C, 10 °C, 25 °C, 37 °C for both bacteria, at 40 °C for Salmonella and 42 °C for E. coli O157:H7. Growth curves were built by fitting the data to the Baranyi's DMFit, generating R 2 values greater than 0.92 for primary models. Secondary models were fitted with Ratkowsky equations, generating R 2 values higher than 0.91 and RMSE lower than 0.1. Experimental data showed that both bacteria could grow at all temperatures. Also, the growth of both pathogens under non-isothermal conditions was studied simulating temperatures found from harvest to supermarkets in Brazil. Models were analysed by R 2 , RMSE, bias factor (Bf) and accuracy factor (Af). Salmonella and E. coli O157:H7 were able to grow in this temperature profile and the models could predict the behavior of these microorganisms on lettuce under isothermal and non-isothermal conditions. Based on the results, a negligible growth time (ς) was proposed to provide the time which lettuce could be exposed to a specific temperature and do not present an expressive growth of bacteria. The ς was developed based on Baranyi's primary model equation and on growth potential concept. ς is the value of lag phase added of the time necessary to population grow 0.5 log CFU/g. The ς of lettuce exposed to 37 °C was 1.3 h, while at 5 °C was 3.3 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Measurements of fuel temperature coefficient of reactivity on a commercial AGR

    International Nuclear Information System (INIS)

    Telford, A.; Bridge, M.J.

    1978-01-01

    Tests have been carried out on the commercial AGR at Hikley Point to determine the fuel temperature coefficient of reactivity, an important safety related parameter. Reactor neutron flux was measured during transients induced by movement of a bank of control rods from one steady position to another. An inverse kinetics analysis was applied to the measured flux to determine the change which occured in core reactivity as the fuel temperature changed. The variation of mean fuel temperature was deduced from the flux transient by means of a nine-plane thermal hydraulics representation of the AGR fuel channel. Results so far obtained confirm the predicted variation of fuel temperature coefficient with butn-up. (author)

  17. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Chia-Chen Chang

    2012-06-01

    Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  18. Diagnostic devices for isothermal nucleic acid amplification.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  19. Temperature reactivity coefficient of the RA reactor; Temperaturni koeficijenat reaktivnosti reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Strugar, P; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Temperature reactivity coefficient of the RA reactor was determined as follows. Stabilization of moderator temperature and graphite reflector was achieved in the reactor operated at power levels of 20, 100, 500, 1000, 3000 and 5000 kW. Temperature change of the moderator was achieved by changing the water flow rate in the secondary cooling system. The fuel temperature was changed simultaneously. During the measurement at each power level the temperature change was between 30 - 50 deg C. Changing the position of the automated regulator is registered during moderator temperature change, and these changes were used for determining the total reactivity change by using the calibration curves for the automated regulator. In the measured temperature range the the reactivity change was linear and it was possible to determine the total temperature coefficient.

  20. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    International Nuclear Information System (INIS)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of 7.000 measured pairs of values, distance-temperature, of air around a horizontal isothermal cylinder has made possible to obtain an empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same given for other authors. (Author)

  1. Isothermal vapour-liquid equilibrium data for the binary systems of (CHF3 or C2F6) and n-heptane

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Naidoo, Paramespri; Ramjugernath, Deresh

    2016-01-01

    Highlights: • Isothermal static-analytic and static-synthetic phase equilibrium measurements. • Binary VLE data for (CHF3 or C 2 F 6 ) + n-heptane. • Thermodynamic models were fitted to the experimental data. • Critical locus estimation for the systems. - Abstract: Isothermal vapour-liquid equilibrium (VLE) values for two binary systems; trifluoromethane and n-heptane at temperatures between T = (272.9 and 313.2) K, and hexafluoroethane and n-heptane at temperatures between T = (293.0 and 313.2) K were measured with a static-analytic apparatus. Bubble pressures at temperatures between T = (293.0 and 313.2) K, at several compositions, were also measured with a variable-volume static-synthetic apparatus. Vapour-liquid-liquid equilibrium (VLLE) was found to occur for certain isotherms for both of the systems. The PR EOS, with the Mathias-Copeman (MC) alpha function, combined with either the classical mixing rule or the Wong-Sandler (WS) mixing rule was used to correlate the experimental results. Either the NRTL or the UNIQUAC activity coefficient model was used within the WS mixing rule. The indirect extended scaling laws of Ungerer et al. were used to extrapolate critical loci from the experimental coexistence data, and the calculation procedure of Heidemann and Khalil was employed to calculate the mixture critical locus curves at temperatures close to the refrigerant critical temperatures. At lower temperatures on the mixture critical curve, gas-liquid critical points occurred, whereas, at higher temperatures, the critical points occurred along a liquid-liquid locus curve. The two systems were categorised according to the van Konynenburg and Scott classification.

  2. Time of isothermal holding in the course of in-air heat treatment of soft magnetic Fe-based amorphous alloys and their magnetic properties

    Science.gov (United States)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2011-12-01

    On the example of soft magnetic Fe81B13Si4C2 and Fe77Ni1Si9B13 amorphous alloys, the relation between the level of magnetic properties and duration of isothermal holding in the course of heat treatment in air has been studied. The optimum temperature-dependent time τ of isothermal holding has been shown to be related to the volume fraction of domains ( V orth) with orthogonal magnetization in the initial (quenched) ribbon by equation V orth = ττ1/3. A temperature dependence of the proportionality coefficient α, which determines the degree of diffusion-process activity, has been determined. The results obtained allow us to substantially simplify the choice of optimum conditions of atmospheric heat treatment of soft magnetic Fe-based amorphous ribbons.

  3. Improved cryo-resistors with low temperature coefficients

    International Nuclear Information System (INIS)

    Warnecke, P.; Braun, E.

    1989-01-01

    A new type of 10- and 12.9κΩ cryo-resistors operating in a liquid helium bath with small temperature coefficient of resistivity have been built. Details for the fabrication of these improved cryo-resistors are reported. Experimental evidence of their drift rates are on the order of a few parts in 10 9 per day. A reduction of the mean pressure of 98.7 kPa in the helium dewar to 86.1 kPa, corresponding to a temperature decrease from 4.19 to 4.07 Κ, did not change the resistance value by more than the experimental resolution of 4 parts in 10 8

  4. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    Science.gov (United States)

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be

  5. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    Science.gov (United States)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  6. Invar hardening under keeping of low values of temperature coefficient of linear expansion

    International Nuclear Information System (INIS)

    Bashnin, Yu.A.; Shiryaeva, A.N.; Omel'chenko, A.V.

    1982-01-01

    Complex invar alloying with chromium, zirconium and nitrogen is conducted for increasing hardness and assuring low values of the temperature coefficient of linear expansion. It is shown that alloying with nitride-forming elements-chromium, zirconium and the following high-temperature saturation under high pressure with nitrogen provides the invar hardening at assuring a low temperature coefficient of linear expansion. Saturation with nitrogen under 100 MPa pressure at 1050 deg C during 3 hours permits to prepare an invar containing up to 0.2% N 2 uniformly distributed over the whole cross section of samples with 4 mm diameter. Nitrogen in invar alloys alloyed with chromium and zirconium affects the Curie point similarly to carbon and nickel shifting it towards higher temperatures, it slightly changes the value of the temperature coefficient of linear expansion and provides linear character of thermal expansion dependence on temperature in the +100 deg C - -180 deg C range

  7. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions.

    Science.gov (United States)

    Aragao, Glaucia M F; Corradini, Maria G; Normand, Mark D; Peleg, Micha

    2007-11-01

    Published survival curves of Escherichia coli in two growth media, with and without the presence of salt, at various temperatures and in a Greek eggplant salad having various levels of essential oil, all had a characteristic downward concavity when plotted on semi logarithmic coordinates. Some also exhibited what appeared as a 'shoulder' of considerable length. Regardless of whether a shoulder was noticed, the survival pattern could be considered as a manifestation of an underlying unimodal distribution of the cells' death times. Mathematically, the data could be described equally well by the Weibull and log normal distribution functions, which had similar modes, means, standard deviations and coefficients of skewness. When plotted in their probability density function (PDF) form, the curves also appeared very similar visually. This enabled us to quantify and compare the effect of temperature or essential oil concentration on the organism's survival in terms of these temporal distributions' characteristics. Increased lethality was generally expressed in a shorter mean and mode, a smaller standard deviation and increased overall symmetry as judged by the distributions' degree of skewness. The 'shoulder', as expected, simply indicated that the distribution's standard deviation was much smaller than its mode. Rate models based on the two distribution functions could be used to predict non isothermal survival patterns. They were derived on the assumption that the momentary inactivation rate is the isothermal rate at the momentary temperature at a time that corresponds to the momentary survival ratio. In this application, however, the Weibullian model with a fixed power was not only simpler and more convenient mathematically than the one based on the log normal distribution, but it also provided more accurate estimates of the dynamic inactivation patterns.

  8. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    Energy Technology Data Exchange (ETDEWEB)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of more or 7.000 measured pairs of values, diatance-temperature, of air around a horizontal isothermal cylinder has made it possible to obtain a empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same fiven for others authors

  9. Isothermal calorimeter for reactor radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Radak, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Odeljenje za radijacionu hemiju, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    An isothermal calorimeter with thermistors for measuring absorbed dose rates from 10{sup 4}-5-6.10{sup 5} rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within {+-} 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)

  10. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    Science.gov (United States)

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of the Previous Preheating Temperature on the Static Coefficient of Friction with Lubrication

    Directory of Open Access Journals (Sweden)

    M. Živković

    2016-12-01

    Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.

  12. Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature

    International Nuclear Information System (INIS)

    Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki

    2009-01-01

    We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.

  13. Van ‘t Hoff global analyses of variable temperature isothermal titration calorimetry data

    International Nuclear Information System (INIS)

    Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.

    2012-01-01

    Highlights: ▶ We developed a global fitting strategy for ITC data collected at multiple temperatures. ▶ This method does not require prior knowledge of the binding mechanism. ▶ Monte Carlo simulations show that the approach improves the accuracy of extracted thermodynamic parameters. ▶ The method is used to study coupled folding/binding in aminoglycoside 6′-N-acetyltransferase-Ii. - Abstract: Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, K A , and enthalpy changes, ΔH A . A powerful application of this technique involves analyzing the temperature dependences of ITC-derived K A and ΔH A values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme.

  14. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.

    Science.gov (United States)

    Fukuda, M; Mishima, T; Nakayama, N; Masuda, T

    2010-08-01

    The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.

  15. Isothermality of the gas in the Coma cluster

    International Nuclear Information System (INIS)

    Hughes, J.P.; Yamashita, K.; Okumura, Y.; Tsunemi, H.; Matsuoka, M.

    1988-01-01

    The high-quality X-ray spectrum of the Coma cluster observed by the Japanese satelite Tenma in conjunction with imaging data from the Einstein Observatory was used to explore the temperature distribution of the cluster gas. It is found that pure polytropic models are inadequate to describe this temperature distribution. Instead, a hybrid model is proposed consisting of a central isothermal region surrounded by a polytropic distribution. It is shown that as much as 75 percent of the global emission may come from the isothermal component. 30 references

  16. Re-evaluation of SiC permeation coefficients at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.

  17. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures

    International Nuclear Information System (INIS)

    Naderi, M.; Durrenberger, L.; Molinari, A.; Bleck, W.

    2008-01-01

    The strain, strain rate and temperature dependency of a boron steel, which was isothermally deformed under uniaxial compression tests, has been investigated at temperatures between 600 and 900 o C, and at strain rates of 0.1, 1.0 and 10.0 s -1 . Two constitutive models were used to correlate the plastic behavior: the Voce constitutive relation in combination with the kinetic model proposed by Kocks and the phenomenological model proposed by Molinari-Ravichandran. The Kocks model has been introduced in the Voce formulation to describe the temperature and the strain rate dependency of the saturation stress and of the yield stress. The Molinari-Ravichandran model is based on a single internal variable that can be viewed as being related to a characteristic length scale of the microstructure that develops during deformation. It has been shown that the plastic behavior of the boron steel can be well described using these two models

  18. Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions

    Science.gov (United States)

    Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.

  19. Evaluation of temperature coefficients of reactivity for 233U--thorium fueled HTGR lattices. Final report

    International Nuclear Information System (INIS)

    Newman, D.F.; Leonard, B.R. Jr.; Trapp, T.J.; Gore, B.F.; Kottwitz, D.A.; Thompson, J.K.; Purcell, W.L.; Stewart, K.B.

    1977-05-01

    A comparison of calculated and measured neutron multiplication factors as a function of temperature was made for three graphite-moderated lattices in the High Temperature Lattice Test Reactor (HTLTR) using 233 UO 2 --ThO 2 fuels in varying amounts and configurations. Correlation of neutronic analysis methods and cross section data with the experimental measurements forms the basis for assessing the accuracy of the methods and data and developing confidence in the ability to predict the temperature coefficient of reactivity for various High Temperature Gas-Cooled Reactor (HTGR) conditions in which 233 U and thorium are present in the fuel. The calculated values of k/sub infinity/(T) were correlated with measured values using two least-squares-fitted correlation coefficients: (1) a normalization factor, and (2) a temperature coefficient bias factor. These correlations indicate the existence of a negative (nonconservative) bias in temperature coefficients of reactivity calculated using ENDF/B-IV cross section data

  20. Control rod position and temperature coefficients in HTTR power-rise tests. Interim report

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji; Saito, Kenji; Kobayashi, Shoichi; Sawahata, Hiroaki; Kokusen, Sigeru

    2001-03-01

    Power-rise tests of the High Temperature Engineering Test Reactor (HTTR) have been carried out aiming to achieve 100% power. So far, 50% of power operation and many tests have been carried out. In the HTTR, temperature change in core is so large to achieve the outlet coolant temperature of 950degC. To improve the calculation accuracy of the HTTR reactor physics characteristics, control rod positions at criticality and temperature coefficients were measured at each step to achieve 50% power level. The calculations were carried out using Monte Carlo code and diffusion theory with temperature distributions in the core obtained by reciprocal calculation of thermo-hydraulic code and diffusion theory. Control rod positions and temperature coefficients were calculated by diffusion theory and Monte Carlo method. The test results were compared to calculation results. The control rod positions at criticality showed good agreement with calculation results by Monte Carlo method with error of 50 mm. The control position at criticality at 100% was predicted around 2900mm. Temperature coefficients showed good agreement with calculation results by diffusion theory. The improvement of calculation will be carried out comparing the measured results up to 100% power level. (author)

  1. Hardness of H13 Tool Steel After Non-isothermal Tempering

    Science.gov (United States)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  2. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  3. Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles

    DEFF Research Database (Denmark)

    Luo, Hao; Wu, Hao; Lin, Weigang

    Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...

  4. Experimental and Numerical Study on Effects of Airflow and Aqueous Ammonium Temperature on Ammonia Mass Transfer Coefficient

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang

    2010-01-01

    greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation...... constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under...... the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related....

  5. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches

    International Nuclear Information System (INIS)

    Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak

    2011-01-01

    Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: → Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. → Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. → A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.

  6. Compilation report of VHTRC temperature coefficient benchmark calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi; Yamane, Tsuyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    A calculational benchmark problem has been proposed by JAERI to an IAEA Coordinated Research Program, `Verification of Safety Related Neutronic Calculation for Low-enriched Gas-cooled Reactors` to investigate the accuracy of calculation results obtained by using codes of the participating countries. This benchmark is made on the basis of assembly heating experiments at a pin-in block type critical assembly, VHTRC. Requested calculation items are the cell parameters, effective multiplication factor, temperature coefficient of reactivity, reaction rates, fission rate distribution, etc. Seven institutions from five countries have joined the benchmark works. Calculation results are summarized in this report with some remarks by the authors. Each institute analyzed the problem by applying the calculation code system which was prepared for the HTGR development of individual country. The values of the most important parameter, k{sub eff}, by all institutes showed good agreement with each other and with the experimental ones within 1%. The temperature coefficient agreed within 13%. The values of several cell parameters calculated by several institutes did not agree with the other`s ones. It will be necessary to check the calculation conditions again for getting better agreement. (J.P.N.).

  7. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  8. β → α isothermal transformation in pure and weakly alloyed uranium

    International Nuclear Information System (INIS)

    Aubert, H.; Lelong, C.

    1966-01-01

    The TTT diagrams describing the β → α isothermal transformation have been made by isothermal dilatometry for pure uranium and 21 alloys based on chromium, silicon, molybdenum, iron, aluminium, zirconium. The thermal cycle preceding the isothermal step influences the decomposition kinetics at temperature corresponding to the eutectoid and martensitic mechanisms, but not in the range where the bainitic transformation occurs. The stability of the β phase decreases with the chromium, molybdenum and silicon concentration: it is affected differently for each of the three transformation mechanisms. The ternary additions, even at very low concentration have a considerable effect on the stability. When the concentration decreases the martensitic mechanism is active at progressively higher temperature, diminishing to the point of disappearance the temperature range where the transformation is considered as being of the bainitic mode. (author) [fr

  9. Self-consistent transport coefficients for average collective motion at moderately high temperatures

    International Nuclear Information System (INIS)

    Yamaji, Shuhei; Hofmann, H.; Samhammer, R.

    1987-01-01

    Linear response theory is applied to compute the coefficients for inertia, friction and local stiffness for slow, large scale nuclear collective motion. It is shown how these coefficients can be defined within a locally harmonic approximation. The latter allows to study the implications arising from a finite local collective frequency. It is only for temperatures around 2 MeV that the zero frequency limit becomes a fair approximation. Friction is found to have a marked temperature dependence. The numerical computations are performed on the basis of a two-center shell model, but allowing the particles and holes to become dressed through effects of the medium. The dependence of the transport coefficients on the parameters of these self-energies is studied. It is argued that the uncertainties are smaller than a factor of 2. (orig.)

  10. The Merkel coefficient and its dependence on the temperature position of the cooling tower process

    International Nuclear Information System (INIS)

    Klenke, W.

    1977-01-01

    The Merkel coefficient, or evaporation coefficient, is still being used as a characteristic factor for the cooling tower process. Its dependence on the cooling range or on the warm water temperature of the process is often considered a disadvantage of the theory of evaporation cooling. This is also the reason for the suggestion to change the theory in such a way that the Merkel coefficient becomes independent of the temperature. The present investigation, however, leads to the result that the dependence of the Merkel coefficient on the temperature must be considered as a remarkable confirmation for the evidence of the theory of heat and mass transfer, as the experimental statements agree fully with the results of the theoretical considerations. (orig.) [de

  11. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  12. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  13. Effect of the isothermal transformation temperature on the fine structure of steel-12Kh1MF

    International Nuclear Information System (INIS)

    Mints, I.I.; Berezina, T.G.; Lanskaya, K.A.

    1976-01-01

    For detailed analysis of bainite and pearlite in steel 12Kh1MF, homogeneous structures were obtained by isothermal annealing at 350, 450, 500, and 650 0 for 1 h. Isothermal transformation of austenite leads to the formation of bainite at 350-500 0 and pearlite at 650 0 . The austenitizing temperature was 980 0 for both types of samples, with holding for 20 min. For comparison, the plates were quenched from 980 0 and 1050 0 in ice-cold brine. The investigation was conducted with use of light and electron microscopes and x-ray analysis. The long-term strength was also determined. Isothermal treatment of steel 12Kh1MF at 350-500 0 C leads to the formation of a structure consisting of upper and lower bainite. At 500 0 the structure consists primarily of upper bainite, and at 350 0 of lower bainite. With tempering of the steel with a structure of upper and lower bainite at 730 0 for 3 h the dislocations undergo redistribution of the polygonization type within ferrite needles, with development of a cellular substructure. The acicular structure of the matrix is retained in this case. The density and evenness of the distribution of carbides is higher in upper bainite than in lower bainite. Steel 12Kh1MF with a structure of upper bainite is more susceptible to recrystallization as compared with a structure of lower bainite, which is responsible for the higher heat resistance of the latter

  14. Isothermal α″ formation in β metastable titanium alloys

    International Nuclear Information System (INIS)

    Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.

    2013-01-01

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″

  15. Isothermal α″ formation in β metastable titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)

    2013-11-15

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.

  16. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5TiO3-xBaTiO3 system

    International Nuclear Information System (INIS)

    Zhang, Dawei; Yao, Yonggang; Fang, Minxia; Luo, Zhengdong; Zhang, Lixue; Li, Linglong; Cui, Jian; Zhou, Zhijian; Bian, Jihong; Ren, Xiaobing; Yang, Yaodong

    2016-01-01

    Most ferroelectric transitions occur ultrafast and are time independent. However, here in (1-x) (Bi 0.5 Na 0.5 )TiO 3 -xBaTiO 3 , we have found a ferroelectric phase transition induced solely by increasing waiting time at certain temperatures (isothermal phase transition). Through cooling, a unique metastable state between a relaxor ferroelectric and a ferroelectric is unveiled, which in essence is initially a short-range ordered glassy state and then can evolve into a long-range ordered ferroelectric state through the isothermal process. It is also found that these isothermal ferroelectric transitions only occur within a specific temperature region with different waiting time needed. These features of isothermal phase transition can be understood by Landau theory analysis with the consideration of random defects as a competition between the thermodynamically favored long-range ordered state and the kinetically frustrated short-range ordered glassy state from random defects. This study offers a precise experimental as well as a phenomenological interpretation on the isothermal ferroelectric transition, which may help to further clarify the intricate structure-property relationship in this important lead-free piezoelectric material and other related systems.

  17. Temperature coefficients of reactivity in the fourth loading of ZENITH

    Energy Technology Data Exchange (ETDEWEB)

    Caro Manso, R; Freemantle, R G; Rogers, J D [Graphite Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-10-15

    Measurements have been made of the temperature coefficients of reactivity associated with the core plus end reflectors and the side reflector of the fourth core loading of ZENITH, which had a carbon/U235 atomic ratio of 7788 and no other absorber. (author)

  18. Temperature coefficients of reactivity in the fourth loading of ZENITH

    International Nuclear Information System (INIS)

    Caro Manso, R.; Freemantle, R.G.; Rogers, J.D.

    1962-10-01

    Measurements have been made of the temperature coefficients of reactivity associated with the core plus end reflectors and the side reflector of the fourth core loading of ZENITH, which had a carbon/U235 atomic ratio of 7788 and no other absorber. (author)

  19. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  1. Application of noise analysis technique for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.; Sweeney, F.J.

    1987-01-01

    A new technique, based on the noise analysis of neutron detector and core-exit coolant temperature signals, is developed for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors (PWRs). A detailed multinodal model is developed and evaluated for the reactor core subsystem of the loss-of-fluid test (LOFT) reactor. This model is used to study the effect of changing the sign of the moderator temperature coefficient of reactivity on the low-frequency phase angle relationship between the neutron detector and the core-exit temperature noise signals. Results show that the phase angle near zero frequency approaches - 180 deg for negative coefficients and 0 deg for positive coefficients when the perturbation source for the noise signals is core coolant flow, inlet coolant temperature, or random heat transfer

  2. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    Science.gov (United States)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  3. Resistivity behavior in isothermal annealing of Pd-H(D) alloys around 50 K

    International Nuclear Information System (INIS)

    Yamakawa, Kohji; Maeta, Hiroshi

    2004-01-01

    The behavior of electrical resistivity during hydrogen (deuterium) ordering is investigated for Pd-H(D) alloys of various hydrogen concentrations around 50 K. The disordered hydrogen (deuterium) atoms are introduced by quenching from 100 K into liquid helium immediately before isothermal annealings. The disordered atoms order by migration of the atoms during the heating-up of the specimens. On the isothermal curves of the resistivity in the high temperature range, the resistivity increases at first and then adopts a constant value dependent on the annealing temperature. On the other hand, the resistivity increases and then decreases during isothermal annealing in the low temperature range, nevertheless the ordering is progressing. The annealing time, at which the resistivity maximum appears, and the resistivity value of the maximum increase with decreasing annealing temperature. Furthermore, the decreasing resistivity after the maximum saturates to a value dependent on each annealing temperature. Therefore, it becomes clear that an equilibrium amount of ordering depends on the temperature and the resistivity increases in the early stage of hydrogen (deuterium) ordering and decreases in the later stage. The resistivity maximum in the isothermal annealing curve is caused by the nucleation and growth of ordered domains of hydrogen (deuterium) atoms

  4. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    Science.gov (United States)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  5. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    KAUST Repository

    Martin, Awaludin

    2011-03-10

    This article presents an experimental approach for the determination of the adsorption isotherms of methane on activated carbon that is essential for methane storage purposes. The experiments incorporated a constant-volume- variable-pressure (CVVP) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300 to 318) K and pressures up to 3.5 MPa are analyzed using the Langmuir, Tóth, and Dubinin-Astakhov (D-A) isotherm models. The heat of adsorption for the single component methane-activated carbon system, which is concentration- and temperature-dependent, is determined from the measured isotherm data. © 2011 American Chemical Society.

  6. Analytic solutions to linear, time-dependent fission product deposition models for isothermal laminar, slug, or multiregion flow conditions

    International Nuclear Information System (INIS)

    Durkee, J.W. Jr.

    1983-01-01

    The time-dependent convective-diffusion equation with radioactive decay is solved analytically in axisymmetric cylindrical geometry for laminar and slug velocity profiles under isothermal conditions. Concentration dependent diffusion is neglected. The laminar flow solution is derived using the method of separation of variables and Frobenius' technique for constructing a series expansion about a regular singular point. The slug flow multiregion solution is obtained using the method of separation of variables. The Davidon Variable Metric Minimization algorithm is used to compute the coupling coefficients. These solutions, which describe the transport of fission products in a flowing stream, are then used to determine the concentration of radioactive material deposited on a conduit wall using a standard mass transfer model. Fission product deposition measurements for five diffusion tubes in a Fort St. Vrain High-Temperature Gas-Cooled reactor plateout probe are analyzed. Using single region slug and laminar models, the wall mass transfer coefficients, diffusion coefficients, and inlet concentrations are determined using least squares analysis. The diffusion coefficients and inlet concentrations are consistent between tubes. The derived diffusion coefficients and wall mass transfer coefficients are in relative agreement with known literature values

  7. Isothermal release of tritium from neutron-irradiated Li/sub 2/O pellets

    Energy Technology Data Exchange (ETDEWEB)

    O' Hira, Shigeru; Nagao, Hiroshi; Fujii, Yasuhiko; Okamoto, Makoto

    1986-04-01

    Li/sub 2/O pellets irradiated with thermal neutrons were isothermally annealed to release tritium in a helium atmosphere at temperatures ranging from 673 to 1073 K. The release rates were found to significantly increase at elevated temperatures and to depend on the density of the Li/sub 2/O pellet. The overall diffusion coefficients of the release process were calculated using the cylindrical geometry model for the pellets as D(cm/sup 2/ s/sup -1/)=1.02 x 10/sup -3/ exp(-51.0 kJ mol/sup -1//RT)(90% theoretical density pellets), and D (cm/sup 2/ s/sup -1/)=2.64 x 10/sup -3/ exp(-46.5 kJ mol/sup -1//RT)(ca. 80% T.D. pellets) over the region 773 <= T <= 1073/sup 0/K. The result of the release experiment at 673/sup 0/K sugested that the diffusion rate was controlled by the decomposition of lithium hydroxide on the surface of Li/sub 2/O grains.

  8. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  9. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  10. Determination and importance of temperature dependence of retention coefficient (RPHPLC) in QSAR model of nitrazepams' partition coefficient in bile acid micelles.

    Science.gov (United States)

    Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan

    2011-02-15

    Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  12. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola

    2017-10-01

    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  13. Characterization of bainitic/martensitic structures formed in isothermal treatments below the M

    NARCIS (Netherlands)

    Navarro Lopez, A.; Hidalgo Garcia, J.; Sietsma, J.; Santofimia Navarro, M.J.

    2017-01-01

    Advanced Multiphase High Strength Steels are generally obtained by applying isothermal treatments around the martensite start temperature (Ms). Previous investigations have shown that bainitic ferrite can form from austenite in isothermal treatments below Ms, where its

  14. Isothermal annealing of silicon implanted with 50 keV 10B ions

    International Nuclear Information System (INIS)

    Weidner, B.; Zaschke, G.

    1974-01-01

    Isothermal annealing characteristics of silicon implanted with boron were measured and compared with calculated results. Implantation was performed with 50 keV 10 B ions in the dose range of 7.5 x 10 12 cm -2 to 2.0 x 10 15 cm -2 . Annealing temperatures ranged from 700 to 900 0 C. Maximum annealing time was 10 4 minutes. Annealing time strongly increases with increasing dose and decreasing temperature. Assuming that there is only one activation energy the isothermal annealing curves of constant dose and different temperatures were combined to a reduced annealing curve and the reduced isothermal annealing curve calculated. Starting from first order kinetics, considering the doping profile of boron in silicon and assuming a depth-dependent decay constant the experimentally determined annealing curves could be easily described over the total dose and time range

  15. Experimental study of natural convection heat transfer from an isothermal combined geometry (downward cone- cylinder)

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A. [Yazd Univ., Yazd (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Goharkhah, M.; Ashjaee, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2009-07-01

    Laminar free convection heat transfer from an isothermal combined geometry which consists of a downward cone attached to a vertical cylinder was studied. In particular, a Mach-Zehnder interferometer was used to determine the change in local and average heat transfer coefficients on the surface of an isothermal combined geometry for different vertex angles. The effect of the vertex angle on heat transfer was also investigated by keeping the height of the cylinder and slant length of the cone constant for all objects. The experimental data showed that the local heat transfer coefficient on the conical part increased in the vicinity of the cylinder and cone intersection. The distance between the point of minimum heat transfer coefficient on the cone and vertex of the cone decreased as the vertex angle increased. The maximum average Nusselt number for a constant Rayleigh number was obtained for the geometry with the smallest vertex angle. For all objects, the average Nusselt number increased with an increase in the Rayleigh number. An experiment was carried out on a vertical isothermal cylinder of circular cross section in order to validate the experimental approach. An analytical solution was found to be in good agreement with experimental results. 31 refs., 9 figs.

  16. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov

    2017-07-15

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  17. Measurement of reactivity temperature coefficient by noise method in a power reactor

    International Nuclear Information System (INIS)

    Aguilar, O.

    1986-07-01

    The temperature reactivity coefficient was estimated on the basis of noise measurements performed in a PWR. The magnitude of the coefficient was evaluated by relating the values of the APSD and CPSD between ex-core neutron detector signals and fuel assembly outlet thermocouple in the low frequency range. Comparison with δρ/δT measurements performed in PWR by standard methods supports the validity of the results. (author)

  18. Measurement of the temperature coefficient of ratio transformers

    Science.gov (United States)

    Briggs, Matthew E.; Gammon, Robert W.; Shaumeyer, J. N.

    1993-01-01

    We have measured the temperature coefficient of the output of several ratio transformers at ratios near 0.500,000 using an ac bridge and a dual-phase, lock-in amplifier. The two orthogonal output components were each resolved to +/- ppb of the bridge drive signal. The results for three commercial ratio transformers between 20 and 50 C range from 0.5 to 100 ppb/K for the signal component in phase with the bridge drive, and from 4 to 300 ppb/K for the quadrature component.

  19. The accommodation coefficient of the liquid at temperatures below the boiling

    Directory of Open Access Journals (Sweden)

    Bulba Elena E.

    2015-01-01

    Full Text Available Are carried out experimental investigation of the laws of vaporization at temperatures below the boiling point. Is determined the mass rate of evaporation of distilled water in large intervals of time at different temperatures in order to sound conclusions about the stationarity of the process of evaporation of the liquid in the conditions of the experiments performed, and also studied the effect of temperature on the rate of evaporation. Accommodation coefficient is defined in the mathematical expression of the law of Hertz-Knudsen for standart substance used in the experiments.

  20. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: Comparison of various error functions

    International Nuclear Information System (INIS)

    Kumar, K. Vasanth; Porkodi, K.; Rocha, F.

    2008-01-01

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r 2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r 2 ), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r 2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K 2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm

  1. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  2. Non-isothermal irradiation creep of nickel alloys Inconel 706 and PE-16

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Chin, B.A.

    1984-06-01

    The results of in-reactor step temperature change experiments conducted on two nickel alloys, PE-16 and Inconel 706, were evaluated to determine the creep behavior under nonisothermal conditions. The effect of the temperature changes was found to be significantly different for the two alloys. Following a step temperature change, the creep rate of PE-16 adjusted to the rate found in isothermal tests at the new temperature. In contrast for Inconel 706, a reduction in temperature from 540 to 425 0 C produced a 300% increase in creep above that measured at 540 0 C in isothermal tests. The response of in-reactor creep in Inconel 706 to temperature changes was attributed to the dissolution of the gamma double-prime phase and subsequent loss of precipitation-strengthening at temperatures below 500 C

  3. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  4. Measurement of dynamic adsorption coefficient of Xe on coconut charcoal in CO2 streams by gas-solid chromatography

    International Nuclear Information System (INIS)

    Sun Xinxi; Huang Yuying; Li Wangchang

    1984-01-01

    This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole

  5. Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Jitka [Department of Nuclear and Reactor Physics, Royal Institute of Technology, KTH, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)], E-mail: jitka.zakova@neutron.kth.se; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, ANL, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov

    2008-05-15

    The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF{sub 2}, LiF, ZrF{sub 4} and Li{sub 2}BeF{sub 4} eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large.

  6. Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels

    International Nuclear Information System (INIS)

    Zakova, Jitka; Talamo, Alberto

    2008-01-01

    The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF 2 , LiF, ZrF 4 and Li 2 BeF 4 eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large

  7. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  8. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  9. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    Science.gov (United States)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  10. Water adsorption isotherms and thermodynamic properties of cassava bagasse

    International Nuclear Information System (INIS)

    Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier

    2016-01-01

    Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.

  11. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  12. Temperature coefficient of elastic constants of SiO2 over-layer on LiNbO3 for a temperature stable SAW device

    International Nuclear Information System (INIS)

    Tomar, Monika; Gupta, Vinay; Sreenivas, K

    2003-01-01

    The influence of sputtered SiO 2 over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO 2 over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO 2 . The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO 2 over-layer. The density and the dielectric constant of the deposited SiO 2 layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C 11 = 0.75x10 11 N m -2 and C 44 0.225x10 11 N m -2 ) were found to be lower, and the respective temperature coefficients (5.0x10 -4 deg C -1 and 2.0x10 -4 deg C -1 ) were high in comparison to the bulk material parameters

  13. Adsorption of an anionic dye on a novel low-cost mesoporous adsorbent: kinetic, thermodynamic and isotherm studies

    Science.gov (United States)

    Msaad, Asmaa; Belbahloul, Mounir; Zouhri, Abdeljalil

    2018-05-01

    Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process

  14. Elasticity moduli, thermal expansion coefficients and Debye temperature of titanium alloys

    International Nuclear Information System (INIS)

    Beletskij, V.M.; Glej, V.A.; Maksimyuk, P.A.; Tabachnik, V.I.; Opanasenko, V.F.

    1979-01-01

    Studied are the characteristics of titanium alloys which reflect best the bonding forces for atoms in a crystal lattice: elastic modules, their temperature dependences, thermal expansion coefficient and Debye temperatures. For the increase of the accuracy of measuring modules and especially their changes with temperature an ultrasonic echo-impulse method of superposition has been used. The temperature dependences of Young modulus of the VT1-0, VT16 and VT22 titanium alloys are plotted. The Young module and its change with temperature depend on the content of alloying elements. The Young module decrease with temperature may be explained within the framework of the inharmonic effect theory. The analysis of the results obtained permits to suppose that alloying of titanium alloys with aluminium results in an interatomic interaction increase that may be one of the reasons of their strength increase

  15. Mathematical modelling of the sorption isotherms of quince

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelce

    2017-01-01

    Full Text Available The moisture adsorption isotherms of quince were determined at four temperatures 15, 30, 45, and 60°C over a range of water activity from 0.110 to 0.920 using the standard static gravimetric method. The experimental data were fitted with generated three parameter sorption isotherm models on Mitrevski et al., and the referent Anderson model known in the scientific and engineering literature as Guggenheim- Anderson-de Boer model. In order to find which models give the best results, large number of numerical experiments was performed. After that, several statistical criteria for estimation and selection of the best sorption isotherm model was used. The performed statistical analysis shows that the generated three parameter model M11 gave the best fit to the sorption data of quince than the referent three parameter Anderson model.

  16. Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures

    International Nuclear Information System (INIS)

    Chondrakis, N.G.; Topalis, F.V.

    2011-01-01

    The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.

  17. Volumetric properties of binary liquid-phase mixture of (water + glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.

    2014-01-01

    Highlights: • Coefficients of compressibility of liquid binary mixture (water + glycerol) were measured. • Partial molar volumes of the components and excess molar volumes of the mixture were calculated. • Molar isothermal compression, molar isobaric expansion and molar isochoric elasticity of the mixture were evaluated. • Analysis of volume characteristics confirms glycerol hydrophilic nature. - Abstract: The coefficients of compressibility, k = ΔV/V o , of liquid binary mixture of {water (1) + glycerol (2)} were measured over the whole composition range at pressures from (0.1 to 100) MPa and temperatures from (278.15 to 323.15) K. Excess molar volumes of the mixture, V m E , partial molar volumes of the mixture components, V ¯ i , as well as their limiting values, molar isothermal compression K T,m , molar isobaric expansion E P,m , molar isochoric elasticity (isochoric coefficient of thermal pressure) β m were calculated. It was revealed that with glycerol molar fraction increasing the coefficients of compressibility, k, decreased to x 2 ≈ 0.3 ÷ 0.4 (where x 2 was glycerol molar fraction), and further changed insignificantly. It was shown that all isobars of excess molar volumes were negative and their absolute values, V m E , decreased on temperature and pressure rising. No extremes were observed on concentration dependences of partial molar volumes of glycerol in the mixture at its low concentrations. Under the state parameters studied limiting partial volumes of water and glycerol decrease with pressure rising but increase with temperature growth. Dependences of molar isothermal compression and molar isochoric elasticity on glycerol molar fraction passed extremes, and similar dependences of molar isobaric expansion had the temperature inversion regions

  18. The kinetic of mass loss of grades A and B of melted TNT by isothermal and non-isothermal gravimetric methods

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pouretedal

    2018-04-01

    Full Text Available The kinetic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 °C, respectively, were studied by isothermal and non-isothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 °C. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminum metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30–330 °C at heating rates of 10, 15 and 20 °C⋅min−1. The TG/DTG data were used for determination of activation energy (Ea of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW and Kissinger-Akahira-Sunose (KAS methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99–120 and 66–70 kJ mol−1, respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade. Keywords: TNT, Isothermal, Non-isothermal, Kinetic, Mass loss

  19. Evolution of the Cerro Prieto geothermal system as interpreted from vitrinite reflectance under isothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E. (US Geological Survey, Denver, CO); Pawlewicz, M.J.; Bostick, N.H.; Elders, W.A.

    1981-01-01

    Temperature estimates from reflectance data in the Cerro Prieto system correlate with modern temperature logs and temperature estimates from fluid inclusion and oxygen isotope geothermometry indicating that the temperature in the central portion of the Cerro Prieto System is now at its historical maximum. Isoreflectance lines formed by contouring vitrinite reflectance data for a given isothermal surface define an imaginary surface that indicates an apparent duration of heating in the system. The 250/sup 0/C isothermal surface has a complex dome-like form suggesting a localized heat source that has caused shallow heating in the central portion of this system. Isoreflectance lines relative to this 250/sup 0/C isothermal surface define a zone of low reflectance roughly corresponding to the crest of the isothermal surface. Comparison of these two surfaces suggest that the shallow heating in the central portion of Cerro Prieto is young relative to the heating (to 250/sup 0/C) on the system margins. Laboratory and theoretical models of hydrothermal convection cells suggest that the form of the observed 250/sup 0/C isothermal surface and the reflectance surface derived relative to it results from the convective rise of thermal fluids under the influence of a regional hydrodynamic gradient that induces a shift of the hydrothermal heating effects to the southwest.

  20. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...

  1. Method to Predict Tempering of Steels Under Non-isothermal Conditions

    Science.gov (United States)

    Poirier, D. R.; Kohli, A.

    2017-05-01

    A common way of representing the tempering responses of steels is with a "tempering parameter" that includes the effect of temperature and time on hardness after hardening. Such functions, usually in graphical form, are available for many steels and have been applied for isothermal tempering. In this article, we demonstrate that the method can be extended to non-isothermal conditions. Controlled heating experiments were done on three grades in order to verify the method.

  2. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    International Nuclear Information System (INIS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-01-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d 15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO 3 ) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d 15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10 −9 m/V, about 45 times larger than for LiNbO 3 ) but it decreased rapidly below 75 K; at 1.3 K, d 15 was only about 8% of its room temperature value

  3. Thermodynamic properties of molybdenum borides at temperatures above 300 K

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Blinder, A.V.; Serbova, M.I.

    1990-01-01

    Enthalpy of Mo 2 B, MoB, Mo 2 B 5 borides within the range of temperatures above 300 K has been experimentally studied. Parameters of temperature dependences of enthalpy, heat capacity, entropy and the reduced Gibbs energy of the studied substances are calculated within a wide range. It is stated that high-temperature heat capacity of the studied borides can be presented as a sum of the electron component, a harmonic part of the lattice component and a contribution caused by anharmonic oscillations of lattice atoms. Values of coefficients of isothermal compressibility of Mo 2 , MoB, Mo 2 B 5 within the high temperature range are estimated

  4. Non-isothermal effects on multi-phase flow in porous medium

    DEFF Research Database (Denmark)

    Singh, Ashok; Wang, W; Park, C. H.

    2010-01-01

    In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...

  5. Temperature coefficients for GaInP/GaAs/GaInNAsSb solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aho, Arto; Isoaho, Riku; Tukiainen, Antti; Polojärvi, Ville; Aho, Timo; Raappana, Marianna; Guina, Mircea [Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-09-28

    We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37–39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be −7.5 mV/°C, 0.040 mA/cm{sup 2}/°C, and −0.09%/°C, respectively.

  6. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C.

    2017-01-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO_2 fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D_2O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α"M_T(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  7. Assessment of the crossflow loss coefficient in Very High Temperature Reactor core - 15338

    International Nuclear Information System (INIS)

    Lee, S.N.; Tak, N.I.; Kim, M.H.; Noh, J.M.

    2015-01-01

    The Very High Temperature Reactor (VHTR) is a helium gas cooled and graphite moderated reactor. It was chosen as one of the Gen-4 reactors owing to its inherent safety. Various researches for prismatic gas-cooled reactors have been conducted for efficient and safe use. The prismatic VHTR consists of vertically stacked fuel blocks. Between the vertical fuel blocks, there is cross gap because of manufacturing tolerance or graphite change during the operation. This cross gap changes the coolant flow path, called a crossflow, which may affect the fuel temperature. Various tests and numerical studies have been conducted to predict the crossflow and loss coefficient. In the present study, the CFD calculation is conducted to draw the loss coefficient, and compared with Groehn, Kaburaki and General Atomics (GA) correlations. The results of the Groehn and Kaburaki correlations tend to decrease as the gap size increases, whereas the data of GA show the opposite. The loss coefficient given by the CFD calculation tends to maintain the regular value without regard to the gap size for the standard fuel block, like the Groehn correlation. However, the loss coefficient of the control fuel block increases as the gap size widens, like the GA results

  8. Two-temperature transport coefficients of SF6–N2 plasma

    International Nuclear Information System (INIS)

    Yang, Fei; Chen, Zhexin; Wu, Yi; Rong, Mingzhe; Wang, Chunlin; Guo, Anxiang; Liu, Zirui

    2015-01-01

    Sulfur hexafluoride (SF 6 ) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF 6 is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF 6 –N 2 mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF 6 . This paper is devoted to the calculation of and transport coefficients of SF 6 –N 2 mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N 2 mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF 6 –N 2 plasma, especially before the plasma is fully ionized. The different influence of N 2 on properties for SF 6 –N 2 plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF 6 –N 2 plasmas

  9. Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Amin

    2015-11-01

    Full Text Available The studies of the kinetics and isotherms adsorption of the Reactive Black 5 (RB5 onto bentonite clay were explored in a batch study in a laboratory. The maximum RB5 adsorption conditions of bentonite clay were optimized such as shaking speed (100 rpm, temperature (323 K, pH (10, contact time (40 min, initial dye concentration (170 mg·L−1, and particle size (177 µm. The adsorbent surface was characterized using Fourier Transform Infrared Spectroscopy spectroscopy. The mechanisms and characteristic parameters of the adsorption process were analyzed using two parameter isotherm models which revealed the following order (based on the coefficient of determination: Harkin-Jura (0.9989 > Freundlich (0.9986 and Halsey (0.9986 > Langmuir (0.9915 > Temkin (0.9818 > Dubinin–Radushkevich (0.9678. This result suggests the heterogeneous nature of bentonite clay. Moreover, the adsorption process was chemisorption in nature because it follows the pseudo-second order reaction model with R2 value of 0.9998, 0.9933 and 0.9891 at 25, 75 and 100 mg·L−1 RB5 dye in the solution, respectively. Moreover, based on the values of standard enthalpy, Gibbs free energy change, and entropy, bentonite clay showed dual nature of exothermic and endothermic, spontaneous and non-spontaneous as well as increased and decreased randomness at solid–liquid interface at 303–313 K and 313–323 K temperature, respectively.

  10. Experimental aspects of buoyancy correction in measuring reliable highpressure excess adsorption isotherms using the gravimetric method.

    Science.gov (United States)

    Nguyen, Huong Giang T; Horn, Jarod C; Thommes, Matthias; van Zee, Roger D; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO 2 and supercritical N 2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  11. Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane

    Science.gov (United States)

    Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.

    1988-01-01

    Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.

  12. The use of quasi-isothermal modulated temperature differential scanning calorimetry for the characterization of slow crystallization processes in lipid-based solid self-emulsifying systems.

    Science.gov (United States)

    Otun, Sarah O; Meehan, Elizabeth; Qi, Sheng; Craig, Duncan Q M

    2015-04-01

    Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Gelucire 44/14. QiMTDSC experiments were performed on cooling from the melt, using a range of incremental decreases in temperature and isothermal measurement periods. DSC and HSM highlighted the main (primary) crystallization transition; solid fat content analysis and kinetic analysis were used to profile the solidification process. The heat capacity profile from QiMTDSC indicated that after an initial energetic primary crystallisation, the lipid underwent a slower period of crystallization which continued to manifest at much lower temperatures than indicated by standard DSC. We present evidence that Gelucire 44/14 undergoes an initial crystallization followed by a secondary, slower process. QIMTDSC appears to be a promising tool in the investigation of this secondary crystallization process.

  13. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  14. THERMODYNAMICS OF ELECTROLYTES. X. ENTHALPY AND THE EFFECT OF TEMPERATURE ON THE ACTIVITY COEFFICIENTS.

    Energy Technology Data Exchange (ETDEWEB)

    Silvester, Leonard F.; Pitzer, Kenneth S.

    1977-11-01

    Heat of dilution and of solution data are fitted to the form of equation corresponding to that used successfully for activity and osmotic coefficients over a wide range of concentration. The resulting parameters give the change with temperature of the activity and osmotic coefficients. Results are reported for 84 electrolytes of 1-1, 2-1, 3-1, and 2-2 valence types.

  15. Replacement of unsteady heat transfer coefficient by equivalent steady-state one when calculating temperature oscillations in a thermal layer

    Science.gov (United States)

    Supel'nyak, M. I.

    2017-11-01

    Features of calculation of temperature oscillations which are damped in a surface layer of a solid and which are having a small range in comparison with range of temperature of the fluid medium surrounding the solid at heat transfer coefficient changing in time under the periodic law are considered. For the specified case the equations for approximate definition of constant and oscillating components of temperature field of a solid are received. The possibility of use of appropriately chosen steady-state coefficient when calculating the temperature oscillations instead of unsteady heat-transfer coefficient is investigated. Dependence for definition of such equivalent constant heat-transfer coefficient is determined. With its help the research of temperature oscillations of solids with canonical form for some specific conditions of heat transfer is undertaken. Comparison of the obtained data with results of exact solutions of a problem of heat conductivity by which the limits to applicability of the offered approach are defined is carried out.

  16. Monitoring temperature reactivity coefficient by noise method in a NPP at full power

    International Nuclear Information System (INIS)

    Aguilar, O.; Por, G.

    1987-04-01

    A new method based on noise measurement was used to estimate the temperature reactivity coefficient of the PAKS-2 reactor during the entire fuel cycle. Based on the measurements it is possible to measure the dependence of reactivity coefficient on boron concentration. Good agreement was found between the results obtained by the new method and by the conventional ones. Based on this method a new equipment can be develop which assures permanent measurements during operation. (author)

  17. Monte Carlo calculation of the nuclear temperature coefficient in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, W.

    1974-04-15

    A Monte Carlo program for the calculation of the nuclear temperature coefficient for fast reactors is described. The special difficulties for this problem are the energy and space dependence of the cross sections and the calculation of differential eifects. These difficulties are discussed in detail and the way for their solution chosen in this program is described. (auth)

  18. Measuring temperature coefficient of TRIGA MARK I reactor by noise analysis

    International Nuclear Information System (INIS)

    Soares, P.A.

    1975-01-01

    The transfer function of TRIGA MARK I Reactor is measured at power zero (5w) and power 118Kw, in the frequency range of 0.02 to 0.5 rd/s. The method of intercorrelation between a pseudostochasticbinary signal is used. A simple dynamic model of the reactor is developed and the coefficient of temperature is estimated [pt

  19. Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.

    Science.gov (United States)

    Wood, Mark; Goldberg, Scott; Lau, Melissa; Goel, Aneesh; Alexander, Daniel; Han, Frederick; Feinstein, Shawn

    2011-06-01

    The lethal isotherm for radiofrequency catheter ablation of cardiac myocardium is widely accepted to be 50°C, but this has not been directly measured. The purpose of this study was to directly measure the tissue temperature at the edge of radiofrequency lesions in real time using infrared thermal imaging. Fifteen radiofrequency lesions of 6 to 240 seconds in duration were applied to the left ventricular surface of isolated perfused pig hearts. At the end of radiofrequency delivery, a thermal image of the tissue surface was acquired with an infrared camera. The lesion was then stained and an optical image of the lesion was obtained. The thermal and optical images were electronically merged to allow determination of the tissue temperature at the edge of the lesion at the end of radiofrequency delivery. By adjusting the temperature overlay display to conform with the edge of the radiofrequency lesion, the lethal isotherm was measured to be 60.6°C (interquartile ranges, 59.7° to 62.4°C; range, 58.1° to 64.2°C). The areas encompassed by the lesion border in the optical image and the lethal isotherm in the thermal image were statistically similar and highly correlated (Spearman ρ=0.99, Pradiofrequency delivery or to lesion size (both P>0.64). The areas circumscribed by 50°C isotherms were significantly larger than the areas of the lesions on optical imaging (P=0.002). By direct measurement, the lethal isotherm for cardiac myocardium is near 61°C for radiofrequency energy deliveries radiofrequency ablation is important to clinical practice as well as mathematical modeling of radiofrequency lesions.

  20. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail: rubensrcs@usp.br, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  1. A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Wu, Wan-fan; Song, Jia-liang; Liu, Yi; Yuan, Shuai; Liu, Na

    2014-01-01

    Highlights: • A new kind of shape-stabilized PCMs with PTC effect is first prepared. • It provides a potential means for the thermal control of the electronic devices. • The switching temperature of the materials is about 25 °C. • The most appropriate component of the material is found out by experimental study. • The NTC effect of the new PCMs is eliminated effectively by heat treatment. - Abstract: A new kind of shape-stabilized phase change materials (PCMs) with positive temperature coefficient (PTC) effect was prepared in this paper. The materials were prepared by adding graphite powder (GP) to the paraffin/low density polyethylene (LDPE) composite and the PTC characteristic was found by adjusting the component ratio of the material. Then the physical structures and thermal properties of the materials were investigated and the effect of various GP mass fractions and paraffin/LDPE mass proportions on the PTC behavior of the materials was studied experimentally. The results showed that the switching temperature of the materials was about 25 °C (room temperature) which approached to the first phase change temperature of paraffin dispersed in the materials. The PTC behavior of the materials was the best when the GP mass fraction and the mass proportion of LDPE/paraffin were 40 wt% and 30:70, respectively. Furthermore, the negative temperature coefficient (NTC) effect of the materials could be eliminated effectively with heat treatment. This new kind of materials is different from the former PTC materials which the switching temperatures focus on high temperature ranges. It makes up for the defect of previous materials that the switching temperatures only range in high temperature rather than room temperature and provides a potential means for the thermal control of the electronic devices or other room temperature thermal control applications

  2. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  3. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  4. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    International Nuclear Information System (INIS)

    Shi, H.J.; Niu, L.S.; Korn, C.; Pluvinage, G.

    2000-01-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data

  5. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method

    Science.gov (United States)

    Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  6. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  7. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    Directory of Open Access Journals (Sweden)

    Edgar M. Soteras

    2014-03-01

    Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.

  8. The negative temperature coefficient resistivities of Ag2S-Ag core–shell structures

    International Nuclear Information System (INIS)

    Yu, Mingming; Liu, Dongzhi; Li, Wei; Zhou, Xueqin

    2014-01-01

    In this paper, the conductivity of silver nanoparticle films protected by 3-mercaptopropionic acid (Ag/MPA) has been investigated. When the nanoparticles were annealed in air at 200 °C, they converted to stable Ag 2 S-Ag core–shell structures. The mechanism for the formation of the Ag 2 S-Ag core–shell structures along with the compositional changes and the microstructural evolution of the Ag/MPA nanoparticles during the annealing process are discussed. It is proposed that the Ag 2 S-Ag core–shell structure was formed through a solid-state reduction reaction, in which the Ag + ions coming from Ag 2 S were reduced by sulfonate species and sulfur ions. The final Ag 2 S-Ag films display an exponentially decreased resistivity with increasing temperature from 25 to 170 °C. The negative temperature coefficient resistivity of Ag 2 S-Ag films can be adjusted by changing the S/Ag molar ratio used for the synthesis of the Ag/MPA nanoparticles, paving the way for the preparation of negative temperature-coefficient thermistors via printing technology for use in the electronics.

  9. High-temperature of thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A. Jr.

    1977-01-01

    The set of high-temperature thermodynamic properties for sodium in the two-phase and subcooled-liquid regions which was previously recommended, has been modified to incorporate recent experimental data. In particular, replacement of the previously estimated critical constants with experimentally-determined values has resulted in substantial differences in the region of the critical point. The following thermodynamic properties were determined: pressure, density, enthalpy, entropy, internal energy, compressibility (adiabatic and isothermal), thermal expansion coefficient, thermal pressure coefficient, and specific heat (constant-pressure and constant-volume). These properties were determined for the saturated liquid, saturated vapor, subcooled liquid, and superheated vapor. The superheated vapor properties are limited to low pressures and more work is required to extend them to higher pressures. The supercritical region was not investigated.

  10. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  11. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  12. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Feihong Liu

    2015-01-01

    Full Text Available Temperature and relative humidity (RH are two major external factors, which affect equilibrium moisture content (EMC of wood-plastic composites (WPCs. In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP-high density polyethylene (HDPE composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB. The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  13. Temperature dependence of the absorption coefficient of water for midinfrared laser radiation

    NARCIS (Netherlands)

    Jansen, E. D.; van Leeuwen, T. G.; Motamedi, M.; Borst, C.; Welch, A. J.

    1994-01-01

    The dynamics of the water absorption peak around 1.94 microns was examined. This peak is important for the absorption of holmium and thulium laser radiation. To examine the effect of temperature on the absorption coefficient, the transmission of pulsed Ho:YAG, Ho:YAG, Ho:YSGG, and Tm:YAG laser

  14. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    Science.gov (United States)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  15. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    Science.gov (United States)

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Investigation on low room-temperature resistivity Cr/(Ba0.85Pb0.15)TiO3 positive temperature coefficient composites

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Qu, Yuanfang

    2009-01-01

    discussed. Using these special processes, the prepared composite with 20 wt% Cr possessed low room-temperature resistivity (2.96 Ω cm at 25 °C) and exhibited PTC effect (resistivity jump of 10), which is considered as a promising candidate for over-current protector when working at low voltage. The grain......Low room-temperature resistivity positive temperature coefficient (PTC) Cr/(Ba0.85Pb0.15)TiO3 composites were produced via a reducing sintering and a subsequent oxidation treatment. The effects of metallic content and processing conditions on materials resistivity–temperature properties were...

  17. Positive Temperature Coefficient of Breakdown Voltage in 4H-SiC PN Junction Rectifiers

    National Research Council Canada - National Science Library

    Neudeck, Philip

    1998-01-01

    ...-suited SiC polytype for power device implementation. This paper reports the first experimental measurements of stable positive temperature coefficient behavior observed in 4H-SiC pn junction rectifiers...

  18. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  19. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  20. Effects of Ce Addition and Isothermal Aging on the Elevated Temperature Tensile Properties of Mechanically Alloyed Al-Ti Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)

    1997-05-01

    The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.

  1. Influence of isothermal thermomechanical treatment on structure and properties of structural steels

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.

    1997-01-01

    A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures

  2. Temperature dependences of the electrical conductivity and Hall coefficient of indium telluride single crystals

    International Nuclear Information System (INIS)

    Hussein, S.A.

    1989-01-01

    Conductivity type, carrier concentration and carrier mobility of InTe samples grown by Bridgman technique were determined by the Hall effect and electrical conductivity measurements. The study was performed in the temperature range 150-480 K. Two samples with different growth rate were used in the investigation. The samples under test were P-type conducting, in accordance with previous measurements of undoped material. The Hall coefficient was found to be isotropic yielding room temperature hole concentration in the range 10 15 -10 16 cm -3 . The hole mobilities of InTe samples were in the range 1.17 x 10 3 -2.06 x 10 3 cm 2 /V · sec at room temperature. The band-gap of InTe determined from Hall coefficient studies has been obtained equal to 0.34 eV. The scattering mechanism was checked, and the electrical properties were found to be sensitive to the crystal growth rate. (author)

  3. A computer calculation of the ternary Mo-Pd-Rh phase diagram

    International Nuclear Information System (INIS)

    Guerler, R.; Pratt, J.N.

    1993-01-01

    Thermodynamic coefficients for the phases in the binary Mo-Pd, Pd-Rh and Mo-Rh systems were derived by the assessment of the available experimental data using the binary Lukas optimization program. The resulting coefficients were first successfully utilised in reestablishing the binaries. The coefficients thus obtained in the binary computation were combined with ternary descriptions to compute ternary isothermal sections. Although no ternary interaction term was involved in the construction of the isotherms, the section calculated at 1373 K is found to be consistent with the experimentally established isothermal section at the same temperature. The location of three-phase field (bcc+hcp+fcc) and phase boundaries in both isotherms are matching reasonably well. Combining only binary coefficients of these phases, it is possible to construct reasonable isothermal sections at different temperatures. Following this conclusion, isothermal sections ranging from 1373 to 2673 K of the ternary Mo-Pd-Rh system were calculated. (orig.)

  4. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  5. Anomalous temperature dependence of the Seebeck coefficient for the substitutionally-disordered hopping conductors

    International Nuclear Information System (INIS)

    Raffaelle, R.P.; Parris, P.E.; Anderson, H.U.; Sparlin, D.M.

    1991-01-01

    Thermoelectric power measurements are presented for the (La,Sr)(Cr,Mn)O 3 series. The nonlinear temperature dependence of the Seebeck coefficient is analyzed in terms of a random distribution of energetically equivalent hopping sites. The limitations of Heikes' formula, which has been traditionally used to calculate small polaron carrier densities in these systems, are discussed. Recent theoretical developments in the interpretation of Seebeck measurements in substitutionally-disordered high-temperature hopping conductors are reviewed

  6. Temperature coefficient of elastic constants of SiO{sub 2} over-layer on LiNbO{sub 3} for a temperature stable SAW device

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Monika; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-08-07

    The influence of sputtered SiO{sub 2} over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO{sub 2} over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO{sub 2}. The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO{sub 2} over-layer. The density and the dielectric constant of the deposited SiO{sub 2} layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C{sub 11} = 0.75x10{sup 11} N m{sup -2} and C{sub 44} 0.225x10{sup 11} N m{sup -2}) were found to be lower, and the respective temperature coefficients (5.0x10{sup -4} deg C{sup -1} and 2.0x10{sup -4} deg C{sup -1}) were high in comparison to the bulk material parameters.

  7. The temperature coefficient of the resonance integral for uranium metal and oxide

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, P; Hellstrand, E; Homer, S

    1960-06-15

    The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above.

  8. The temperature coefficient of the resonance integral for uranium metal and oxide

    International Nuclear Information System (INIS)

    Blomberg, P.; Hellstrand, E.; Homer, S.

    1960-06-01

    The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above

  9. Joining of superalloy Inconel 600 by diffusion induced isothermal solidification of a liquated insert metal

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Chukwukaeme, C.; Ojo, O.A.

    2008-01-01

    The effect of process variables on the microstructure of transient liquid phase bonded IN 600 using a commercial filler alloy was studied. Microstructural examination of bonded specimens showed that isothermal solidification of the liquated insert occurred during holding at the joining temperatures. In cases where the holding time was insufficient for complete isothermal solidification, the residual liquid transformed on cooling into a centerline eutectic product. The width of the eutectic decreased with increased holding time and an increase in initial gap width resulted in thicker eutectic width in specimens bonded at the same temperature and for equivalent holding times. In addition to the centerline eutectic microconstituent, precipitation of boron-rich particles was observed within the base metal region adjacent to the substrate-joint interface. Formation of these particles appeared to have influenced the rate of solidification of the liquated interlayer during bonding. In contrast to the conventional expectation of an increase in the rate of isothermal solidification with an increase in temperature, a decrease in the rate was observed with an increase in temperatures above 1160 deg. C. This could be related to a decrease in solubility of boron in nickel above the Ni-B eutectic temperature

  10. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    Science.gov (United States)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  11. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    International Nuclear Information System (INIS)

    Kumar, Duguta Suresh; Khanna, P. K.; Suri, Nikhil; Sharma, R. P.

    2016-01-01

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  12. Determination of thermal reactivity coefficients for the first fuel loading of MO34

    International Nuclear Information System (INIS)

    Lueley, J.; Vrban, B.; Farkas, G.; Hascik, J.; Hinca, R.; Petriska, M.; Slugen, V.

    2012-01-01

    The article introduces determination of thermal reactivity coefficients, especially summarized (isothermal) and moderator (density) reactivity coefficients between 200 grad C and 260 grad C with 2 grad C step, - in compliance with the assignment - for the first fuel loading into the RC of NP Mochovce units using 2 nd generation fuel during the start-up using calculation code MCNP5 1.60. (authors)

  13. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  14. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  15. THREE-DIMENSIONAL DISK-PLANET TORQUES IN A LOCALLY ISOTHERMAL DISK

    International Nuclear Information System (INIS)

    D'Angelo, Gennaro; Lubow, Stephen H.

    2010-01-01

    We determine an expression for the Type I planet migration torque involving a locally isothermal disk, with moderate turbulent viscosity (5 x 10 -4 ∼< α ∼< 0.05), based on three-dimensional nonlinear hydrodynamical simulations. The radial gradients (in a dimensionless logarithmic form) of density and temperature are assumed to be constant near the planet. We find that the torque is roughly equally sensitive to the surface density and temperature radial gradients. Both gradients contribute to inward migration when they are negative. Our results indicate that two-dimensional calculations with a smoothed planet potential, used to account for the effects of the third dimension, do not accurately determine the effects of density and temperature gradients on the three-dimensional torque. The results suggest that substantially slowing or stopping planet migration by means of changes in disk opacity or shadowing is difficult and appears unlikely for a disk that is locally isothermal. The scalings of the torque and torque density with planet mass and gas sound speed follow the expectations of linear theory. We also determine an improved formula for the torque density distribution that can be used in one-dimensional long-term evolution studies of planets embedded in locally isothermal disks. This formula can be also applied in the presence of mildly varying radial gradients and of planets that open gaps. We illustrate its use in the case of migrating super-Earths and determine some conditions sufficient for survival.

  16. Laboratory Studies of Low Temperature Rate Coefficients: The Atmospheric Chemistry of the Outer Planets and Titan

    Science.gov (United States)

    Bogan, Denis

    1999-01-01

    Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.

  17. Influence of bearing pre-load coefficient on shaft vibration and pad temperature in a hydroturbine generator unit. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Feng Fuzhou; Chu Fulei; Guo Dan; Lu Wenxiu [Tsinghua Univ., Beijing, BJ (China). Dept. of Precision Instruments

    2001-07-01

    From data collected by an online condition monitoring and fault diagnosis system, a higher pad temperature at the upper guide bearing in a pumped storage power generator unit installed in Guangdong province(GPSPS), China, was found. And also a relatively intensive shaft vibration occurred at the lower guide bearing. By calculating the Reynolds equation and viscosity-temperature equation of the lubricant, a curve between the pre-load coefficient and the increment of pad temperature is obtained, which shows that the larger, the pre-load coefficient, the bigger, the increment of pad temperature. For a practical unit in GPSPS, by employing Transfer matrix method and Wilson-{theta} method to analyze shaft vibration at different pre-load coefficients of the whole bearing or ''pad pair'' bearings, the results show that the larger the pre-load coefficient is, the smaller the vibration amplitude is, the shorter the time for vibration to become steady is. And an uneven pre-load coefficient of the ''pad pair'' bearings will cause shaft orbit from a circle to an ellipse whose long axes is at the direction of the ''pad pair'' with the lowest pre-load coefficient. Finally, reasons of higher pad temperature of the upper guide bearing and larger shaft vibration at the lower guide bearing are due to the inconsistent relation of bearing assembling clearance or pre-load coefficient of the upper and lower guide bearing, and also due to the too small, uneven pre-load coefficient of ''pad pair'' bearings. After a scheme for adjusting the bearing clearance is given, data measured show that the analysis and simulation methods are correct and the adjustment scheme to the assembling clearance of the upper and lower guide bearings is feasible and can be used to guide the field maintenance conveniently. (orig.)

  18. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    International Nuclear Information System (INIS)

    Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-01-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.

  19. Estimation of Water Diffusion Coefficient into Polycarbonate at Different Temperatures Using Numerical Simulation

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    ) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, itis......Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Masstransport properties of electronic packaging materials are needed in order to investigate the influence of moisture andtemperature on reliability of electronic devices. Polycarbonate (PC...... shown how the estimated value can be different depending on the choice of dimensionality in the model....

  20. Temperature dependent electron transport and rate coefficient studies for e-beam-sustained diffuse gas discharge switching

    International Nuclear Information System (INIS)

    Carter, J.G.; Hunter, S.R.; Christophorou, L.G.

    1987-01-01

    Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation

  1. Non-linear dynamo waves in an incompressible medium when the turbulence dissipative coefficients depend on temperature

    Directory of Open Access Journals (Sweden)

    A. D. Pataraya

    1997-01-01

    Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.

  2. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.

    Science.gov (United States)

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2011-09-28

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature

  3. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  4. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  5. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  6. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    Science.gov (United States)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  7. Analysis of isothermal sintering of zinc-titanate doped with MgO

    Directory of Open Access Journals (Sweden)

    Obradović N.

    2007-01-01

    Full Text Available The aim of this work was analysis of isothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO2 and MgO (0, 1.25 and 2.5% were mechanically activated 15 minutes in a planetary ball mill. The powders obtained were pressed under different pressures and the results were fitted with a phenomenological compacting equation. Isothermal sintering was performed in air for 120 minutes at four different temperatures. Structural characterization of ZnO-TiO2-MgO system after milling was performed at room temperature using XRPD measurements. DTA measurements showed different activation energies for pure and doped ZnO-TiO2 systems. Thus addition of MgO stabilizes the crystal structure of zinc titanate.

  8. Chapter 10: Calculation of the temperature coefficient of reactivity of a graphite-moderated reactor

    International Nuclear Information System (INIS)

    Brown, G.; Richmond, R.; Stace, R.H.W.

    1963-01-01

    The temperature coefficients of reactivity of the BEPO, Windscale and Calder reactors are calculated, using the revised methods given by Lockey et al. (1956) and by Campbell and Symonds (1962). The results are compared with experimental values. (author)

  9. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-07

    The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  10. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  11. Investigation of the thermal expansion of the refractory materials at high temperatures

    Science.gov (United States)

    Kostanovskiy, A.; Kostanovskaya, M.; Zeodinov, M.; Pronkin, A.

    2017-11-01

    We present the experimental investigation of the relative elongation and the coefficient of linear thermal expansion for monocrystaline alumina Al2O3 (1200 K - 1860 K), zirconia ZrO2 (1200 K - 2730 K) and siliconized silicon carbide SiC+Si (1150 K - 2500 K) in the specified range of temperatures. The following approach is used to measure the relative elongation: the through-cylindrical-marks located in the centre of isothermal part of the sample, and the measurement of temperature by two blackbody models, taken out of the area of the sample where the relative elongation is measured.

  12. Thermodiffusion as a close-to-interface effect that matters in non-isothermal (dis)orderly protein aggregations

    Energy Technology Data Exchange (ETDEWEB)

    Gadomski, A., E-mail: agad@utp.edu.pl; Kruszewska, N., E-mail: nkruszewska@utp.edu.pl

    2014-08-01

    The goal of this discussion letter is to argue how and why an inherent nanoscale thermodiffusion (Soret-type) effect can be relevant in (dis)orderly protein aggregation. We propose a model in which the aggregation of proteins, in the presence of temperature gradient, is described in terms of Smoluchowski dynamics in the phase space of nuclei sizes. The Soret coefficient of the aggregation is proportional to the variations of the aggregation free energy over temperature. The free energy is related to the (interface) boundary condition of the system. When boundary condition is of equilibrium Gibbs–Thomson type, with a well-stated surface tension of the nucleus, to the system can be assigned a negative Soret effect. On the contrary, when a non-equilibrium perturbing (salting-out) term enters the boundary condition, a positive Soret effect may manifest. A zero-value Soret regime is expected to occur in between, yielding very soft (“fragile”) non-Kossel protein-type crystals. - Highlights: • Comprehension for non-isothermal formation of (dis)orderly protein aggregation. • Classification of temperature-sensitive morphologies in colloid-type aggregation. • Morphologies split into near-equilibrium and nonequilibrium structural outcomes. • Classification on mesoscopic nonequilibrium thermodynamics near local equilibrium.

  13. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong; Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Choo, Yoo Sang; Khoo, Boo Cheong; Ng, Kim Choon

    2010-01-01

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed

  14. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2007-01-01

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in 235 U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides 240 Pu, 238 U and 232 Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for 240 Pu, 238 U and 232 Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 μm and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core

  15. Partition coefficient n-octanol/water of propranolol and atenolol at different temperatures: Experimental and theoretical studies

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Ebrahimabadi, A.H.; Niknahad, B.

    2012-01-01

    Highlights: ► n-Octanol/water partition coefficients of propranolol and atenolol were measured. ► The effect of temperature on the partition coefficient was studied. ► The equilibrium data were correlated using the NRTL and UNIQUAC activity models. ► The binary interaction parameters of the activity models were reported. ► It is concluded that propranolol is more hydrophobic than the atenolol at 298.15 K. - Abstract: The n-octanol/water partition coefficients of propranolol and atenolol were experimentally determined by ultraviolet (UV) spectroscopy at T = (298.15, 310.15 and 314.15) K. All measurements were made at the maximum wavelength corresponding to maximum absorption. The results showed that the n-octanol/water partition coefficients of propranolol and atenolol increase with the increase of temperature. The experimental data of this work were also used to examine the phase equilibrium correlating capability of some liquid-phase models. The equilibrium experimental data were correlated using the NRTL and UNIQUAC activity coefficient models and the binary interaction parameters were reported. The average root-mea n-square deviations (RMSD) between the experimental and calculated mass fractions of the (n-octanol + propranolol + water) and (n-octanol + atenolol + water) systems were determined. From the partition coefficients obtained, it is concluded that propranolol (log P ow = 3.12 ± 0.14) is more hydrophobic than the atenolol (log P ow = 0.16 ± 0.01) at T = 298.15 K.

  16. Calculation of fuel and moderator temperature coefficients in APR1400 nuclear reactor by MVP code

    International Nuclear Information System (INIS)

    Pham Tuan Nam; Le Thi Thu; Nguyen Huu Tiep; Tran Viet Phu

    2014-01-01

    In this project, these fuel and moderator temperature coefficients were calculated in APR1400 nuclear reactor by MVP code. APR1400 is an advanced water pressurized reactor, that was researched and developed by Korea Experts, its electric power is 1400 MW. The neutronics calculations of full core is very important to analysis and assess a reactor. Results of these calculation is input data for thermal-hydraulics calculations, such as fuel and moderator temperature coefficients. These factors describe the self-safety characteristics of nuclear reactor. After obtaining these reactivity parameters, they were used to re-run the thermal hydraulics calculations in LOCA and RIA accidents. These thermal-hydraulics results were used to analysis effects of reactor physics parameters to thermal hydraulics situation in nuclear reactors. (author)

  17. Summary report on the evaluation of a 1977--1985 edited sorption data base for isotherm modeling

    International Nuclear Information System (INIS)

    Polzer, W.L.; Beckman, R.J.; Fuentes, H.R.; Yong, C.; Chan, P.; Rao, M.G.

    1993-01-01

    Sorption data bases collected by Los Alamos National Laboratory (LANL) from 1977 to 1985 for the Yucca Mountain Project.(YMP) have been inventoried and fitted with isotherm expressions. Effects of variables (e.g., particle size) on the isotherm were also evaluated. The sorption data are from laboratory batch measurements which were not designed specifically for isotherm modeling. However a limited number of data sets permitted such modeling. The analysis of those isotherm data can aid in the design of future sorption experiments and can provide expressions to be used in radionuclide transport modeling. Over 1200 experimental observations were inventoried for their adequacy to be modeled b isotherms and to evaluate the effects of variables on isotherms. About 15% of the observations provided suitable data sets for modeling. The data sets were obtained under conditions that include ambient temperature and two atmospheres, air and CO 2

  18. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.

    Science.gov (United States)

    Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E

    2012-09-01

    The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.

  19. Application of isothermal calorimetry and uv spectroscopy for stability monitoring of pentaerythritol tetranitrate

    International Nuclear Information System (INIS)

    Dosser, L.R.; Pickard, J.M.

    1992-01-01

    Thermal stabilities for a series of pentaerythritol-tetranitrate (PETN) samples with variable surf ace areas were monitored by isothermal calorimetry and UV spectroscopy over the temperature range of 363 to 408 K. Isothermal induction times measured with constant volume calorimetry under an air atmosphere and No evolution rates monitored by UV absorbance at 213 nm under vacuum correlated with the PETN surface area at temperatures equal to or exceeding 383 K. Rate data measured at 383 K are in accord with predictions based on detailed kinetic modeling. Below 383 K, NO evolution data suggested that additional geometric factors may be significant in controlling PETN stability. Mechanisms for influencing surface area upon the rate-determining step are addressed

  20. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    Science.gov (United States)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  1. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...... using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution...

  2. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  3. Measurements of the fuel temperature coefficient of reactivity at Hinkley Point 'B': 1981

    International Nuclear Information System (INIS)

    George, T.A.

    1982-03-01

    Measurements of the fuel temperature coefficient of reactivity made at Hinkley Point 'B' AGR in 1981 are described. These measurements follow earlier tests reported in e.g. RD/B/N4846 and are part of a series of measurements designed to support theoretical estimates of the change of fuel temperature coefficient as a function of core irradiation. Low and high power measurements were made at a mean core irradiation of 1170GWD. As previously, the measurements at both power levels show agreement with theoretical predictions to within the estimated experimental errors. Recent measurements (mean core irradiation >500GWD) show evidence of a small systematic difference between measured and theoretical values with the experimental values being approximately equal to 0.1mN/ 0 C more positive than the theoretical ones. The measured value of αsub(U) at high power was -0.64+-0.10mN/ 0 C and the low power value, corrected theoretically to normal operating conditions, was also -0.64+-0.10mN/ 0 C. (author)

  4. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  5. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    Science.gov (United States)

    Leone, Stephen R.

    1995-01-01

    The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.

  6. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  7. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums.

    Science.gov (United States)

    Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J

    2012-06-20

    Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A

    2016-01-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)

  9. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology - KTH, Roslagstullsbacken 21, S-10691 Stockholm (Sweden)]. E-mail: alby@anl.gov

    2007-01-15

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in {sup 235}U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides {sup 240}Pu, {sup 238}U and {sup 232}Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for {sup 240}Pu, {sup 238}U and {sup 232}Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 {mu}m and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core.

  10. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance.

    Science.gov (United States)

    Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2017-01-31

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.

  11. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  12. Static pressure and temperature coefficients of working standard microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Cutanda Henriquez, Vicente; Torras Rosell, Antoni

    2016-01-01

    be a significant contribution to the uncertainty of the measurement. Determining the environmental coefficients of individual specimens of measurement microphones can be a straightforward though time-consuming procedure provided the appropriate facilities are available. An alternative is to determine them using...... coefficients. For this purpose, the environmental coefficients of some commercially available microphones have been determined experimentally, and whenever possible, compared with the coefficients determined numerically using the Boundary Element Method....... for these coefficients which are used for calibration purposes. Working standard microphones are not exempt of these influences. However, manufacturers usually provide a low frequency value of the environmental coefficient. While in some applications the influence of this coefficient may be negligible, in others it may...

  13. Tunneling in cosmology and isothermal inflation

    International Nuclear Information System (INIS)

    Brout, R.; Spindel, P.

    1991-01-01

    The wave function for the universe, as proposed by Hartle and Hawking, experiences tunneling for small values of the radius of the universe. This induces thermal effects and so a hot big bang. We first give a detailed analysis of the observer accelerating in Minkowski space in terms of the tunneling of his wave function beyond his turning point. Applied to cosmology one finds a temperature at the big bang equal to the Gibbons-Hawking value. The residual thermal effects which result in an isothermal inflationary expansion give rise to a renormalized self-consistently determined Hubble constant (and hence Gibbons-Hawking temperature) through the trace anomaly. A thermodynamic interpretation is given. These results militate against phase transitions as a motor for inflation. (orig.)

  14. Isothermal Martensite Formation

    DEFF Research Database (Denmark)

    Villa, Matteo

    Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanism...... of lattice strains provided fundamental information on the state of stress in the material and clarified the role of the strain energy on martensite formation. Electron backscatter diffraction revealed that the microstructure of the material and the morphology of martensite were independent on the cooling...... leading to isothermal kinetics acquired new practical relevance because of the identification of isothermal martensite formation as the most likely process responsible for enhanced performances of sub-zero Celsius treated high carbon steel products. In the present work, different iron based alloys...

  15. Two-temperature transport coefficients of SF{sub 6}–N{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei; Chen, Zhexin; Wu, Yi, E-mail: wuyic51@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Chunlin [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Guo, Anxiang; Liu, Zirui [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xian (China)

    2015-10-15

    Sulfur hexafluoride (SF{sub 6}) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF{sub 6} is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF{sub 6}–N{sub 2} mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF{sub 6}. This paper is devoted to the calculation of and transport coefficients of SF{sub 6}–N{sub 2} mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N{sub 2} mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF{sub 6}–N{sub 2} plasma, especially before the plasma is fully ionized. The different influence of N{sub 2} on properties for SF{sub 6}–N{sub 2} plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF{sub 6}–N{sub 2} plasmas.

  16. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl-) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities

    International Nuclear Information System (INIS)

    Hawrylak, B.; Palepu, R.; Tremaine, Peter R.

    2006-01-01

    Apparent molar volumes of aqueous methyldiethanolamine and its salt were determined with platinum vibrating tube densitometers over a range of temperatures from 283K= o , heat capacities C p o , and isothermal compressibilities κ T o . The standard partial molar volumes V o for the neutral amine and its salt show increasingly positive and negative values, respectively, at high temperatures and pressures, as predicted by corresponding states and group additivity arguments. The density model and the revised Helgeson-Kirkham-Flowers (HKF) model have been used to represent the temperature and pressure dependence of the standard partial molar properties to yield a full thermodynamic description of the system

  17. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Science.gov (United States)

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2000-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  18. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    Science.gov (United States)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  19. Disalignment rate coefficient of neon excited atoms due to helium atom collisions at low temperatures

    International Nuclear Information System (INIS)

    Seo, M; Shimamura, T; Furutani, T; Hasuo, M; Bahrim, C; Fujimoto, T

    2003-01-01

    Disalignment of neon excited atoms in the fine-structure 2p i levels (in Paschen notation) of the 2p 5 3p configuration is investigated in a helium-neon glow discharge at temperatures between 15 and 77 K. At several temperatures, we plot the disalignment rate as a function of the helium atom density for Ne* (2p 2 or 2p 7 ) + He(1s 2 ) collisions. The slope of this dependence gives the disalignment rate coefficient. For both collisions, the experimental data for the disalignment rate coefficient show a more rapid decrease with the decrease in temperature below 40 K than our quantum close-coupling calculations based on the model potential of Hennecart and Masnou-Seeuws (1985 J. Phys. B: At. Mol. Phys. 18 657). This finding suggests that the disalignment cross section rapidly decreases below a few millielectronvolts, in disagreement with our theoretical quantum calculations which predict a strong increase below 1 meV. The disagreement suggests that the long-range electrostatic potentials are significantly more repulsive than in the aforementioned model

  20. The Use of Quasi-Isothermal Modulated Temperature Differential Scanning Calorimetry for the Characterization of Slow Crystallization Processes in Lipid-Based Solid Self-Emulsifying Systems

    OpenAIRE

    Otun, Sarah O.; Meehan, Elizabeth; Qi, Sheng; Craig, Duncan Q. M.

    2014-01-01

    Purpose Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Methods Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Geluc...

  1. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  2. Current Sharing inside a High Power IGBT Module at the Negative Temperature Coefficient Operating Region

    CERN Document Server

    AUTHOR|(CDS)2084596; Papastergiou, Konstantinos; Bongiorno, M; Thiringer, T

    2016-01-01

    This work investigates the current sharing effect of a high power Soft Punch Through IGBT module in the Negative Temperature Coefficient region. The unbalanced current sharing between two of the substrates is demonstrated for different current and temperature levels and its impact on the thermal stressing of the device is evaluated. The results indicate that the current asymmetry does not lead to a significant thermal stressing unbalance between the substrates.

  3. Isothermal equilibrium pressures of Y-Th alloy-H2 system

    International Nuclear Information System (INIS)

    Tanase, M.; Fisher, P.W.

    1985-01-01

    Isothermal equilibrium pressures of the Y 4 Th (3:2 by weight) alloy-H 2 system were measured as a function of atomic composition [H]/[Y + Th] in the temperature range 580-1160 K. The isotherms have two plateaux in the pressure range 10 -2 -10 3 Pa. The first plateau region is attributed to the formation of YH 2 , and the equilibrium pressure P in pascals was found to be log P = 12.36 - 11300/T where T is in kelvins. The second plateau is attributed to the formation of ThH 2 , and the equilibrium pressure was found to be log P = 10.66 - 6891/T. In low atomic composition region the system obeys Sieverts' law. (Auth.)

  4. RADIAL FORCE IMPACT ON THE FRICTION COEFFICIENT AND TEMPERATURE OF A SELF-LUBRICATING PLAIN BEARING

    Directory of Open Access Journals (Sweden)

    Nada Bojić

    2017-12-01

    Full Text Available Self-lubricating bearings are available in spherical, plain, flanged journal, and rod end bearing configurations. They were originally developed to eliminate the need for re-lubrication, to provide lower torque and to solve application problems where the conventional metal-to-metal bearings would not perform satisfactorily, for instance, in the presence of high frequency vibrations. Among the dominant tribological parameters of the self-lubricating bearing, two could be singled out: the coefficient of friction and temperature. To determine these parameters, an experimental method was applied in this paper. By using this method, the coefficient of friction and temperature were identified and their correlation was established. The aim of this research was to determine the effect of radial force on tribological parameters in order to predict the behavior of sliding bearings with graphite in real operating conditions.

  5. Isothermal-isobaric Nose-Hoover method application: correlation length and disclinations per particle

    International Nuclear Information System (INIS)

    Morales, J.J.; Nuevo, J.M.; Rull, L.F.

    1987-01-01

    The new isothermic-isobaric MD(T,p,N) method of Nose and Hoover is applied in Molecular Dynamics simulations to both liquid and solid near the phase transition. We tested for an appropriate value of the isobaric friction coefficient before calculating the correlation length in the liquid and the disclinations per particle in solid on a big system of 2304 particles. The results are compared with those obtained by traditional MD simulation (E,V,N). (author)

  6. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  7. Equivalent network for resistance and temperature coefficient of resistance versus temperature and composition of thick resistive films

    International Nuclear Information System (INIS)

    Kusy, A.

    1987-01-01

    Two types of elementary resistances in thick resistive films have been considered: (i) constriction resistance R/sub C/ determined by the bulk properties of conducting material and by the geometry of constriction, and (ii) barrier resistance R/sub B/ determined by the parameters of a thermally activated type of tunneling process and by the geometry of the metal-insulator-metal unit. On this basis a resistance network composed of a large number of the two types of resistances has been defined. The network has been considered as being equivalent to thick resistive film (TRF) from the point of view of the resistance and temperature coefficient of resistance (TCR). The parameters of this network have been evaluated by the computer-aided approximation of the experimental data found for RuO 2 -based TRFs. On the basis of the equations derived for the network as well as the results of the approximation process, it can be concluded that the small values of the network TCR result from the superposition of the TCR of the conducting component β/sub C/ and of the temperature coefficient of barrier resistance α/sub B/. In this superposition β/sub C/ is attenuated (by 1--2 orders of magnitude), while α/sub B/ is attenuated by only few percentages. The network has been found to be strongly barrier dominated

  8. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  9. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  10. Oxidation kinetics of zircaloy-4 in the temperature range correspondent to alpha phase

    International Nuclear Information System (INIS)

    Medeiros, L.F.

    1975-12-01

    Oxidation kinetics of Zry-4 in the alpha phase is isothermally studied in the temperature range from 600 0 C to 800 0 C, by continuous and discontinuous gravimetric methods. The total mass gain during the oxidation takes place by two distinct ways: oxide formation and solid solution formation. The first one has been studied by microscopy: the latter by microhardness. The oxygen diffusion coefficients in the zirconium are experimentally determined by microhardness measurements and are compared with those obtained by the oxide layer thickness and by oxygen mass in the oxide. The oxygen diffusion coefficients in the oxide are obtained too by oxide layer thickness and by oxygen diffusivities in the alpha phase and compared with literature. (author)

  11. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes

    International Nuclear Information System (INIS)

    Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira

    2011-01-01

    The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .

  12. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  13. The oxidation kinetics of zircaloy - 4 under isothermal conditions

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Cardoso, P.E.

    1982-01-01

    The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt

  14. Surface temperature measurement using infrared radiometer. 1st Report. ; Radiosity coefficient and radiation temperature. Sekigaisen eizo sochi wo riyoshita jitsuyoteki ondo keisoku ni kansuru kenkyu. 1. ; Shado keisu to hosha ondo no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Y; Inagaki, T; Sekiya, M [Ibaraki University, Ibaraki (Japan). Faculty of Engineering

    1993-12-25

    As a part of the studies on practical surface temperature measurement by infrared radiometer, some basic characteristics of an infrared radiometer were studied by using three kinds of sensors with different detectable wave lengths. Specimens allowable for gray body approximation such as mortar, graphite and carbon fiber composite material were tested at a practical ambient temperature of 293 K. As a result, the difference between a radiation temperature in consideration of reflection and that derived from an emissivity increased with a decrease in emissivity, and the deviation of an emissivity derived from a radiosity coefficient increased at 20 K or less in difference between a specimen surface temperature and ambient one. Each radiosity coefficient measured by each sensor also fairly agreed with each other. The deviation of a radiosity coefficient was relatively small indicating a good agreement between theoretical and experimental data, while the difference between emissivity and radiosity coefficient deviations decreased with an increase in specimen surface temperature. 3 refs., 10 figs., 1 tab.

  15. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    Science.gov (United States)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  16. Rate coefficients for the reactions of ions with polar molecules at interstellar temperatures

    International Nuclear Information System (INIS)

    Adams, N.G.; Smith, D.; Clary, D.C.

    1985-01-01

    A theory has been developed recently which predicts that the rate coefficients, k, for the reactions of ions with polar molecules at low temperatures will be much greater than the canonical value of 10 -9 cm 3 s -1 . The new theory indicates that k is greatest for low-lying rotational sates and increases rapidly with decreasing temperature. We refer to recent laboratory measurements which validate the theory, present calculated values of k for the reactions of H + 3 ions with several polar molecules, and discuss their significance to interstellar chemistry. For the reactions of ions with molecules having large dipole moments, we recommend that k values as large as 10 -7 cm 3 s -1 should be used in ion-chemical models of low-temperature interstellar clouds

  17. A NON-ISOTHERMAL THEORY FOR INTERPRETING SODIUM LINES IN TRANSMISSION SPECTRA OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Lavie, Baptiste [University of Bern, Physics Institute, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Wyttenbach, Aurélien; Ehrenreich, David; Lovis, Christophe [Observatoire de l’Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Sing, David K., E-mail: kevin.heng@csh.unibe.ch [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-04-10

    We present a theory for interpreting the sodium lines detected in transmission spectra of exoplanetary atmospheres. Previous analyses employed the isothermal approximation and dealt only with the transit radius. By recognizing the absorption depth and the transit radius as being independent observables, we develop a theory for jointly interpreting both quantities, which allows us to infer the temperatures and number densities associated with the sodium lines. We are able to treat a non-isothermal situation with a constant temperature gradient. Our novel diagnostics take the form of simple-to-use algebraic formulae and require measurements of the transit radii (and their corresponding absorption depths) at line center and in the line wing for both sodium lines. We apply our diagnostics to the HARPS data of HD 189733b, confirm the upper atmospheric heating reported by Huitson et al., derive a temperature gradient of 0.4376 ± 0.0154 K km{sup −1}, and find densities ∼1–10{sup 4} cm{sup −3}.

  18. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings

    International Nuclear Information System (INIS)

    Guo, Yanbing; Feng, Kai; Lu, Fenggui; Zhang, Ke; Li, Zhuguo; Hosseini, Seyed Reza Elmi; Wang, Min

    2015-01-01

    Highlights: • Nanobainitic coatings under 200, 250 and 300 °C heat treatments are fabricated. • The size of bainite sheaves increased with the isothermal temperature increasing. • Textured and chaotic distributions are observed in 200 and 300 °C microstructures. • The evolution model of nanobainite morphology is established and analyzed. • The bainitic ferrite of 200 °C heat treatment has a true thickness of 45 nm. - Abstract: Laser cladding and subsequent isothermal heat treatments have been used to fabricate nanostructured bainitic coatings. XRD has been used to determine the kinetics of bainitic transformation process. OM, SEM and TEM have been used to characterize the morphology and microstructures at different stages of transformation. The results showed that at the initial stage of bainitic transformation, the bainite sheaves are short and thin at a relatively low transformation temperature. The fully transformed bainitic microstructure obtained at a relatively high temperature present a textured morphology. The chaotic growth orientations of the sheaves and the island like of the retained austenite have been observed at the low transformation temperature. A simple model has been established to describe the microstructures and the bainite sheaves growth evolutions during the isothermal holding at the different transformed temperatures. The morphology and distribution of the bainite in the coatings were analyzed by using the nucleation and growth rate of bainitic transformation theories, which is consisted with the experiment results.

  19. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanbing [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng, Kai; Lu, Fenggui; Zhang, Ke [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Hosseini, Seyed Reza Elmi [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Min [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-12-01

    Highlights: • Nanobainitic coatings under 200, 250 and 300 °C heat treatments are fabricated. • The size of bainite sheaves increased with the isothermal temperature increasing. • Textured and chaotic distributions are observed in 200 and 300 °C microstructures. • The evolution model of nanobainite morphology is established and analyzed. • The bainitic ferrite of 200 °C heat treatment has a true thickness of 45 nm. - Abstract: Laser cladding and subsequent isothermal heat treatments have been used to fabricate nanostructured bainitic coatings. XRD has been used to determine the kinetics of bainitic transformation process. OM, SEM and TEM have been used to characterize the morphology and microstructures at different stages of transformation. The results showed that at the initial stage of bainitic transformation, the bainite sheaves are short and thin at a relatively low transformation temperature. The fully transformed bainitic microstructure obtained at a relatively high temperature present a textured morphology. The chaotic growth orientations of the sheaves and the island like of the retained austenite have been observed at the low transformation temperature. A simple model has been established to describe the microstructures and the bainite sheaves growth evolutions during the isothermal holding at the different transformed temperatures. The morphology and distribution of the bainite in the coatings were analyzed by using the nucleation and growth rate of bainitic transformation theories, which is consisted with the experiment results.

  20. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  1. Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K

    Science.gov (United States)

    Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.

    2018-03-01

    The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.

  2. Visual Detection of Potato leafroll virus by One-step Reverse Transcription Loop-Mediated Isothermal Amplification of DNA with Hydroxynaphthol Blue Dye

    NARCIS (Netherlands)

    Ahmadi, S.; Almasi, A.M.; Fatehi, F.; Struik, P.C.; Moradi, A.

    2013-01-01

    Loop-mediated isothermal amplification (LAMP) assay is a novel technique for amplifying DNA under constant temperature, with high specificity, sensitivity, rapidity and efficiency. We applied reverse transcription loop-mediated isothermal amplification (RT-LAMP) to visually detect Potato leafroll

  3. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  4. Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.

    Science.gov (United States)

    Asay, David B; Kim, Seong H

    2007-11-20

    The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.

  5. H2 line-mixing coefficients in the ν2 and ν4 bands of PH3 at low temperature

    International Nuclear Information System (INIS)

    Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Aroui, Hassen

    2016-01-01

    Using a tunable diode-laser spectrometer adapted with a low temperature cell, we have measured the H 2 line-mixing coefficients for 21 lines in the Q R branch of the ν 2 band and in the P P and R P branches of the ν 4 band of phosphine (PH 3 ) at low temperature. These coefficients were determined using a multi-pressure fitting procedure that accounts for the apparatus function, the Doppler and the collisional effects. These lines with J values ranging from 2 to 11 and K from 0 to 9 are located in the spectral range from 1016 to 1093 cm −1 . The variations of these parameters with the temperature, and the ro-vibrational quantum numbers are discussed. - Graphical abstract: Comparisons of the determined line-mixing coefficients (in atm −1 ) obtained in this study in the ν 2 and ν 4 bands of PH 3 at T=173.2 K with those measured at T=298 K for different values of the J quantum number. - Highlights: • The spectra have been recorded with a tunable diode-laser spectrometer at 173.2 K. • The line-mixing coefficients are determined by a multi-pressure fitting procedure. • The effect of the line-mixing in the spectra, appear to be important.

  6. Development of a standard for calculation and measurement of the moderator temperature coefficient of reactivity in water-moderated power reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.

    1998-01-01

    The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard

  7. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    International Nuclear Information System (INIS)

    Bibik, V; Galeeva, A

    2015-01-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows. (paper)

  8. Non-isothermal Crystallization, Thermal Stability, and Mechanical Performance of Poly(L-lactic acid/Barium Phenylphosphonate Systems

    Directory of Open Access Journals (Sweden)

    Cai Yan-Hua

    2017-11-01

    Full Text Available The introduction of a nucleating agent in semi-crystalline polymers is a frequently utilized way to improve the crystallization performance, and the use of a nucleating agent has a very great effect on the performance of the polymer in other areas including thermal stability and mechanical properties. In this investigation, barium phenylphosphonate (BaP was prepared as a crystallization accelerator for Poly(L-lactic acid (PLLA, and the non-isothermal crystallization behavior, thermal stability, and mechanical properties of PLLA modified by BaP were investigated using differential scanning calorimetry (DSC, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and electronic tensile testing. Non-isothermal crystallization analysis showed that the BaP could significantly accelerate the crystallization of PLLA, and the non-isothermal crystallization peak shifted to a higher temperature with increasing concentration of BaP, however, the corresponding crystallization peak became wider. XRD results after non-isothermal crystallization confirmed the non-isothermal crystallization DSC results. Additionally, the addition of BaP did not change the crystal form of PLLA. A comparative study on thermal stability indicated that BaP decreased the onset decomposition temperature of PLLA, resulting from the formation of more tiny and imperfect crystals. Whereas the influence of BaP on the thermal decomposition profile of PLLA was negligible. In terms of mechanical properties, the tensile strength and elastic modulus of PLLA/BaP increased compared to the virgin PLLA, unfortunately, the elongation at break decreased.

  9. Thermodynamics of aqueous electrolytes at various temperatures, pressures, and compositions. [Virial coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1979-09-01

    It is shown that the properties of fully ionized aqueous electrolyte systems can be represented by relatively simple equations over wide ranges of composition. There are only a few systems for which data are available over the full range to fused salt. A simple equation commonly used for nonelectrolytes fits the measured vapor pressure of water reasonably well and further refinements are clearly possible. Over the somewhat more limited composition range up to saturation of typical salts such as NaCl, the equations representing thermodynamic properties with a Debye-Hueckel term plus second and third virial coefficients are very successful and these coefficients are known for nearly 300 electrolytes at room temperature. These same equations effectively predict the properties of mixed electrolytes. A stringent test is offered by the calculation of all of the solubility relationships of the system Na-K-Mg-Ca-Cl-So{sub 4}-H{sub 2}0 and the calculated results of Harvie and Weare show excellent agreement with

  10. Kinetics of first order phase transformation in metals and alloys. Isothermal evolution in martensite transformation

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2011-01-01

    The 11th lecture about microstructures and fluctuation in solids reports on the martensitic phase transformation of alkali metals and alloys. The martensitic transformation is a diffusionless first order phase transformation. Martensitic transformations are classified into two with respect to kinetics, one is isothermal transformation and the other is athermal transformation. The former transformation depends upon both temperature and time, but the latter solely depends on temperature. The former does not have a definite transformation start temperature but occurs after some finite incubation time during isothermal holding. The isothermal martensitic transformation is changed to the athermal one under high magnetic field, and also the reverse transformation occurs under the application of hydrostatic pressure. The former phenomena were observed in Fe-Ni-Mn alloys, Fe-Ni-Cr alloys and also the reverse transformation in Fe-3.1at%Ni-0.5at%Mn alloys. The athermal transformation was observed in Li and Na metals at 73 and 36 K, respectively. A neutron diffraction study has been performed on single crystals of metallic Na. On cooling the virgin sample, the incubation time to transform from the bcc structure to the low-temperature structure (9R structure) is formed to be more than 2h at 38 K, 2 K higher than the transformation temperature of 36 K. The full width of half maximum of the Bragg reflection suddenly increased, due to some deformation introduced by the nucleation of the low-temperature structure. In relation to the deformation, strong extra-diffuse scattering (Huang scattering) was observed around the Bragg reflection in addition to thermal diffuse scattering. The kinetics of the martensitic transformation in In-Tl alloys has been studied by x-ray and neutron diffraction methods. A characteristic incubation time appeared at fixed temperature above Ms, the normal martensitic transformation start temperature. (author)

  11. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    International Nuclear Information System (INIS)

    Naderi, M.; Saeed-Akbari, A.; Bleck, W.

    2008-01-01

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s -1 to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases

  12. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, M. [Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Shariati Street, Arak (Iran, Islamic Republic of)], E-mail: malek.naderi@iehk.rwth-aachen.de; Saeed-Akbari, A.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany)

    2008-07-25

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s{sup -1} to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases.

  13. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E

    2011-01-01

    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  14. Investigations of the reactivity temperature coefficient of the Dresden Technical University training and research reactor

    International Nuclear Information System (INIS)

    Adam, E.; Knorr, J.

    1982-01-01

    Approximate formulas are derived for determining the temperature coefficient of reactivity of the training and research reactor (AKR) of the Dresden Technical University. Values calculated on the basis of these approximations show good agreement with experimentally obtained results, thus confirming the applicability of the formulas to simple systems

  15. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  16. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    KAUST Repository

    Martin, Awaludin; Loh, Wai Soong; Rahman, Kazi Afzalur; Thu, Kyaw; Surayawan, Bambang; Alhamid, M. Idrus; Nasruddin,; Ng, Kim Choon

    2011-01-01

    ) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300

  17. Relations between temperature coefficients of permittivity and elastic compliances in PZT ceramics near the morphotropic phase boundary.

    Science.gov (United States)

    Boudys, M

    1991-01-01

    Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.

  18. Assessment of precipitates of isothermal aged austenitic stainless steel using measurement techniques of ultrasonic attenuation

    International Nuclear Information System (INIS)

    Kim, Hun Hee; Kim, Hak Joon; Song, Sung Jin; Lim, Byeong Soo; Kim, Kyung Cho

    2014-01-01

    AISI 316L stainless steel is widely used as a structural material of high temperature thermoelectric power plants, since austenitic stainless steel has excellent mechanical properties. However, creep damage is generated in these components, which are operated under a high temperature and high pressure environment. Several researches have been done on how microstructural changes of precipitates affect to the macroscopic mechanical properties. And they investigate the relation between ultrasonic parameters and metallurgical results. But, these studies are limited by experiment results only. In this paper, attenuations of ultrasonic with isothermal damaged AISI 316L stainless steel were measured. Also, simulation of ultrasonic attenuation with variation of area fraction and size of precipitates were performed. And, from the measured attenuations, metallographic data and simulation results, we investigate the relations between the ultrasonic attenuations and the material properties which is area fraction of precipitates for the isothermal damaged austenitic stainless steel specimens. And, we studied parametric study for investigation of the relation between ultrasonic parameters and metallurgical results of the isothermal damaged AISI 316L stainless steel specimens using numerical methods.

  19. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    Science.gov (United States)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  20. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  1. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  2. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    Science.gov (United States)

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  3. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    Directory of Open Access Journals (Sweden)

    İsmail Tosun

    2012-03-01

    Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  4. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1977-present, 20C Isotherm Depth

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily 20C Isotherm Depth data (the depth at which the ocean temperature is 20C) from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/...

  5. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, C.Y.; Cai, X.Z.; Jiang, D.Z.; Yu, C.G.; Li, X.X.; Ma, Y.W.; Han, J.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, J.G., E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-01-15

    Highlights: • The temperature feedback coefficient with different moderation ratios for TMSR in thermal neutron region is optimized. • The breeding ratio and doubling time of a thermal TMSR with three different reprocessing schemes are analyzed. • The smaller hexagon size and larger salt fraction with more negative feedback coefficient can better satisfy the safety demands. • A shorter reprocessing time can achieve a better breeding ratio in a thermal TMSR. • The graphite moderator lifespan is compared with other MSRs and discussed. - Abstract: Molten salt reactor (MSR) has fascinating features: inherent safety, no fuel fabrication, online fuel reprocessing, etc. However, the graphite moderated MSR may present positive feedback coefficient which has severe implications for the transient behavior during operation. In this paper, the feedback coefficient and the breeding ratio are optimized based on the fuel-to-graphite ratio variation for a thorium based MSR (TMSR). A certain thermal core with negative feedback coefficient and relative high initial breeding ratio is chosen for the reprocessing scheme analysis. The breeding performances for the TMSR under different online fuel reprocessing efficiencies and frequencies are evaluated and compared with other MSR concepts. The results indicate that the thermal TMSR can get a breeding ratio greater than 1.0 with appropriate reprocessing scheme. The low fissile inventory in thermal TMSR leads to a short doubling time and low transuranic (TRU) inventory. The lifetime of graphite used for the TMSR is also discussed.

  6. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  7. Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW in Indonesia using non-isothermal and isothermal experimental

    Directory of Open Access Journals (Sweden)

    Indra Mamad Gandidi

    2017-09-01

    Full Text Available Municipal solid waste (MSW, disposed of at open dumping sites, poses health risks, contaminates surface water, and releases greenhouse gasses such as methane. However, pyrolysis offers the opportunity to convert MSW into Bio-Oil (BO for clean energy resource. In this paper, an MSW sample consisting of plastic, paper and cardboard, rubber and textiles, and vegetable waste is pyrolysed on a laboratory scale in a fixed-bed vacuum reactor. In the non-isothermal process, the sample was fed into the reactor and then heated. In the isothermal process, the reactor is first heated and then the sample is added. The non-isothermal process created greater BO in both quality and quantity. The BO had a larger amount of gasoline species than diesel-48 fuel, with at 33.44%the BO produced by isothermal pyrolysis and 36.42% in non-isothermal pyrolysis. However the product of isothermal pyrolysis had a higher acid content that reduced its heating value.

  8. Desorption isotherms and isosteric heat of 'cajuzinho-do-cerrado' achenes

    Directory of Open Access Journals (Sweden)

    Karine F. Barbosa

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine the desorption isotherms of 'cajuzinho-do-cerrado' achenes (Anacardium humile St. Hil. in various conditions of temperature and water activity, as well as to select the one that best represents the phenomenon and to determine the isosteric heat of desorption. The fruits were collected at the Emas National Park, in the municipality of Mineiros-GO, Brazil, pulped and then subjected to drying in silica gel at temperature of 25 ± 2 °C until the moisture contents of 17.6, 13.6, 11.1, 8.7 and 5.3 (d.b.%. After drying, the desorption isotherms were determined by the indirect static method. The water activity (Aw was determined at different temperatures, and the achenes were placed in a B.O.D. chamber, regulated at 10, 20, 30 and 40 °C. Data of hygroscopic equilibrium moisture content were fitted to different mathematical models through non-linear regression analysis, using the Gauss-Newton method. The Copace model was the one that best represented the hygroscopicity of 'cajuzinho-do-cerrado' achenes, while the integral isosteric heat of desorption of 'cajuzinho-do-cerrado' achenes for the moisture content range of 4.51 to 13.40 (% d.b. varied from 2,734.82 to 2,548.49 kJ kg-1.

  9. Thermal-mechanical and isothermal fatigue of IN 792 CC

    International Nuclear Information System (INIS)

    Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.

    1997-01-01

    The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)

  10. Loop-Mediated Isothermal Amplification Using a Lab-on-a-Disc Device with Thin-film Phase Change Material.

    Science.gov (United States)

    Ko, Junguk; Yoo, Jae-Chern

    2018-03-05

    The design and fabrication of temperature measurement systems that facilitate successful realization of DNA amplification using a lab-on-a-disc (LOD) device are a highly challenging task. The major challenge lies in the fact that such a system must be directly attached to a heating chamber in a way that enables the accurate measurement of temperature of the chamber while allowing the LOD to rotate. This paper presents a temperature control system for implementing isothermal amplification of DNA samples using an LOD device. The proposed system utilizes a thin-film phase change material and non-contact heating system to remotely measure the actual temperature of the chamber and, if required, rapidly heat it to the desired temperature. The results of the experiments performed in this study demonstrate that the proposed system provides an automated platform for molecular amplification and exhibits an operational performance comparable to that of traditional microcentrifuge tube-based isothermal amplification systems.

  11. Application of a new method for data analysis of isothermal titration calorimetry in the interaction between human serum albumin and Ni{sup 2+}[Serum albumin; Nickel; Isothermal titration calorimetry; Calorimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Saboury, Ali Akbar. E-mail: saboury@chamran.ut.ac.ir

    2003-12-01

    The interaction of human serum albumin (HAS) with divalent nickel ion was studied by isothermal titration calorimetry (ITC) in 30 mM Tris buffer, pH 7.0. There is a set of eight identical and independent binding sites for nickel ions on the protein at the temperature of 300 K. A new calorimetric data analysis allows the determination of the complete set of thermodynamic parameters. The binding isotherm for nickel-HSA interaction is easily obtained by carrying out two different ITC experiments. In the first experiment, the enthalpy of binding for one mole of nickel ion to one mole of binding site on HSA ({delta}H=-36.5 kJ) is obtained, and is used in a second experiment to determine the binding isotherm and to find the number of binding sites (g=8) and the equilibrium constant (K=0.57 {mu}M{sup -1})

  12. Vapor pressures, osmotic and activity coefficients for (LiBr + acetonitrile) between the temperatures (298.15 and 343.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Nasirzadeh, Karamat E-mail: karamat.nasirzadeh@chemie.uni-regensburg.de; Neueder, Roland; Kunz, Werner

    2004-06-01

    Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol {center_dot} kg{sup -1}. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg-Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.

  13. Metallographic Study of the Isothermal Transformation of Beta Phase in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Oestberg, G

    1960-06-15

    Observations of the structure of commercial zircaloy-2 have been made in the microscope showing that the high temperature beta phase is transformed isothermally at lower temperatures into alpha plus secondary precipitate. The alpha occurs mainly as Widmanstaetten plates developed by a shear mechanism. The secondary precipitate is formed from the beta - alpha structure at the phase boundary between these phases. This precipitation of particles of secondary phase occurs on account of a eutectoid reaction, alpha also being formed. A time-temperature transformation diagram has been constructed from the observations.

  14. Analysis of Moderator Temperature Reactivity Coefficient of the PWR Core Using WIMS-ANL

    International Nuclear Information System (INIS)

    Tukiran; Rokhmadi

    2007-01-01

    The Moderator Temperature Reactivity Coefficient (MTRC) is an important parameter in design, control and safety, particularly in PWR reactor. It is then very important to validate any new processed library for an accurate prediction of this parameter. The objective of this work is to validate the newly WIMS library based on ENDF/B-VI nuclear data files, especially for the prediction of the MTRC parameter. For this purpose, it is used a set of light water moderated lattice experiments as the NORA experiment and R1-100H critical reactors, both of reactors using UO 2 fuel pellet. Analysis is used with WIMSD/4 lattice code with original cross section libraries and WIMS-ANL with ENDF/B-VI cross section libraries. The results showed that the moderator temperatures reactivity coefficients for the NORA reactor using original libraries is - 5.039E-04 %Δk/k/℃ but for ENDF/B-VI libraries is - 2.925E-03 %Δk/k/℃. Compared to the designed value of the reactor core, the difference is in the range of 1.8 - 3.8 % for ENDF/B-IV libraries. It can be concluded that for reactor safety and control analysis, it has to be used ENDF/B- VI libraries because the original libraries is not accurate any more. (author)

  15. Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2017-10-01

    We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative below the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i}  ≈ 0–0.8, the cutoff lies in the range ω{sub c}  ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β  = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.

  16. Experimental determination of the distribution coefficient (Kd) of lead and barium in soils of semiarid region of Bahia, Brazil

    International Nuclear Information System (INIS)

    Santos, Mariana M.; Fernandes, Heloisa H.F; Pontedeiro, Elizabeth M.; Su, Jian

    2013-01-01

    To determine the concentration of heavy metals and other contaminants in soils, aimed at evaluating the environmental impact, the use of the distribution coefficient is required (Kd), defined as the relationship between the concentrations adsorbed and in solution. The objective of this study was to determine the rates for the Lead and Barium metals in soil collected in Caetite, the state of Bahia, in two different depths. The importance of determining the distribution coefficient lies in the fact that being performed using a tropical soil. For the isotherms of Kd was used batch test method by adsorption to obtain the final concentrations. The first step was to determine the best ratio soil: solution obtained after equilibration time and finally the equilibrium concentration of the contaminant. Were also calculated percentages of the metal adsorbed by the soil and the amount of solute by the adsorbent. With the values obtained in experiments and using Mathematica 8.0 software, were made graphics equilibrium concentration versus quantity adsorbed (C vs. S). It can also plot isotherms for different models of Kd: linear, Langmuir and Freundlich in order to determine which adsorption model would fit best to the measured data and thus determine the distribution coefficient of the metal in the soil analyzed. The Freundlich isotherm was better adapted to the points of the two metals in both soils

  17. Numerical study of transient laminar natural convection over an isothermal sphere

    International Nuclear Information System (INIS)

    Yang, Shu; Raghavan, Vasudevan; Gogos, George

    2007-01-01

    The full Navier-Stokes equations and the energy equation for laminar natural convection heat transfer over an isothermal sphere have been discretized using the finite control volume formulation and solved by employing the SIMPLEC method. Transient and 'steady-state' results have been obtained for a wide range of high Grashof numbers (10 5 ≤ Gr ≤ 10 9 ) and a wide range of Prandtl numbers (Pr = 0.02, 0.7, 7 and 100). Main results are listed below. A plume with a mushroom-shaped cap forms above the sphere and drifts upward continuously with time. The upward movement of the plume cap is slowed as the Prandtl number increases. The size and the level of temperature of the transient cap and plume stem decrease with increasing Gr and Pr. The time at which the 'steady-state' is reached, increases with the Prandtl number. The presence of a vortex in the wake of the sphere has been predicted and has been clearly delineated as a function of both Grashof and Prandtl numbers. The overall Nusselt numbers and total drag coefficients for the range of Grashof and Prandtl numbers investigated are presented and they are in very good agreement with studies available in the literature

  18. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Zhong, Xinxin; Zhao, Yi; Cao, Jianshu

    2014-01-01

    The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)

  19. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    Science.gov (United States)

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. A variational centroid density procedure for the calculation of transmission coefficients for asymmetric barriers at low temperature

    International Nuclear Information System (INIS)

    Messina, M.; Schenter, G.K.; Garrett, B.C.

    1995-01-01

    The low temperature behavior of the centroid density method of Voth, Chandler, and Miller (VCM) [J. Chem. Phys. 91, 7749 (1989)] is investigated for tunneling through a one-dimensional barrier. We find that the bottleneck for a quantum activated process as defined by VCM does not correspond to the classical bottleneck for the case of an asymmetric barrier. If the centroid density is constrained to be at the classical bottleneck for an asymmetric barrier, the centroid density method can give transmission coefficients that are too large by as much as five orders of magnitude. We follow a variational procedure, as suggested by VCM, whereby the best transmission coefficient is found by varying the position of the centroid until the minimum value for this transmission coefficient is obtained. This is a procedure that is readily generalizable to multidimensional systems. We present calculations on several test systems which show that this variational procedure greatly enhances the accuracy of the centroid density method compared to when the centroid is constrained to be at the barrier top. Furthermore, the relation of this procedure to the low temperature periodic orbit or ''instanton'' approach is discussed. copyright 1995 American Institute of Physics

  1. Numerical studies of pulsating buoyant plume in isothermal and non isothermal situations

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Mohanty, Ananya; Das, D.

    2014-01-01

    A computational study has been carried out for predicting the behaviour of buoyant plume in isothermal and non isothermal configuration. General simulation objectives of any buoyant flow simulation are macroscopic in nature and deals with the grass data in respect of buoyancy induced scalar transport. However, the accuracy of predicting such macroscopic parameters is a strong function of several other microscopic parameters which govern the overall macroscopic behaviour. Some of the microscopic parameters for analysis could be buoyancy induced stable/unstable flows, relative plume behaviour, baroclinic velocity distribution etc. Only the CFD based flow modelling approach is capable of calculating several of these aspects. LES based modelling scores over the conventional RANS based computational modelling. The primary objective of the present study was to model buoyant plume simulation of different types in order to explore the details regarding plume and flow structure, instabilities and puffing behaviour. One of the influencing parameters on the overall plume behaviour is the buoyancy resolution index i.e. fineness of chosen grid in relation to the buoyancy intensity and other hydrodynamic parameters. The grid sensitivity studies have been carried out to find out the optimum value grid size by way of buoyant pool fire simulations. Comparative simulation has also been made for a square and round pool fire and it was found that for engineering simulations equivalent area square pool modeling is sufficient. Using the optimum value of grid size and square pool shape simulations have been carried out for different value of fire intensity. The flame puffing frequency as calculated by the reported correlation was compared against the computationally observed puffing frequency and the agreement was generally found to be excellent. Besides these results the comparisons of predicted peak flames temperatures data for various case studies with the available experimental data

  2. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  3. Bithermal and isothermal experimental test design and resulting influence on the pore formation during high-temperature-induced fatigue of the alloy 800 H

    International Nuclear Information System (INIS)

    Hurta, S.

    1991-01-01

    For investigating the damaging mechanism, bithermal TMF tests have been carried out with the alloy 800H, applying fast pressure half-cycles at low temperature (e.g. 300 C) and slow tensile phases at high temperature (e.g. 700 C). The experimental data thus obtained have been compared with the results of isothermal tests performed at 700 C. Most of the experiments have been performed stress-controlled and with a constant range of plastic strain. Under this regime, deformation is induced in the case of asymmetric test design within the tensile load phase, at various constant tensile stresses each, wheras in the compressive load phase, the stress is constantly increased for compressive stress-governed testing. The results obtained from both test types show that the type of compressive load phase is the factor governing the efficiency of pore formation. (orig.) [de

  4. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  5. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)

    2009-08-15

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas

  6. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    International Nuclear Information System (INIS)

    Gordillo-Vazquez, F J; Donko, Z

    2009-01-01

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly

  7. Adiabatic and isothermal resistivities

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1989-01-01

    The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester

  8. Isothermal reaction calorimetry as a tool for kinetic analysis

    International Nuclear Information System (INIS)

    Zogg, Andreas; Stoessel, Francis; Fischer, Ulrich; Hungerbuehler, Konrad

    2004-01-01

    Reaction calorimetry has found widespread application for thermal and kinetic analysis of chemical reactions in the context of thermal process safety as well as process development. This paper reviews the most important reaction calorimetric principles (heat-flow, heat-balance, power-compensation, and Peltier principle) and their applications in commercial or scientific devices. The discussion focuses on the different dynamic behavior of the main calorimetric principles during an isothermal reaction measurement. Examples of available reaction calorimeters are further compared considering their detection limit, time constant as well as temperature range. In a second part, different evaluation methods for the isothermally measured calorimetric data are reviewed and discussed. The methods will be compared, focusing especially on the fact that reaction calorimetric data always contains additional informations not directly related to the actual chemical reaction such as heat of mixing, heat of phase-transfer/change processes or simple measurement errors. Depending on the evaluation method applied such disturbances have a significant influence on the calculated reaction enthalpies or rate constants

  9. Effects of alloying and temperature on the high-temperature oxidation of Cr-Cr{sub 2}Nb

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; DeVan, J.H. [Oak Ridge National Lab., TN (United States); Carson, L.J. [Lincoln Univ., PA (United States)

    1993-06-01

    Effects of alloying additions and temperature on isothermal and cyclic oxidation resistance of Cr-Cr{sub 2}Nb alloys were examined for air exposures. An isothermal exposure temperature of 1100C led to rapid reaction of binary Cr-12 at.% Nb as manifested a high oxidation rate and nonprotective behavior. Generally parabolic kinetics, complicated by some isothermal scale cracking, were observed at 900--1000C. Scale damage was exacerbated by thermal cycling. The addition of 8 at.% Al to Cr-12 at.% Nb did not effect cyclic oxidation resistance, but there was some evidence that scale adherence on Cr-6 at.% Nb-8 at.% Al was better than that for binary Cr-6 at.% Nb. Alloying additions of Al (up to 18 at.%) or Re (2 at.%) did not improve the isothermal oxidation resistance of Cr-12 at.% Nb. However, the tendency for scale damage during both isothermal and thermal cycling exposures suggests that alloying additions that specifically improve scale plasticity or modify growth stresses could be effective for Cr-Nb alloys. 10 refs, 9 figs, 1 tab.

  10. Natural convection in a horizontal channel provided with heat generating blocks: Discussion of the isothermal blocks validity

    International Nuclear Information System (INIS)

    Mouhtadi, D.; Amahmid, A.; Hasnaoui, M.; Bennacer, R.

    2012-01-01

    Highlights: ► We examine the validity of isothermal model for blocks with internal heat generation. ► Criteria based on comparison of total and local quantities are adopted. ► Thermal conductivity and Biot number required for the validity of the isothermal model are dependent on the Rayleigh number. ► The validity conditions are also affected by the multiplicity of solutions. - Abstract: This work presents a numerical study of air natural convection in a horizontal channel provided with heating blocks periodically distributed on its lower adiabatic surface. The blocks are submitted to a uniform heat generation and the channel upper surface is maintained at a cold constant temperature. The main objective of this study is to examine the validity of the model with isothermal blocks for the system under consideration. Then the calculations are performed using two different models. In the first (denoted Model 1 or M1) the calculations are performed by imposing a uniform volumetric heat generation inside the blocks. In the second model (denoted Model 2 or M2), the blocks are maintained isothermal at the average blocks surface temperature deduced from the Model 1. The controlling parameters of the present problem are the thermal conductivity ratio of the solid block and the fluid (0.1 ⩽ k* = k s /k a ⩽ 200) and the Rayleigh number (10 4 ⩽ Ra ⩽ 10 7 ). The validity of the isothermal model is examined for various Ra by using criteria based on local and mean heat transfer characteristics. It is found that some solutions of the isothermal model do not reproduce correctly the results of the first model even for very large conductivity ratios. The Biot number below which the Model 2 is valid depends strongly on the Rayleigh number and the type of solution.

  11. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  12. Effect of the temperature on the sorption of cadmium in natural clinoptilolite from the State of Chihuahua

    International Nuclear Information System (INIS)

    Arambula V, V.

    2004-01-01

    The investigation works related with the removal of cadmium of aqueous solutions, they make emphasis in a great number of materials that were used for this end, as well as in the parameters that influence, such as the temperature and the pH. In this work it was investigated the effect of the temperature on the removal of cadmium, using a zeolitic mineral native of the State of Chihuahua for they were determined it kinetic parameters, those diffusivity coefficients and the retention mechanisms (adsorption or ion exchange) involved. The clinoptilolite samples were characterized by means of scanning electron microscopy in high vacuum (MEB), elementary microanalysis (EDS) and X-ray diffraction (XRD). The experimental part consisted on putting in contact solutions of cadmium with the mineral, varying the temperature, the time of contact or the concentration; the quantification of sodium and cadmium in the liquid phase was carried out by means of atomic absorption spectroscopy (EAA). It was determined the time of equilibrium for the removal process. The temperature and the concentration influence on the process of sorption of cadmium in the zeolitic mineral (kinetics and isotherms). The kinetic model that describes better the sorption process of cadmium in the clinoptilolite was the pseudo-2 order. The apparent coefficient of diffusivity presented a greater value conforms to increment the temperature. The results of the isotherm of adsorption of cadmium presented a better adjustment to the Freundlich model. The quantity of cadmium retained by the mineral it was greater than the quantity of sodium found in the solution after the contact between the solution of cadmium and the zeolitic mineral and in accordance with the obtained separation factors, the natural zeolite shows a greater affinity for the cadmium that for the sodium (α > 1). (Author)

  13. Non-isothermal modelling of the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.

    2009-01-01

    An non-isothermal model for the all-vanadium redox flow battery (RFB) is presented. The two-dimensional model is based on a comprehensive description of mass, charge, energy and momentum transport and conservation, and is combined with a global kinetic model for reactions involving vanadium species. Heat is generated as a result of activation losses, electrochemical reaction and ohmic resistance. Numerical simulations demonstrate the effects of changes in the operating temperature on performance. It is shown that variations in the electrolyte flow rate and the magnitude of the applied current substantially alter the charge/discharge characteristics, the temperature rise and the distribution of temperature. The influence of heat losses on the charge/discharge behaviour and temperature distribution is investigated. Conditions for localised heating and membrane degradation are discussed.

  14. Thermodynamic analysis of water vapor sorption isotherms and mechanical properties of selected paper-based food packaging materials.

    Science.gov (United States)

    Rhim, Jong-Whan; Lee, Jun Ho

    2009-01-01

    Adsorption isotherms of 3 selected paper-based packaging materials, that is, vegetable parchment (VP) paper, Kraft paper, and solid-bleached-sulfate (SBS) paperboard, were determined at 3 different temperatures (25, 40, and 50 degrees C). The GAB isotherm model was found to fit adequately for describing experimental adsorption isotherm data for the paper samples. The monolayer moisture content of the paper samples decreased with increase in temperature, which is in the range of 0.0345 to 0.0246, 0.0301 to 0.0238, and 0.0318 to 0.0243 g water/g solid for the MG paper, the Kraft paper, and the SBS paperboard, respectively. The net isosteric heats of sorption (q(st)) for the paper samples decreased exponentially with increase in moisture content after reaching the maximum values of 18.51, 27.39, and 26.80 kJ/mol for the VP paper, the Kraft paper, and the SBS paperboard, respectively, at low-moisture content. The differential enthalpy and entropy of 3 paper samples showed compensation phenomenon with the isokinetic temperature of 399.7 K indicating that water vapor had been adsorbed onto the paper samples with the same mechanism. Depending on the paper material, tensile strength of paper samples was affected by moisture content.

  15. Effect of aspect ratio on natural convective heat transfer adjacent to a vertival isothermal cylinder immersed in pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Eum, Yong Kyoon; Park, Sung Soon

    1990-01-01

    A numerical analysis is performed about the effect of aspect ratio on heat transfer adjacent to a vertical-isothermal cylinder of 0 deg C in pure water. The numerical results for the effect of aspect ratio are presented for ambient water temperature from 1.0 deg C to 15.0 deg C. They include velocity profiles, temperature profiles and mean Nusselt number for the entire flow field. The mean Nusselt numbers of vertival-isothermal cylinder are compared with that of vertival-isothermal plate in increasing aspect ratio of cylinder. Furthermore, the mean Nusselt numbers of unsteady region in the range of 0.084< R<0.328 are obtained by curve-fitting. The natural convection caused by phase change was investigated by experiments when the vertical ice cylinder was immersed in the pure water of which the tempetature range is from 2.0 to 10.0 deg C. Each figure shows a time-exposure photograph of flow occuring at the respective ambient water temperature conditions. As the ambient water temperature is increased from 2.0 to 10.0 deg C, the regimes of upward steady state flows, steady state dual flows and downward steady state flows are observed. Also, the variations of shapes of melting ice cylinder are investigated.(Author)

  16. Non-Isothermal Gas-Based Direct Reduction Behavior of High Chromium Vanadium-Titanium Magnetite Pellets and the Melting Separation of Metallized Pellets

    Directory of Open Access Journals (Sweden)

    Jue Tang

    2017-04-01

    Full Text Available The non-isothermal reduction behavior of high chromium vanadium-titanium magnetite (HCVTM pellets by gas mixtures was investigated using different heating rates (4, 8, and 12 K/min and varied gas compositions (H2/CO = 2/5, H2/CO = 1/1, and H2/CO = 5/2 volume ratios; the pellets were then used for melting separation. It was observed that the temperature corresponding to the maximum reduction ratio increased with the increasing heating rate. The HCVTM pellets reached the same final reduction ratio under a given reducing gas composition, although the heating rates were different. Under the same heating rate, the gas mixture with more H2 was conducive for obtaining a higher reduction ratio. The phase transformations during the non-isothermal reduction were ordered as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; V1.7Cr0.3O3 → V2O3 → Fe2VO4; Fe1.2Cr0.8O3 → Cr2O3 → FeCr2O4. The non-isothermal reduction kinetic model was established based on the unreacted core model with multiple reaction interfaces. The correlation coefficients were greater than 0.99, revealing that this kinetic model could properly describe the non-isothermal reduction of the HCVTM pellets by gas mixtures. Iron containing V and Cr along with the Ti-rich slag was obtained through the melting separation of the metallized HCVTM pellets. The mass fractions and recovery rates of Fe, V, and Cr in the iron were 93.87% and 99.45%, 0.91% and 98.83%, and 0.72% and 95.02%, respectively. The mass fraction and recovery rate of TiO2 in the slag were 38.12% and 95.08%, respectively.

  17. On determination of enthalpies of complex formation reactions by means of temperature coefficient of complexing degree

    International Nuclear Information System (INIS)

    Povar, I.G.

    1995-01-01

    Equations describing the relation between temperature coefficient of ∂lnα/∂T complexing degree and the sum of changes in the enthalpy of complex formation of the composition M m L n δH mn multiplied by the weight coefficients k mm , are presented. A method to determine changes in the enthalpy of certain ΔH mm reactions from ∂lnα/∂T derivatives has been suggested. The best approximating equation from lnα/(T) dependence has been found. Errors of thus determined δH mm values are estimated and the results of calculation experiment for the system In 3+ -F - are provided. 10 refs., 2 figs., 3 tabs

  18. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  19. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  20. Methods of Temperature and Emission Measure Determination of Coronal Loops

    Science.gov (United States)

    Cirtain, J. W.; Schmelz, J. T.; Martens, P. C. H.

    2002-05-01

    Recent observational results from both SOHO-EIT and TRACE indicate that coronal loops are isothermal along their length (axially). These results are obtained from a narrowband filter ratio method that assumes that the plasma is isothermal along the line of sight (radially). However, these temperatures vary greatly from those derived from differential emission measure (DEM) curves produced from spectral lines recorded by SOHO-CDS. The DEM results indicate that the loops are neither axially nor radially isothermal. This discrepancy was investigated by Schmelz et al. (2001). They chose pairs of iron lines from the same CDS data set to mimic the EIT and TRACE loop results. Ratios of different lines gave different temperatures, indicating that the plasma was not radially isothermal. In addition the results indicated that the loop was axially isothermal, even though the DEM analysis of the same data showed this result to be false. Here we have analyzed the EIT data for the CDS loop published by Schmelz et al. (2001). We took the ratios of the 171-to-195 and 195-to-284 filter data, and made temperature maps of the loop. The results indicate that the loop is axially isothermal, but different temperatures were found for each pair of filters. Both ratio techniques force the resultant temperature to lie within the range where the response functions (for filters) or the emissivity functions (for lines) overlap; isothermal loops are therefore a byproduct of the analysis. This conclusion strengthens support for the idea that temperature and emission measure results from filter ratio methods may be misleading or even drastically wrong. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  1. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  2. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    Science.gov (United States)

    Zhang, Nan

    constructed by calculating the theoretical M-K model with Newton method and backtracking algorithm. The obtained FLDs are found to be instructive and will be applied in the post-processing of FE simulation for stamping so as to identify the critical area of failure. The developed constitutive model and modified yield function are implemented in the form of user defined subroutine (VUMAT) in ABAQUS/Explicit. An explicit stress integration algorithm has been selected for the stress integration with rate-depend viscoplasticity model at temperature higher than 150°. In the low temperature range, the Newton method and cutting plane algorithm are utilized to update the stress tensor with a classic elastoplastic constitutive model. To validate the VUMAT, a non-isothermal tensile testing has been performed with aids of infrared thermal camera and DIC. The heat transfer coefficients in FE model are calibrated with captured thermal images. With appropriate selection of mesh size and mass scaling factor, the punch load vs. displacement curve obtained from the simulation perfectly correlates the experimental result.

  3. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...

  4. High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs

    International Nuclear Information System (INIS)

    Bachmann, B; Ekkert, K; Bachmann, J-P; Marques, J-L; Schein, J; Kozakov, R; Gött, G; Schöpp, H; Uhrlandt, D

    2013-01-01

    In this paper we introduce an experimental technique that allows for high-speed, three-dimensional determination of electron density and temperature in axially symmetric free-burning arcs. Optical filters with narrow spectral bands of 487.5–488.5 nm and 689–699 nm are utilized to gain two-dimensional spectral information of a free-burning argon tungsten inert gas arc. A setup of mirrors allows one to image identical arc sections of the two spectral bands onto a single camera chip. Two-different Abel inversion algorithms have been developed to reconstruct the original radial distribution of emission coefficients detected with each spectral window and to confirm the results. With the assumption of local thermodynamic equilibrium we calculate emission coefficients as a function of temperature by application of the Saha equation, the ideal gas law, the quasineutral gas condition and the NIST compilation of spectral lines. Ratios of calculated emission coefficients are compared with measured ones yielding local plasma temperatures. In the case of axial symmetry the three-dimensional plasma temperature distributions have been determined at dc currents of 100, 125, 150 and 200 A yielding temperatures up to 20000 K in the hot cathode region. These measurements have been validated by four different techniques utilizing a high-resolution spectrometer at different positions in the plasma. Plasma temperatures show good agreement throughout the different methods. Additionally spatially resolved transient plasma temperatures have been measured of a dc pulsed process employing a high-speed frame rate of 33000 frames per second showing the modulation of the arc isothermals with time and providing information about the sensitivity of the experimental approach. (paper)

  5. Kinetics of isothermal annealing of hypochlorite in γ-irradiated potassium chlorate

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Patil, S.F.; Patil, B.T.

    1977-01-01

    The kinetics of isothermal annealing of hypochlorite formed in the gamma radiolysis of potassium chlorate crystals have been studied at different temperatures in the range of 100-160 deg C. The hypochlorite is found to anneal by a combination of first and second order processes, the former being fast, virtually reaching completion within a few hours. It is then followed by a slow second order process. (authors)

  6. Rate coefficient for the reaction N + NO

    Science.gov (United States)

    Fox, J. L.

    1994-01-01

    Evidence has been advanced that the rate coefficient for the reaction N + NO right arrow N2 + O has a small positive temperature dependence at the high temperatures (900 to 1500 K) that prevail in the terrestrial middle and upper thermosphere by Siskind and Rusch (1992), and at the low temperatures (100 to 200 K) of the Martian lower thermosphere by Fox (1993). Assuming that the rate coefficient recommended by the Jet Propulsion Laboratory evaluation (DeMore et al., 1992) is accurate at 300 K, we derive here the low temperature value of the activation energy for this reaction and thus the rate coefficient that best fits the Viking 1 measured NO densities. We find that the fit is acceptable for a rate coefficient of about 1.3 x 10(exp -10)(T/300)(exp 0.5)exp(-400/T) and better for a value of about 2.5 x 10(exp -10)(T/300)(exp 0.5)exp(-600/T)cu cm/s.

  7. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin.

    Science.gov (United States)

    Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F

    2003-04-01

    We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.

  8. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  9. Isothermal dehydration of thin films of water and sugar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heyd, R. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Rampino, A. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Bellich, B.; Elisei, E. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Cesàro, A. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Elettra Sincrotrone Trieste, Area Science Park, I-34149 Trieste (Italy); Saboungi, M.-L. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Univ-UPMC, Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris (France)

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  10. Performance of tubes-and plate fins heat exchangers

    International Nuclear Information System (INIS)

    Rosman, E.C.

    1979-11-01

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author) [pt

  11. Temperature dependence of volume thermal expansion for NaCl and KCl crystals

    International Nuclear Information System (INIS)

    Fang Zhenghua

    2005-01-01

    A new relation for predicting volume thermal expansion of alkali halides at high temperatures is derived based on the assumption that the two different diffusional driving force models presented, respectively, by Sharma and Sharma (Indian J. Pure Appl. Phys. 29 (1991) 637) and Singh (J. Phys. Chem. Solids 63 (2002) 1935) are equivalent. The input parameters needed for the calculation are the volume thermal expansion coefficient and the isothermal Anderson-Gruneisen parameter, both at room temperature and zero pressure, which are available from the literature. The tests on NaCl and KCl crystals demonstrate that the agreement between the calculated results obtained by this relation and the corresponding experimental data is very good. The applicability of the relation as well as some thermodynamic relationships included in its derivation is discussed

  12. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  13. Isothermal structural relaxation of Fe40Ni40B20 metallic glass in the relaxation times spectrum model

    NARCIS (Netherlands)

    Csach, K; Haruyama, O; Kasardova, A; Ocelik, Vaclav

    1997-01-01

    The structural relaxation of amorphous as-quenched Fe40Ni40B20 sample was investigated during isothermal annealing at temperatures close to 400 degrees C by: (i) the residual electrical resistance measured at liquid N-2 temperature; (ii) the in-situ electrical resistance; and (iii) the length

  14. Development of zircaloy deformation model to describe the zircaloy-4 cladding tube during accidents

    International Nuclear Information System (INIS)

    Raff, S.

    1978-01-01

    The development of a high-temperature deformation model for Zircaloy-4 cans is primarily based on numerous well-parametrized tensile tests to get the material behaviour including statistical variance. It is shown that plastic deformation may be described by a power creep law, the coefficients of which show strong dependence on temperature in the relevant temperature region. These coefficients have been determined. A model based on these coefficients has been established which, apart from best estimate deformation, gives upper and lower bounds of possible deformation. The model derived from isothermal uniaxial tests is being verified against isothermal and transient tube burst tests. The influence of preoxidation and increased oxygen concentration during deformation is modeled on the basis of the pseudobinary Zircaloy-oxygen phase diagram. (author)

  15. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    OpenAIRE

    Yi Wang; Yan Wang; Ai-Jing Ma; Dong-Xun Li; Li-Juan Luo; Dong-Xin Liu; Dong Jin; Kai Liu; Chang-Yun Ye

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61?65??C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primer...

  16. Isothermal phase equilibria for the (HFC-32 + HFC-134a) mixed-gas hydrate system

    International Nuclear Information System (INIS)

    Miyauchi, Hiroshi; Yasuda, Kenjiro; Matsumoto, Yuuki; Hashimoto, Shunsuke; Sugahara, Takeshi; Ohgaki, Kazunari

    2012-01-01

    Highlights: ► Structural phase transition results in the heterogeneous azeotropic-like behaviour. ► HFC-134a molecules, in spite of an s-II former, occupy the large cages of s-I. ► Negative azeotropic-like behaviour becomes more remarkable at higher temperatures. - Abstract: Isothermal phase equilibria (pressure-composition relations in hydrate, gas, and aqueous phases) in the {difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a)} mixed-gas hydrate system were measured at the temperatures 274.15 K, 279.15 K, and 283.15 K. The heterogeneous azeotropic-like behaviour derived from the structural phase transition of (HFC-32 + HFC-134a) mixed-gas hydrates appears over the whole temperature range of the present study. In addition to the heterogeneous azeotropic-like behaviour, the isothermal phase equilibrium curves of the (HFC-32 + HFC-134a) mixed-gas hydrate system exhibit the negative homogeneous azeotropic-like behaviour at temperatures 279.15 K and 283.15 K. The negative azeotropic-like behaviour, which becomes more remarkable at higher temperatures, results in the lower equilibrium pressure of (HFC-32 + HFC-134a) mixed-gas hydrates than those of both simple HFC-32 and HFC-134a hydrates. Although the HFC-134a molecule forms the simple structure-II hydrate at the temperatures, the present findings reveal that HFC-134a molecules occupy a part of the large cages of the structure-I mixed-gas hydrate.

  17. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  18. Experimental study of a laboratory concrete material representative of containment buildings: desorption isotherms and permeability determination

    International Nuclear Information System (INIS)

    Semete, P.; Fevrier, B.; Delorme, J.; Sanahuja, J.; Desgree, P.; Le Pape, Y.

    2015-01-01

    The isotherm sorption curve is a first order parameter for the calculations of concrete drying and/or creep using Finite Element Analysis. An experimental campaign was undertaken by EDF MMC in order to characterize the first desorption isotherm at room temperature of a laboratory material representative of concrete containment buildings. Long term drying tests were carried out on cement paste and on three samples geometries on concrete (with radial and axial one-dimensional drying on thin disks and multi-dimensional drying on Representative Elementary Volumes). The measurements results (porosity, densities and mass loss curves) are provided and the isotherms obtained for the four different configurations are compared. Several analyses of the results are proposed including the assessment of a criterion for the determination of the moisture content final balance (estimation of the asymptotic mass loss) and the back-analysis of equivalent permeability. (authors)

  19. Evaluation of the quasi-isothermal method of modulated DSC for heat capacity measurement

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Nagarajan, K.

    2004-01-01

    Heat capacity measurements were carried out on ThO 2 by Modulated Differential Scanning Calorimetry (MDSC) using quasi-isothermal method in the temperature range 323-723 K. The highest accuracy of the heat capacity data obtained by this method was ± 2-3% which is much lower than that reported in the literature. (author)

  20. Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu

    2017-10-01

    Full Text Available This study investigated the heat problems that occur during the operation of power batteries, especially thermal runaway, which usually take place in high temperature environments. The study was conducted on a ternary polymer lithium-ion battery. In addition, a lumped parameter thermal model was established to analyze the thermal behavior of the electric bus battery system under the operation conditions of the driving cycles of the Harbin city electric buses. Moreover, the quantitative relationship between the optimum heat transfer coefficient of the battery and the ambient temperature was investigated. The relationship between the temperature rise (Tr, the number of cycles (c, and the heat transfer coefficient (h under three Harbin bus cycles have been investigated at 30 °C, because it can provide a basis for the design of the battery thermal management system. The results indicated that the heat transfer coefficient that meets the requirements of the battery thermal management system is the cubic power function of the ambient temperature. Therefore, if the ambient temperature is 30 °C, the heat transfer coefficient should be at least 12 W/m2K in the regular bus lines, 22 W/m2K in the bus rapid transit lines, and 32 W/m2K in the suburban lines.

  1. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    Science.gov (United States)

    Olszacki, M.; Maj, C.; Bahri, M. Al; Marrot, J.-C.; Boukabache, A.; Pons, P.; Napieralski, A.

    2010-06-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 1017 at cm-3 to 1.6 × 1019 at cm-3. The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 1018-1019 at cm-3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  2. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    International Nuclear Information System (INIS)

    Olszacki, M; Maj, C; Al Bahri, M; Marrot, J-C; Boukabache, A; Pons, P; Napieralski, A

    2010-01-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 10 17 at cm −3 to 1.6 × 10 19 at cm −3 . The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 10 18 –10 19 at cm −3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  3. MODELING OF ISOTHERMAL PRECIPITATION KINETICS IN HSLA STEELS AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    X.M. Zhao; D. Wu; L.Z. Zhang; Z.Y. Liu

    2004-01-01

    Microalloying elements in high-strength low-alloy steels, such as Nb, Ti and V, precipitate during hot-rolling processes. On the basis of classical theory of nucleation and growth, quantitative modeling of isothermal precipitation was developed, which was tested by the stress relaxation method, the calculated precipitation-time-temperature curve is in good agreements with the measured results, then the model was applied to predict the precipitation behavior during continuous cooling.

  4. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  5. The Heat Resistance of Microbial Cells Represented by D Values Can be Estimated by the Transition Temperature and the Coefficient of Linear Expansion.

    Science.gov (United States)

    Nakanishi, Koichi; Kogure, Akinori; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2015-01-01

    We previously developed a method for evaluating the heat resistance of microorganisms by measuring the transition temperature at which the coefficient of linear expansion of a cell changes. Here, we performed heat resistance measurements using a scanning probe microscope with a nano thermal analysis system. The microorganisms studied included six strains of the genus Bacillus or related genera, one strain each of the thermophilic obligate anaerobic bacterial genera Thermoanaerobacter and Moorella, two strains of heat-resistant mold, two strains of non-sporulating bacteria, and one strain of yeast. Both vegetative cells and spores were evaluated. The transition temperature at which the coefficient of linear expansion due to heating changed from a positive value to a negative value correlated strongly with the heat resistance of the microorganism as estimated from the D value. The microorganisms with greater heat resistance exhibited higher transition temperatures. There was also a strong negative correlation between the coefficient of linear expansion and heat resistance in bacteria and yeast, such that microorganisms with greater heat resistance showed lower coefficients of linear expansion. These findings suggest that our method could be useful for evaluating the heat resistance of microorganisms.

  6. Isothermal phase (vapour + liquid) equilibrium data for binary mixtures of propene (R1270) with either 1,1,2,3,3,3-hexafluoro-1-propene (R1216) or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane in the temperature range of (279 to 318) K

    International Nuclear Information System (INIS)

    Subramoney, Shalendra Clinton; Nelson, Wayne Michael; Courtial, Xavier; Naidoo, Paramespri; Coquelet, Christophe; Richon, Dominique; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Phase equilibrium data for propene and hexafluoropropylene. • Phase equilibrium data for propene and hexafluoropropylene oxide. • Systems exhibit pressure-maximum azeotropes. • Data well correlated by Peng–Robinson equation of state with the Wong–Sandler mixing rule. - Abstract: Isothermal (vapour + liquid) equilibrium data (P–x–y) are presented for the 1-propene 1,1,2,3,3,3-hexafluoro-1-propene and the 1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary systems. Both binary systems were studied at five temperatures, ranging from (279.36 to 318.09) K, at pressures up to 2 MPa. The experimental (vapour + liquid) equilibrium data were measured using an apparatus based on the “(static + analytic)” method incorporating a single movable Rapid On-Line Sampler-Injector to sample the liquid and vapour phases at equilibrium. The expanded uncertainties are approximated on average as T = 0.07 K, 0.008 MPa, and 0.007 and 0.009 for the temperature, pressure, and the liquid and vapour mole fractions, respectively. A homogenous maximum-pressure azeotrope was observed for both binary systems at all temperatures studied. The experimental data were correlated with the Peng–Robinson equation of state using the Mathias–Copeman alpha function, paired with the Wong–Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The model provided satisfactory representation of the phase equilibrium data measured

  7. Mathematical modeling of the drying of extruded fish feed and its experimental demonstration

    DEFF Research Database (Denmark)

    Haubjerg, Anders Fjeldbo; Simonsen, B.; Løvgreen, S.

    This paper present a mathematical model for the drying of extruded fish feed pellets. The model relies on conservation balances for moisture and energy. Sorption isotherms from literature are used together with diffusion and transfer coefficients obtained from dual parameter regression analysis...... against experimental data. The lumped capacitance method for the estimation of the heat transfer coefficient is used. The model performs well at temperatures ± 5 °C from sorption isotherm specificity, and for different pellet sizes. There is a slight under-estimation of surface temperature of denser feed...

  8. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    Science.gov (United States)

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  9. Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3–Bi(MeO3 compounds

    Directory of Open Access Journals (Sweden)

    Natthaphon Raengthon

    2016-03-01

    Full Text Available The temperature coefficient of permittivity (TCε of BaTiO3–Bi(MeO3 solid solutions were investigated. It was determined that as the tolerance factor was decreased with the addition of Bi(MeO3, the TCε shifted from large negative values to TCε values approaching zero. It is proposed that the different bonding nature of the dopant cation affects the magnitude and temperature stability of the permittivity. This study suggests that the relationship between tolerance factor and TCε can be used as a guide to design new dielectric compounds exhibiting temperature-stable high permittivity characteristics, which is similar to past research on perovskite and pyrochlore-based microwave dielectrics.

  10. Microstructural evolution during isothermal aging and strain-induced transformation followed by isothermal aging in Co-Cr-Mo-C alloy: A comparative study

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Hasanabadi, F.; Saghafi, M.

    2010-01-01

    The present study was undertaken to investigate the effects of isothermal aging (at 850 deg. C for 4, 8, 16 and 24 h) and strain-induced transformation (engineering strains of 10% and 20%) followed by isothermal aging (at 850 deg. C for 4, 8 and 16 h) on the microstructural evolution of a Co-28Cr-5Mo-0.3C alloy. The obtained results showed that isothermal aging at 850 deg. C resulted in the formation of lamellar-type carbides at the grain boundaries. Moreover, X-ray diffraction analysis indicated that isothermal aging of solution treated specimens at 850 deg. C for 24 h did not lead to complete fcc phase transformation to hcp one. In contrast with the isothermally aged specimens, applying plastic deformation to the solutionized samples accelerated the completion and saturation of fcc(metastable) → hcp transformation after 8 h aging at 850 deg. C. In addition, the X-ray diffraction results indicated that implementing isothermal aging of the strain-induced specimens at the higher aging time (16 h) caused the formation of (1 1 1) fcc and (2 0 0) fcc diffraction peaks again. Also, the strain-induced specimens followed by isothermal aging showed higher amount of microhardness as compared with the other specimens aged solely.

  11. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

    Science.gov (United States)

    Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh

    2017-12-01

    Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

  12. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  13. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    Science.gov (United States)

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  14. Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-09-28

    Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind reflected shock waves over the temperature range of 843–1352 K and pressures near 1.5 atm. Hydroxyl radicals were generated by rapid thermal decomposition of tert-butyl hydroperoxide ((CH3)3–CO–OH), and monitored by narrow line width laser absorption of the well-characterized R1(5) electronic transition of the OH A–X (0,0) electronic system near 306.7 nm. Results show that allene reacts faster with OH radicals than propyne over the temperature range of this study. Measured rate coefficients can be expressed in Arrhenius form as follows: kallene+OH(T) = 8.51(±0.03) × 10–22T3.05 exp(2215(±3)/T), T = 843–1352 K; kpropyne+OH(T) = 1.30(±0.07) × 10–21T3.01 exp(1140(±6)/T), T = 846–1335 K.

  15. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    Science.gov (United States)

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The effect of transition metals additions on the temperature coefficient of linear expansion of titanium and vanadium

    International Nuclear Information System (INIS)

    Lesnaya, M.I.; Volokitin, G.G.; Kashchuk, V.A.

    1976-01-01

    Results are reported of an experimental research into the influence of small additions of α-transition metals on the temperature coefficient of linear expansion of titanium and vanadium. Using the configuration model of substance as the basis, expeained are the lowering of the critical liquefaction temperature or the melting point of vanadium and the raising of it, as caused by the addition of metals of the 6 group of the periodic chart and by the addition of metals of the 8 group, respectively, and also a shift in the temperature of the polymorphic α-β-transformation of titanium. Suggested as the best alloying metal for vanadium are tungsten and tantalum; for titaniums is vanadium whose admixtures lower the melting point and shift the polymorphic transformation temperature by as much as 100 to 120 degrees

  17. Measurement of the friction coefficient between UO2 and cladding tube

    International Nuclear Information System (INIS)

    Tachibana, Toshimichi; Narita, Daisuke; Kaneko, Hiromitsu; Honda, Yutaka

    1978-01-01

    Most of fuel rods used for light water reactors or fast reactors consist of the cladding tubes filled with UO 2 -PuO 2 pellets. The measurement was made on the coefficient of static friction and the coefficient of dynamic friction in helium under high contact load on UO 2 /Zry-2 and UO 2 /SUS 316 combined samples at the temperature ranging from room temperature to 400 deg. C and from room temperature to 600 deg. C, respectively. The coefficient of static friction for Zry-2 tube and UO 2 pellets was 0.32 +- 0.08 at room temperature and 0.47 +- 0.07 at 400 deg. C, and increased with temperature rise in this temperature range. The coefficient of static friction between 316 stainless steel tube and UO 2 pellets was 0.29 +- 0.04 at room temperature and 1.2 +- 0.2 at 600 deg. C, and increased with temperature rise in this temperature range. The coefficient of dynamic friction for both UO 2 /Zry-2 and UO 2 /SUS 316 combinations seems to be equal to or about 10% excess of the coefficient of static friction. The coefficient of static friction for UO 2 /SUS 316 combination decreased with the increasing number of repetition, when repeating slip several times on the same contact surfaces. (Kobatake, H.)

  18. Wave propagation in a non-isothermal atmosphere and the solar five-minute oscillations. [Acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi, C; Giovanardi, C [Florence Univ. (Italy). Istituto di Astronomia

    1979-11-01

    This paper presents a detailed discussion of the properties of linear, periodic acoustic waves that propagate vertically in a non-isothermal atmosphere. In order to retain the basic feature of the solar atmosphere we have chosen a temperature profile presenting a minimum. An analytical solution of the problem is possible if T/..mu.., ..mu.. being the mean molecular weight, varies parabolically with height. The purpose of this study is to point out the qualitative differences existing between the case treated here and the customary analysis based on a locally isothermal treatment. The computed velocity amplitude and the temperature-perturbation as functions of the wave period exhibit a sharp peak in the region between 180 and 300 s, thus showing the possibility of interpreting the five-minute oscillations as a resonant phenomenon. The propagating or stationary nature of the waves is investigated by a study of the phase of the proposed analytical solution.

  19. Estimating heat transfer bias of kinetic measurement for polymers by differential scanning calorimetry with isothermal mode; Evaluation de l'erreur due au transfert de chaleur lors des mesures cinetiques dans les polymeres par calorimetrie differentielle a balayage en mode isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Danes, Florin; Garnier, Bertrand [Laboratoire de Thermocinetique, UMR CNRS 6607, Ecole Polytechnique de l' Universite de Nantes, rue C. Pauc, BP50609, 44306 cedex 3, Nantes (France)

    2003-06-01

    The non-uniformity of temperatures in the DSC sample, and the subsequent difference between mean sample temperature and measured one (in the support of the crucible) are identified as the main source of bias for the isothermal mode determination of kinetic characteristics by differential scanning calorimetry. Chemical reactions under consideration are these with important heat effects into thermal insulators, as for example the reticulation of polymeric materials.By introducing an analytical model of heat transfer in DSC reactive samples, we have performed an estimation for the upper limit of the maximal size of samples which corresponds to a given relative error of the reaction rate, as measured by isothermal DSC calorimetry. For example, with a 5% error and flat samples, we have found admissible sample thicknesses which decrease with temperature and are between 1.9 and 3.1 mm for the sulphur vulcanization of a natural rubber and between 0.6 and 1.1 mm for the reticulation of a pre-polymerized epoxy resin. (authors)

  20. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    International Nuclear Information System (INIS)

    Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)

  1. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules; Calculo de la Temperature de Operacion de Celulas Solares en un Panel Fotovoltaico Plano

    Energy Technology Data Exchange (ETDEWEB)

    Chenlo, F.

    2002-07-01

    Two procedures (simplified and complete) to determine the operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show the dependence of this temperature on several environment (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, antirreflexive optical coatings, etc) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author)

  2. Interpretation of Quasi-Isothermal Thermogravimetric Weight Curves

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1979-01-01

    Quasi-isothermal analysis (QIA) is a very useful technique. Compared to conventional non-isothermal thermogravimetry, close-lying reactions can easily be separated by use of this method and kinetic data can be obtained for each intermediate reaction in a single run. This paper discusses the shape...

  3. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    Science.gov (United States)

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  4. Universality of isothermal fluid spheres in Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.

    2016-02-01

    We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.

  5. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers

    International Nuclear Information System (INIS)

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-01-01

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (ΔG o ), change in enthalpy (ΔH o ) and change in entropy (ΔS o ) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures

  6. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers.

    Science.gov (United States)

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (DeltaG degrees), change in enthalpy (DeltaH degrees) and change in entropy (DeltaS degrees) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  7. Precipitation and impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel during isothermal aging

    International Nuclear Information System (INIS)

    Han, Jian; Li, Huijun; Barbaro, Frank; Jiang, Laizhu; Zhu, Zhixiong; Xu, Haigang; Ma, Li

    2014-01-01

    The effect of isothermal aging on precipitation behaviour and Charpy impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel was investigated by means of Thermo-Calc prediction, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Charpy impact toughness testing. The results show that, niobium, vanadium carbides and nitrides, Fe 2 Nb (Laves phase) and Cr 23 C 6 formed after 2 h aging at 800 °C, and the equilibrium solvus temperature of Fe 2 Nb phase increases to above 750 °C, higher than the calculated temperature (730 °C) using Thermo-Calc. After isothermal aging at 750–950 °C, 2 h aging resulted in a decrease in toughness due to the formation of precipitation, especially (Nb,V)(C,N) and Fe 2 Nb. When isothermally aged at 800 °C for up to 24 h, the coarsening rate of Fe 2 Nb particle is much higher than that of (Nb,V)(C,N), and the impact toughness of the steel is dependent on quantity and sizes of (Nb,V)(C,N) and Fe 2 Nb particles

  8. Precipitation and impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel during isothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jian, E-mail: jh595@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Li, Huijun [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Barbaro, Frank [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); CBMM Technology Suisse, 14, Rue du Rhone, Geneve 1204 (Switzerland); Jiang, Laizhu [Baoshan Iron and Steel Co., Ltd., Shanghai 200431 (China); Zhu, Zhixiong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Xu, Haigang; Ma, Li [Baoshan Iron and Steel Co., Ltd., Shanghai 200431 (China)

    2014-08-26

    The effect of isothermal aging on precipitation behaviour and Charpy impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel was investigated by means of Thermo-Calc prediction, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Charpy impact toughness testing. The results show that, niobium, vanadium carbides and nitrides, Fe{sub 2}Nb (Laves phase) and Cr{sub 23}C{sub 6} formed after 2 h aging at 800 °C, and the equilibrium solvus temperature of Fe{sub 2}Nb phase increases to above 750 °C, higher than the calculated temperature (730 °C) using Thermo-Calc. After isothermal aging at 750–950 °C, 2 h aging resulted in a decrease in toughness due to the formation of precipitation, especially (Nb,V)(C,N) and Fe{sub 2}Nb. When isothermally aged at 800 °C for up to 24 h, the coarsening rate of Fe{sub 2}Nb particle is much higher than that of (Nb,V)(C,N), and the impact toughness of the steel is dependent on quantity and sizes of (Nb,V)(C,N) and Fe{sub 2}Nb particles.

  9. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  10. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  11. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, Benjamin [Sustainx, Incorporated, Seabrook, NH (United States)

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  12. A self-consistent model of an isothermal tokamak

    Science.gov (United States)

    McNamara, Steven; Lilley, Matthew

    2014-10-01

    Continued progress in liquid lithium coating technologies have made the development of a beam driven tokamak with minimal edge recycling a feasibly possibility. Such devices are characterised by improved confinement due to their inherent stability and the suppression of thermal conduction. Particle and energy confinement become intrinsically linked and the plasma thermal energy content is governed by the injected beam. A self-consistent model of a purely beam fuelled isothermal tokamak is presented, including calculations of the density profile, bulk species temperature ratios and the fusion output. Stability considerations constrain the operating parameters and regions of stable operation are identified and their suitability to potential reactor applications discussed.

  13. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Sebben, Damien; Pendleton, Phillip

    2015-01-01

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  14. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  15. Absorption coefficient and refractive index changes of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    Effects of applied magnetic field, temperature and dimensions on the optical absorption coefficients (AC) and refractive index (RI) changes of a GaAs quantum ring are investigated in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). To this end, the finite difference method (FDM) is used in order to numerically calculate the energy eigenvalues and eigenstates of the system while the compact density matrix approach is hired to calculate the optical properties. It is shown that application of magnetic field, temperature as well as the geometrical size in the presence of spin-orbit interactions, alter the electronic structure and consequently influence the linear and third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system. Results show an obvious blue shift in optical curves with enhancing external magnetic field and temperature while the increment of dimensions result in red shift.

  16. State-to-state quantum mechanical calculations of rate coefficients for the D+ + H2 → HD + H+ reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Scribano, Y

    2013-10-03

    The dynamics of the D(+) + H2 → HD + H(+) reaction on a recent ab initio potential energy surface (Velilla, L.; Lepetit, B.; Aguado, A.; Beswick, J. A.; Paniagua, M. J. Chem. Phys. 2008, 129, 084307) has been investigated by means of a time-independent quantum mechanical approach. Cross-sections and rate coefficients are calculated, respectively, for collision energies below 0.1 eV and temperatures up to 100 K for astrophysical application. An excellent accord is found for collision energy above 5 meV, while a disagreement between theory and experiment is observed below this energy. We show that the rate coefficients reveal a slightly temperature-dependent behavior in the upper part of the temperature range considered here. This is in agreement with the experimental data above 80 K, which give a temperature independent value. However, a significant decrease is found at temperatures below 20 K. This decrease can be related to quantum effects and the decay back to the reactant channel, which are not considered by simple statistical approaches, such as the Langevin model. Our results have been fitted to appropriate analytical expressions in order to be used in astrochemical and cosmological models.

  17. Derivation of a thermodynamic closure relation in the isothermal-isobaric ensemble using quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Apol, M.E F; Amadei, A; Berendsen, H.J.C.

    1996-01-01

    In an analogous way as was done previously in the canonical ensemble, we derived for dilute gases an approximated thermodynamic closure relation in the isothermal-isobaric ensemble using quasi-Gaussian entropy theory. For the Gamma state, we formulated equations for the temperature dependence of

  18. Kinetics of Isothermal Reactive Diffusion Between Solid Cu and Liquid Sn

    Science.gov (United States)

    O, M.; Suzuki, T.; Kajihara, M.

    2018-01-01

    The Cu/Sn system is one of the most fundamental and important metallic systems for solder joints in electric devices. To realize reliable solder joints, information on reactive diffusion at the solder joint is very important. In the present study, we experimentally investigated the kinetics of the reactive diffusion between solid Cu and liquid Sn using semi-infinite Cu/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted in the temperature range of 533-603 K for various times up to 172.8 ks (48 h). Using annealing, an intermetallic layer composed of Cu6Sn5 with scallop morphology and Cu3Sn with rather uniform thickness is formed at the original Cu/Sn interface in the diffusion couple. The growth of the Cu6Sn5 scallop occurs much more quickly than that of the Cu3Sn layer and thus predominates in the overall growth of the intermetallic layer. This tendency becomes more remarkable at lower annealing temperatures. The total thickness of the intermetallic layer is proportional to a power function of the annealing time, and the exponent of the power function is close to unity at all the annealing temperatures. This means that volume diffusion controls the intermetallic growth and the morphology of the Cu6Sn5/Sn interface influences the rate-controlling process. Adopting a mean value of 0.99 for the exponent, we obtain a value of 26 kJ/mol for the activation enthalpy of the intermetallic growth.

  19. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    OpenAIRE

    Edgar M. Soteras; Julio Gil; Paola Yacanto; Silvana Muratona; Clidia Abaca; María G. Sustersic

    2014-01-01

    The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model ...

  20. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  1. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  2. The static pressure and temperature coefficients of laboratory standard microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1999-01-01

    , for a given type of microphone, can be described by a single function when the coefficients are normalized by their low-frequency value and the frequency is normalized with respect to the individual resonance frequency of the microphone. The theoretical results are supported by experimentally determined...... on an extended lumped parameter representation of the mechanical and acoustic elements of the microphone. The extension involves the frequency dependency of the dynamic diaphragm mass and stiffness as well as a first-order approximation of resonances in the back cavity. It was found that each coefficient...... coefficients for about twenty samples of microphone types B&K 4160 and B&K 4180....

  3. Heat conduction coefficient and coefficient of linear thermal expansion of electric insulation materials for superconducting magnetic system

    International Nuclear Information System (INIS)

    Deev, V.I.; Sobolev, V.P.; Kruglov, A.B.; Pridantsev, A.I.

    1984-01-01

    Results of experimental investigation of heat conduction coefficient and coefficient of linear thermal expansion and thermal shrinkages of the STEF-1 textolite-glass widely used in superconducting magnetic systems as electric insulating and structural material are presented. Samples of two types have been died: sample axisa is perpendicular to a plae of fiberglass layers ad sample axis is parallel to a plane of fiberglass layers. Heat conduction coefficient was decreased almost a five times with temperature decrease from 300 up to 5K and was slightly dependent on a sample type. Temperature variation of linear dimensions in a sample of the first type occurs in twice as fast as compared to the sample of the second type

  4. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  5. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  6. Investigation of bleaching kinetics of the photochromic halogen-copper-cadmium glass

    International Nuclear Information System (INIS)

    Marczuk, K.; Ziemba, B.

    1997-01-01

    The curves of the isothermal glass bleaching kinetics of various conditions of exciting radiation are presented. Different values of radiation power, time of irradiation and temperature of samples were applied. analysis of the relaxation curves made it possible to distinguish three exponential components of the bleaching process with different time constants. For each component the relaxation coefficient has been determined. Basing on temperature dependence of the relaxation coefficients for the isothermal glass bleaching the activation energy for slow (E D = 0.46 eV) and fast (E K = 0.13 eV) colour centre decay process have been determined. (author)

  7. Temperature and orientation dependence of the short-term strength characteristics, Young's modulus, and linear expansion coefficient of ZhS6F alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Svetlov, I L; Sukhanov, N N; Krivko, A I; Roshchina, I N; Khatsinskaia, I M

    1987-01-01

    Experimental data are presented on the temperature dependence of the short- term strength characteristics, Young's modulus, and linear expansion coefficients of single crystals of a nickel alloy, ZhS6F, with crystallographic orientations along the 001, 111, 011, and 112 lines. It is found that the mechanical properties and Young's modulus of the alloy crystals exibit anisotropy in the temperature range 20-900 C. The linear thermal expansion coefficient is isotropic up to 900 C and equal to that of the equiaxed alloy. 10 references.

  8. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    Science.gov (United States)

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  9. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    Science.gov (United States)

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN activated carbon.

  10. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  11. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    Science.gov (United States)

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.

  12. Linear thermal expansion coefficient (at temperatures from 130 to 800 K) of borosilicate glasses applicable for coupling with silicon in microelectronics

    OpenAIRE

    Sinev, Leonid S.; Petrov, Ivan D.

    2017-01-01

    Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...

  13. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  14. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  15. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    International Nuclear Information System (INIS)

    Zvetkov, V.L.; Djoumaliisky, S.; Simeonova-Ivanova, E.

    2013-01-01

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix

  16. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    Energy Technology Data Exchange (ETDEWEB)

    Zvetkov, V.L., E-mail: zvetval@yahoo.com [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria); Djoumaliisky, S.; Simeonova-Ivanova, E. [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria)

    2013-02-10

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix.

  17. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  18. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  19. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  20. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    Science.gov (United States)

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  1. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  2. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  3. Determination and modeling of desorption isotherms of Maria biscuits from different brands

    OpenAIRE

    Pereira, DFC; Correia, PMR; Guiné, Raquel

    2012-01-01

    Biscuits (sweet, strongly sweet, semi-sweet biscuits, crackers, wafers) are characterized by a low moisture content in the final product and high levels of fat and sugar [1]. Dehydrated foods, such as biscuits, are very sensitive to gain moisture from the surrounding atmosphere, resulting in a consequent deterioration. When, at constant temperature, the product's moisture increases from the atmosphere, is obtained the adsorption isotherm and when it loses moisture is obtained the desorption i...

  4. Isothermal Stability and Selected Mechanical Properties of Zr48Cu36Al8Ag8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Błyskun P.

    2017-09-01

    Full Text Available The aim of this work was to investigate the influence of isothermal annealing on the amorphous structure stability of the Zr48Cu36Al8Ag8 alloy. A series of continuous heating examinations was performed on the differential scanning calorimeter in order to determine the temperature limits for isothermal annealing series where the time to crystallization was measured. The obtained results were calculated and a time-temperature-transformation diagram was created and discussed. Static compression test as well as microhardness measurements of the as-quenched samples gave a mechanical properties results supplement. The measured properties (σc = 1800 MPa and 614 HV0.05 are comparable to the literature results for this alloy. Fractographic observations with the scanning electron microscope were also performed in order to prove some plasticity observed during the strength tests.

  5. Mathematical modelling of non-isothermal venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, A. [Isfahan Univ., Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering; Taheri, M.; Fathikakajahi, J. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Chemical Engineering

    2005-06-01

    Venturi scrubbers collect gaseous pollutants and particulate matter from industrial exhaust. This air pollution control device is highly efficient, easy to maintain and has a low initial cost. However, the high pressure drop through the device results in a high running cost. The main mechanism for collecting particulates is the inertial impaction of the particles on the droplets, which occurs due to high velocity between the gas stream and droplets. Droplet acceleration and irreversible drag-force which results from this high relative velocity are responsible for the high pressure drop in this type of scrubber. While several attempts have been made to mathematically model particulate removal in Venturi scrubbers, most models do not consider simultaneous heat and mass transfer. This factor is important because most Venturi scrubbers operate under non-isothermal conditions where the inlet gas is humidified in order to cool it before entering the scrubber. For that reason, the authors developed a more realistic model to determine the effects of heat and mass transfer on the particulate removal efficiency of a non-isothermal Venturi type scrubber. The model considers the effect of droplet size distribution and liquid film flow on the walls. It consists of differential equations for energy, momentum and material exchange. Model results were compared with data from experimental studies and industrial facilities. It was concluded that the removal efficiency of the scrubber is influenced by the inlet humidity temperature of the inlet gas. 26 refs., 1 tab., 10 figs.

  6. Comparative evaluation of fuel temperature coefficient of standard and CANFLEX fuels in CANDU 6

    International Nuclear Information System (INIS)

    Kim, Woosong; Hartant, Donny; Kim, Yonghee

    2012-01-01

    The fuel temperature reactivity coefficient (FTC) of CANDU 6 has become a concerning issue. The FTC was found to be slightly positive for the operating condition of CANDU 6. Since CANDU 6 has unique fuel arrangement and very soft neutron spectrum, its Doppler reactivity feedback of U 238 is rather weak. The upscattering by oxygen in fuel and Pu 239 buildup with fuel depletion are responsible for the positive FTC value at high temperature. In this study, FTC of both standard CANDU and CANFLEX fuel lattice are re evaluated. A Monte Carlo code Serpent2 was chosen as the analysis tool because of its high calculational speed and it can account for the thermal motion of heavy nuclides in fuel by using the Doppler Broadening Rejection Correction (DBRC) method. It was reported that the fuel Doppler effect is noticeably enhanced by accounting the target thermal motion. Recently, it was found that the FTC of the CANDU 6 standard fuel is noticeably enhanced by the DBRC

  7. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    International Nuclear Information System (INIS)

    Nie Chu; Zhou Youhua; Marlow, W H; Hassan, Y A

    2008-01-01

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally

  8. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Nie Chu; Zhou Youhua [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Marlow, W H; Hassan, Y A [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)], E-mail: yhzhou@jhun.edu.cn

    2008-10-15

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally.

  9. Langmuir Isotherm application to the competitive adsorption of Cadmium, Nickel and Zinc on a Bentonite

    International Nuclear Information System (INIS)

    Silva Giraldo, German Dario; Pinzon Bello, Jorge Alejo

    1999-01-01

    In the present work, it was studied the simultaneous adsorption of binary and ternary mixtures of cadmium, nickel and zinc ions in aqueous solution at 25oC over a bentonite from the Cauca Valley, in its native state as well as in its sodium homo ionic form. The Langmuir isotherm, initially introduced by Murali and Aylmore for the competitive adsorption of various adsorbents, adequately describes the simultaneous adsorption of the three ions over the studied bentonite. The lineal correlation coefficient is greater than 0.900 in the major part of the systems. The competitive effect was interpreted by means of the thermodynamic distribution coefficient, Kdm. The degree of adsorption in the binary mixtures is nickel > zinc, cadmium over the natural bentonite, and nickel > cadmium > zinc over the sodium homo ionic form, whereas in the ternary mixture the order Nickel > Cadmium > Zinc is found over both adsorbents

  10. Noise analysis method for monitoring the moderator temperature coefficient of pressurized water reactors: Neural network calibration

    International Nuclear Information System (INIS)

    Thomas, J.R. Jr.; Adams, J.T.

    1994-01-01

    A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base

  11. Radiative mixed convection over an isothermal cone embedded in a porous medium with variable permeability

    KAUST Repository

    El-Amin, Mohamed; Ebrahiem, N.A.; Salama, Amgad; Sun, S.

    2011-01-01

    The interaction of mixed convection with thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approximation incorporating the variation of permeability and thermal conductivity is numerically investigated. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter , the cone angle parameter ?, the radiation-conduction parameter R d, and the surface temperature parameter H. Copyright 2011 M. F. El-Amin et al.

  12. Evaluation of total and partial structure factors, self-diffusion coefficients, and compressibilities of the cadmium-gallium melt

    International Nuclear Information System (INIS)

    Gopala Rao, R.V.; Das, R.

    1988-01-01

    The three partial structure factors S/sub 11/(K), S/sub 22/(K), and S/sub 12/(K) defined by Ashcroft and Langreth are computed with a square-well potential as a perturbation over a hard-sphere potential for different atomic fractions or concentrations of cadmium for Cd-Ga melt at 296 0 C. Also, the number-number, concentration-concentration, and the cross-term number-concentration structure factors due to Bhatia-Thornton have been calculated for the seven concentrations of Cd-Ga melt at that temperature. From these partial structure factors total structure factors are computed and are compared with the experimental results. The total structure factors so computed are found to be in excellent agreement with the measured values except in the long-wavelength limit of S(0). Using the partial structure factors in the long-wavelength limit the isothermal compressibilities have been calculated. From these partial structure factors and by using the linear-trajectory approximation of Helfand, the self-diffusion coefficients D/sub i/'s have also been calculated for various atomic fractions of Cd for Cd-Ga alloy at 296 0 C. From these D/sub i/'s, an estimate of the mutual diffusion coefficients has been made to a good approximation

  13. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India)]. E-mail: aljymittal@yahoo.co.in; Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India); Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India)

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy ({delta}G{sup o}), change in enthalpy ({delta}H{sup o}) and change in entropy ({delta}S{sup o}) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  14. Adsorption isotherms and kinetics for dibenzothiophene on activated

    Indian Academy of Sciences (India)

    Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for ...

  15. A new apparatus for the determination of adsorption isotherms and adsorption enthalpies on microporous and meso-porous media

    International Nuclear Information System (INIS)

    Mouahid, A.

    2010-01-01

    A specific thermostated experimental device comprising a differential heat flow calorimeter coupled with a home built manometric system has been built for the simultaneous determination of adsorption isotherms and adsorption enthalpies. The differential heat flow calorimeter is a Tian Calvet Setaram C80 model which measures the heat flux of a gas and can be operated isothermally, the manometric system is a stainless steel homemade apparatus. This coupled apparatus allows measurements for pressure up to 2.5 MPa and temperature up to 423.15 K. On the one hand, the apparatus and the experimental procedures are described. On the second hand the reliability and reproducibility were established by measuring adsorption isotherms on a benchmark (Filtrasorb F400) at 318.15 K. The gravimetric method has been used at higher pressure at various temperatures. These devices allowed us to study the adsorption of supercritical fluid (nitrogen N 2 , methane CH 4 , carbon dioxide CO 2 ) in activated carbons and microporous or meso-porous silica. The adsorption of methane on a rock of type (TGR) was also studied. These experimental results are used for the study of the interactions fluid / solid that must be taken into account in molecular simulations or DFT theory. (author)

  16. Use of phase change materials during compressed air expansion for isothermal CAES plants

    Science.gov (United States)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  17. Environmental coefficients of the free-field sensitivity of measurement microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Cutanda Henriquez, Vicente; Torras-Rosell, Antoni

    2017-01-01

    The sensitivity of measurement microphones, both pressure and free field, is affected by changes in the environmental conditions, mainly temperature and static pressure. Static pressure and temperature coefficients for the pressure sensitivity have been the object of previous studies focused...... on Laboratory Standard microphones and few working standard microphones. The literature describes frequency dependent values for these coefficients which are used for calibration purposes. However, there is no description of the environmental coefficients of the free-field sensitivity though there have been...... some implementations that attempt to take care of the differences between the coefficients for the two types of sensitivities. Measuring the coefficients in a free field poses some challeng; it is not so easy to change neither the static pressure nor the temperature inside anechoic room within...

  18. Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact

    International Nuclear Information System (INIS)

    Arafa, H. Aly

    2008-01-01

    We present the Peltier coefficient and thermal transport in quantum point contact (QPC), under the influence of external fields and different temperatures. Also we obtain the oscillations of the Peltier coefficient in external fields. Numerical calculations of the Peltier coefficient are performed at different applied voltages, amplitudes and temperatures. The obtained results are consistent with the experimental data in the literature

  19. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  20. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  1. Gas adsorption on commercial magnesium stearate: Effects of degassing conditions on nitrogen BET surface area and isotherm characteristics.

    Science.gov (United States)

    Lapham, Darren P; Lapham, Julie L

    2017-09-15

    Commercial grades of magnesium stearate have been analysed by nitrogen adsorption having been pre-treated at temperatures between 30°C and 110°C and in the as-received state. Characteristics of nitrogen adsorption/desorption isotherms are assessed through the linearity of low relative pressure isotherm data and the BET transform plot together with the extent of isotherm hysteresis. Comparison is made between thermal gravimetric analysis and mass loss on drying. Features of gas adsorption isotherms considered atypical are identified and possible causes presented. It is shown that atypical isotherm features and issues of applying BET theory to the calculation of S BET are linked to the presence of hydrated water and that these depend on the hydration state: being more pronounced for the di-hydrate than the mono-hydrate. Dehydration reduces the extent of atypical features. S BET of a mono-hydrate sample is 5.6m 2 g -1 and 3.2m 2 g -1 at 40°C and 100°C degassing respectively but 23.9m 2 g 1 and 5.9m 2 g -1 for di-hydrate containing samples under comparable degassing. Di-hydrated samples also show S BET >15m 2 g 1 , BET C-values adsorption data. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Isothermal and isochronal annealing experiments on irradiated commercial power VDMOSFETs

    International Nuclear Information System (INIS)

    Jaksic, A.B.; Pejovic, M.M.; Ristic, G.S.

    1999-01-01

    The paper presents results of isothermal and isochronal annealing experiments on several types of gamma-ray irradiated commercial N- and P-channel power VDMOSFETs. Transistors were characterized for their threshold voltage shift and densities of radiation-induced oxide-trap charge and interface traps. The results show that the temperature enhances interface trap formation and oxide-trap charge decay rates, but also contributes to the passivation of interface traps. The study demonstrates that formation and passivation of interface traps are simultaneous processes. At certain conditions (lower temperature and/or positive bias) interface-trap formation dominates. Oppositely, at other conditions (higher temperature and/or negative bias) passivation is predominant. However at some conditions there is a complex interplay between formation and passivation of interface traps, resulting in interface traps increase followed by decrease at later annealing times. No model for interface trap post-irradiation behavior can explain this effect better than the recently proposed H-W model

  3. Thermal stability and temperature coefficients of four rare-earth-cobalt matrix magnets heated in dry air

    Science.gov (United States)

    Strnat, R. M. W.; Liu, S.; Strnat, K. J.

    1982-03-01

    Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.

  4. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  5. Thermodynamic properties of standard seawater: extensions to high temperatures and pressures

    Directory of Open Access Journals (Sweden)

    J. Safarov

    2009-07-01

    Full Text Available Measurements of (p, ρ, T properties of standard seawater with practical salinity S≈35, temperature T=(273.14 to 468.06 K and pressures, p, up to 140 MPa are reported with the reproducibility of the density measurements observed to be in the average percent deviation range Δρ/ρ=±(0.01 to 0.03%. The measurements are made with a newly constructed vibration-tube densimeter which is calibrated using double-distilled water, methanol and aqueous NaCl solutions. Based on these and previous measurements, an empirical expression for the density of standard seawater has been developed as a function of pressure and temperature. This equation is used to calculate other volumetric properties including isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, the thermal pressure coefficient, internal pressure and the secant bulk modulus. The results can be used to extend the present equation of state of seawater to higher temperatures for pressure up to 140 MPa.

  6. Isothermal and non-isothermal infiltration and deuterium transport: a case study in a soil column from a headwater catchment

    Czech Academy of Sciences Publication Activity Database

    Sobotková, M.; Sněhota, M.; Budínová, E.; Tesař, Miroslav

    2017-01-01

    Roč. 65, č. 3 (2017), s. 234-243 ISSN 0042-790X Grant - others:GA ČR(CZ) GA14-03691S Institutional support: RVO:67985874 Keywords : isothermal infiltration * non-isothermal infiltration * column leaching * breakthrough curve * deuterium * viscosity * capillary trapping * entrapped air * permeability Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.654, year: 2016

  7. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    Science.gov (United States)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  8. Understand rotating isothermal collapses yet

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references

  9. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    Science.gov (United States)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  10. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    Science.gov (United States)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  11. Simultaneous Description of Activity Coefficients and Solubility with eCPA

    DEFF Research Database (Denmark)

    Schlaikjer, Anders; Thomsen, Kaj; Kontogeorgis, Georgios

    2017-01-01

    with salt specific parameters. The focus is on accurate description of the salt solubility, and low deviation correlations are obtained for all salts investigated. The inclusion of the solubility data in the parametrization has, compared to parameters only parametrized to osmotic coefficients and activity...... coefficients, not significantly affected the deviations of the osmotic coefficients and activity coefficients. The average deviations of the activity coefficient does increase slightly and it was found that the increase in deviations was almost entirely due to reduced accuracy at high temperature and high...... molality. The model is, furthermore, compared to the activity coefficient model, Extended UNIQUAC. It is shown that the eCPA provides more accurate solubility description at higher temperatures than Extended UNIQUAC but also that Extended UNIQUAC is slightly better at describing the activity coefficients...

  12. Monte Carlo calculations of the elastic moduli and pressure-volume-temperature equation of state for hexahydro-1,3,5-trinitro-1,3,5-triazine

    International Nuclear Information System (INIS)

    Sewell, Thomas D.; Bennett, Carl M.

    2000-01-01

    Isothermal-isobaric Monte Carlo calculations were used to obtain predictions of the elastic coefficients and derived engineering moduli and Poisson ratios for crystalline hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The elastic coefficients were computed using the strain fluctuation formula due to Rahman and Parrinello [J. Chem. Phys. 76, 2662 (1982)]. Calculations were performed as a function of temperature (218 K≤T≤333 K) and hydrostatic pressure (0 GPa≤p≤4 GPa). The predicted values of the moduli and Poisson ratios under ambient conditions are in accord with general expectations for molecular crystals and with a very recent, unpublished determination for RDX. The moduli exhibit a sensitive pressure dependence whereas the Poisson ratios are relatively independent of pressure. The temperature dependence of the moduli is comparable to the precision of the results. However, the crystal does exhibit thermal softening for most pressures. An additional product of the calculations is information about the pressure-volume-temperature (pVT) equation of state. We obtain near-quantitative agreement with experiment for the case of hydrostatic compression and reasonable, but not quantitative, correspondence for thermal expansion. The results indicate a significant dependence of the thermal expansion coefficients on hydrostatic pressure. (c) 2000 American Institute of Physics

  13. Nonlinear chemical sorption isotherms in the assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Walker, J.R.; LeNeveu, D.M.

    1987-01-01

    Radionuclides emplaced in an underground disposal vault can possibly migrate from the vault, and through the geosphere, to enter Man's environment. Chemical sorption is a primary mechanism for retarding this migration. The effects of nonlinear chemical sorption isotherms on radionuclide transport are discussed. A method is given by which nonlinear isotherms can be approximated by the linear sorption isotherm used in the vault submodel. The relevance of nonlinear isotherms to transport in the geosphere is discussed, and it is shown that the linear isotherm model is conservative for deep geologic disposal. 22 refs

  14. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    International Nuclear Information System (INIS)

    M.S. Gruszkiewicz; D.A. Palmer

    2006-01-01

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl 2 , LiCl, and NaCl used as references, precise direct

  15. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell

    International Nuclear Information System (INIS)

    Xing, Lei; Liu, Xiaoteng; Alaje, Taiwo; Kumar, Ravi; Mamlouk, Mohamed; Scott, Keith

    2014-01-01

    A two dimensional, across the channel, steady-state model for a proton exchange membrane fuel cell (PEMFC) is presented in which the non-isothermal model for temperature distribution, the two-phase flow model for liquid water transport and the agglomerate model for oxygen reduction reaction are fully coupled. This model is used to investigate thermal transport within the membrane electrode assembly (MEA) associated with the combinational water phase-transfer and transport mechanisms. Effective temperature distribution strategies are established aim to enhance the cell performance. Agglomerate assumption is adopted in which the ionomer and liquid water in turn cover the agglomerate to form the ionomer and liquid water films. Ionomer swelling is associated with the non-uniform distribution of the water content. The modelling results show that heat accumulates within the cathode catalyst layer under the channel. Higher operating temperature improves the cell performance by increasing the kinetics, reducing the liquid water saturation on the cathode and increasing the water carrying capacity of the anode gas. Applying higher temperature on the anode and enlarging the width ratio of the channel/rib could improve the cell performance. Higher cathode temperature decreases the oxygen mole fraction, resulting in an insufficient oxygen supply and a limitation of the cell performance. - Highlights: • The two-phase flow and non-isothermal model couple with the agglomerate model. • Oxygen diffusivity and solubility in Nafion ® relate to water content and temperature. • Higher anode operating temperature improves the fuel cell performance. • Insufficient oxygen supply limits cell performance at higher current densities

  16. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  17. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    Science.gov (United States)

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  18. Mass transfer in horizontal flow channels with thermal gradients

    International Nuclear Information System (INIS)

    Bendrich, G.; Shemilt, L.W.

    1997-01-01

    Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)

  19. Financial Statement Audit Report of Isothermal Community College.

    Science.gov (United States)

    Campbell, Ralph

    This report presents the results of the Isothermal Community College financial statement audit for the fiscal year ending on June 30, 1998. Isothermal Community College is a component of the State of North Carolina, thus the authority to audit is granted by Article 5A of G.S. 147. The accounts and operations of the institution were subject to…

  20. Characteristics of radiation temperature and radiosity coefficient by means of infrared radiometer. Sekigai hoshakei ni yoru zairyo hyomen no hosha tokusei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Y; Kaminaga, F [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Ishii, T; Sato, K [Ibaraki University, Ibaraki (Japan); Kurokawa, T [NEC San-ei Instrumentsu Ltd., Tokyo (Japan)

    1991-12-25

    A radiation thermometer was applied to the measurement and analysis of radiation temperature of the material surface. In this paper, the characteristics of the radiation temperature and the radiosity coefficient of gray body materials are investigatied. An infrared radiometer was used, which detects radiation energy in the region between 8 and 13{mu}m of wavelength. This infared radiometer has a Hg-Cd-Te photon radiation sensor. The variation of emissivity was measured for the four kinds of non-metalic materials, i.e., graphite, carbon fiber composite, Si-SiC ceramic, and black paint spread on an aluminum plate. As a result, the relationship between material temperature and radiation energy was made clear. Furthermore, the space-dependent variation of the radiation temperature and the radiosity coefficient was derived from the two-dimensional CRT image of the infrared radiometer. Consequently, the emmisivity variation gave a maximum for the carbon fiber composite surface rich in irregularity, and decreased in the order of graphite, Si-SiC, and black paint. 7 refs., 15 figs.

  1. Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Stefanov, Stefan [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2014-05-15

    The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical

  2. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  3. The 500 deg. C isothermal section of the Gd-Tb-Co ternary system

    International Nuclear Information System (INIS)

    Zhou, K.W.; Zhuang, Y.H.; Li, J.Q.; Zhu, Q.M.; Deng, J.Q.

    2006-01-01

    The isothermal section of the phase diagram of the Gd-Tb-Co ternary system at 500 deg. C was investigated by X-ray powder diffraction, differential thermal analysis and metallographic analysis techniques. In this isothermal section, there are nine single-phase regions, eight two-phase regions and none three-phase region. No ternary compound was found. The compounds Gd 2 Co 17 and Tb 2 Co 17 , Gd 2 Co 7 and Tb 2 Co 7 , GdCo 3 and TbCo 3 , GdCo 2 and TbCo 2 , Gd 4 Co 3 and Tb 4 Co 3 , Gd 12 Co 7 and Tb 12 Co 7 , Gd 3 Co and Tb 3 Co, Gd and Tb form a continuous series of solid solutions. In addition, we experimentally determined the vertical section of pseudobinary system and the Curie temperature of Gd 1-x Tb x Co 2 (x from 0 to 1) series alloys

  4. Convective heat transport of high-pressure flows inside active, thick walled-tubes with isothermal outer surfaces: usage of Nusselt correlation equations for an inactive, thin walled-tube

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Antonio [Idaho State Univ., Nuclear Engineering Dept., Pocatello, ID (United States); Sanchez, Alejo [Universidad de los Andes, Depto. de Ingenieria Mecanica, Merida (Venezuela)

    1998-03-01

    A semi-analytical analysis was conducted for the prediction of the mean bulk- and interface temperatures of gaseous and liquid fluids moving laminarly at high pressures inside thick-walled metallic tubes. The outer surfaces of the tubes are isothermal. The central goal of this article is to critically examine the thermal response of this kind of in-tube flows utilizing two versions of the 1-D lumped model: one is differential-numerical while the other is differential-algebraic. For the former, the local Nusselt number characterizing an inactive, isothermal tube was taken from correlation equations reported in the heat transfer literature. For the latter, a streamwise-mean Nusselt number associated with an active, isothermal tube was taken from standard correlation equations that appear in text-books on basic heat transfer. For the two different versions of the 1-D lumped model tested, the computed results consistently demonstrate that the differential-algebraic, provides accurate estimates of both the mean bulk- and the interface temperatures when compared with those temperature results computed with formal 2-D differential models. (author)

  5. Effects of calcium and magnesium on strontium distribution coefficients

    Science.gov (United States)

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  6. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies.

    Science.gov (United States)

    Jin, Ting; Yuan, Wenhua; Xue, Yujie; Wei, Hong; Zhang, Chaoying; Li, Kebin

    2017-02-01

    Antibiotics are emerging contaminants due to their potential risks to human health and ecosystems. Poor biodegradability makes it necessary to develop effective physical-chemical methods to eliminate these contaminants from water. The cobalt-modified MCM-41 was prepared by a one-pot hydrothermal method and characterized by SAXRD, N 2 adsorption-desorption, SEM, UV-Vis DR, and FTIR spectroscopy. The results revealed that the prepared 3% Co-MCM-41 possessed mesoporous structure with BET surface areas at around 898.5 m 2 g -1 . The adsorption performance of 3% Co-MCM-41 toward levofloxacin (LVF) was investigated by batch experiments. The adsorption of LVF on 3% Co-MCM-41 was very fast and reached equilibrium within 2 h. The adsorption kinetics followed the pseudo-second-order kinetic model with the second-order rate constants in the range of 0.00198-0.00391 g mg -1  min -1 . The adsorption isotherms could be well represented by the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm equations. Nevertheless, D-R isotherm provided the best fit based on the coefficient of determination and average relative error values. The mean free energy of adsorption (E) calculated from D-R model was about 11 kJ mol -1 , indicating that the adsorption was mainly governed by a chemisorption process. Moreover, the adsorption capacity was investigated as a function of pH, adsorbent dosage, LVF concentration, and temperature with help of respond surface methodology (RSM). A quadratic model was established, and an optimal condition was obtained as follows: pH 8.5, adsorbent dosage of 1 g L -1 , initial LVF concentration of 119.8 mg L -1 , and temperature of 31.6 °C. Under the optimal condition, the adsorption capacity of 3% Co-MCM-41 to LVF could reach about 108.1 mg g -1 . The solution pH, adsorbent dosage, LVF concentration, and a combination of adsorbent dose and LVF concentration were significant factors affecting the adsorption process. The adsorption

  7. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  8. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  9. Isothermal pumping analysis for high-altitude tethered balloons.

    Science.gov (United States)

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  10. Incorporating classic adsorption isotherms into modern surface complexation models: implications for sorption of radionuclides

    International Nuclear Information System (INIS)

    Kulik, D.A.

    2005-01-01

    Full text of publication follows: Computer-aided surface complexation models (SCM) tend to replace the classic adsorption isotherm (AI) analysis in describing mineral-water interface reactions such as radionuclide sorption onto (hydr) oxides and clays. Any site-binding SCM based on the mole balance of surface sites, in fact, reproduces the (competitive) Langmuir isotherm, optionally amended with electrostatic Coulomb's non-ideal term. In most SCM implementations, it is difficult to incorporate real-surface phenomena (site heterogeneity, lateral interactions, surface condensation) described in classic AI approaches other than Langmuir's. Thermodynamic relations between SCMs and AIs that remained obscure in the past have been recently clarified using new definitions of standard and reference states of surface species [1,2]. On this basis, a method for separating the Langmuir AI into ideal (linear) and non-ideal parts [2] was applied to multi-dentate Langmuir, Frumkin, and BET isotherms. The aim of this work was to obtain the surface activity coefficient terms that make the SCM site mole balance constraints obsolete and, in this way, extend thermodynamic SCMs to cover sorption phenomena described by the respective AIs. The multi-dentate Langmuir term accounts for the site saturation with n-dentate surface species, as illustrated on modeling bi-dentate U VI complexes on goethite or SiO 2 surfaces. The Frumkin term corrects for the lateral interactions of the mono-dentate surface species; in particular, it has the same form as the Coulombic term of the constant-capacitance EDL combined with the Langmuir term. The BET term (three parameters) accounts for more than a monolayer adsorption up to the surface condensation; it can potentially describe the surface precipitation of nickel and other cations on hydroxides and clay minerals. All three non-ideal terms (in GEM SCMs implementation [1,2]) by now are used for non-competing surface species only. Upon 'surface dilution

  11. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  12. Numerical study of inflow conditions on a turbulent isothermal or heated plane jet; Etude numerique des conditions d'emission sur un ecoulement de type jet plan turbulent isotherme ou chauffe

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; Habli, S.; El Golli, S. [Ecole Nationale d' Ingenieurs de Monastir (Tunisia); Le Palec, G.; Bournot, Ph. [Institut de Mecanique de Marseille (France)

    1999-11-01

    We intend to solve equations governing turbulent plane-vertical isotherm and non isotherm jets by taking into account inflow conditions at the exit of the nozzle. The analysis is focused on the influence of these conditions on this type of flow. Two cases are considered (uniform and parabolic velocity and temperature profiles). A finite difference scheme is developed to solve the governing equations. This numeric model allows us to show that the region of fully developed regime begins much nearer the nozzle for the turbulent case than for the laminar flow case. Indeed, the turbulence increases the mixing between the incoming gas from the nozzle and the ambient fluid, and consequently the size of the potential core zone decreases. The results are compared to other works introducing mathematical variables based on the energy conservation for the case of the mixed convection and the momentum conservation for the forced convection, which allows the validation of our results. (authors)

  13. Non-isothermal crystallization kinetics of As{sub 30}Te{sub 60}Ga{sub 10} glass

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mansour; Abd-Elnaiem, Alaa M.; Abdel-Rahim, M.A.; Hafiz, M.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt); Hassan, R.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt); Aden University, Physics Department, Faculty of Education-Zingiber, Aden (Yemen)

    2017-08-15

    The crystallization study under non-isothermal conditions of As{sub 30}Te{sub 60}Ga{sub 10} glass was investigated. The studied composition was synthesized by melt-quenching technique and characterized by different techniques such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The XRD analysis revealed that the as-prepared and annealed bulk glass of As{sub 30}Te{sub 60}Ga{sub 10} exhibit the amorphous, and polycrystalline nature, respectively. The DSC results showed that the heating rate affects the characteristic temperatures, for instance, the glass transition, onset, and peak crystallization temperatures. Furthermore, some thermal analysis methods such as the Kissinger and Matusita et al., approximations were employed to determine the crystallization parameters: for example Avrami exponent and the activation energies for glass transition and crystallization process. In addition, we have compared the experimental DSC data with the calculated ones based on the Johnson-Mehl-Avrami (JMA) and Sestak-Berggren SB(M,N) models. The results indicated that the SB(M,N) model is more suitable for describing the non-isothermal crystallization kinetics of the investigated composition. (orig.)

  14. Transfer coefficients in ultracold strongly coupled plasma

    Science.gov (United States)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  15. Isothermal analysis of intermetallic MmNi5-xAlx in air decomposition processes

    International Nuclear Information System (INIS)

    Obregon, S.A.; Andrade Gamboa, J.J.; Esquivel, M.R.

    2012-01-01

    In this paper, it is analyzed the behavior of the degree of reaction as function of time α (t) of a sample of MmNi 4.3 Al 0.7 (Mm mischmetal = La 0.25 Ce 0.52 Nd 0.17 Pr 0.06 ) at different temperatures. The curves were obtained by isothermal calorimetric techniques. As a result of this study, it was observed that the kinetics of intermetallic can be separated into two main stages. At temperatures below 350 o C, the first stage is the oxidation of Mm and Al. At temperatures over 400 o C, the oxidation of Ni is also produced parallel to the above mentioned reactions. But the kinetics of the last one is at least three orders of magnitude slower. It was also observed that no thermal event occurs below 180 o C. It indicates that the intermetallic do not react at temperatures below this temperature value (author)

  16. Simulation of non-isothermal transient flow in gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)

  17. Kinetic Analysis of Isothermal Decomposition Process of Sodium Bicarbonate Using the Weibull Probability Function—Estimation of Density Distribution Functions of the Apparent Activation Energies

    Science.gov (United States)

    Janković, Bojan

    2009-10-01

    The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.

  18. New Theoretical Expressions for the Five Adsorption Type Isotherms ...

    African Journals Online (AJOL)

    New Theoretical Expressions for the Five Adsorption Type Isotherms Classified by Bet Basing on Statistical Physics Treatment. ... that we have proposed, basing on statistical physics treatment, are rather powerful to better understand and interpret the various five physical adsorption Type isotherms at a microscopic level.

  19. Thermal and isothermal low cycle fatigue of MANET I and II

    International Nuclear Information System (INIS)

    Petersen, C.; Schmitt, R.; Garnier, D.

    1996-01-01

    Structural components of a DEMO-blanket are subjected during service to alternating thermal and mechanical stresses as a consequence of the pulsed reactor operation. Of particular concern is the fatigue endurance of martensitic steels like MANET under cyclic strains and stresses produced by these temperature changes. In order to design such structures, operating under combined mechanical and thermal cycling, fatigue life has to be calculated with reasonable accuracy. This paper proposes a description of thermal and isothermal mechanical low-cycle fatigue of MANET I and II steels using a single damage model, including plastic strain, temperature and strain rate as variables. This model presents notable advantages for the designer. As it corresponds to a single and continuous 'fatigue strength surface', it enables a reliable interpolation to be made throughout the studied domain of strains and temperatures, and allows for a reasonable extrapolation out of this domain, provided that no different metallurgical phenomena occur. (orig.)

  20. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    Science.gov (United States)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.