Isothermal temperature reactivity coefficient measurement in TRIGA reactor
International Nuclear Information System (INIS)
Zagar, T.; Ravnik, M.; Trkov, A.
2002-01-01
Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)
International Nuclear Information System (INIS)
Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi
2006-01-01
A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)
Energy Technology Data Exchange (ETDEWEB)
Pyeon, Cheol Ho [Research Reactor Institute, Kyoto Univ., Osaka (Japan); Shim, Hyung Jin; Choi, Sung Hoon; Jeon, Byoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Ryu, Eun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-10-15
The Kyoto University Critical Assembly (KUCA) is a multi-core type critical assembly consisting of three independent cores in the Kyoto University Research Reactor Institute. The light-water-moderated core (Ccore) is a tank type reactor, and the experiments of the isothermal temperature reactivity coefficient (ITRC) of C-core with a D{sub 2}O tank were carried out with the use of six 10 kW heaters and a radiator system in a dump tank, one 10 kW heater in a core tank, and one 5 kW heater in the D{sub 2}O tank. The ITRCs of the C-core with the D{sub 2}O tank immersed in the core tank are considered important to investigate the mechanism of moderation and reflection effects of H{sub 2}O and D{sub 2}O in the core on the evaluation by numerical simulations. The objectives of this paper are to report the ITRC measurements for C-core with D{sub 2}O tank ranging between 26.7 .deg. C and 58.5 .deg. C, and to examine the accuracy of the numerical simulations by the Seoul National University Monte Carlo code, McCARD, through the comparison between measured and calculated results.
International Nuclear Information System (INIS)
Scotta, J.P.; Noguere, G.; Bernard, D.; Santamarina, A.; Damian, J.I.M.
2016-01-01
The contribution of the thermal scattering law of hydrogen in light water to isothermal temperature reactivity coefficients for UOX and MOX lattices was studied in the frame of the MISTRAL critical experiments carried out in the zero power reactor EOLE of CEA Cadarache (France). The interpretation of the core residual reactivity measured between 6 to 80 C. degrees (by step of 5 C. degrees) was performed with the Monte-Carlo code TRIPOLI-4"R. The nuclear data from the JEFF-3.1.1 library were used in the calculations. 3 different thermal scattering laws of hydrogen in light water were tested in order to evaluate their impact on the MISTRAL calculations. The thermal scattering laws of interest were firstly those recommended in JEFF-3.1.1 and ENDF/BVII.1 and also that recently produced at the atomic center of Bariloche (CAB, Argentina) with molecular dynamic simulations. The present work indicates that the calculation-to-experimental bias is (0.4 ± 0.3) pcm/C. degree in the UOX core and (1.0 ± 0.3) pcm/C. degree in the MOX cores, when the JEFF-3.1.1 library is used. An improvement is observed over the whole temperature range with the CAB model. The calculation-to-experimental bias vanishes for the UOX core (0.02 pcm/C. degree) and becomes close to 0.7 pcm/C. degree for the MOX cores. The magnitude of these bias have to be connected to the typical value of the temperature reactivity coefficient that ranges from 5 pcm/C. degree at Beginning Of Cycle (BOC) up to 50 pcm/C. degrees at End Of Cycle (EOC), in PWR conditions. (authors)
Room temperature isotherms for Mo and Ni
International Nuclear Information System (INIS)
Masse, J.L.
1986-11-01
Isotherms at room temperature for Mo and Ni are proposed. They are of three types: BIRCH, KEANE and BORN-MIE. The adjustable constants appearing in these isotherms have been determined from experimental quantities at zero pressure. An evaluation of the limit of (δB T /δP) T as P #-> # ∞, where B T is the isothermal bulk modulus, has been also used. These three isotherms obtained for Mo and Ni are compared with isotherms derived from shock-wave data according to the PRIETO's model. There is a good agreement between these and these derived from shock-wave data. The three isotherms proposed for Mo and Ni can be considered as valid until pressures of several B To , where B To is the bulk modulus B T at P = o [fr
International Nuclear Information System (INIS)
Zhou, X; Zhang, Z Y; Zhang, Q M; Liu, Q; Ding, Y Y; Zhou, L; Cao, J
2015-01-01
We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed. (paper)
International Nuclear Information System (INIS)
Spriggs, Gregory D.; Nelson, George W.
1976-01-01
An experiment was performed to measure the total isothermal (or bath) feedback coefficient of reactivity for the University of Arizona TRIGA Research Reactor (UARR). It was found that the bath coefficient was temperature-dependent and may be represented by the expression α iso .2634 x 10 -2 + .3428 x 10 -3 T - 2.471 x 10 -5 T 2 + 3.476 x 10 -7 T 3 for the temperature range of 7 C to 43 C. (author)
International Nuclear Information System (INIS)
Egorov, Gennadiy I.; Makarov, Dmitriy M.; Kolker, Arkadiy M.
2013-01-01
Highlights: ► Molar isothermal compressions and molar isobaric expansions were evaluated. ► Coefficients of thermal pressure and internal pressure were obtained. ► Concentration dependences of coefficients under study display extremes. ► Temperature and pressure dependences of internal pressure of the mixture were linear. -- Abstract: Molar isothermal compressions, molar isobaric expansions, molar coefficients of thermal pressure, and internal pressure were calculated over the whole concentration range of {water (1) + tert-butanol (2)} mixture at pressures from 0.1 to 100 MPa and temperatures from 278.15 to 323.15 K. It was revealed that the extremes, observed on concentration dependences of molar isothermal compression K T,m and molar isobaric expansion E P,m of the mixture, became more pronounced with pressure growth and temperature lowering. Values of molar thermal pressure coefficients of the mixture sharply rose at compositions with small TBA mole fraction and then decreased practically linearly with the alcohol content increasing. Temperature and pressure dependences of the mixture internal pressure were almost linear, and at low TBA concentrations changed significantly from the dependences of water, tert-butanol and their mixtures at large alcohol content
Fuel Temperature Coefficient of Reactivity
Energy Technology Data Exchange (ETDEWEB)
Loewe, W.E.
2001-07-31
A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.
Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms
International Nuclear Information System (INIS)
Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.
2002-01-01
An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth
International Nuclear Information System (INIS)
Su, Guozhen; Chen, Liwei; Chen, Jincan
2014-01-01
Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions
Measuring device for the temperature coefficient of reactor moderators
International Nuclear Information System (INIS)
Nakano, Yuzo.
1987-01-01
Purpose: To rapidly determine by automatic calculation the temperature coefficient for moderators which has been determined so far by a log of manual processings. Constitution: Each of signals from a control rod position indicator, a reactor reactivity, instrument and moderator temperature meter are inputted, and each of the signals and designed valued for the doppler temperature coefficients are stored. Recurling calculation is conducted based on the reactivity and the moderator temperature at an interval where the temperature changes of the moderators are equalized at an identical control rod position, to determine isothermic coefficient. Then, the temperature coefficient for moderator are calculated from the isothermic coefficient and the doppler temperature coefficient. The relationship between the reactivity and the moderator temperature is plotted on a X-Y recorder. The stored signals and the calculated temperature coefficient for moderators are sequentially displayed and the results are printed out when the measurement is completed. According to the present device, since the real time processing is conducted, the processing time can be shortened remarkably. Accordingly, it is possible to save the man power for the test of the nuclear reactor and improve the reactor operation performance. (Kamimura, M.)
Isothermal martensite formation at sub-zero temperatures
DEFF Research Database (Denmark)
Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan
2010-01-01
austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...... with a continuation of the martensitic transformation. On prolonged isothermal holding a volume reduction was observed for AISI 52100, but not for AISI 1070. A mechanism is proposed that explains the occurrence of isothermal martensite formation....
Adsorption isotherms of pear at several temperatures
Mitrevski Vangelče; Lutovska Monika; Mijakovski Vladimir; Pavkov Ivan S.; Babić Mirko M.; Radojčin Milivoje T.
2015-01-01
The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for...
Adsorption isotherms of pear at several temperatures
Directory of Open Access Journals (Sweden)
Mitrevski Vangelče
2015-01-01
Full Text Available The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for estimation and selection of the best sorption isotherm equations were used. For each equation and experimental data set, the average performance index was calculated and models were ranked afterwards. After that, some statistical rejection criteria were checked (D’Agostino-Pearson test of normality, single-sample run test and significance and precision of the model parameters. The performed statistical analysis shows that the Guggenheim-Anderson-de Boer (GAB equation has the highest value of average performance index, but higher correlation between pair of parameters leads to lower precision of estimated parameters.[Projekat Ministarstva nauke Republike Srbije, br. TR 31058
The temperature dependence of the isothermal bulk modulus at 1 bar pressure
International Nuclear Information System (INIS)
Garai, J.; Laugier, A.
2007-01-01
It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking
Isothermal martensite formation at sub-zero temperatures
DEFF Research Database (Denmark)
Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan
2012-01-01
, quenched in oil, and thereafter investigated with vibrating sample magnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the sub-zero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5 K...... with a continuation of the martensitic transformation. On prolonged isothermal holding, a volume reduction was observed for AISI 52100, but not for AISI 1070. Copyright © 2011 by ASTM International....
High temperature nuclear heat for isothermal reformer
International Nuclear Information System (INIS)
Epstein, M.
2000-01-01
High temperature nuclear heat can be used to operate a reformer with various feedstock materials. The product synthesis gas can be used not only as a source for hydrogen and as a feedstock for many essential chemical industries, such as ammonia and other products, but also for methanol and synthetic fuels. It can also be burnt directly in a combustion chamber of a gas turbine in an efficient combined cycle and generate electricity. In addition, it can be used as fuel for fuel cells. The reforming reaction is endothermic and the contribution of the nuclear energy to the calorific value of the final product (synthesis gas) is about 25%, compared to the calorific value of the feedstock reactants. If the feedstock is from fossil origin, the nuclear energy contributes to a substantial reduction in CO 2 emission to the atmosphere. The catalytic steam reforming of natural gas is the most common process. However, other feedstock materials, such as biogas, landfill gas and CO 2 -contaminated natural gas, can be reformed as well, either directly or with the addition of steam. The industrial steam reformers are generally fixed bed reactors, and their performance is strongly affected by the heat transfer from the furnace to the catalyst tubes. In top-fired as well as side-fired industrial configurations of steam reformers, the radiation is the main mechanism of heat transfer and convection heat transfer is negligible. The flames and the furnace gas constitute the main sources of the heat. In the nuclear reformers developed primarily in Germany, in connection with the EVA-ADAM project (closed cycle), the nuclear heat is transferred from the nuclear reactor coolant gas by convection, using a heating jacket around the reformer tubes. In this presentation it is proposed that the helium in a secondary loop, used to cool the nuclear reactor, will be employed to evaporate intermediate medium, such as sodium, zinc and aluminum chloride. Then, the vapors of the medium material transfer
Rahman, Kazi Afzalur
2010-11-11
This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study adsorbed natural gas (ANG) storage systems when the low temperature natural gas regasified from the liquid phase is considered to charge in the storage chamber. Adsorption parameters were evaluated from the isotherm data using the Tóth and Dubinin-Astakhov models. The isosteric heat of adsorption, which is concentration- and temperature-dependent, is extracted from the data. The Henry\\'s law coefficients for the methane/Maxsorb III pairs are evaluated at various temperatures. © 2010 American Chemical Society.
Revised Mark 22 coolant temperature coefficients
International Nuclear Information System (INIS)
Graves, W.E.
1987-01-01
Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations
Isothermal solidification based packaging of biosensors at low temperatures
International Nuclear Information System (INIS)
Sharma, R.P.; Khanna, P.K.; Kumar, D.
2010-01-01
Thick film Au printed square contact pads are interconnected to Cu substrates at constant pressure and temperature using the isothermal solidification of Bi-In alloy on the joining surfaces. The effect of reaction time on the mechanical strength of the package has been analyzed. Thermal stability of the fabricated specimens have been measured and discussed. The delaminated surfaces examined optically reveal the morphology of the metallization zones on the joining substrates. The scanning electron microscopy of these surfaces is reported in this paper. Tests for thermal shock, pH resistivity and shelf life have been carried out to predict the reliability of the packaging for long term applications.
Temperature stability limits for an isothermal demagnetization refrigerator
Kittel, P.
1984-01-01
It is pointed out that magnetic refrigeration can provide additional cooling for infrared detectors on space missions, taking into account the Shuttle Infrared Telescope Facility (SIRTF) and the Large Deployable Reflector (LDR). From a temperature of 2 K provided by the primary cryogens, magnetic refrigerators could cool bolometers or pumped photoconductors to 0.1 K or below. Such a reduction in operating temperature would increase the sensitivity for bolometers, while the response at longer wavelengths for pumped photoconductors would be improved. Two types of magnetic refrigeration cycles have been proposed. One type uses a complete demagnetization. The present investigation is concerned with the second type, which uses a feedback-controlled isothermal demagnetization, taking into account the temperature stability limits. Attention is given to control system resolution, thermometer noise, reaction time, and thermal time constants.
Moderator temperature coefficient in BWR core
International Nuclear Information System (INIS)
Naito, Yoshitaka
1977-01-01
Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)
Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José
2018-02-08
The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.
DEFF Research Database (Denmark)
Wu, Min; Johannesson, Björn; Geiker, Mette Rica
2014-01-01
cement paste samples and a model material MCM-41. The pronounced impact of temperature on desorption isotherms of cement based materials as reported in literature was not found in this investigation. The results suggest that the differences between the sorption isotherms measured at different...
A design method to isothermalize the core of high-temperature gas-cooled reactors
International Nuclear Information System (INIS)
Takano, M.; Sawa, K.
1987-01-01
A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature
Review of low-temperature vapour power cycle engines with quasi-isothermal expansion
Igobo, Opubo N.; Davies, Philip A.
2014-01-01
External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requi...
Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic
Nasser Mohamed Ramli; Mohamad Syafiq Mohamad
2017-01-01
Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of...
Modelling of tandem cell temperature coefficients
Energy Technology Data Exchange (ETDEWEB)
Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)
1996-05-01
This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.
Shoko, L.; Beukes, J.P.; Strydom, C.A.
2013-01-01
One of the most commonly employed electrode systems in industrial metal smelting applications is continuous self-baking electrodes, i.e. the Söderberg electrode system. In this system, the temperature at which transition from a liquid/soft paste to a solid carbonaceous electrode takes place is termed the baking isotherm temperature. This temperature is extremely important within the context of electrode management. In this paper, thermo mechanical analysis (TMA) was used to measure the dimens...
Amide temperature coefficients in the protein G B1 domain
International Nuclear Information System (INIS)
Tomlinson, Jennifer H.; Williamson, Mike P.
2012-01-01
Temperature coefficients have been measured for backbone amide 1 H and 15 N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283–313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK a values. 1 H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide 15 N coefficients have no clear relationship with structure.
Rahman, Kazi Afzalur; Loh, Wai Soong; Yanagi, Hideharu; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon
2010-01-01
This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study
Multi-model attribution of upper-ocean temperature changes using an isothermal approach
Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook
2016-06-01
Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.
Energy Technology Data Exchange (ETDEWEB)
Mounier, C.
1994-05-01
In this work, we looked for the error sources in the calculation of the isothermal temperature coefficient for light water lattices. We studied three fields implied: the nuclear data, the calculation methods and the temperature coefficient measurement. About the measurement, we pointed out the difficulties of he interpretation. So we used an indirect approach by the mean of critical states at various temperatures. In that way, we can say that if the errors in the effective multiplication factor are constants with temperature then the temperature coefficient is correctly calculated. We studied the neutronic influence of light water models which are used in the thermal scattering cross-section computation. This cross-section determines the thermalization process of neutrons. We showed that the actual model (JEF2) is satisfactory of the needs of the reactors physics. Concerning the majors isotopes ({sup 235}U, {sup 238}U, {sup 239}Pu), the uncertainties on the nuclear data do not seem as a preponderant cause of errors, without to be totally negligible. We also studied, with the neutron transport code Apollo-2, the influence of difference approximations for cell calculation . The new possibilities of the code has been used to represent the critical experiments, particularly the improvement of the resonance self-shielding formalism. The calculation scheme adopted permits to remove partially the fundamental mode approximation by the mean of a two-dimensional transport calculation with the SN method, the axial leakage being treated as an absorption in DB{sup 2}{sub Z}. The agreement between theory and experiment is good both for the reactivity and the temperature coefficient. (author). 114 refs., 40 figs., 163 tabs., 1 append.
Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu
2016-07-15
The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement and analysis of reactivity temperature coefficient of CEFR
International Nuclear Information System (INIS)
Chen Yiyu; Hu Yun; Yang Xiaoyan; Fan Zhendong; Zhang Qiang; Zhao Jinkun; Li Zehua
2013-01-01
The reactivity temperature coefficient of CEFR was calculated by CITATION program and compared with the results calculated by correlative programs and measured from experiments for temperature effects. It is indicated that the calculation results from CITATION agree well with measured values. The reactivity temperature coefficient of CEFR is about -4 pcm/℃. The deviation of the measured values between the temperature increasing and decreasing processes is about 11%, which satisfies the experiment acceptance criteria. The measured results can validate the calculation ones by program and can provide important reference data for the safety operation of CEFR and the analysis of the reactivity balance in the reactor refueling situation. (authors)
International Nuclear Information System (INIS)
Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A.; Mondal, K.
2012-01-01
The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M S ) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T 0 ) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M S temperatures have a close relation with the optimum mechanical properties of bainitic steels.
Energy Technology Data Exchange (ETDEWEB)
Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mondal, K., E-mail: kallol@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)
2012-12-15
The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M{sub S}) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T{sub 0}) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M{sub S} temperatures have a close relation with the optimum mechanical properties of bainitic steels.
Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures
Energy Technology Data Exchange (ETDEWEB)
Mukundan, Rangachary [Los Alamos National Laboratory; Luhan, Roger W [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST
2009-01-01
The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.
Amide proton temperature coefficients as hydrogen bond indicators in proteins
International Nuclear Information System (INIS)
Cierpicki, Tomasz; Otlewski, Jacek
2001-01-01
Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures
Study of Temperature Coefficients for Parameters of Photovoltaic Cells
Directory of Open Access Journals (Sweden)
Daniel Tudor Cotfas
2018-01-01
Full Text Available The temperature is one of the most important factors which affect the performance of the photovoltaic cells and panels along with the irradiance. The current voltage characteristics, I-V, are measured at different temperatures from 25°C to 87°C and at different illumination levels from 400 to 1000 W/m2, because there are locations where the upper limit of the photovoltaic cells working temperature exceeds 80°C. This study reports the influence of the temperature and the irradiance on the important parameters of four commercial photovoltaic cell types: monocrystalline silicon—mSi, polycrystalline silicon—pSi, amorphous silicon—aSi, and multijunction InGaP/InGaAs/Ge (Emcore. The absolute and normalized temperature coefficients are determined and compared with their values from the related literature. The variation of the absolute temperature coefficient function of the irradiance and its significance to accurately determine the important parameters of the photovoltaic cells are also presented. The analysis is made on different types of photovoltaics cells in order to understand the effects of technology on temperature coefficients. The comparison between the open-circuit voltage and short-circuit current was also performed, calculated using the temperature coefficients, determined, and measured, in various conditions. The measurements are realized using the SolarLab system, and the photovoltaic cell parameters are determined and compared using the LabVIEW software created for SolarLab system.
Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar
2014-01-01
The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster
International Nuclear Information System (INIS)
Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue
2015-01-01
Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3
The HD+ dissociative recombination rate coefficient at low temperature
Directory of Open Access Journals (Sweden)
Wolf A.
2015-01-01
Full Text Available The effect of the rotational temperature of the ions is considered for low-energy dissociative recombination (DR of HD+. Merged beams measurements with HD+ ions of a rotational temperature near 300 K are compared to multichannel quantum defect theory calculations. The thermal DR rate coefficient for a Maxwellian electron velocity distribution is derived from the merged-beams data and compared to theoretical results for a range of rotational temperatures. Good agreement is found for the theory with 300 K rotational temperature. For a low-temperature plasma environment where also the rotational temperature assumes 10 K, theory predicts a considerably higher thermal DR rate coefficient. The origin of this is traced to predicted resonant structures of the collision-energy dependent DR cross section at few-meV collision energies for the particular case of HD+ ions in the rotational ground state.
Directory of Open Access Journals (Sweden)
Xiaolu Li
2016-01-01
Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.
Static pressure and temperature coefficients of laboratory standard microphones
DEFF Research Database (Denmark)
Rasmussen, Knud
1996-01-01
of the microphone. The static pressure and temperature coefficients were determined experimentally for about twenty samples of type BK 4160 and BK 4180 microphones. The results agree almost perfectly with the predictions for BK 4160, while some modifications of the lumped parameter values are called for to make......-order approximation of resonances in the back cavity. It was found that each of the coefficients, for a given type of microphone, can be expressed by a single function when the coefficients are normalized by their low-frequency value and the frequency axis normalized by the individual resonance frequency...
Distribution of temperature coefficient density for muons in the atmosphere
Directory of Open Access Journals (Sweden)
Kuzmenko V.S.
2017-12-01
Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.
Temperature coefficients in the Dragon low-enriched power reactor
Energy Technology Data Exchange (ETDEWEB)
Hansen, U
1972-05-15
The temperature coefficient of the fuel and of the moderator have been evaluated for the Dragon HTR design for different stages in reactor life, initial core, end of no-refuelling period and equilibrium conditions. The investigation has shown the low-enriched HTR to have a strong, positive moderator coefficient. In some cases and for special operating conditions, even leading to a positive total temperature coefficient. This does not imply, however, that the HTR is an unsafe reactor system. By adequate design of the control system, safe and reliable operating characteristics can be achieved. This has already been proved satisfactory through many years of operation of other graphite moderated systems, such as the Magnox stations.
Temperature coefficients of reactivity in the fourth loading of ZENITH
International Nuclear Information System (INIS)
Caro Manso, R.; Freemantle, R.G.; Rogers, J.D.
1962-10-01
Measurements have been made of the temperature coefficients of reactivity associated with the core plus end reflectors and the side reflector of the fourth core loading of ZENITH, which had a carbon/U235 atomic ratio of 7788 and no other absorber. (author)
Temperature coefficients of reactivity in the fourth loading of ZENITH
Energy Technology Data Exchange (ETDEWEB)
Caro Manso, R; Freemantle, R G; Rogers, J D [Graphite Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1962-10-15
Measurements have been made of the temperature coefficients of reactivity associated with the core plus end reflectors and the side reflector of the fourth core loading of ZENITH, which had a carbon/U235 atomic ratio of 7788 and no other absorber. (author)
Effect of the isothermal transformation temperature on the fine structure of steel-12Kh1MF
International Nuclear Information System (INIS)
Mints, I.I.; Berezina, T.G.; Lanskaya, K.A.
1976-01-01
For detailed analysis of bainite and pearlite in steel 12Kh1MF, homogeneous structures were obtained by isothermal annealing at 350, 450, 500, and 650 0 for 1 h. Isothermal transformation of austenite leads to the formation of bainite at 350-500 0 and pearlite at 650 0 . The austenitizing temperature was 980 0 for both types of samples, with holding for 20 min. For comparison, the plates were quenched from 980 0 and 1050 0 in ice-cold brine. The investigation was conducted with use of light and electron microscopes and x-ray analysis. The long-term strength was also determined. Isothermal treatment of steel 12Kh1MF at 350-500 0 C leads to the formation of a structure consisting of upper and lower bainite. At 500 0 the structure consists primarily of upper bainite, and at 350 0 of lower bainite. With tempering of the steel with a structure of upper and lower bainite at 730 0 for 3 h the dislocations undergo redistribution of the polygonization type within ferrite needles, with development of a cellular substructure. The acicular structure of the matrix is retained in this case. The density and evenness of the distribution of carbides is higher in upper bainite than in lower bainite. Steel 12Kh1MF with a structure of upper bainite is more susceptible to recrystallization as compared with a structure of lower bainite, which is responsible for the higher heat resistance of the latter
International Nuclear Information System (INIS)
Chabrerie, C.; Autran, J.L.; Paillet, P.; Flament, O.; Leray, J.L.; Boudenot, J.C.
1997-01-01
In this work, the evolution of the oxide trapped charge has been modeled, to predict post-irradiation behavior for arbitrary anneal conditions (i.e., arbitrary temperature-time profiles). Using experimental data obtained from a single isochronal anneal, the method consists of calculating the evolution of the energy distribution of the oxide trapped charge, in the framework of a thermally activated charge detrapping model. This methodology is illustrated in this paper by the prediction of experimental isothermal data from isochronal measurements. The implications of these results to hardness assurance test methods are discussed
International Nuclear Information System (INIS)
Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki
2009-01-01
We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.
Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David
2012-01-10
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats
Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures
International Nuclear Information System (INIS)
Naderi, M.; Durrenberger, L.; Molinari, A.; Bleck, W.
2008-01-01
The strain, strain rate and temperature dependency of a boron steel, which was isothermally deformed under uniaxial compression tests, has been investigated at temperatures between 600 and 900 o C, and at strain rates of 0.1, 1.0 and 10.0 s -1 . Two constitutive models were used to correlate the plastic behavior: the Voce constitutive relation in combination with the kinetic model proposed by Kocks and the phenomenological model proposed by Molinari-Ravichandran. The Kocks model has been introduced in the Voce formulation to describe the temperature and the strain rate dependency of the saturation stress and of the yield stress. The Molinari-Ravichandran model is based on a single internal variable that can be viewed as being related to a characteristic length scale of the microstructure that develops during deformation. It has been shown that the plastic behavior of the boron steel can be well described using these two models
Directory of Open Access Journals (Sweden)
Jessica López
2014-01-01
Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.
Directory of Open Access Journals (Sweden)
Benjamin Milkereit
2014-03-01
Full Text Available Time-temperature-precipitation (TTP diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.
Temperature dependence of the dispersion of single crystals SrCl/sub 2/. [Temperature coefficient
Energy Technology Data Exchange (ETDEWEB)
Kuzin, M P [L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR)
1976-01-01
The dispersion of the refractive index of SrCl/sub 2/ monocrystals in the spectral range 300-700 nm at temperatures of 223, 295 adn 373 K has been studied. The temperature coefficient of the refractive index as a function of the wave length has been determined for the room temperature. The function resembles the corresponding dependence for alkali-halide crystals.
Measurement of the temperature coefficient of ratio transformers
Briggs, Matthew E.; Gammon, Robert W.; Shaumeyer, J. N.
1993-01-01
We have measured the temperature coefficient of the output of several ratio transformers at ratios near 0.500,000 using an ac bridge and a dual-phase, lock-in amplifier. The two orthogonal output components were each resolved to +/- ppb of the bridge drive signal. The results for three commercial ratio transformers between 20 and 50 C range from 0.5 to 100 ppb/K for the signal component in phase with the bridge drive, and from 4 to 300 ppb/K for the quadrature component.
Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.
2014-01-01
Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.
Improved cryo-resistors with low temperature coefficients
International Nuclear Information System (INIS)
Warnecke, P.; Braun, E.
1989-01-01
A new type of 10- and 12.9κΩ cryo-resistors operating in a liquid helium bath with small temperature coefficient of resistivity have been built. Details for the fabrication of these improved cryo-resistors are reported. Experimental evidence of their drift rates are on the order of a few parts in 10 9 per day. A reduction of the mean pressure of 98.7 kPa in the helium dewar to 86.1 kPa, corresponding to a temperature decrease from 4.19 to 4.07 Κ, did not change the resistance value by more than the experimental resolution of 4 parts in 10 8
Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature
Energy Technology Data Exchange (ETDEWEB)
Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)
2014-03-24
The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.
Compilation report of VHTRC temperature coefficient benchmark calculations
Energy Technology Data Exchange (ETDEWEB)
Yasuda, Hideshi; Yamane, Tsuyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1995-11-01
A calculational benchmark problem has been proposed by JAERI to an IAEA Coordinated Research Program, `Verification of Safety Related Neutronic Calculation for Low-enriched Gas-cooled Reactors` to investigate the accuracy of calculation results obtained by using codes of the participating countries. This benchmark is made on the basis of assembly heating experiments at a pin-in block type critical assembly, VHTRC. Requested calculation items are the cell parameters, effective multiplication factor, temperature coefficient of reactivity, reaction rates, fission rate distribution, etc. Seven institutions from five countries have joined the benchmark works. Calculation results are summarized in this report with some remarks by the authors. Each institute analyzed the problem by applying the calculation code system which was prepared for the HTGR development of individual country. The values of the most important parameter, k{sub eff}, by all institutes showed good agreement with each other and with the experimental ones within 1%. The temperature coefficient agreed within 13%. The values of several cell parameters calculated by several institutes did not agree with the other`s ones. It will be necessary to check the calculation conditions again for getting better agreement. (J.P.N.).
International Nuclear Information System (INIS)
Martin, Brian; Colorado School of Mines, Golden, CO; Samimi, Peyman; Colorado School of Mines, Golden, CO; Collins, Peter
2017-01-01
A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175 °C.
Van ‘t Hoff global analyses of variable temperature isothermal titration calorimetry data
International Nuclear Information System (INIS)
Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.
2012-01-01
Highlights: ▶ We developed a global fitting strategy for ITC data collected at multiple temperatures. ▶ This method does not require prior knowledge of the binding mechanism. ▶ Monte Carlo simulations show that the approach improves the accuracy of extracted thermodynamic parameters. ▶ The method is used to study coupled folding/binding in aminoglycoside 6′-N-acetyltransferase-Ii. - Abstract: Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, K A , and enthalpy changes, ΔH A . A powerful application of this technique involves analyzing the temperature dependences of ITC-derived K A and ΔH A values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme.
Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky
2016-09-01
Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.
International Nuclear Information System (INIS)
Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.
1988-01-01
The analysis of 7.000 measured pairs of values, distance-temperature, of air around a horizontal isothermal cylinder has made possible to obtain an empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same given for other authors. (Author)
Energy Technology Data Exchange (ETDEWEB)
Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.
1988-01-01
The analysis of more or 7.000 measured pairs of values, diatance-temperature, of air around a horizontal isothermal cylinder has made it possible to obtain a empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same fiven for others authors
Directory of Open Access Journals (Sweden)
Qieni Lu
2015-08-01
Full Text Available We measure temperature dependence on Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal simultaneously in this work, based on digital holographic interferometry (DHI. And the spatial distribution of the field-induced refractive index change can also be visualized and estimated by numerically retrieving sequential phase maps of Mn:Fe:KTN crystal from recording digital holograms in different states. The refractive indices decrease with increasing temperature and quadratic polarized optical coefficient is insensitive to temperature. The experimental results suggest that the DHI method presented here is highly applicable in both visualizing the temporal and spatial behavior of the internal electric field and accurately measuring electro-optic coefficient for electrooptical media.
Static pressure and temperature coefficients of working standard microphones
DEFF Research Database (Denmark)
Barrera Figueroa, Salvador; Cutanda Henriquez, Vicente; Torras Rosell, Antoni
2016-01-01
be a significant contribution to the uncertainty of the measurement. Determining the environmental coefficients of individual specimens of measurement microphones can be a straightforward though time-consuming procedure provided the appropriate facilities are available. An alternative is to determine them using...... coefficients. For this purpose, the environmental coefficients of some commercially available microphones have been determined experimentally, and whenever possible, compared with the coefficients determined numerically using the Boundary Element Method....... for these coefficients which are used for calibration purposes. Working standard microphones are not exempt of these influences. However, manufacturers usually provide a low frequency value of the environmental coefficient. While in some applications the influence of this coefficient may be negligible, in others it may...
Water sorption isotherms of skimmed milk powder within the temperature range of 5–20 °C
Directory of Open Access Journals (Sweden)
Jitka Langová
2012-01-01
Full Text Available Moisture sorption isotherms (MSI’s of skimmed milk powder in the temperature range of 5–20 °C were determined using manometric method. MSI’s, which show the water content versus water activity (Aw at a constant temperature, are used to describe relationships between water content and equilibrium state relative vapour pressure (RVP. The equilibrium moisture content (EMC of skimmed milk powder samples is growing with an increase of Aw at a constant temperature both for water adsorption and desorption. Isotherms were found to be type II of Brunauer-Emmett-Teller classification. It is the type most common for foods. The shape of created isotherms was sigmoid. Structural modifications of crystals were observed during adsorption in the microscope, too. Critical value of EMC of tested samples corresponding to the Aw equal to 0.6 for adsorption was 6.50% MC (w.b. at temperature 5 °C, 9.15% MC (w.b. at temperature 10 °C, and 7.71% MC (w.b. at temperature 20 °C. These values determine optimal conditions for storage from the point of view microorganisms grow, Aw<0.6.
Directory of Open Access Journals (Sweden)
Yogender Singh
2015-12-01
Full Text Available Moisture sorption isotherms of rice-based instant soup mix at temperature range 15–45°C and relative humidity from 0.11 to 0.86 were determined using the standard gravimetric static method. The experimental sorption curves were fitted by five equations: Chung-Pfost, GAB, Henderson, Kuhn, and Oswin. The sorption isotherms of soup mix decreased with increasing temperature, exhibited type II behavior according to BET classification. The GAB, Henderson, Kuhn, and Oswin models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of water was determined from the equilibrium data at different temperatures. It decreased as moisture content increased and was found to be a polynomial function of moisture content. The study has provided information and data useful in large-scale commercial production of soup and have great importance to combat the problem of protein-energy malnutrition in underdeveloped and developing countries.
Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T
2016-10-10
Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.
The static pressure and temperature coefficients of laboratory standard microphones
DEFF Research Database (Denmark)
Rasmussen, Knud
1999-01-01
, for a given type of microphone, can be described by a single function when the coefficients are normalized by their low-frequency value and the frequency is normalized with respect to the individual resonance frequency of the microphone. The theoretical results are supported by experimentally determined...... on an extended lumped parameter representation of the mechanical and acoustic elements of the microphone. The extension involves the frequency dependency of the dynamic diaphragm mass and stiffness as well as a first-order approximation of resonances in the back cavity. It was found that each coefficient...... coefficients for about twenty samples of microphone types B&K 4160 and B&K 4180....
A study of temperature coefficients of reactivity for a Savannah River Site tritium-producing charge
International Nuclear Information System (INIS)
George, D.L.; Frost, R.L.
1991-01-01
Temperature coefficients of reactivity have been calculated for the Mark 22 assembly in the K-14 charge at the Savannah River Site. Temperature coefficients are the most important reactivity feedback mechanism in SRS reactors; they are used in all safety analyses performed in support of the Safety Analysis Report, and in operations to predict reactivity changes with control rod moves. The effects of the radial location of the assembly in the reactor, isotope depletion, and thermal expansion of the metal components on the temperature coefficients have also been investigated. With the exception of the dead space coefficient, all of the regional temperature coefficients were found to be negative or zero. All of the temperature coefficients become more negative with isotopic depletion over the fuel cycle. Coefficients also become more negative with increasing radial distance of the assembly from the center of the core; this is proven from first principles and confirmed by calculations. It was found that axial and radial thermal expansion effects on the metal fuel and target tubes counteract one another, indicating these effects do not need to be considered in future temperature coefficient calculations for the Mark 22 assembly. The moderator coefficient was found to be nonlinear with temperature; thus, the values derived for accidents involving increases in moderator temperature are significantly different than those for decreases in moderator temperature, although the moderator coefficient is always negative
International Nuclear Information System (INIS)
Goto, Minoru; Takamatsu, Kuniyoshi
2007-03-01
The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)
Modeling maximum daily temperature using a varying coefficient regression model
Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith
2014-01-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...
On the second-order temperature jump coefficient of a dilute gas
Radtke, Gregg A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K.
2012-09-01
We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.
International Nuclear Information System (INIS)
Cheng, Wen-long; Yuan, Shuai; Song, Jia-liang
2014-01-01
PTC (positive temperature coefficient) material is a kind of thermo-sensitive material. In this study, a series of novel PTC materials adapted to thermal control of electron devices are prepared. By adding different low-melting-point blend matrixes into GP (graphite powder)/LDPE (low density polyethylene) composite, the Curie temperatures are adjusted to 9 °C, 25 °C, 34 °C and 41 °C, and the resistance–temperature coefficients are enhanced to 1.57/°C–2.15/°C. These PTC materials remain solid in the temperature region of PTC effect, which makes it possible to be used as heating element to achieve adaptive temperature control. In addition, the adaptive thermal control performances of this kind of materials are investigated both experimentally and theoretically. The result shows that the adaptive effect becomes more significant while the resistance–temperature coefficient increases. A critical heating power defined as the initial heating power which makes the equilibrium temperature reach terminal temperature is presented. The adaptive temperature control will be effective only if the initial power is below this value. The critical heating power is determined by the Curie temperature and resistance–temperature coefficient of PTC materials, and a higher Curie temperature or resistance–temperature coefficient will lead to a larger critical heating power. - Highlights: • A series of novel PTC (positive temperature coefficient) materials were prepared. • The Curie point of PTC material can be adjusted by choosing different blend matrixes. • The resistance–temperature coefficient of PTC materials is enhanced to 2.15/°C. • The material has good adaptive temperature control ability with no auxiliary method. • A mathematical model is established to analyze the performance and applicability
Energy Technology Data Exchange (ETDEWEB)
Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas
2017-07-15
The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.
Temperature dependence of transport coefficients of 'simple liquid ...
African Journals Online (AJOL)
... has been investigated. The study carried out at two densities, r* = 0.60 and r* = 0.95. Result shows erratic variations of the shear viscosity in the two lattices structures. KeyWords: Temperature effect, face centred, simple cubic, transport properties, simple liquid. [Global Jnl Pure & Appl. Sci. Vol.9(3) 2003: 403-406] ...
Energy Technology Data Exchange (ETDEWEB)
Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)
1997-05-01
The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.
International Nuclear Information System (INIS)
Newman, D.F.; Leonard, B.R. Jr.; Trapp, T.J.; Gore, B.F.; Kottwitz, D.A.; Thompson, J.K.; Purcell, W.L.; Stewart, K.B.
1977-05-01
A comparison of calculated and measured neutron multiplication factors as a function of temperature was made for three graphite-moderated lattices in the High Temperature Lattice Test Reactor (HTLTR) using 233 UO 2 --ThO 2 fuels in varying amounts and configurations. Correlation of neutronic analysis methods and cross section data with the experimental measurements forms the basis for assessing the accuracy of the methods and data and developing confidence in the ability to predict the temperature coefficient of reactivity for various High Temperature Gas-Cooled Reactor (HTGR) conditions in which 233 U and thorium are present in the fuel. The calculated values of k/sub infinity/(T) were correlated with measured values using two least-squares-fitted correlation coefficients: (1) a normalization factor, and (2) a temperature coefficient bias factor. These correlations indicate the existence of a negative (nonconservative) bias in temperature coefficients of reactivity calculated using ENDF/B-IV cross section data
Temperature and Doppler coefficients of various space nuclear reactors
International Nuclear Information System (INIS)
Mughabghab, S.F.; Ludewig, H. Schmidt, E.
1993-01-01
Temperature and Doppler feedback effects for a Particle Bed Reactor (PBR) designed to operate as a propulsion reactor are investigated. Several moderator types and compositions fuel enrichments and reactor sizes are considered in this study. From this study it could be concluded that a PBR can be configured which has a negative prompt feedback, zero coolant worth, and a small positive to zero moderator worth. This reactor would put the lowest demands on the control system
Temperature and Doppler Coefficients of Various Space Nuclear Reactors
Mughabghab, Said F.; Ludewig, Hans; Schmidt, Eldon
1994-07-01
Temperature and Doppler feedback effects for a Particle Bed Reactor (PBR) designed to operate as a propulsion reactor are investigated. Several moderator types and compositions fuel enrichments and reactor sizes are considered in this study. From this study it could be concluded that a PBR can be configured which has a negative prompt feedback, zero coolant worth, and a small positive to zero moderator worth. This reactor would put the lowest demands on the control system.
Monitoring of the temperature reactivity coefficient at the PWR nuclear plant
International Nuclear Information System (INIS)
Kostic, Lj.
1996-01-01
For monitoring temperature coefficient of reactivity of pressurized water reactor a method based on the correction of fluctuation in signals of i-core neutron detectors and core-exit thermocouples and neural network paradigm is used it is shown that the moderator temperature coefficient of relativity can be predicted with the aid of the back propagation neural network technique by measuring the frequency response function between the in-core neutron flux and the core-exit coolant temperature
Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola
2017-10-01
The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.
International Nuclear Information System (INIS)
Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.
1991-01-01
This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From
International Nuclear Information System (INIS)
Wang Dongsheng; Wang Jinglan
2003-01-01
The good linear relationship with significance level α = 0.01 exists between isotope in precipitation and surface air temperature with multi-year average in 32 stations of China, and the yearly δD-temperature coefficient = 3.1‰/1℃ and the yearly δ 18 O-temperature coefficient = 0.36‰/1℃, and its determination coefficient R 2 = 0.67 and 0.64 respectively. So the isotope-temperature coefficient with yearly average can serve as the temperature yearly measure. But the monthly average isotope-temperature coefficient in each station is variable according to both of space and time, and its repeatability is determined by the meteorological regimes. According to the monthly isotope-temperature coefficient (B) and the coefficient of determination (R 2 ) and its α, all of China can be zoned the following three belts: (1) In the North Belt, B>O, R 2 ≈ 0.3-0.65, α = 0.01, the relation between monthly isotope in precipitation and surface air temperature (RMIT) belongs to a direct correlation and is closer in 99% probability; (2) In the South Belt, B
Transport coefficients in high-temperature ionized air flows with electronic excitation
Istomin, V. A.; Oblapenko, G. P.
2018-01-01
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.
Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.
2017-01-01
A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.
Positive Temperature Coefficient of Breakdown Voltage in 4H-SiC PN Junction Rectifiers
National Research Council Canada - National Science Library
Neudeck, Philip
1998-01-01
...-suited SiC polytype for power device implementation. This paper reports the first experimental measurements of stable positive temperature coefficient behavior observed in 4H-SiC pn junction rectifiers...
Chapter 10: Calculation of the temperature coefficient of reactivity of a graphite-moderated reactor
International Nuclear Information System (INIS)
Brown, G.; Richmond, R.; Stace, R.H.W.
1963-01-01
The temperature coefficients of reactivity of the BEPO, Windscale and Calder reactors are calculated, using the revised methods given by Lockey et al. (1956) and by Campbell and Symonds (1962). The results are compared with experimental values. (author)
Invar hardening under keeping of low values of temperature coefficient of linear expansion
International Nuclear Information System (INIS)
Bashnin, Yu.A.; Shiryaeva, A.N.; Omel'chenko, A.V.
1982-01-01
Complex invar alloying with chromium, zirconium and nitrogen is conducted for increasing hardness and assuring low values of the temperature coefficient of linear expansion. It is shown that alloying with nitride-forming elements-chromium, zirconium and the following high-temperature saturation under high pressure with nitrogen provides the invar hardening at assuring a low temperature coefficient of linear expansion. Saturation with nitrogen under 100 MPa pressure at 1050 deg C during 3 hours permits to prepare an invar containing up to 0.2% N 2 uniformly distributed over the whole cross section of samples with 4 mm diameter. Nitrogen in invar alloys alloyed with chromium and zirconium affects the Curie point similarly to carbon and nickel shifting it towards higher temperatures, it slightly changes the value of the temperature coefficient of linear expansion and provides linear character of thermal expansion dependence on temperature in the +100 deg C - -180 deg C range
International Nuclear Information System (INIS)
Kato, H.; Chen, H.-S.; Inoue, A.
2008-01-01
The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
International Nuclear Information System (INIS)
Jeong, Gi Ho; Song, Ki Bum; Kim, Kui Soon
2001-01-01
This paper deals with the development of a new method that can obtain heat transfer coefficient and reference free stream temperature simultaneously. The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and free stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature
International Nuclear Information System (INIS)
Volkov, A.G.; Kortov, S.V.; Povzner, A.A.
1996-01-01
The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density
Energy Technology Data Exchange (ETDEWEB)
Raisic, N; Strugar, P; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
Temperature reactivity coefficient of the RA reactor was determined as follows. Stabilization of moderator temperature and graphite reflector was achieved in the reactor operated at power levels of 20, 100, 500, 1000, 3000 and 5000 kW. Temperature change of the moderator was achieved by changing the water flow rate in the secondary cooling system. The fuel temperature was changed simultaneously. During the measurement at each power level the temperature change was between 30 - 50 deg C. Changing the position of the automated regulator is registered during moderator temperature change, and these changes were used for determining the total reactivity change by using the calibration curves for the automated regulator. In the measured temperature range the the reactivity change was linear and it was possible to determine the total temperature coefficient.
NdFeB magnets with zero temperature coefficient of induction
International Nuclear Information System (INIS)
Ma, B.M.; Narasimhan, K.S.V.L.; Hurt, J.C.
1986-01-01
Temperature compensation for the induction of NdFeB type magnets has been investigated. A computer assisted alloy selection method was adopted to identify composition of zero temperature coefficient of induction over -50 to 200 0 C. Selected alloys were processed into magnet by the conventional powder metallurgy method. The experimental temperature coefficient on the sintered magnet correlated with the prediction satisfactory. Holmium is an essential ingredient required for temperature compensation of NdFeB magnets. A magnet, (Nd/sub 0.23/Ho/sub 0.64/Dy/sub 0.13/)/sub 15/Fe/sub 79/B/sub 6/ with B/sub r/ of 7,700 Gauss, H/sub c/ of 7,700 Oe, H/sub ci/ of 20,600 Oe, Bh/sub max/ of 14.8 MGOe and temperature coefficient of -0.029% per 0 C over -50 to +150 was obtained
Directory of Open Access Journals (Sweden)
M. Živković
2016-12-01
Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.
Energy Technology Data Exchange (ETDEWEB)
Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov
2017-07-15
In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.
The Merkel coefficient and its dependence on the temperature position of the cooling tower process
International Nuclear Information System (INIS)
Klenke, W.
1977-01-01
The Merkel coefficient, or evaporation coefficient, is still being used as a characteristic factor for the cooling tower process. Its dependence on the cooling range or on the warm water temperature of the process is often considered a disadvantage of the theory of evaporation cooling. This is also the reason for the suggestion to change the theory in such a way that the Merkel coefficient becomes independent of the temperature. The present investigation, however, leads to the result that the dependence of the Merkel coefficient on the temperature must be considered as a remarkable confirmation for the evidence of the theory of heat and mass transfer, as the experimental statements agree fully with the results of the theoretical considerations. (orig.) [de
Improved Isotherm Data for Adsorption of Methane on Activated Carbons
Loh, Wai Soong
2010-08-12
This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.
A study of the irradiation temperature coefficient for L-alanine and DL-alanine dosemeters
International Nuclear Information System (INIS)
Desrosiers, M. F.; Lin, M.; Cooper, S. L.; Cui, Y.; Chen, K.
2006-01-01
Alanine dosimetry is now well established both as a reference and routine dosemeter for industrial irradiation processing. Accurate dosimetry under the relatively harsh conditions of industrial processing requires a characterisation of the parameters that influence the dosemeter response. The temperature of the dosemeter during irradiation is a difficult quantity to measure so that the accuracy of the temperature coefficient that governs the dosemeter response becomes a critical factor. Numerous publications have reported temperature coefficients for several types of alanine dosemeters. The observed differences in the measured values were commonly attributed to the differences in the polymer binder or the experimental design of the measurement. However, the data demonstrated a consistent difference in the temperature coefficients between L-alanine and DL-alanine. Since there were no commonalities in the dosemeter composition or the measurement methods applied, a clear conclusion is not possible. To resolve this issue, the two isomeric forms of alanine dosemeters were prepared and irradiated in an identical manner. The results indicated that the DL-alanine temperature coefficient is more than 50% higher than the L-alanine temperature coefficient. (authors)
Directory of Open Access Journals (Sweden)
Leonardo A. Baldenegro-Perez
2014-02-01
Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.
Curvers, J.M.P.M.; Rijks, J.A.; Cramers, C.A.M.G.; Knauss, K.; Larson, P.
1985-01-01
The procedure for calculating linear temperature programmed indices as described in part 1 has been evaluated using five different nonpolar columns, with OV-1 as the stationary phase. For fourty-three different solutes covering five different classes of components, including n-alkanes and
CH3Cl self-broadening coefficients and their temperature dependence
International Nuclear Information System (INIS)
Dudaryonok, A.S.; Lavrentieva, N.N.; Buldyreva, J.V.
2013-01-01
CH 3 35 Cl self-broadening coefficients at various temperatures of atmospheric interest are computed by a semi-empirical method particularly suitable for molecular systems with strong dipole–dipole interactions. In order to probe the dependence on the rotational number K, the model parameters are adjusted on extensive room-temperature measurements for K≤7 and allow reproducing fine features of J-dependences observed for K≤3; for higher K up to 20, the fitting is performed on specially calculated semi-classical values. The temperature exponents for the standard power law are extracted and validated by calculation of low-temperature self-broadening coefficients comparing very favorably with available experimental data. An extensive line-list of self-broadening coefficients at the reference temperature 296 K and associated temperature exponents for 0≤J≤70, 0≤K≤20 is provided as Supplementary material for their use in atmospheric applications and spectroscopic databases. -- Highlights: • We calculated methyl chloride self-broadening coefficients using two methods. • Rotational quantum numbers were J from 0 till 70 and K from 0 till 20. • The temperature exponents were calculated for every mentioned line
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
International Nuclear Information System (INIS)
Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-01-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.
Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei
2014-01-01
The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...
Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane
Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.
1988-01-01
Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.
Monitoring temperature reactivity coefficient by noise method in a NPP at full power
International Nuclear Information System (INIS)
Aguilar, O.; Por, G.
1987-04-01
A new method based on noise measurement was used to estimate the temperature reactivity coefficient of the PAKS-2 reactor during the entire fuel cycle. Based on the measurements it is possible to measure the dependence of reactivity coefficient on boron concentration. Good agreement was found between the results obtained by the new method and by the conventional ones. Based on this method a new equipment can be develop which assures permanent measurements during operation. (author)
Energy Technology Data Exchange (ETDEWEB)
Silvester, Leonard F.; Pitzer, Kenneth S.
1977-11-01
Heat of dilution and of solution data are fitted to the form of equation corresponding to that used successfully for activity and osmotic coefficients over a wide range of concentration. The resulting parameters give the change with temperature of the activity and osmotic coefficients. Results are reported for 84 electrolytes of 1-1, 2-1, 3-1, and 2-2 valence types.
Measurement of reactivity temperature coefficient by noise method in a power reactor
International Nuclear Information System (INIS)
Aguilar, O.
1986-07-01
The temperature reactivity coefficient was estimated on the basis of noise measurements performed in a PWR. The magnitude of the coefficient was evaluated by relating the values of the APSD and CPSD between ex-core neutron detector signals and fuel assembly outlet thermocouple in the low frequency range. Comparison with δρ/δT measurements performed in PWR by standard methods supports the validity of the results. (author)
Directory of Open Access Journals (Sweden)
WANG Fang
2017-04-01
Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity，the experimental data were divided into group. Using the control variable method，the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object，using numerical simulation methods，porous media，k一￡model，second order upwind mode，and pressure一velocity coupling with SIMPLE algorithm，the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.
International Nuclear Information System (INIS)
Komarov, V.E.; Borodina, N.P.
1981-01-01
Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru
Estimation of moderator temperature coefficient of actual PWRs using wavelet transform
International Nuclear Information System (INIS)
Katsumata, Ryosuke; Shimazu, Yoichiro
2001-01-01
Recently, an applicability of wavelet transform for estimation of moderator temperature coefficient was shown in numerical simulations. The basic concept of the wavelet transform is to eliminate noise in the measured signals. The concept is similar to that of Fourier transform method in which the analyzed reactivity component is divided by the analyzed component of relevant parameter. In order to apply the method to analyze measured data in actual PWRs, we carried out numerical simulations on the data that were more similar to actual data and proposed a method for estimation of moderator temperature coefficient using the wavelet transform. In the numerical simulations we obtained moderator temperature coefficients with the relative error of less than 4%. Based on this result we applied this method to analyze measured data in actual PWRs and the results have proved that the method is applicable for estimation of moderator temperature coefficients in the actual PWRs. It is expected that this method can reduce the required data length during the measurement. We expect to expand the applicability of this method to estimate the other reactivity coefficients with the data of short transient. (author)
Energy Technology Data Exchange (ETDEWEB)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)
2016-06-08
Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.
International Nuclear Information System (INIS)
Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak
2011-01-01
Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: → Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. → Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. → A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.
Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad
2017-08-01
In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.
Control rod position and temperature coefficients in HTTR power-rise tests. Interim report
International Nuclear Information System (INIS)
Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji; Saito, Kenji; Kobayashi, Shoichi; Sawahata, Hiroaki; Kokusen, Sigeru
2001-03-01
Power-rise tests of the High Temperature Engineering Test Reactor (HTTR) have been carried out aiming to achieve 100% power. So far, 50% of power operation and many tests have been carried out. In the HTTR, temperature change in core is so large to achieve the outlet coolant temperature of 950degC. To improve the calculation accuracy of the HTTR reactor physics characteristics, control rod positions at criticality and temperature coefficients were measured at each step to achieve 50% power level. The calculations were carried out using Monte Carlo code and diffusion theory with temperature distributions in the core obtained by reciprocal calculation of thermo-hydraulic code and diffusion theory. Control rod positions and temperature coefficients were calculated by diffusion theory and Monte Carlo method. The test results were compared to calculation results. The control rod positions at criticality showed good agreement with calculation results by Monte Carlo method with error of 50 mm. The control position at criticality at 100% was predicted around 2900mm. Temperature coefficients showed good agreement with calculation results by diffusion theory. The improvement of calculation will be carried out comparing the measured results up to 100% power level. (author)
Measurements of fuel temperature coefficient of reactivity on a commercial AGR
International Nuclear Information System (INIS)
Telford, A.; Bridge, M.J.
1978-01-01
Tests have been carried out on the commercial AGR at Hikley Point to determine the fuel temperature coefficient of reactivity, an important safety related parameter. Reactor neutron flux was measured during transients induced by movement of a bank of control rods from one steady position to another. An inverse kinetics analysis was applied to the measured flux to determine the change which occured in core reactivity as the fuel temperature changed. The variation of mean fuel temperature was deduced from the flux transient by means of a nine-plane thermal hydraulics representation of the AGR fuel channel. Results so far obtained confirm the predicted variation of fuel temperature coefficient with butn-up. (author)
Temperature coefficients for GaInP/GaAs/GaInNAsSb solar cells
Energy Technology Data Exchange (ETDEWEB)
Aho, Arto; Isoaho, Riku; Tukiainen, Antti; Polojärvi, Ville; Aho, Timo; Raappana, Marianna; Guina, Mircea [Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)
2015-09-28
We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37–39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be −7.5 mV/°C, 0.040 mA/cm{sup 2}/°C, and −0.09%/°C, respectively.
Self-consistent transport coefficients for average collective motion at moderately high temperatures
International Nuclear Information System (INIS)
Yamaji, Shuhei; Hofmann, H.; Samhammer, R.
1987-01-01
Linear response theory is applied to compute the coefficients for inertia, friction and local stiffness for slow, large scale nuclear collective motion. It is shown how these coefficients can be defined within a locally harmonic approximation. The latter allows to study the implications arising from a finite local collective frequency. It is only for temperatures around 2 MeV that the zero frequency limit becomes a fair approximation. Friction is found to have a marked temperature dependence. The numerical computations are performed on the basis of a two-center shell model, but allowing the particles and holes to become dressed through effects of the medium. The dependence of the transport coefficients on the parameters of these self-energies is studied. It is argued that the uncertainties are smaller than a factor of 2. (orig.)
AUTHOR|(CDS)2084596; Papastergiou, Konstantinos; Bongiorno, M; Thiringer, T
2016-01-01
This work investigates the current sharing effect of a high power Soft Punch Through IGBT module in the Negative Temperature Coefficient region. The unbalanced current sharing between two of the substrates is demonstrated for different current and temperature levels and its impact on the thermal stressing of the device is evaluated. The results indicate that the current asymmetry does not lead to a significant thermal stressing unbalance between the substrates.
International Nuclear Information System (INIS)
Raffaelle, R.P.; Parris, P.E.; Anderson, H.U.; Sparlin, D.M.
1991-01-01
Thermoelectric power measurements are presented for the (La,Sr)(Cr,Mn)O 3 series. The nonlinear temperature dependence of the Seebeck coefficient is analyzed in terms of a random distribution of energetically equivalent hopping sites. The limitations of Heikes' formula, which has been traditionally used to calculate small polaron carrier densities in these systems, are discussed. Recent theoretical developments in the interpretation of Seebeck measurements in substitutionally-disordered high-temperature hopping conductors are reviewed
Measuring temperature coefficient of TRIGA MARK I reactor by noise analysis
International Nuclear Information System (INIS)
Soares, P.A.
1975-01-01
The transfer function of TRIGA MARK I Reactor is measured at power zero (5w) and power 118Kw, in the frequency range of 0.02 to 0.5 rd/s. The method of intercorrelation between a pseudostochasticbinary signal is used. A simple dynamic model of the reactor is developed and the coefficient of temperature is estimated [pt
Temperature dependence of the absorption coefficient of water for midinfrared laser radiation
Jansen, E. D.; van Leeuwen, T. G.; Motamedi, M.; Borst, C.; Welch, A. J.
1994-01-01
The dynamics of the water absorption peak around 1.94 microns was examined. This peak is important for the absorption of holmium and thulium laser radiation. To examine the effect of temperature on the absorption coefficient, the transmission of pulsed Ho:YAG, Ho:YAG, Ho:YSGG, and Tm:YAG laser
International Nuclear Information System (INIS)
Adam, E.; Knorr, J.
1982-01-01
Approximate formulas are derived for determining the temperature coefficient of reactivity of the training and research reactor (AKR) of the Dresden Technical University. Values calculated on the basis of these approximations show good agreement with experimentally obtained results, thus confirming the applicability of the formulas to simple systems
Monte Carlo calculation of the nuclear temperature coefficient in fast reactors
Energy Technology Data Exchange (ETDEWEB)
Matthes, W.
1974-04-15
A Monte Carlo program for the calculation of the nuclear temperature coefficient for fast reactors is described. The special difficulties for this problem are the energy and space dependence of the cross sections and the calculation of differential eifects. These difficulties are discussed in detail and the way for their solution chosen in this program is described. (auth)
International Nuclear Information System (INIS)
Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C.
2017-01-01
The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO_2 fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D_2O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α"M_T(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)
Energy Technology Data Exchange (ETDEWEB)
Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail: rubensrcs@usp.br, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-07-01
The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)
International Nuclear Information System (INIS)
Garriga, R.; Perez, P.; Gracia, M.
2006-01-01
Vapour pressures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane, or tetrachloroethene) at nine temperatures between T = 283.15 K and T = 323.15 K were measured by a static method. The reduction of the vapour pressures data to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich-Kister polynomial according to Barker's method. Excess molar volumes were also measured at T 298.15 K. A comparative analysis about the thermodynamic behaviour of both systems is performed, in terms of hydrogen bonding and electron-donor-acceptor interactions, as well as the resonance effect in tetrachloroethene
Elasticity moduli, thermal expansion coefficients and Debye temperature of titanium alloys
International Nuclear Information System (INIS)
Beletskij, V.M.; Glej, V.A.; Maksimyuk, P.A.; Tabachnik, V.I.; Opanasenko, V.F.
1979-01-01
Studied are the characteristics of titanium alloys which reflect best the bonding forces for atoms in a crystal lattice: elastic modules, their temperature dependences, thermal expansion coefficient and Debye temperatures. For the increase of the accuracy of measuring modules and especially their changes with temperature an ultrasonic echo-impulse method of superposition has been used. The temperature dependences of Young modulus of the VT1-0, VT16 and VT22 titanium alloys are plotted. The Young module and its change with temperature depend on the content of alloying elements. The Young module decrease with temperature may be explained within the framework of the inharmonic effect theory. The analysis of the results obtained permits to suppose that alloying of titanium alloys with aluminium results in an interatomic interaction increase that may be one of the reasons of their strength increase
Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K
Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.
2018-03-01
The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.
The accommodation coefficient of the liquid at temperatures below the boiling
Directory of Open Access Journals (Sweden)
Bulba Elena E.
2015-01-01
Full Text Available Are carried out experimental investigation of the laws of vaporization at temperatures below the boiling point. Is determined the mass rate of evaporation of distilled water in large intervals of time at different temperatures in order to sound conclusions about the stationarity of the process of evaporation of the liquid in the conditions of the experiments performed, and also studied the effect of temperature on the rate of evaporation. Accommodation coefficient is defined in the mathematical expression of the law of Hertz-Knudsen for standart substance used in the experiments.
International Nuclear Information System (INIS)
Jee, Madan; Prasad, Vijay; Singh, Amita
1995-01-01
The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs
A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect
International Nuclear Information System (INIS)
Cheng, Wen-long; Wu, Wan-fan; Song, Jia-liang; Liu, Yi; Yuan, Shuai; Liu, Na
2014-01-01
Highlights: • A new kind of shape-stabilized PCMs with PTC effect is first prepared. • It provides a potential means for the thermal control of the electronic devices. • The switching temperature of the materials is about 25 °C. • The most appropriate component of the material is found out by experimental study. • The NTC effect of the new PCMs is eliminated effectively by heat treatment. - Abstract: A new kind of shape-stabilized phase change materials (PCMs) with positive temperature coefficient (PTC) effect was prepared in this paper. The materials were prepared by adding graphite powder (GP) to the paraffin/low density polyethylene (LDPE) composite and the PTC characteristic was found by adjusting the component ratio of the material. Then the physical structures and thermal properties of the materials were investigated and the effect of various GP mass fractions and paraffin/LDPE mass proportions on the PTC behavior of the materials was studied experimentally. The results showed that the switching temperature of the materials was about 25 °C (room temperature) which approached to the first phase change temperature of paraffin dispersed in the materials. The PTC behavior of the materials was the best when the GP mass fraction and the mass proportion of LDPE/paraffin were 40 wt% and 30:70, respectively. Furthermore, the negative temperature coefficient (NTC) effect of the materials could be eliminated effectively with heat treatment. This new kind of materials is different from the former PTC materials which the switching temperatures focus on high temperature ranges. It makes up for the defect of previous materials that the switching temperatures only range in high temperature rather than room temperature and provides a potential means for the thermal control of the electronic devices or other room temperature thermal control applications
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
DEFF Research Database (Denmark)
Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri
2016-01-01
) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, itis......Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Masstransport properties of electronic packaging materials are needed in order to investigate the influence of moisture andtemperature on reliability of electronic devices. Polycarbonate (PC...... shown how the estimated value can be different depending on the choice of dimensionality in the model....
DEFF Research Database (Denmark)
Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard
. The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...
High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films
Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.
2017-09-01
High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.
Bogan, Denis
1999-01-01
Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.
Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F
2003-04-01
We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.
Assessment of the crossflow loss coefficient in Very High Temperature Reactor core - 15338
International Nuclear Information System (INIS)
Lee, S.N.; Tak, N.I.; Kim, M.H.; Noh, J.M.
2015-01-01
The Very High Temperature Reactor (VHTR) is a helium gas cooled and graphite moderated reactor. It was chosen as one of the Gen-4 reactors owing to its inherent safety. Various researches for prismatic gas-cooled reactors have been conducted for efficient and safe use. The prismatic VHTR consists of vertically stacked fuel blocks. Between the vertical fuel blocks, there is cross gap because of manufacturing tolerance or graphite change during the operation. This cross gap changes the coolant flow path, called a crossflow, which may affect the fuel temperature. Various tests and numerical studies have been conducted to predict the crossflow and loss coefficient. In the present study, the CFD calculation is conducted to draw the loss coefficient, and compared with Groehn, Kaburaki and General Atomics (GA) correlations. The results of the Groehn and Kaburaki correlations tend to decrease as the gap size increases, whereas the data of GA show the opposite. The loss coefficient given by the CFD calculation tends to maintain the regular value without regard to the gap size for the standard fuel block, like the Groehn correlation. However, the loss coefficient of the control fuel block increases as the gap size widens, like the GA results
Energy Technology Data Exchange (ETDEWEB)
Zou, C.Y.; Cai, X.Z.; Jiang, D.Z.; Yu, C.G.; Li, X.X.; Ma, Y.W.; Han, J.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, J.G., E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)
2015-01-15
Highlights: • The temperature feedback coefficient with different moderation ratios for TMSR in thermal neutron region is optimized. • The breeding ratio and doubling time of a thermal TMSR with three different reprocessing schemes are analyzed. • The smaller hexagon size and larger salt fraction with more negative feedback coefficient can better satisfy the safety demands. • A shorter reprocessing time can achieve a better breeding ratio in a thermal TMSR. • The graphite moderator lifespan is compared with other MSRs and discussed. - Abstract: Molten salt reactor (MSR) has fascinating features: inherent safety, no fuel fabrication, online fuel reprocessing, etc. However, the graphite moderated MSR may present positive feedback coefficient which has severe implications for the transient behavior during operation. In this paper, the feedback coefficient and the breeding ratio are optimized based on the fuel-to-graphite ratio variation for a thorium based MSR (TMSR). A certain thermal core with negative feedback coefficient and relative high initial breeding ratio is chosen for the reprocessing scheme analysis. The breeding performances for the TMSR under different online fuel reprocessing efficiencies and frequencies are evaluated and compared with other MSR concepts. The results indicate that the thermal TMSR can get a breeding ratio greater than 1.0 with appropriate reprocessing scheme. The low fissile inventory in thermal TMSR leads to a short doubling time and low transuranic (TRU) inventory. The lifetime of graphite used for the TMSR is also discussed.
International Nuclear Information System (INIS)
Hawrylak, B.; Palepu, R.; Tremaine, Peter R.
2006-01-01
Apparent molar volumes of aqueous methyldiethanolamine and its salt were determined with platinum vibrating tube densitometers over a range of temperatures from 283K= o , heat capacities C p o , and isothermal compressibilities κ T o . The standard partial molar volumes V o for the neutral amine and its salt show increasingly positive and negative values, respectively, at high temperatures and pressures, as predicted by corresponding states and group additivity arguments. The density model and the revised Helgeson-Kirkham-Flowers (HKF) model have been used to represent the temperature and pressure dependence of the standard partial molar properties to yield a full thermodynamic description of the system
Calculation of fuel and moderator temperature coefficients in APR1400 nuclear reactor by MVP code
International Nuclear Information System (INIS)
Pham Tuan Nam; Le Thi Thu; Nguyen Huu Tiep; Tran Viet Phu
2014-01-01
In this project, these fuel and moderator temperature coefficients were calculated in APR1400 nuclear reactor by MVP code. APR1400 is an advanced water pressurized reactor, that was researched and developed by Korea Experts, its electric power is 1400 MW. The neutronics calculations of full core is very important to analysis and assess a reactor. Results of these calculation is input data for thermal-hydraulics calculations, such as fuel and moderator temperature coefficients. These factors describe the self-safety characteristics of nuclear reactor. After obtaining these reactivity parameters, they were used to re-run the thermal hydraulics calculations in LOCA and RIA accidents. These thermal-hydraulics results were used to analysis effects of reactor physics parameters to thermal hydraulics situation in nuclear reactors. (author)
RADIAL FORCE IMPACT ON THE FRICTION COEFFICIENT AND TEMPERATURE OF A SELF-LUBRICATING PLAIN BEARING
Directory of Open Access Journals (Sweden)
Nada Bojić
2017-12-01
Full Text Available Self-lubricating bearings are available in spherical, plain, flanged journal, and rod end bearing configurations. They were originally developed to eliminate the need for re-lubrication, to provide lower torque and to solve application problems where the conventional metal-to-metal bearings would not perform satisfactorily, for instance, in the presence of high frequency vibrations. Among the dominant tribological parameters of the self-lubricating bearing, two could be singled out: the coefficient of friction and temperature. To determine these parameters, an experimental method was applied in this paper. By using this method, the coefficient of friction and temperature were identified and their correlation was established. The aim of this research was to determine the effect of radial force on tribological parameters in order to predict the behavior of sliding bearings with graphite in real operating conditions.
Otun, Sarah O.; Meehan, Elizabeth; Qi, Sheng; Craig, Duncan Q. M.
2014-01-01
Purpose Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Methods Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Geluc...
International Nuclear Information System (INIS)
Thomas, J.R. Jr.; Adams, J.T.
1994-01-01
A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base
International Nuclear Information System (INIS)
Engle, W.W. Jr.; Williams, L.R.
1994-07-01
This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study
Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures
International Nuclear Information System (INIS)
Chondrakis, N.G.; Topalis, F.V.
2011-01-01
The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.
Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.
Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min
2017-02-09
The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.
Cervenka, L; Kubínová, J; Juszczak, L; Witczak, M
2012-02-01
Sorption isotherms of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) root samples were obtained at 25 °C. Elecampe exhibited hysteresis loop in the range of 0.35-0.90 a(w) , whereas burdock roots showed significant differences between adsorption and desorption isotherms from 0.65 to 0.80 a(w) . Blahovec-Yanniotis was considered to give the best fit over the whole range of a(w) tested. Various parameters describing the properties of sorbed water derived from GAB, Henderson and Blahovec-Yanniotis models have been discussed. Differential scanning calorimetric method was used to measure the glass transition temperature (T (g)) of root samples in relation to water activity. The safe moisture content was determined in 12.01 and 14.96 g/100 g d. b. for burdock and elecampe root samples at 25 °C, respectively. Combining the T (g) line with sorption isotherm in one plot, it was found that the glass transition temperature concept overestimated the temperature stability for both root samples.
Lankford, Jr., James
1988-01-01
A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.
The temperature coefficient of the resonance integral for uranium metal and oxide
Energy Technology Data Exchange (ETDEWEB)
Blomberg, P; Hellstrand, E; Homer, S
1960-06-15
The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above.
The temperature coefficient of the resonance integral for uranium metal and oxide
International Nuclear Information System (INIS)
Blomberg, P.; Hellstrand, E.; Homer, S.
1960-06-01
The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above
Leone, Stephen R.
1995-01-01
The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.
The effect of core configuration on temperature coefficient of reactivity in IRR-1
Energy Technology Data Exchange (ETDEWEB)
Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)
1997-08-01
Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.
Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.
English, M J; Hemmerling, T M
2008-07-01
To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.
Re-evaluation of SiC permeation coefficients at high temperatures
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)
2016-11-01
Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.
DEFF Research Database (Denmark)
Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang
2010-01-01
greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation...... constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under...... the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related....
Directory of Open Access Journals (Sweden)
Guo Zerong
2016-01-01
Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.
Two-temperature transport coefficients of SF6–N2 plasma
International Nuclear Information System (INIS)
Yang, Fei; Chen, Zhexin; Wu, Yi; Rong, Mingzhe; Wang, Chunlin; Guo, Anxiang; Liu, Zirui
2015-01-01
Sulfur hexafluoride (SF 6 ) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF 6 is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF 6 –N 2 mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF 6 . This paper is devoted to the calculation of and transport coefficients of SF 6 –N 2 mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N 2 mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF 6 –N 2 plasma, especially before the plasma is fully ionized. The different influence of N 2 on properties for SF 6 –N 2 plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF 6 –N 2 plasmas
Rate coefficients for the reactions of ions with polar molecules at interstellar temperatures
International Nuclear Information System (INIS)
Adams, N.G.; Smith, D.; Clary, D.C.
1985-01-01
A theory has been developed recently which predicts that the rate coefficients, k, for the reactions of ions with polar molecules at low temperatures will be much greater than the canonical value of 10 -9 cm 3 s -1 . The new theory indicates that k is greatest for low-lying rotational sates and increases rapidly with decreasing temperature. We refer to recent laboratory measurements which validate the theory, present calculated values of k for the reactions of H + 3 ions with several polar molecules, and discuss their significance to interstellar chemistry. For the reactions of ions with molecules having large dipole moments, we recommend that k values as large as 10 -7 cm 3 s -1 should be used in ion-chemical models of low-temperature interstellar clouds
International Nuclear Information System (INIS)
Povar, I.G.
1995-01-01
Equations describing the relation between temperature coefficient of ∂lnα/∂T complexing degree and the sum of changes in the enthalpy of complex formation of the composition M m L n δH mn multiplied by the weight coefficients k mm , are presented. A method to determine changes in the enthalpy of certain ΔH mm reactions from ∂lnα/∂T derivatives has been suggested. The best approximating equation from lnα/(T) dependence has been found. Errors of thus determined δH mm values are estimated and the results of calculation experiment for the system In 3+ -F - are provided. 10 refs., 2 figs., 3 tabs
International Nuclear Information System (INIS)
Seo, M; Shimamura, T; Furutani, T; Hasuo, M; Bahrim, C; Fujimoto, T
2003-01-01
Disalignment of neon excited atoms in the fine-structure 2p i levels (in Paschen notation) of the 2p 5 3p configuration is investigated in a helium-neon glow discharge at temperatures between 15 and 77 K. At several temperatures, we plot the disalignment rate as a function of the helium atom density for Ne* (2p 2 or 2p 7 ) + He(1s 2 ) collisions. The slope of this dependence gives the disalignment rate coefficient. For both collisions, the experimental data for the disalignment rate coefficient show a more rapid decrease with the decrease in temperature below 40 K than our quantum close-coupling calculations based on the model potential of Hennecart and Masnou-Seeuws (1985 J. Phys. B: At. Mol. Phys. 18 657). This finding suggests that the disalignment cross section rapidly decreases below a few millielectronvolts, in disagreement with our theoretical quantum calculations which predict a strong increase below 1 meV. The disagreement suggests that the long-range electrostatic potentials are significantly more repulsive than in the aforementioned model
The negative temperature coefficient resistivities of Ag2S-Ag core–shell structures
International Nuclear Information System (INIS)
Yu, Mingming; Liu, Dongzhi; Li, Wei; Zhou, Xueqin
2014-01-01
In this paper, the conductivity of silver nanoparticle films protected by 3-mercaptopropionic acid (Ag/MPA) has been investigated. When the nanoparticles were annealed in air at 200 °C, they converted to stable Ag 2 S-Ag core–shell structures. The mechanism for the formation of the Ag 2 S-Ag core–shell structures along with the compositional changes and the microstructural evolution of the Ag/MPA nanoparticles during the annealing process are discussed. It is proposed that the Ag 2 S-Ag core–shell structure was formed through a solid-state reduction reaction, in which the Ag + ions coming from Ag 2 S were reduced by sulfonate species and sulfur ions. The final Ag 2 S-Ag films display an exponentially decreased resistivity with increasing temperature from 25 to 170 °C. The negative temperature coefficient resistivity of Ag 2 S-Ag films can be adjusted by changing the S/Ag molar ratio used for the synthesis of the Ag/MPA nanoparticles, paving the way for the preparation of negative temperature-coefficient thermistors via printing technology for use in the electronics.
International Nuclear Information System (INIS)
Hussein, S.A.
1989-01-01
Conductivity type, carrier concentration and carrier mobility of InTe samples grown by Bridgman technique were determined by the Hall effect and electrical conductivity measurements. The study was performed in the temperature range 150-480 K. Two samples with different growth rate were used in the investigation. The samples under test were P-type conducting, in accordance with previous measurements of undoped material. The Hall coefficient was found to be isotropic yielding room temperature hole concentration in the range 10 15 -10 16 cm -3 . The hole mobilities of InTe samples were in the range 1.17 x 10 3 -2.06 x 10 3 cm 2 /V · sec at room temperature. The band-gap of InTe determined from Hall coefficient studies has been obtained equal to 0.34 eV. The scattering mechanism was checked, and the electrical properties were found to be sensitive to the crystal growth rate. (author)
Erna Apriliani; Dieky Adzkiya; Arief Baihaqi
2011-01-01
Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ense...
A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors
Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.
2015-01-01
A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.
International Nuclear Information System (INIS)
Kumar, Duguta Suresh; Khanna, P. K.; Suri, Nikhil; Sharma, R. P.
2016-01-01
The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kusy, A.
1987-01-01
Two types of elementary resistances in thick resistive films have been considered: (i) constriction resistance R/sub C/ determined by the bulk properties of conducting material and by the geometry of constriction, and (ii) barrier resistance R/sub B/ determined by the parameters of a thermally activated type of tunneling process and by the geometry of the metal-insulator-metal unit. On this basis a resistance network composed of a large number of the two types of resistances has been defined. The network has been considered as being equivalent to thick resistive film (TRF) from the point of view of the resistance and temperature coefficient of resistance (TCR). The parameters of this network have been evaluated by the computer-aided approximation of the experimental data found for RuO 2 -based TRFs. On the basis of the equations derived for the network as well as the results of the approximation process, it can be concluded that the small values of the network TCR result from the superposition of the TCR of the conducting component β/sub C/ and of the temperature coefficient of barrier resistance α/sub B/. In this superposition β/sub C/ is attenuated (by 1--2 orders of magnitude), while α/sub B/ is attenuated by only few percentages. The network has been found to be strongly barrier dominated
Two-temperature transport coefficients of SF{sub 6}–N{sub 2} plasma
Energy Technology Data Exchange (ETDEWEB)
Yang, Fei; Chen, Zhexin; Wu, Yi, E-mail: wuyic51@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Chunlin [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Guo, Anxiang; Liu, Zirui [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xian (China)
2015-10-15
Sulfur hexafluoride (SF{sub 6}) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF{sub 6} is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF{sub 6}–N{sub 2} mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF{sub 6}. This paper is devoted to the calculation of and transport coefficients of SF{sub 6}–N{sub 2} mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N{sub 2} mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF{sub 6}–N{sub 2} plasma, especially before the plasma is fully ionized. The different influence of N{sub 2} on properties for SF{sub 6}–N{sub 2} plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF{sub 6}–N{sub 2} plasmas.
Supel'nyak, M. I.
2017-11-01
Features of calculation of temperature oscillations which are damped in a surface layer of a solid and which are having a small range in comparison with range of temperature of the fluid medium surrounding the solid at heat transfer coefficient changing in time under the periodic law are considered. For the specified case the equations for approximate definition of constant and oscillating components of temperature field of a solid are received. The possibility of use of appropriately chosen steady-state coefficient when calculating the temperature oscillations instead of unsteady heat-transfer coefficient is investigated. Dependence for definition of such equivalent constant heat-transfer coefficient is determined. With its help the research of temperature oscillations of solids with canonical form for some specific conditions of heat transfer is undertaken. Comparison of the obtained data with results of exact solutions of a problem of heat conductivity by which the limits to applicability of the offered approach are defined is carried out.
International Nuclear Information System (INIS)
Shieh, D.J.; Upadhyaya, B.R.; Sweeney, F.J.
1987-01-01
A new technique, based on the noise analysis of neutron detector and core-exit coolant temperature signals, is developed for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors (PWRs). A detailed multinodal model is developed and evaluated for the reactor core subsystem of the loss-of-fluid test (LOFT) reactor. This model is used to study the effect of changing the sign of the moderator temperature coefficient of reactivity on the low-frequency phase angle relationship between the neutron detector and the core-exit temperature noise signals. Results show that the phase angle near zero frequency approaches - 180 deg for negative coefficients and 0 deg for positive coefficients when the perturbation source for the noise signals is core coolant flow, inlet coolant temperature, or random heat transfer
Directory of Open Access Journals (Sweden)
Cui X.G.
2009-01-01
Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.
Analysis of Moderator Temperature Reactivity Coefficient of the PWR Core Using WIMS-ANL
International Nuclear Information System (INIS)
Tukiran; Rokhmadi
2007-01-01
The Moderator Temperature Reactivity Coefficient (MTRC) is an important parameter in design, control and safety, particularly in PWR reactor. It is then very important to validate any new processed library for an accurate prediction of this parameter. The objective of this work is to validate the newly WIMS library based on ENDF/B-VI nuclear data files, especially for the prediction of the MTRC parameter. For this purpose, it is used a set of light water moderated lattice experiments as the NORA experiment and R1-100H critical reactors, both of reactors using UO 2 fuel pellet. Analysis is used with WIMSD/4 lattice code with original cross section libraries and WIMS-ANL with ENDF/B-VI cross section libraries. The results showed that the moderator temperatures reactivity coefficients for the NORA reactor using original libraries is - 5.039E-04 %Δk/k/℃ but for ENDF/B-VI libraries is - 2.925E-03 %Δk/k/℃. Compared to the designed value of the reactor core, the difference is in the range of 1.8 - 3.8 % for ENDF/B-IV libraries. It can be concluded that for reactor safety and control analysis, it has to be used ENDF/B- VI libraries because the original libraries is not accurate any more. (author)
Olszacki, M.; Maj, C.; Bahri, M. Al; Marrot, J.-C.; Boukabache, A.; Pons, P.; Napieralski, A.
2010-06-01
Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 1017 at cm-3 to 1.6 × 1019 at cm-3. The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 1018-1019 at cm-3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.
International Nuclear Information System (INIS)
Olszacki, M; Maj, C; Al Bahri, M; Marrot, J-C; Boukabache, A; Pons, P; Napieralski, A
2010-01-01
Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 10 17 at cm −3 to 1.6 × 10 19 at cm −3 . The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 10 18 –10 19 at cm −3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.
Measurements of the fuel temperature coefficient of reactivity at Hinkley Point 'B': 1981
International Nuclear Information System (INIS)
George, T.A.
1982-03-01
Measurements of the fuel temperature coefficient of reactivity made at Hinkley Point 'B' AGR in 1981 are described. These measurements follow earlier tests reported in e.g. RD/B/N4846 and are part of a series of measurements designed to support theoretical estimates of the change of fuel temperature coefficient as a function of core irradiation. Low and high power measurements were made at a mean core irradiation of 1170GWD. As previously, the measurements at both power levels show agreement with theoretical predictions to within the estimated experimental errors. Recent measurements (mean core irradiation >500GWD) show evidence of a small systematic difference between measured and theoretical values with the experimental values being approximately equal to 0.1mN/ 0 C more positive than the theoretical ones. The measured value of αsub(U) at high power was -0.64+-0.10mN/ 0 C and the low power value, corrected theoretically to normal operating conditions, was also -0.64+-0.10mN/ 0 C. (author)
Analytical method for estimating the thermal expansion coefficient of metals at high temperature
International Nuclear Information System (INIS)
Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y
2015-01-01
In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)
International Nuclear Information System (INIS)
Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi
2009-01-01
The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.
Otun, Sarah O; Meehan, Elizabeth; Qi, Sheng; Craig, Duncan Q M
2015-04-01
Slow or incomplete crystallization may be a significant manufacturing issue for solid lipid-based dosage forms, yet little information is available on this phenomenon. In this investigation we suggest a novel means by which slow solidification may be monitored in Gelucire 44/14 using quasi-isothermal modulated temperature DSC (QiMTDSC). Conventional linear heating and cooling DSC methods were employed, along with hot stage microscopy (HSM), for basic thermal profiling of Gelucire 44/14. QiMTDSC experiments were performed on cooling from the melt, using a range of incremental decreases in temperature and isothermal measurement periods. DSC and HSM highlighted the main (primary) crystallization transition; solid fat content analysis and kinetic analysis were used to profile the solidification process. The heat capacity profile from QiMTDSC indicated that after an initial energetic primary crystallisation, the lipid underwent a slower period of crystallization which continued to manifest at much lower temperatures than indicated by standard DSC. We present evidence that Gelucire 44/14 undergoes an initial crystallization followed by a secondary, slower process. QIMTDSC appears to be a promising tool in the investigation of this secondary crystallization process.
International Nuclear Information System (INIS)
M.S. Gruszkiewicz; D.A. Palmer
2006-01-01
While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl 2 , LiCl, and NaCl used as references, precise direct
Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material
International Nuclear Information System (INIS)
Bibik, V; Galeeva, A
2015-01-01
In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pitzer, K.S.
1979-09-01
It is shown that the properties of fully ionized aqueous electrolyte systems can be represented by relatively simple equations over wide ranges of composition. There are only a few systems for which data are available over the full range to fused salt. A simple equation commonly used for nonelectrolytes fits the measured vapor pressure of water reasonably well and further refinements are clearly possible. Over the somewhat more limited composition range up to saturation of typical salts such as NaCl, the equations representing thermodynamic properties with a Debye-Hueckel term plus second and third virial coefficients are very successful and these coefficients are known for nearly 300 electrolytes at room temperature. These same equations effectively predict the properties of mixed electrolytes. A stringent test is offered by the calculation of all of the solubility relationships of the system Na-K-Mg-Ca-Cl-So{sub 4}-H{sub 2}0 and the calculated results of Harvie and Weare show excellent agreement with
New proposal of moderator temperature coefficient estimation method using gray-box model in NPP, (1)
International Nuclear Information System (INIS)
Mori, Michitsugu; Kagami, Yuichi; Kanemoto, Shigeru; Enomoto, Mitsuhiro; Tamaoki, Tetsuo; Kawamura, Shinichiro
2004-01-01
The purpose of the present paper is to establish a new void reactivity coefficient (VRC) estimation method based on gray box modeling concept. The gray box model consists of a point kinetics model as the first principle model and a fitting model of moderator temperature kinetics. Applying Kalman filter and maximum likehood estimation algorithms to the gray box model, MTC can be estimated. The verification test is done by Monte Carlo simulation, and, it is shown that the present method gives the best estimation results comparing with the conventional methods from the viewpoints of non-biased and smallest scattering estimation performance. Furthermore, the method is verified via real plant data analysis. The reason of good performance of the present method is explained by proper definition of likelihood function based on explicit expression of observation and system noise in the gray box model. (author)
International Nuclear Information System (INIS)
Blacker, P.T.; McLain, D.R.
1962-04-01
The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm 2 . This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable
Energy Technology Data Exchange (ETDEWEB)
Blacker, P T; McLain, D R [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1962-04-15
The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm{sup 2}. This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable.
Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures
Es-sebbar, Et-touhami
2016-09-28
Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind reflected shock waves over the temperature range of 843–1352 K and pressures near 1.5 atm. Hydroxyl radicals were generated by rapid thermal decomposition of tert-butyl hydroperoxide ((CH3)3–CO–OH), and monitored by narrow line width laser absorption of the well-characterized R1(5) electronic transition of the OH A–X (0,0) electronic system near 306.7 nm. Results show that allene reacts faster with OH radicals than propyne over the temperature range of this study. Measured rate coefficients can be expressed in Arrhenius form as follows: kallene+OH(T) = 8.51(±0.03) × 10–22T3.05 exp(2215(±3)/T), T = 843–1352 K; kpropyne+OH(T) = 1.30(±0.07) × 10–21T3.01 exp(1140(±6)/T), T = 846–1335 K.
Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P
2009-07-31
In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be
Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A
2017-01-31
There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.
International Nuclear Information System (INIS)
Hurta, S.
1991-01-01
For investigating the damaging mechanism, bithermal TMF tests have been carried out with the alloy 800H, applying fast pressure half-cycles at low temperature (e.g. 300 C) and slow tensile phases at high temperature (e.g. 700 C). The experimental data thus obtained have been compared with the results of isothermal tests performed at 700 C. Most of the experiments have been performed stress-controlled and with a constant range of plastic strain. Under this regime, deformation is induced in the case of asymmetric test design within the tensile load phase, at various constant tensile stresses each, wheras in the compressive load phase, the stress is constantly increased for compressive stress-governed testing. The results obtained from both test types show that the type of compressive load phase is the factor governing the efficiency of pore formation. (orig.) [de
Comparative evaluation of fuel temperature coefficient of standard and CANFLEX fuels in CANDU 6
International Nuclear Information System (INIS)
Kim, Woosong; Hartant, Donny; Kim, Yonghee
2012-01-01
The fuel temperature reactivity coefficient (FTC) of CANDU 6 has become a concerning issue. The FTC was found to be slightly positive for the operating condition of CANDU 6. Since CANDU 6 has unique fuel arrangement and very soft neutron spectrum, its Doppler reactivity feedback of U 238 is rather weak. The upscattering by oxygen in fuel and Pu 239 buildup with fuel depletion are responsible for the positive FTC value at high temperature. In this study, FTC of both standard CANDU and CANFLEX fuel lattice are re evaluated. A Monte Carlo code Serpent2 was chosen as the analysis tool because of its high calculational speed and it can account for the thermal motion of heavy nuclides in fuel by using the Doppler Broadening Rejection Correction (DBRC) method. It was reported that the fuel Doppler effect is noticeably enhanced by accounting the target thermal motion. Recently, it was found that the FTC of the CANDU 6 standard fuel is noticeably enhanced by the DBRC
Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films
Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh
2017-12-01
Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.
Holsgrove, Kristina M.; Kepaptsoglou, Demie M.; Douglas, Alan M.; Ramasse, Quentin M.; Prestat, Eric; Haigh, Sarah J.; Ward, Michael B.; Kumar, Amit; Gregg, J. Marty; Arredondo, Miryam
2017-06-01
Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3-PbTiO3-CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.
Directory of Open Access Journals (Sweden)
Kristina M. Holsgrove
2017-06-01
Full Text Available Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC, is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3–PbTiO3–CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.
International Nuclear Information System (INIS)
Richards, Guy A.; Serfontein, Dawid E.
2014-01-01
This article investigates advanced fuel cycles containing thorium and reactor grade plutonium (Pu(PWR)) in a 400 MW th Pebble Bed Modular Reactor (PBMR) Demonstration Power Plant. Results presented were determined from coupled neutronics and thermo-hydraulic simulations of the VSOP 99/05 diffusion codes. In a previous study impressive burn-ups (601 MWd/kg heavy metal (HM)) and thus plutonium destruction rates (69.2 %) were obtained with pure plutonium fuel with mass loadings of 3 g Pu(PWR)/fuel sphere or less. However the safety performance was poor in that the limit on the maximum fuel temperature during equilibrium operation was exceeded and positive Uniform Temperature Reactivity Coefficients (UTCs) were obtained. In the present study fuel cycles containing mixtures of thorium and plutonium achieved negative maximum UTCs. Plutonium only fuel cycles also achieved negative maximum UTCs, provided that much higher mass loadings are used. It is proposed that the lower thermal neutron flux was responsible for this effect. The plutonium only fuel cycle with 12 g Pu(PWR)/fuel sphere also achieved the adopted safety limits for the PBMR DPP-400 in that the maximum fuel temperature and the maximum power density did not exceed 1130°C or 4.5 kW/sphere respectively. This design would thus be licensable and could potentially be economically feasible. However the burn-up was much lower at 181 MWd/kgHM and thus the plutonium destruction fraction was also much lower at 24.5%, which may be sub-optimal with respect to proliferation and waste disposal objectives and therefore further optimisation studies are proposed. (author)
Adjustment of activity coefficients as a function of changes in temperature, using the SIT
International Nuclear Information System (INIS)
Giffaut, E.; Vitorge, P.; Capdevila, H.
1993-11-01
The aim of this work is to propose and to check approximations to calculate from only a few experimental measurements, ionic strength, I, and temperature, T, influences on Gibbs energy, G, redox formal potential, E, and standard equilibrium constant, K. Series expansions versus T are first used: S and Cp/2T a are typically the -G first and second order terms. In the same way, -ΔH and T 2 ΔCp/2 are the first and second order terms of R in K expansions versus 1/T. This type of approximation is discussed for the E of the M 4+ /M 3+ , MO 2 2+ /MO 2 + and MO 2 (CO 3 ) 3 4- /MO 2 (CO 3 ) 3 5- couples (M = U or Pu) measured from 5 to 70 deg C, for the standard ΔG of some solid U compounds, calculated from 17 to 117 deg C, and for ΔCp, ΔG and Ig K of the CO 2 (aq)/HCO 3 - equilibrium from 0 to 150 deg C. Excess functions, X ex , are then calculated from activity coefficients, γ: enthalpy, H, or heat capacity, Cp, adjustment as a function of I changes is needed only when the γ adjustment as a function of T changes is needed. The SIT coefficient, ε, variations with T, are small and roughly linear for the above redox equilibria and for chloride electrolytes mean γ: first order expansion seems enough to deduce ε, and then the excess functions G ex , S ex and H ex , in this T range; but second order expansion is more consistent to estimate Cp ex . (authors). 25 refs., 3 tabs., 1 fig
Directory of Open Access Journals (Sweden)
Erna Apriliani
2011-01-01
Full Text Available Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ensemble estimation by using the singular value decomposition (the SVD, and then we reduced the rank of the diagonal matrix of those singular values. We make a simulation by using Matlab program. We took some the number of ensemble such as 100, 200 and 500. We compared the computational time and the accuracy between the square root ensemble Kalman filter and the ensemble Kalman filter. The reduced rank ensemble Kalman filter can’t be applied in this problem because the dimension of state variable is too less.
Positron annihilation lifetime study of positive temperature coefficient BaTiO3 samples
International Nuclear Information System (INIS)
Ling Chen; Mingkang Teng; Guanghou Wang; Xiaoyun Li; Tianchang Lu
1989-01-01
In order to investigate the doped vacancies in BaTiO 3 samples as well as their influence on the positive temperature coefficient (PTC) the positron annihilation lifetime spectroscopy was applied. Two groups of BaTiO 3 samples with BaO excess were prepared by doping different concentrations of La 2 O 3 and Nb 2 O 5 , respectively in the range from 0.1 to 3 at%. A third group of samples of two Sb-doped PTC BaTiO 3 semiconductors with excess BaO or TiO 2 were studied by the aid of positron technique before and after being reduced. It is shown that the positron lifetime parameters are sensitive to changes in the vacancy concentration in BaTiO 3 ceramics near the 0.1 mol% region. But they are almost unchanged during reduction processing; the resistivity of samples changed by one to two orders of magnitude through the reduction. It can be concluded that the PTC effect is due to oxygen on the grain boundary rather than vacancies, and that the Heywang-Jonker model is more reasonable
Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.
2014-01-01
Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591
Shizgal, Bernie D.; Chikhaoui, Aziz
2006-06-01
The present paper considers a detailed analysis of the nonequilibrium effects for a model reactive system with the Chapman-Eskog (CE) solution of the Boltzmann equation as well as an explicit time dependent solution. The elastic cross sections employed are a hard sphere cross section and the Maxwell molecule cross section. Reactive cross sections which model reactions with and without activation energy are used. A detailed comparison is carried out with these solutions of the Boltzmann equation and the approximation introduced by Cukrowski and coworkers [J. Chem. Phys. 97 (1992) 9086; Chem. Phys. 89 (1992) 159; Physica A 188 (1992) 344; Chem. Phys. Lett. A 297 (1998) 402; Physica A 275 (2000) 134; Chem. Phys. Lett. 341 (2001) 585; Acta Phys. Polonica B 334 (2003) 3607.] based on the temperature of the reactive particles. We show that the Cukrowski approximation has limited applicability for the large class of reactive systems studied in this paper. The explicit time dependent solutions of the Boltzmann equation demonstrate that the CE approach is valid only for very slow reactions for which the corrections to the equilibrium rate coefficient are very small.
Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E
2012-09-01
The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.
Energy Technology Data Exchange (ETDEWEB)
Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)
2009-05-07
The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.
International Nuclear Information System (INIS)
Zakova, Jitka; Talamo, Alberto
2008-01-01
The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF 2 , LiF, ZrF 4 and Li 2 BeF 4 eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large
Energy Technology Data Exchange (ETDEWEB)
Zakova, Jitka [Department of Nuclear and Reactor Physics, Royal Institute of Technology, KTH, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)], E-mail: jitka.zakova@neutron.kth.se; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, ANL, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov
2008-05-15
The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF{sub 2}, LiF, ZrF{sub 4} and Li{sub 2}BeF{sub 4} eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large.
International Nuclear Information System (INIS)
Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun
2011-01-01
High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously
International Nuclear Information System (INIS)
Carter, J.G.; Hunter, S.R.; Christophorou, L.G.
1987-01-01
Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation
Isothermal transitions of a thermosetting system
Gillham, J. K.; Benci, J. A.; Noshay, A.
1974-01-01
A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.
Directory of Open Access Journals (Sweden)
A. D. Pataraya
1997-01-01
Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.
2014-01-01
The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.
H. Li; X. Deng; Andy Dolloff; E. P. Smith
2015-01-01
A novel clustering method for bivariate functional data is proposed to group streams based on their waterâair temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...
International Nuclear Information System (INIS)
Zhang, Dawei; Yao, Yonggang; Fang, Minxia; Luo, Zhengdong; Zhang, Lixue; Li, Linglong; Cui, Jian; Zhou, Zhijian; Bian, Jihong; Ren, Xiaobing; Yang, Yaodong
2016-01-01
Most ferroelectric transitions occur ultrafast and are time independent. However, here in (1-x) (Bi 0.5 Na 0.5 )TiO 3 -xBaTiO 3 , we have found a ferroelectric phase transition induced solely by increasing waiting time at certain temperatures (isothermal phase transition). Through cooling, a unique metastable state between a relaxor ferroelectric and a ferroelectric is unveiled, which in essence is initially a short-range ordered glassy state and then can evolve into a long-range ordered ferroelectric state through the isothermal process. It is also found that these isothermal ferroelectric transitions only occur within a specific temperature region with different waiting time needed. These features of isothermal phase transition can be understood by Landau theory analysis with the consideration of random defects as a competition between the thermodynamically favored long-range ordered state and the kinetically frustrated short-range ordered glassy state from random defects. This study offers a precise experimental as well as a phenomenological interpretation on the isothermal ferroelectric transition, which may help to further clarify the intricate structure-property relationship in this important lead-free piezoelectric material and other related systems.
Gonzales, Matthew Alejandro
The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research
Measurement and analysis of adsorption isotherms of CO_2 on activated carbon
International Nuclear Information System (INIS)
Singh, Vinod Kumar; Anil Kumar, E.
2016-01-01
In the present work CO_2 adsorption isotherms of a commercially available activated carbon, Norit Darco type obtained from lignite granular material, were measured. Adsorption isotherms were measured at different temperatures 298 K, 308 K, 318 K and 338 K and over a pressure range of 0–45 bar using Sievert's type experimental setup. Experimental data of CO_2 adsorption isotherms were modelled using Langmuir and Dubinin–Astakhov (D–A) isotherm models. Based on coefficient of correlation and normalized standard deviation it was found that D–A isotherm model was well suited with the experimental data of CO_2 adsorption isotherms. The important thermodynamic properties viz., limiting heat of adsorption at zero coverage, entropy, Gibbs free energy and isosteric heat of adsorption as a function of surface coverage were evaluated using van't Hoff and Clausius–Clapeyron equations. These thermodynamic properties were indicating that CO_2 uptake by activated carbon is a physisorption phenomenon. The adsorption isotherms data and the thermodynamic parameters estimated in the present study are useful for designing of an adsorption based gas storage systems.
Raj, S. V.; Noebe, R. D.
2013-01-01
This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.
H2 line-mixing coefficients in the ν2 and ν4 bands of PH3 at low temperature
International Nuclear Information System (INIS)
Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Aroui, Hassen
2016-01-01
Using a tunable diode-laser spectrometer adapted with a low temperature cell, we have measured the H 2 line-mixing coefficients for 21 lines in the Q R branch of the ν 2 band and in the P P and R P branches of the ν 4 band of phosphine (PH 3 ) at low temperature. These coefficients were determined using a multi-pressure fitting procedure that accounts for the apparatus function, the Doppler and the collisional effects. These lines with J values ranging from 2 to 11 and K from 0 to 9 are located in the spectral range from 1016 to 1093 cm −1 . The variations of these parameters with the temperature, and the ro-vibrational quantum numbers are discussed. - Graphical abstract: Comparisons of the determined line-mixing coefficients (in atm −1 ) obtained in this study in the ν 2 and ν 4 bands of PH 3 at T=173.2 K with those measured at T=298 K for different values of the J quantum number. - Highlights: • The spectra have been recorded with a tunable diode-laser spectrometer at 173.2 K. • The line-mixing coefficients are determined by a multi-pressure fitting procedure. • The effect of the line-mixing in the spectra, appear to be important.
DEFF Research Database (Denmark)
He, Zeming; Ma, J.; Qu, Yuanfang
2009-01-01
discussed. Using these special processes, the prepared composite with 20 wt% Cr possessed low room-temperature resistivity (2.96 Ω cm at 25 °C) and exhibited PTC effect (resistivity jump of 10), which is considered as a promising candidate for over-current protector when working at low voltage. The grain......Low room-temperature resistivity positive temperature coefficient (PTC) Cr/(Ba0.85Pb0.15)TiO3 composites were produced via a reducing sintering and a subsequent oxidation treatment. The effects of metallic content and processing conditions on materials resistivity–temperature properties were...
Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures
International Nuclear Information System (INIS)
Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John
2014-01-01
Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d 15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO 3 ) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d 15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10 −9 m/V, about 45 times larger than for LiNbO 3 ) but it decreased rapidly below 75 K; at 1.3 K, d 15 was only about 8% of its room temperature value
International Nuclear Information System (INIS)
Tomar, Monika; Gupta, Vinay; Sreenivas, K
2003-01-01
The influence of sputtered SiO 2 over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO 2 over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO 2 . The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO 2 over-layer. The density and the dielectric constant of the deposited SiO 2 layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C 11 = 0.75x10 11 N m -2 and C 44 0.225x10 11 N m -2 ) were found to be lower, and the respective temperature coefficients (5.0x10 -4 deg C -1 and 2.0x10 -4 deg C -1 ) were high in comparison to the bulk material parameters
Energy Technology Data Exchange (ETDEWEB)
Tomar, Monika; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)
2003-08-07
The influence of sputtered SiO{sub 2} over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO{sub 2} over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO{sub 2}. The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO{sub 2} over-layer. The density and the dielectric constant of the deposited SiO{sub 2} layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C{sub 11} = 0.75x10{sup 11} N m{sup -2} and C{sub 44} 0.225x10{sup 11} N m{sup -2}) were found to be lower, and the respective temperature coefficients (5.0x10{sup -4} deg C{sup -1} and 2.0x10{sup -4} deg C{sup -1}) were high in comparison to the bulk material parameters.
Curtis, H. B.; Hart, R. E., Jr.
1982-01-01
Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.
International Nuclear Information System (INIS)
Mohsen-Nia, M.; Ebrahimabadi, A.H.; Niknahad, B.
2012-01-01
Highlights: ► n-Octanol/water partition coefficients of propranolol and atenolol were measured. ► The effect of temperature on the partition coefficient was studied. ► The equilibrium data were correlated using the NRTL and UNIQUAC activity models. ► The binary interaction parameters of the activity models were reported. ► It is concluded that propranolol is more hydrophobic than the atenolol at 298.15 K. - Abstract: The n-octanol/water partition coefficients of propranolol and atenolol were experimentally determined by ultraviolet (UV) spectroscopy at T = (298.15, 310.15 and 314.15) K. All measurements were made at the maximum wavelength corresponding to maximum absorption. The results showed that the n-octanol/water partition coefficients of propranolol and atenolol increase with the increase of temperature. The experimental data of this work were also used to examine the phase equilibrium correlating capability of some liquid-phase models. The equilibrium experimental data were correlated using the NRTL and UNIQUAC activity coefficient models and the binary interaction parameters were reported. The average root-mea n-square deviations (RMSD) between the experimental and calculated mass fractions of the (n-octanol + propranolol + water) and (n-octanol + atenolol + water) systems were determined. From the partition coefficients obtained, it is concluded that propranolol (log P ow = 3.12 ± 0.14) is more hydrophobic than the atenolol (log P ow = 0.16 ± 0.01) at T = 298.15 K.
Energy Technology Data Exchange (ETDEWEB)
Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)
2009-08-15
A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas
International Nuclear Information System (INIS)
Gordillo-Vazquez, F J; Donko, Z
2009-01-01
A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly
Boudys, M
1991-01-01
Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.
International Nuclear Information System (INIS)
Raisic, N.; Klinc, T.
1968-11-01
The ratio of the reactivity changes of a nuclear reactor produced by successive introduction of two different neutron absorbers in the reactor core, has been measured and information on effective neutron temperature at a particular point obtained. Boron was used as a l/v absorber and cadmium as an absorber sensiti ve to neutron temperature. Effective neutron temperature distribution has been deduced by moving absorbers across the reactor core and observing the corresponding reactivity changes. (author)
Copolovici, Lucian O; Niinemets, Ulo
2005-12-01
To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.
International Nuclear Information System (INIS)
Edelmann, M.
1995-12-01
A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de
Directory of Open Access Journals (Sweden)
Li Benkai
2016-08-01
Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy
Negative temperature coefficient of the action of DDT in a sense organ
Bercken, J. van den; Akkermans, L.M.A.
1972-01-01
DDT induced repetitive spontaneuos activity inthe afferent nerve fibers of the lateral-line organ of the clawed toad, Xenopus laevis. The action of DDT increased markedly with lowered temperature. This temperature-effect was easily reversible. The results demonstrate that DDT has a definite negative
International Nuclear Information System (INIS)
Lesnaya, M.I.; Volokitin, G.G.; Kashchuk, V.A.
1976-01-01
Results are reported of an experimental research into the influence of small additions of α-transition metals on the temperature coefficient of linear expansion of titanium and vanadium. Using the configuration model of substance as the basis, expeained are the lowering of the critical liquefaction temperature or the melting point of vanadium and the raising of it, as caused by the addition of metals of the 6 group of the periodic chart and by the addition of metals of the 8 group, respectively, and also a shift in the temperature of the polymorphic α-β-transformation of titanium. Suggested as the best alloying metal for vanadium are tungsten and tantalum; for titaniums is vanadium whose admixtures lower the melting point and shift the polymorphic transformation temperature by as much as 100 to 120 degrees
Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample
International Nuclear Information System (INIS)
Saha, B.; Maiti, A.K.; Ghoshal, A.K.
2006-01-01
Pyrolysis, one possible alternative to recover valuable products from waste plastics, has recently been the subject of renewed interest. In the present study, the isoconversion methods, i.e., Vyazovkin model-free approach is applied to study non-isothermal decomposition kinetics of waste PET samples using various temperature integral approximations such as Coats and Redfern, Gorbachev, and Agrawal and Sivasubramanian approximation and direct integration (recursive adaptive Simpson quadrature scheme) to analyze the decomposition kinetics. The results show that activation energy (E α ) is a weak but increasing function of conversion (α) in case of non-isothermal decomposition and strong and decreasing function of conversion in case of isothermal decomposition. This indicates possible existence of nucleation, nuclei growth and gas diffusion mechanism during non-isothermal pyrolysis and nucleation and gas diffusion mechanism during isothermal pyrolysis. Optimum E α dependencies on α obtained for non-isothermal data showed similar nature for all the types of temperature integral approximations
International Nuclear Information System (INIS)
Talamo, Alberto
2007-01-01
We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in 235 U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides 240 Pu, 238 U and 232 Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for 240 Pu, 238 U and 232 Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 μm and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core
Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A
2012-10-01
The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.
Gao, Zhiqiang; Wu, Ruixuan; Wang, Yuteng; Gao, Yuan; Liu, Xiaowei; Zhu, Jiaqi
2018-05-01
Quartz oscillator has been widely used as reference clock source in the microsystems due to its good performance. But a good crystal oscillator costs too much and its bulky size is not desired. This paper aims at designing an alternative integrated oscillator to replace the external quartz oscillator. The proposed circuit used maneatis delay cell to construct a ring oscillator for its superior linear I-V characteristic. As for a frequency reference clock, its frequency stability over temperature is required at first. After detailed mathematical deducing and careful analysis, a formula is proposed to describe the relationship between desired control voltage and temperature by assuming the frequency as constant. This paper utilized bipolar transistor as the temperature sensor, combining it with CTAT current source and resistor to create a first-order temperature compensation control voltage. The chip with typical frequency of 10 MHz was fabricated in a 0.35 μm CMOS technology and occupied 0.45 mm2. The measured results show that the frequency variation is ±0.2% for supply changes from 4.8 V to 5 V, and frequency variation is 48 ppm when the temperature change is from ‑40∘C to 85∘C, while the average current of the tested chip consumes 50 μA from 5 V.
International Nuclear Information System (INIS)
Messina, M.; Schenter, G.K.; Garrett, B.C.
1995-01-01
The low temperature behavior of the centroid density method of Voth, Chandler, and Miller (VCM) [J. Chem. Phys. 91, 7749 (1989)] is investigated for tunneling through a one-dimensional barrier. We find that the bottleneck for a quantum activated process as defined by VCM does not correspond to the classical bottleneck for the case of an asymmetric barrier. If the centroid density is constrained to be at the classical bottleneck for an asymmetric barrier, the centroid density method can give transmission coefficients that are too large by as much as five orders of magnitude. We follow a variational procedure, as suggested by VCM, whereby the best transmission coefficient is found by varying the position of the centroid until the minimum value for this transmission coefficient is obtained. This is a procedure that is readily generalizable to multidimensional systems. We present calculations on several test systems which show that this variational procedure greatly enhances the accuracy of the centroid density method compared to when the centroid is constrained to be at the barrier top. Furthermore, the relation of this procedure to the low temperature periodic orbit or ''instanton'' approach is discussed. copyright 1995 American Institute of Physics
Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance
Directory of Open Access Journals (Sweden)
Haifeng Liang
2014-10-01
Full Text Available Much effort has been made to study the formation mechanisms of photocurrents in graphene and reduced graphene oxide films under visible and near-infrared light irradiation. A built-in field and photo-thermal electrons have been applied to explain the experiments. However, much less attention has been paid to clarifying the mid-infrared response of reduced graphene oxide films at room temperature. Thus, mid-infrared photoresponse and annealing temperature-dependent resistance experiments were carried out on reduced graphene oxide films. A maximum photocurrent of 75 μA was observed at room temperature, which was dominated by the bolometer effect, where the resistance of the films decreased as the temperature increased after they had absorbed light. The electrons localized in the defect states and the residual oxygen groups were thermally excited into the conduction band, forming a photocurrent. In addition, a temperature increase of 2 °C for the films after light irradiation for 2 minutes was observed using absorption power calculations. This work details a way to use reduced graphene oxide films that contain appropriate defects and residual oxygen groups as bolometer-sensitive materials in the mid-infrared range.
Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.
2017-12-01
Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.
Tao, Tao
2018-03-20
Acetaldehyde is an observed emission species and a key intermediate produced during the combustion and low-temperature oxidation of fossil and bio-derived fuels. Investigations into the low-temperature oxidation chemistry of acetaldehyde are essential to develop a better core mechanism and to better understand auto-ignition and cool flame phenomena. Here, the oxidation of acetaldehyde was studied at low-temperatures (528–946 K) in a jet-stirred reactor (JSR) with the corrected residence time of 2.7 s at 700 Torr. This work describes a detailed set of experimental results that capture the negative temperature coefficient (NTC) behavior in the low-temperature oxidation of acetaldehyde. The mole fractions of 28 species were measured as functions of the temperature by employing a vacuum ultra-violet photoionization molecular-beam mass spectrometer. To explain the observed NTC behavior, an updated mechanism was proposed, which well reproduces the concentration profiles of many observed peroxide intermediates. The kinetic analysis based on the updated mechanism reveals that the NTC behavior of acetaldehyde oxidation is caused by the competition between the O-addition to and the decomposition of the CHCO radical.
Tao, Tao; Sun, Wenyu; Hansen, Nils; Jasper, Ahren W.; Moshammer, Kai; Chen, Bingjie; Wang, Zhandong; Huang, Can; Dagaut, Philippe; Yang, Bin
2018-01-01
Acetaldehyde is an observed emission species and a key intermediate produced during the combustion and low-temperature oxidation of fossil and bio-derived fuels. Investigations into the low-temperature oxidation chemistry of acetaldehyde are essential to develop a better core mechanism and to better understand auto-ignition and cool flame phenomena. Here, the oxidation of acetaldehyde was studied at low-temperatures (528–946 K) in a jet-stirred reactor (JSR) with the corrected residence time of 2.7 s at 700 Torr. This work describes a detailed set of experimental results that capture the negative temperature coefficient (NTC) behavior in the low-temperature oxidation of acetaldehyde. The mole fractions of 28 species were measured as functions of the temperature by employing a vacuum ultra-violet photoionization molecular-beam mass spectrometer. To explain the observed NTC behavior, an updated mechanism was proposed, which well reproduces the concentration profiles of many observed peroxide intermediates. The kinetic analysis based on the updated mechanism reveals that the NTC behavior of acetaldehyde oxidation is caused by the competition between the O-addition to and the decomposition of the CHCO radical.
Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo
2016-03-21
In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.
Experimental determination of the K_{oo} fuel temperature coefficient for an HTGR lattice
Energy Technology Data Exchange (ETDEWEB)
Agostini, P.; Benedetti, F.; Brighenti, G.; Chiodi, P. L.; Dell' Oro, P.; Giuliani, C.; Tassan, S.
1974-10-15
This paper describes temperature-dependent k-infinity measurements conducted using an assembly of loose HTGR coated particles in the BR-2 reactor by means of null reactivity oscillating method comparing the effect of poisoned and unpoisoned lattices like tests performed in the Physical Constants Test Reactor (PCTR) at Hanford. The RB-2 reactor was the property of the Italian firm AGIP NUCLEARE and operated at the Montecuccolino Center in Bologna.
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, M [Consejo Superior de Investigaciones Cientificas, Madrid (ES). Inst. de Optica; Aroca, S [Escuela Tecnica Superior de Ingenieros Industriales, Valladolid (ES). Catedratico de Ingenieria Termica
1990-04-01
A theoretical study of a lithium bromide absorption heat pump, used as a machine type I and aimed to produce heat at 120{sup 0}C via waste heat sources at 60{sup 0}C, is given. Real performance conditions are stated for each component of the machine. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Q{sub e}, the heat delivered to the absorber Q{sub a} and to the condenser Q{sub c}, and the heat supplied to the generator Q{sub g}. The heat delivered by the hot solution to the cold solution in the heat recovered Q{sub r}, and the work W{sub p} done by the solution pump are calculated. The probable COP is calculated as close to 1.4 and the working temperature in the generator ranges from 178 to 200{sup 0}C. The heat produced by the heat pump is 22% cheaper than that obtained from a cogeneration system comprising a natural gas internal combustion engine and high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined leading to an exergetic efficiency of 75% which provides the quality index of the absorption cycle. (author).
International Nuclear Information System (INIS)
Adão, Regina; Bai, Guangyue; Loh, Watson; Bastos, Margarida
2012-01-01
Highlights: ► We address the importance of test reactions in Isothermal Titration Calorimetry. ► We re-evaluate a test reaction and provide a new value for it at 308.15 K. ► Different concentrations are tested to account for instrument sensitivity. ► We compare the performance of two very sensitive calorimeters of different design. ► We suggest appropriate experimental conditions for the use of this test reaction. - Abstract: The use of a good chemical calibration or test reaction in Isothermal Titration Calorimetry is crucial for getting reliable enthalpy values that can be compared across different laboratories. Indeed most titration calorimeters are used to measure both equilibrium constants and molar enthalpies of reaction. But a necessary prerequisite for such measurements is to first perform the enthalpy measurement accurately and precisely. The values of the equilibrium constant(s) are then calculated by regression from an appropriate model. As such, we found it timely to extensively test a previously proposed test reaction, the dilution of propan-1-ol into water, using two calorimeters of different design (heat conduction and power compensation calorimeters) and sensitivity. Experiments were performed at 298.15 K for the previously suggested 10% mass fraction propan-1-ol solution, as well as for the lower concentrations of 5% and 2% mass fractions. Due to our capacity to use insertion heaters with one of the used calorimeters, which allows for very accurate calibration constants to be obtained, we also determined a value for the enthalpy of dilution of 10% mass fraction solution at 308.15 K, previously not available, and closer to the temperatures commonly used in titration experiments involving biological samples. The observed change in the enthalpy of dilution was found to decrease in absolute value, but to an extent that did not justify the determination of new values for the less concentrated solutions. The values obtained with the two
International Nuclear Information System (INIS)
Makai, M.; Kalya, Z.; Nemes, I.; Pos, I.; Por, G.
2007-01-01
Moderator temperature coefficient of reactivity is not monitored during fuel cycles in WWER reactors, because it is not very easy or impossible to measure it without disturbing the normal operation. Two new methods were tested in our WWER type nuclear power plant to try methodologies, which enable to measure that important to safety parameter during the fuel cycle. One is based on small perturbances, and only small changes are requested in operation, the other is based on noise methods, which means it is without interference with reactor operation. Both method is new that aspects that they uses the plant computer data(VERONA) based signals calculated by C P ORCA diffusion code (Authors)
International Nuclear Information System (INIS)
Erradi, L.; Chetaine, A.; Chakir, E.; Kharchaf, A.; Elbardouni, T.; Elkhoukhi, T.
2005-01-01
In a previous work, we have analysed the main French experiments available on the reactivity temperature coefficient (RTC): CREOLE and MISTRAL experiments. In these experiments, the RTC has been measured in both UO 2 and UO 2 -PuO 2 PWR type lattices. Our calculations, using APOLLO2 code with CEA93 library based on JEF2.2 evaluation, have shown that the calculation error in UO 2 lattices is less than 1 pcm/C degrees which is considered as the target accuracy. On the other hand the calculation error in the MOX lattices is more significant in both low and high temperature ranges: an average error of -2 ± 0.5 pcm/C degrees is observed in low temperatures and an error of +3 ± 2 pcm/C degrees is obtained for temperatures higher than 250 C degrees. In the present work, we analysed additional experimental benchmarks on the RTC of UO 2 and MOX light water moderated lattices. To analyze these benchmarks and with the aim of minimizing uncertainties related to modelling of the experimental set up, we chose the Monte Carlo method which has the advantage of taking into account in the most exact manner the geometry of the experimental configurations. This analysis shows for the UO 2 lattices, a maximum experiment-calculation deviation of about 0,7 pcm/C degrees, which is below the target accuracy for this type of lattices. For the KAMINI experiment, which relates to the measurement of the RTC in a light water moderated lattice using U-233 as fuel our analysis shows that the ENDF/B6 library gives the best result, with an experiment-calculation deviation of the order of -0,16 pcm/C degrees. The analysis of the benchmarks using MOX fuel made it possible to highlight a discrepancy between experiment and calculation on the RTC of about -0.7 pcm/C degrees (for a range of temperatures going from 20 to 248 C degrees) and -1,2 pcm/C degrees (for a range of temperatures going from 20 to 80 C degrees). This result, in particular the tendency which has the error to decrease when the
Temperature-related changes in respiration and Q10 coefficient of Guava
Directory of Open Access Journals (Sweden)
Bron Ilana Urbano
2005-01-01
Full Text Available Guava (Psidium guajava L. is a tropical fruit that presents fast post-harvest ripening; therefore it is a very perishable product. Inappropriate storage temperature and retail practices can accelerate fruit quality loss. The objective of this study was to evaluate the respiratory activity (RA, the ethylene production (EP and Q10 of guava fruit at different storage temperatures. 'Paluma' guava fruits were harvested at maturity stage 1 (dark-green skin and stored at either 1, 11, 21, 31 or 41ºC; RA and EP were determined after 12, 36, 84 and 156 h of storage. RA and EP rates at 1 and 11ºC were the lowest - 0.16 and 0.43 mmol CO2 kg-1 h-1 and 0.003 and 0.019 µmol C2H4 kg-1 h-1, respectively. When guavas were stored at 21ºC, a gradual increase occurred in RA and EP, reaching 2.24 mmol CO2 kg-1 h-1 and 0.20 µmol C2H4 kg-1 h-1, after 156 h of storage. The highest RA and EP were recorded for guavas stored at 31ºC. In spite of high RA, guavas stored at 41ºC presented EP similar to guavas stored at 11ºC, an indicator of heat-stress injury. Considering the 1-11ºC range, the mean Q10 value was around 3.0; the Q10 value almost duplicated at 11-21ºC range (5.9. At 21-31ºC and 31-41ºC, Q10 was 1.5 and 0.8, respectively. Knowing Q10, respiratory variation and ripening behavior in response to different temperatures, fruit storage and retail conditions can be optimized to reduce quality losses.
International Nuclear Information System (INIS)
Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M
2008-01-01
This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.
Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu
2017-10-01
Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.
International Nuclear Information System (INIS)
Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu
2017-01-01
Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology - KTH, Roslagstullsbacken 21, S-10691 Stockholm (Sweden)]. E-mail: alby@anl.gov
2007-01-15
We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in {sup 235}U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides {sup 240}Pu, {sup 238}U and {sup 232}Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for {sup 240}Pu, {sup 238}U and {sup 232}Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 {mu}m and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core.
Directory of Open Access Journals (Sweden)
Natthaphon Raengthon
2016-03-01
Full Text Available The temperature coefficient of permittivity (TCε of BaTiO3–Bi(MeO3 solid solutions were investigated. It was determined that as the tolerance factor was decreased with the addition of Bi(MeO3, the TCε shifted from large negative values to TCε values approaching zero. It is proposed that the different bonding nature of the dopant cation affects the magnitude and temperature stability of the permittivity. This study suggests that the relationship between tolerance factor and TCε can be used as a guide to design new dielectric compounds exhibiting temperature-stable high permittivity characteristics, which is similar to past research on perovskite and pyrochlore-based microwave dielectrics.
Directory of Open Access Journals (Sweden)
Pinheiro Cleber
2008-07-01
Full Text Available Abstract Background One of the current shortcomings of radiofrequency (RF tumor ablation is its limited performance in regions close to large blood vessels, resulting in high recurrence rates at these locations. Computer models have been used to determine tissue temperatures during tumor ablation procedures. To simulate large vessels, either constant wall temperature or constant convective heat transfer coefficient (h have been assumed at the vessel surface to simulate convection. However, the actual distribution of the temperature on the vessel wall is non-uniform and time-varying, and this feature makes the convective coefficient variable. Methods This paper presents a realistic time-varying model in which h is a function of the temperature distribution at the vessel wall. The finite-element method (FEM was employed in order to model RF hepatic ablation. Two geometrical configurations were investigated. The RF electrode was placed at distances of 1 and 5 mm from a large vessel (10 mm diameter. Results When the ablation procedure takes longer than 1–2 min, the attained coagulation zone obtained with both time-varying h and constant h does not differ significantly. However, for short duration ablation (5–10 s and when the electrode is 1 mm away from the vessel, the use of constant h can lead to errors as high as 20% in the estimation of the coagulation zone. Conclusion For tumor ablation procedures typically lasting at least 5 min, this study shows that modeling the heat sink effect of large vessels by applying constant h as a boundary condition will yield precise results while reducing computational complexity. However, for other thermal therapies with shorter treatment using a time-varying h may be necessary.
Elastic scattering and transport coefficients for a quark plasma in SUf(3) at finite temperatures
Rehberg, P.; Klevansky, S. P.; Hüfner, J.
1996-02-01
The temperature dependence of the elastic-scattering processes qq' → qq' and q overlineq' → q overlineq' , with q, q' = u, d, s is studied as a function of the scattering angle and the center-of-mass energy of the collision within the framework of the SUf(3) Nambu-Jona-Lasinio model. Critical scattering at threshold is observed in the q overlineq' → q overlineq' process, leading to an enhancement of the cross section as occurs in the phenomenon of critical opalescence. Transport properties such as viscosity, mean free paths and thermal relaxation times are calculated. Strangeness enhancement is investigated via the chemical relaxation times, which are found to be considerably higher than those calculated via perturbative QCD. A comparison with the experimental values for the strangeness enhancement in S + S collisions leads to an upper limit of 4 fm/ c for the lifetime of the plasma.
Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.
2017-04-01
Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.
Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): a stochastic TMDSC study
Hutchinson, John M.; Shiravand, Fatemeh; Calventus Solé, Yolanda; Fraga Rivas, Iria
2012-01-01
The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures Tc has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature Tg as a function of isothermal cure time is determined by co...
The impact of fuel temperature reactivity coefficient on loss of reactivity control accident
International Nuclear Information System (INIS)
Park, J. H.; Ryu, E. H.; Song, Y. M.; Jung, J. Y.
2012-01-01
Nuclear reactors experience small power fluctuations or anticipated operational transients during even normal power operation. During normal operation, the reactivity is mainly controlled by liquid zone controllers, adjuster rods, mechanical control absorbers, and moderator poison. Even when the reactor power is increased abruptly and largely from an accident and when reactor control systems cannot be actuated quickly due to a fast transient, the reactor should be controlled and stabilized by its inherent safety parameter, such as a negative PCR (Power Coefficient of Reactivity) feedback. A PWR (Pressurized Water Reactor), it is well designed for the reactor to have a negative PCR so that the reactor can be safely shut down or stabilized whenever an abrupt reactivity insertion into the reactor core occurs or the reactor power is abruptly increased. However, it is known that a CANDU reactor has a small amount of PCR, as either negative or positive, because of the different design basis and safety concepts from a PWR. CNSC's regulatory and safety regime has stated that; The PCR of CANDU reactors does not pose a significant risk. Consistent with Canadian nuclear safety requirements, nuclear power plants must have an appropriate combination of inherent and engineered safety features incorporated into the design of the reactor safety and control systems. A reactor design that has a PCR is quite acceptable provided that the reactor is stable against power fluctuations, and that the probability and consequences of any potential accidents that would be aggravated by a positive reactivity feedback are maintained within CNSCprescribed limits. Recently, it was issued licensing the refurbished Wolsong unit 1 in Korea to be operated continuously after its design lifetime in which the calculated PCR was shown to have a small positive value by applying the recent physics code systems, which are composed of WIMS IST, DRAGON IST, and RFSP IST. These code systems were transferred
Yamauchi, Masataka; Okumura, Hisashi
2017-11-01
We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.
Diagnostic Devices for Isothermal Nucleic Acid Amplification
Directory of Open Access Journals (Sweden)
Chia-Chen Chang
2012-06-01
Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.
Diagnostic devices for isothermal nucleic acid amplification.
Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann
2012-01-01
Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.
Subramaniam, Shankar; Sun, Bo
2015-11-01
The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.
Isothermal calorimeter for reactor radiation dosimetry
Energy Technology Data Exchange (ETDEWEB)
Radak, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Odeljenje za radijacionu hemiju, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
An isothermal calorimeter with thermistors for measuring absorbed dose rates from 10{sup 4}-5-6.10{sup 5} rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within {+-} 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)
International Nuclear Information System (INIS)
Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.
1998-01-01
The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard
International Nuclear Information System (INIS)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-01-01
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections
Strnat, R. M. W.; Liu, S.; Strnat, K. J.
1982-03-01
Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.
International Nuclear Information System (INIS)
Chakir, E.; Erradi, L.; Bardouni, T El.; Khoukhi, T El.; Boukhal, H.; Meroun, O.; Bakkari, B El
2007-01-01
Full text: In a previous work, we have analysed the main french experiments available on the reactivity temperature coefficient (RTC) : CREAOLE and Mistral experiments. In these experiments, the RTC has been measured in both UO2 and UO2-PuO2 PWR type lattices. Our calculations, using APPOLO2 code with CEA93 library based on JEF2.2 evaluation, have shown that the calculation error in UO2 lattices is less than 1 pcm/Deg C which is considered as the target accuracy. On the other hand the calculation error in the MOX lattices is more significant in both low and high temperature ranges : an average error of -2 ± 0.5 pcm/Deg C is observed in low temperatures and an error of +3±2 pcm/Deg C is obtained for temperature higher than 250Deg C. In the present work, we analysed additional experimental benchmarks on the RTC of UO2 and MOX light water moderated lattices. To analyze these benchmarks and with the aim of minimizing uncertainties related to modelling of the experimental set up, we chose the Monte Carlo Method which has the advantage of taking into account in the most exact manner the geometry of the experimental configurations. Thus we have used the code MCNP5, for its recognized power and its availability. This analysis shows for the UO2 lattices, an average experiment-calculation deviation of about 0,5 pcm/Deg C, which is largely below the target accuracy for this type of lattices, that we estimate at approximately 1 pcm/Deg C. For the KAMINI experiment, which relates to the measurement of the RTC in light water moderated lattice using U-233 as fuel our analysis shows that the Endf/B6 library gives the best result, with an experiment -calculation deviation of the order of -0,16 pcm/Deg C. The analysis of the benchmarks using MOX fuel made it possible to highlight a discrepancy between experiment and calculation on the RTC of about -0.7pcm/Deg C ( for a range of temperature going from 20 to 248 Deg C) and -1.2 pcm/Deg C ( for a range of temperature going from 20 to
Energy Technology Data Exchange (ETDEWEB)
Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others
2016-09-01
The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.
Generalized isothermic lattices
International Nuclear Information System (INIS)
Doliwa, Adam
2007-01-01
We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem
International Nuclear Information System (INIS)
Demaziere, C.
2000-01-01
The Moderator Temperature Coefficient of reactivity (MTC) plays an important role in the feedback mechanism and thus in the inherent stability of Pressurised Water Reactors (PWRs). Due to the inaccuracy of the traditional at-power MTC measurement techniques, many power utilities nowadays only measure the zero-power MTC since its determination is relatively straightforward and accurate. For the at-power MTC determination during the remaining fuel cycle, core calculations are assumed to be reliable enough. Nevertheless, these calculations were never benchmarked and most importantly, the use of high burnup fuel might induce a slightly positive MTC at Beginning Of Cycle (BOC) due to the high initial boron concentration. Even if in such a case the Doppler effect would still insure a negative reactivity feedback, monitoring the MTC throughout the cycle could become crucial. In this respect, not only the sign of the MTC is of importance, but also its magnitude. Consequently, developing a method that would permit monitoring the MTC during the fuel cycle is of great interest. One of the main disadvantages of the traditional at-power MTC measurement techniques is that the reactor has to be perturbed in order to induce a change of the moderator temperature. The modification of other parameters that can only be estimated by core calculation represents also a severe drawback of these methods, both for their precision and their reliability. A measurement performed at Ringhals-4 by using the so-called boron dilution method revealed that the uncertainty associated to the MTC estimation could even be much larger than previously expected due to the calculated reactivity corrections. These corrections are very sensitive to the input parameters chosen for the core simulation, and slight mis-estimations of these have large reactivity effects. It is known that if the reactivity noise and the moderator temperature noise could be measured, the MTC could be determined without disturbing
Energy Technology Data Exchange (ETDEWEB)
Demaziere, C
2000-07-01
The Moderator Temperature Coefficient of reactivity (MTC) plays an important role in the feedback mechanism and thus in the inherent stability of Pressurised Water Reactors (PWRs). Due to the inaccuracy of the traditional at-power MTC measurement techniques, many power utilities nowadays only measure the zero-power MTC since its determination is relatively straightforward and accurate. For the at-power MTC determination during the remaining fuel cycle, core calculations are assumed to be reliable enough. Nevertheless, these calculations were never benchmarked and most importantly, the use of high burnup fuel might induce a slightly positive MTC at Beginning Of Cycle (BOC) due to the high initial boron concentration. Even if in such a case the Doppler effect would still insure a negative reactivity feedback, monitoring the MTC throughout the cycle could become crucial. In this respect, not only the sign of the MTC is of importance, but also its magnitude. Consequently, developing a method that would permit monitoring the MTC during the fuel cycle is of great interest. One of the main disadvantages of the traditional at-power MTC measurement techniques is that the reactor has to be perturbed in order to induce a change of the moderator temperature. The modification of other parameters that can only be estimated by core calculation represents also a severe drawback of these methods, both for their precision and their reliability. A measurement performed at Ringhals-4 by using the so-called boron dilution method revealed that the uncertainty associated to the MTC estimation could even be much larger than previously expected due to the calculated reactivity corrections. These corrections are very sensitive to the input parameters chosen for the core simulation, and slight mis-estimations of these have large reactivity effects. It is known that if the reactivity noise and the moderator temperature noise could be measured, the MTC could be determined without disturbing
Thermal conductivity coefficients of water and heavy water in the liquid state up to 3700C
International Nuclear Information System (INIS)
Le Neindre, B.; Bury, P.; Tufeu, R.; Vodar, B.
1976-01-01
The thermal conductivity coefficients of water and heavy water of 99.75 percent isotopic purity were measured using a coaxial cylinder apparatus, covering room temperature to their critical temperatures, and pressures from 1 to 500 bar for water, and from 1 to 1000 bar for heavy water. Following the behavior of the thermal conductivity coefficient of water, which shows a maximum close to 135 0 C, the thermal conductivity coefficient of heavy water exhibits a maximum near 95 0 C and near saturation pressures. This maximum is displaced to higher temperatures when the pressure is increased. Under the same temperature and pressure conditions the thermal conductivity coefficient of heavy water was lower than for water. The pressure effect was similar for water and heavy water. In the temperature range of our experiments, isotherms of thermal conductivity coefficients were almost linear functions of density
Taylor, Maynard F.; Kirchgessner, Thomas A.
1959-01-01
Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.
International Nuclear Information System (INIS)
Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira
2011-01-01
The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .
Energy Technology Data Exchange (ETDEWEB)
Feng Fuzhou; Chu Fulei; Guo Dan; Lu Wenxiu [Tsinghua Univ., Beijing, BJ (China). Dept. of Precision Instruments
2001-07-01
From data collected by an online condition monitoring and fault diagnosis system, a higher pad temperature at the upper guide bearing in a pumped storage power generator unit installed in Guangdong province(GPSPS), China, was found. And also a relatively intensive shaft vibration occurred at the lower guide bearing. By calculating the Reynolds equation and viscosity-temperature equation of the lubricant, a curve between the pre-load coefficient and the increment of pad temperature is obtained, which shows that the larger, the pre-load coefficient, the bigger, the increment of pad temperature. For a practical unit in GPSPS, by employing Transfer matrix method and Wilson-{theta} method to analyze shaft vibration at different pre-load coefficients of the whole bearing or ''pad pair'' bearings, the results show that the larger the pre-load coefficient is, the smaller the vibration amplitude is, the shorter the time for vibration to become steady is. And an uneven pre-load coefficient of the ''pad pair'' bearings will cause shaft orbit from a circle to an ellipse whose long axes is at the direction of the ''pad pair'' with the lowest pre-load coefficient. Finally, reasons of higher pad temperature of the upper guide bearing and larger shaft vibration at the lower guide bearing are due to the inconsistent relation of bearing assembling clearance or pre-load coefficient of the upper and lower guide bearing, and also due to the too small, uneven pre-load coefficient of ''pad pair'' bearings. After a scheme for adjusting the bearing clearance is given, data measured show that the analysis and simulation methods are correct and the adjustment scheme to the assembling clearance of the upper and lower guide bearings is feasible and can be used to guide the field maintenance conveniently. (orig.)
International Nuclear Information System (INIS)
Subramoney, Shalendra Clinton; Nelson, Wayne Michael; Courtial, Xavier; Naidoo, Paramespri; Coquelet, Christophe; Richon, Dominique; Ramjugernath, Deresh
2015-01-01
Highlights: • Phase equilibrium data for propene and hexafluoropropylene. • Phase equilibrium data for propene and hexafluoropropylene oxide. • Systems exhibit pressure-maximum azeotropes. • Data well correlated by Peng–Robinson equation of state with the Wong–Sandler mixing rule. - Abstract: Isothermal (vapour + liquid) equilibrium data (P–x–y) are presented for the 1-propene 1,1,2,3,3,3-hexafluoro-1-propene and the 1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary systems. Both binary systems were studied at five temperatures, ranging from (279.36 to 318.09) K, at pressures up to 2 MPa. The experimental (vapour + liquid) equilibrium data were measured using an apparatus based on the “(static + analytic)” method incorporating a single movable Rapid On-Line Sampler-Injector to sample the liquid and vapour phases at equilibrium. The expanded uncertainties are approximated on average as T = 0.07 K, 0.008 MPa, and 0.007 and 0.009 for the temperature, pressure, and the liquid and vapour mole fractions, respectively. A homogenous maximum-pressure azeotrope was observed for both binary systems at all temperatures studied. The experimental data were correlated with the Peng–Robinson equation of state using the Mathias–Copeman alpha function, paired with the Wong–Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The model provided satisfactory representation of the phase equilibrium data measured
Isothermal Martensite Formation
DEFF Research Database (Denmark)
Villa, Matteo
Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanism...... of lattice strains provided fundamental information on the state of stress in the material and clarified the role of the strain energy on martensite formation. Electron backscatter diffraction revealed that the microstructure of the material and the morphology of martensite were independent on the cooling...... leading to isothermal kinetics acquired new practical relevance because of the identification of isothermal martensite formation as the most likely process responsible for enhanced performances of sub-zero Celsius treated high carbon steel products. In the present work, different iron based alloys...
Adiabatic and isothermal resistivities
International Nuclear Information System (INIS)
Fishman, R.S.
1989-01-01
The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester
Sinev, Leonid S.; Petrov, Ivan D.
2017-01-01
Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...
Modeling of Experimental Adsorption Isotherm Data
Directory of Open Access Journals (Sweden)
Xunjun Chen
2015-01-01
Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.
International Nuclear Information System (INIS)
Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee
1991-01-01
A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)
Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles
International Nuclear Information System (INIS)
Stempniewicz, M.M.; Goede, P.
2014-01-01
This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)
International Nuclear Information System (INIS)
Hani, Rachida; Solimando, Roland; Negadi, Latifa; Jose, Jacques; Ait Kaci, Ahmed
2012-01-01
Highlights: ► Vapor pressures of (1-hexene + methyl butyl ether) or (1-hexene + methyl tert-butyl ether) are reported between (263 and 363) K. ► The two mixtures exhibit positive G E . ► Additionally, molar excess enthalpies, H E , for the two binary systems have been measured at 303.15. - Abstract: The vapor pressures of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary mixtures and of the three pure components were measured by means of a static device at temperatures between (263 and 333) K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions were calculated for several constant temperatures and fitted to a third-order Redlich–Kister equation using the Barker’s method. Additionally, molar excess enthalpies, H E , for the two binary systems have been measured at 303.15 K using an isothermal flow calorimeter.
Energy Technology Data Exchange (ETDEWEB)
Svetlov, I L; Sukhanov, N N; Krivko, A I; Roshchina, I N; Khatsinskaia, I M
1987-01-01
Experimental data are presented on the temperature dependence of the short- term strength characteristics, Young's modulus, and linear expansion coefficients of single crystals of a nickel alloy, ZhS6F, with crystallographic orientations along the 001, 111, 011, and 112 lines. It is found that the mechanical properties and Young's modulus of the alloy crystals exibit anisotropy in the temperature range 20-900 C. The linear thermal expansion coefficient is isotropic up to 900 C and equal to that of the equiaxed alloy. 10 references.
Directory of Open Access Journals (Sweden)
Xiaogang Wu
2017-10-01
Full Text Available This study investigated the heat problems that occur during the operation of power batteries, especially thermal runaway, which usually take place in high temperature environments. The study was conducted on a ternary polymer lithium-ion battery. In addition, a lumped parameter thermal model was established to analyze the thermal behavior of the electric bus battery system under the operation conditions of the driving cycles of the Harbin city electric buses. Moreover, the quantitative relationship between the optimum heat transfer coefficient of the battery and the ambient temperature was investigated. The relationship between the temperature rise (Tr, the number of cycles (c, and the heat transfer coefficient (h under three Harbin bus cycles have been investigated at 30 °C, because it can provide a basis for the design of the battery thermal management system. The results indicated that the heat transfer coefficient that meets the requirements of the battery thermal management system is the cubic power function of the ambient temperature. Therefore, if the ambient temperature is 30 °C, the heat transfer coefficient should be at least 12 W/m2K in the regular bus lines, 22 W/m2K in the bus rapid transit lines, and 32 W/m2K in the suburban lines.
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto E-mail: alby@neutron.kth.se; Gudowski, Waclaw E-mail: wacek@neutron.kth.se; Cetnar, Jerzy E-mail: jerzy@neutron.kth.se; Venneri, Francesco E-mail: venneri@lanl.gov
2004-11-01
We investigated some important neutronic features of the deep burn modular helium reactor (DB-MHR) using the MCNP/MCB codes. Our attention was focused on the neutron flux and its spectrum, capture to fission ratio of {sup 239}Pu and the temperature coefficient of fuel and moderator. The DB-MHR is a graphite-moderated helium-cooled reactor proposed by General Atomic to address the need for a fast and efficient incineration of plutonium for non-proliferation purposes as well as the management of light water reactors (LWRs) waste. In fact, recent studies have shown that the use of the DB-MHR coupled to ordinary LWRs would keep constant the world inventory of plutonium for a reactor fleet producing 400 TW{sub e}/y. In the present studies, the DB-MHR is loaded with Np-Pu driver fuel (DF) with an isotopic composition corresponding to LWRs spent fuel waste. DF uses fissile isotopes (e.g. {sup 239}Pu and {sup 241}Pu), previously generated in the LWRs, and maintains criticality conditions in the DB-MHR. After an irradiation of three years, the spent DF is reprocessed and its remaining actinides are manufactured into fresh transmutation fuel (TF). TF mainly contains non-fissile actinides which undergo neutron capture and transmutation during the subsequent three-year irradiation in the DB-MHR. At the same time, TF provides control and negative reactivity feedback to the reactor. After extraction of the spent TF, irradiated for three years, over 94% of {sup 239}Pu and 53% of all actinides coming from LWRs waste will have been destroyed in the DB-MHR. In this paper we look at the operation conditions at equilibrium for the DB-MHR and evaluate fluxes and reactivity responses using state of the art 3-D Monte Carlo simulations.
Energy Technology Data Exchange (ETDEWEB)
Nasirzadeh, Karamat E-mail: karamat.nasirzadeh@chemie.uni-regensburg.de; Neueder, Roland; Kunz, Werner
2004-06-01
Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol {center_dot} kg{sup -1}. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg-Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.
International Nuclear Information System (INIS)
Zhong, Xinxin; Zhao, Yi; Cao, Jianshu
2014-01-01
The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)
Coronal Loops: Evolving Beyond the Isothermal Approximation
Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.
2002-05-01
Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.
Energy Technology Data Exchange (ETDEWEB)
Chiali-Baba Ahmed, Nouria [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Negadi, Latifa, E-mail: latifanegadi@yahoo.fr [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Mokbel, Ilham [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France); Kaci, Ahmed Ait [Laboratoire de Thermodynamique et Modelisation Moleculaire, Universite des Sciences et de la Technologie Houari Boumediene, Post Office Box 32, El Alia 16111, Bab Ezzouar (Algeria); Jose, Jacques [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France)
2012-01-15
Highlights: > Vapour pressures of sec-butylamine or cyclohexylamine and their aqueous solutions. > The investigated temperatures are 273 K and 363 K. > The (cyclohexylamine + water) mixture shows positive azeotropic behaviour. > The (sec-butylamine + water) or (cyclohexylamine + water) exhibit positive G{sup E}. - Abstract: The vapour pressures of (sec-butylamine + water), (cyclohexylamine + water) binary mixtures, and of pure sec-butylamine and cyclohexylamine components were measured by means of two static devices at temperatures between 293 (or 273) K and 363 K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions (G{sup E}) were calculated for several constant temperatures and fitted to a fourth-order Redlich-Kister equation using the Barker's method. The (cyclohexylamine + water) system shows positive azeotropic behaviour for all investigated temperatures. The two binary mixtures exhibit positive deviations in G{sup E} for all investigated temperatures over the whole composition range.
Zamani, A.; Azargoshasb, T.; Niknam, E.
2017-10-01
Effects of applied magnetic field, temperature and dimensions on the optical absorption coefficients (AC) and refractive index (RI) changes of a GaAs quantum ring are investigated in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). To this end, the finite difference method (FDM) is used in order to numerically calculate the energy eigenvalues and eigenstates of the system while the compact density matrix approach is hired to calculate the optical properties. It is shown that application of magnetic field, temperature as well as the geometrical size in the presence of spin-orbit interactions, alter the electronic structure and consequently influence the linear and third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system. Results show an obvious blue shift in optical curves with enhancing external magnetic field and temperature while the increment of dimensions result in red shift.
Nakanishi, Koichi; Kogure, Akinori; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi
2015-01-01
We previously developed a method for evaluating the heat resistance of microorganisms by measuring the transition temperature at which the coefficient of linear expansion of a cell changes. Here, we performed heat resistance measurements using a scanning probe microscope with a nano thermal analysis system. The microorganisms studied included six strains of the genus Bacillus or related genera, one strain each of the thermophilic obligate anaerobic bacterial genera Thermoanaerobacter and Moorella, two strains of heat-resistant mold, two strains of non-sporulating bacteria, and one strain of yeast. Both vegetative cells and spores were evaluated. The transition temperature at which the coefficient of linear expansion due to heating changed from a positive value to a negative value correlated strongly with the heat resistance of the microorganism as estimated from the D value. The microorganisms with greater heat resistance exhibited higher transition temperatures. There was also a strong negative correlation between the coefficient of linear expansion and heat resistance in bacteria and yeast, such that microorganisms with greater heat resistance showed lower coefficients of linear expansion. These findings suggest that our method could be useful for evaluating the heat resistance of microorganisms.
Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.
2018-04-01
For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.
Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.
2017-10-01
A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.
Directory of Open Access Journals (Sweden)
E. E. Louvaris
2017-10-01
Full Text Available A method is developed following the work of Grieshop et al. (2009 for the determination of the organic aerosol (OA volatility distribution combining thermodenuder (TD and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS and a scanning mobility particle sizer (SMPS. In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60–75 % of the cooking OA (COA at concentrations around 500 µg m−3 consisted of low-volatility organic compounds (LVOCs, 20–30 % of semivolatile organic compounds (SVOCs, and around 10 % of intermediate-volatility organic compounds (IVOCs. The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol−1 and the effective accommodation coefficient was 0.06–0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.
International Nuclear Information System (INIS)
Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza
2015-01-01
Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models
Energy Technology Data Exchange (ETDEWEB)
Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)
2015-01-15
Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.
International Nuclear Information System (INIS)
Ahmed, N.; Khan, G.
1990-09-01
In this report the author used of a very useful technique of simulation and applied it to successfully for determining the various properties of sodium, both in liquid and solid phase near transition point. As a first step the determination of specific heat and diffusion coefficient have been carried out. In liquid state the molecular dynamics (MD) values calculated matched the experimental data. But in solid state the diffusion coefficient obtained were not consistent with the one expected for a solid, rather the values obtained suggested that sodium remained in liquid state even below the melting point. (A.B.)
Efremov, Mikhail Yu.; Nealey, Paul F.
2018-05-01
An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Y; Inagaki, T; Sekiya, M [Ibaraki University, Ibaraki (Japan). Faculty of Engineering
1993-12-25
As a part of the studies on practical surface temperature measurement by infrared radiometer, some basic characteristics of an infrared radiometer were studied by using three kinds of sensors with different detectable wave lengths. Specimens allowable for gray body approximation such as mortar, graphite and carbon fiber composite material were tested at a practical ambient temperature of 293 K. As a result, the difference between a radiation temperature in consideration of reflection and that derived from an emissivity increased with a decrease in emissivity, and the deviation of an emissivity derived from a radiosity coefficient increased at 20 K or less in difference between a specimen surface temperature and ambient one. Each radiosity coefficient measured by each sensor also fairly agreed with each other. The deviation of a radiosity coefficient was relatively small indicating a good agreement between theoretical and experimental data, while the difference between emissivity and radiosity coefficient deviations decreased with an increase in specimen surface temperature. 3 refs., 10 figs., 1 tab.
International Nuclear Information System (INIS)
Benmansour, L.
1992-01-01
The present work shows a group of results, obtained by a neutronic study, concerning the TRIGA MARK II reactor and LIGHT WATER reactors. These studies aim to make cell and diffusion calculations. WIMS D-4 with extended library and DIXY programs are used and tested for those purposes. We also have proceeded to a qualification of WIMS code based on the fuel temperature coefficient calculations. 33 refs.; 23 figs.; 30 tabs. (author)
Uysal, Fatih; Kilinc, Enes; Kurt, Huseyin; Celik, Erdal; Dugenci, Muharrem; Sagiroglu, Selami
2017-08-01
Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit ( ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.
International Nuclear Information System (INIS)
Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl
2016-01-01
Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region
Energy Technology Data Exchange (ETDEWEB)
Lee, Jeong-Hun, E-mail: huny12@snu.ac.kr; Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr; Park, Goon-Cherl, E-mail: parkgc@snu.ac.kr
2016-10-15
Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region
Temperature coefficient of piezoelectric constants in Pb(Mg1/3 Nb2/3O3 - PbTiO3 ceramics
Directory of Open Access Journals (Sweden)
Manuel Henrique Lente
2004-06-01
Full Text Available In this work, the thermal stability of piezoelectric constants of PMN-PT ceramics in the tetragonal and rhombohedral phases were investigated in a wide range of temperatures. The results showed that the tetragonal PMN-PT presented higher thermal stability and, consequently, the temperature coefficients for the piezoelectric constants were approximately zero. This result revealed to be much better than that commonly found for PZT ceramics. Although the rhombohedral PMN-PT presented a slight lower thermal stability, the values found for the coupling factor were significantly higher than the tetragonal composition.
Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico
2018-03-01
We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.
Honvault, P; Scribano, Y
2013-10-03
The dynamics of the D(+) + H2 → HD + H(+) reaction on a recent ab initio potential energy surface (Velilla, L.; Lepetit, B.; Aguado, A.; Beswick, J. A.; Paniagua, M. J. Chem. Phys. 2008, 129, 084307) has been investigated by means of a time-independent quantum mechanical approach. Cross-sections and rate coefficients are calculated, respectively, for collision energies below 0.1 eV and temperatures up to 100 K for astrophysical application. An excellent accord is found for collision energy above 5 meV, while a disagreement between theory and experiment is observed below this energy. We show that the rate coefficients reveal a slightly temperature-dependent behavior in the upper part of the temperature range considered here. This is in agreement with the experimental data above 80 K, which give a temperature independent value. However, a significant decrease is found at temperatures below 20 K. This decrease can be related to quantum effects and the decay back to the reactant channel, which are not considered by simple statistical approaches, such as the Langevin model. Our results have been fitted to appropriate analytical expressions in order to be used in astrochemical and cosmological models.
Chieng, Norman; Mizuno, Masayasu; Pikal, Michael
2013-10-01
The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔT(g)). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50 °C and 60 °C) from TAM data at lower temperature (40 °C) and glass transition region width (ΔT(g)) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol, and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔT(g). Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔT(g), but the agreement is only qualitative. The comparison plot showed that TAM data are directly proportional to the 1/3 power of ΔT(g) data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔT(g) derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔT(g) method and TAM data at 40 °C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature, is well below the Tg of the sample. Copyright © 2013 Elsevier B.V. All rights
International Nuclear Information System (INIS)
Hamadi, O.; Shakir, N.; Mohammed, F.
2010-01-01
CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)
DEFF Research Database (Denmark)
Henningsen, Poul; Hattel, Jesper Henri; Wanheim, Tarras
1998-01-01
Temperature is measured during backward can extrusion of steel. The process is characterised by large deformations and very high surface pressure. In the experiments, a can in low carbon steel with a lubrication layer of phosphate soap is formed. The temperature is measured by thermocouples...
DEFF Research Database (Denmark)
Henningsen, Poul; Hattel, Jesper Henri; Wanheim, Tarras
1998-01-01
The large deformations in backward can extrusion result in a rise of temperature of more than 200 degrees Centigrade. In the experiments cans in low carbon steel are formed, with a lubrication layer of phosphate soap. The temperature is measured by thermocouples in the die insert and the punch...
International Nuclear Information System (INIS)
Dalle Donne, M.; Dorner, S.; Roth, A.
1983-01-01
Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)
Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry
2015-09-21
The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.
Isothermal and non-isothermal conditions of isotope separation by chemical exchange method
International Nuclear Information System (INIS)
Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.
1992-01-01
The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)
Directory of Open Access Journals (Sweden)
Laleh Bahadori
Full Text Available The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs containing ammonium-based salts and hydrogen bond donvnors (polyol type are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+ and reduction of cobaltocenium (Cc+/Cc at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5 appears suitable for further testing in electrochemical energy storage devices.
Directory of Open Access Journals (Sweden)
Falat L.
2017-01-01
Full Text Available The present study deals with the effects of high temperature expositions and subsequent cathodic hydrogen charging of dissimilar martensitic/bainitic weldment on its local mechanical properties and fracture behaviour at room temperature. Circumferential welded joint under investigation was produced by tungsten inert gas welding of X10CrWMoVNb9-2 martensitic and 7CrMoVTiB10-10 bainitic steels tubes with Ni-based filler metal and the application of subcritical postweld heat treatment. Hardness profile measurements revealed pronounced hardness peaks in over-heated regions of the individual steels heat-affected zones which remained preserved also during subsequent expositions at 600°C for up to 5000 hours. Gradual microstructural degradation of these regions included precipitate coarsening and the formation of new secondary phases during thermal exposure. The combined effects of thermal and hydrogen embrittlement of the studied weldment resulted in deleterious effects on its tensile and fracture behaviour.
LaForce, T.; Ennis-King, J.; Paterson, L.
2015-12-01
Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Y; Kaminaga, F [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Ishii, T; Sato, K [Ibaraki University, Ibaraki (Japan); Kurokawa, T [NEC San-ei Instrumentsu Ltd., Tokyo (Japan)
1991-12-25
A radiation thermometer was applied to the measurement and analysis of radiation temperature of the material surface. In this paper, the characteristics of the radiation temperature and the radiosity coefficient of gray body materials are investigatied. An infrared radiometer was used, which detects radiation energy in the region between 8 and 13{mu}m of wavelength. This infared radiometer has a Hg-Cd-Te photon radiation sensor. The variation of emissivity was measured for the four kinds of non-metalic materials, i.e., graphite, carbon fiber composite, Si-SiC ceramic, and black paint spread on an aluminum plate. As a result, the relationship between material temperature and radiation energy was made clear. Furthermore, the space-dependent variation of the radiation temperature and the radiosity coefficient was derived from the two-dimensional CRT image of the infrared radiometer. Consequently, the emmisivity variation gave a maximum for the carbon fiber composite surface rich in irregularity, and decreased in the order of graphite, Si-SiC, and black paint. 7 refs., 15 figs.
Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code
Energy Technology Data Exchange (ETDEWEB)
Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics
2017-05-15
Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.
Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): A stochastic TMDSC study
International Nuclear Information System (INIS)
Hutchinson, John M.; Shiravand, Fatemeh; Calventus, Yolanda; Fraga, Iria
2012-01-01
Highlights: ► First evaluation of T g of tri-functional epoxy resin TGAP by DSC. ► Clearly shows advantages of TOPEM for isothermal and non-isothermal cure analysis. ► Evidence of highly non-linear enthalpy relaxation in partially cured TGAP system. - Abstract: The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures T c has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature T g as a function of isothermal cure time is determined by conventional DSC from a second (non-isothermal) scan, and the vitrification time t v is obtained as the time at which T g = T c . In parallel, TOPEM experiments at the same T c lead directly to the determination of t v from the sigmoidal change in the quasi-static heat capacity. It is not possible to identify the glass transition temperature of the fully cured system, T g∞ , in a third scan by conventional DSC. In contrast, with TOPEM a second (non-isothermal) scan at 2 K/min after the isothermal cure gives rise to three separate transitions: devitrification of the partially cured and vitrified material; almost immediate vitrification as the T g of the system again rises; finally another devitrification, at a temperature approximating closely to T g∞ . Thus with TOPEM it is possible to obtain a calorimetric measure of the glass transition temperature of this fully cured system.
Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie
2018-01-26
In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.
International Nuclear Information System (INIS)
El Ouahdani, S.; Boukhal, H.; Erradi, L.; Chakir, E.; El Bardouni, T.; Hajjaji, O.; Boulaich, Y.; Benaalilou, K.; Kaddour, M.
2016-01-01
Highlights: • A set of KRITZ-2 experiments with UO 2 and MOX LWR lattices, at room and elevated temperatures, have been analysed using the MCNP6.1 code with the libraries: JENDL-4 and ENDF/B-VII.1. • The detailed comparisons of the calculations and measurements demonstrate a good agreement between calculations and measurements. • To investigate better the influence of cross sections differences on the reactivity temperature coefficient, we break it down into its components using a pin cell model. - Abstract: A set of KRITZ-2 experiments light water moderated lattices with uranium oxide and mixed-oxide fuel rods, at room and elevated temperatures, performed in the early 1970’s have been assessed. Using the MCNP6.1 code with the most recent cross section libraries: JENDL-4 and ENDF/B-VII.1, the critical experiments KRITZ: 2-1, KRITZ: 2-13, and KRITZ: 2-19 achieved in the Sweden reactor KRITZ were analyzed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original data. The JENDL-4 evaluations were processed using NJOY99 (update 364) to the temperatures of interest. The detailed comparisons of the calculated and measured (Benchmark, 2005) effective multiplication factors and pin power distributions for UO2 and MOX fuelled cores presented in this work demonstrate a good agreement between calculation and measurements. The maximum deviation of the calculation from the experimental data for k eff , is 0.58% (absolute value) obtained for the KRITZ 2:1 at 248.5 °C using ENDF/B-VII.1 data. To investigate better the influence of cross sections differences on the reactivity and temperature coefficient, we break down the infinite multiplication factor into its components using a pin cell model. Using this simple model we evaluated the temperature effect on the infinite multiplication factor and the effect on its components. We have
Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies
Energy Technology Data Exchange (ETDEWEB)
Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)
2011-07-15
In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS
Energy Technology Data Exchange (ETDEWEB)
Chang H Oh; Eung S Kim
2011-09-01
Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.
International Nuclear Information System (INIS)
Andrushchak, A. S.; Laba, H. P.; Yurkevych, O. V.; Mytsyk, B. G.; Solskii, I. M.; Kityk, A. V.; Sahraoui, B.
2009-01-01
This paper presents the results of ultrasonic measurements of LiNbO 3 and LiNbO 3 :MgO crystals. The tensors of piezoelectric coefficients, elastic stiffness constants, and elastic compliances are determined for both crystals at room temperature. Combining these data with the results of piezo-optical measurements, a complete set of photoelastic tensor coefficients is also calculated. Doping of LiNbO 3 crystals by MgO does not lead to a considerable modification of their elastic and photoelastic properties. However, LiNbO 3 :MgO is characterized by a considerably higher resistance with respect to powerful light radiation, making it promising for future application in acousto-optic devices that deal with superpowerful laser radiation. Presented here are the complete tensor sets of elastic constants and photoelastic coefficients of LiNbO 3 and LiNbO 3 :MgO crystals that may be used for a geometry optimization of acousto-optical interaction providing the best diffraction efficiency of acousto-optical cells made of these materials.
Barforoush, M. S. M.; Saedodin, S.
2018-01-01
This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.
Column Chromatography To Obtain Organic Cation Sorption Isotherms.
Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A
2016-08-02
Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.
Energy Technology Data Exchange (ETDEWEB)
Deng, Sihao; Sun, Ying; Wang, Lei; Shi, Kewen; Hu, Pengwei; Wang, Cong, E-mail: congwang@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); Wu, Hui; Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States)
2016-01-25
The near-zero temperature coefficient of resistivity (NZ-TCR) behavior is reported in the antiperovskite compounds Mn{sub 3+x}Ni{sub 1−x}N (0 ≤ x ≤ 0.333). Our results indicate that the broad temperature range (above 275 K extending to above 220 K) of NZ-TCR is obtained by Mn doping at the Ni site. The short-range magnetic ordering is revealed by both neutron powder diffraction and inverse magnetic susceptibility. Further, we find a strong correlation between the anomalous resistivity change of Mn{sub 3+x}Ni{sub 1−x}N from the metal-like to the NZ-TCR behavior and the lack of the long-range magnetic ordering. The possible mechanism of NZ-TCR behavior is discussed using the spin-disorder scattering model.
International Nuclear Information System (INIS)
Wang, X.Y.; Zhang, Z.S.; Bai, T.
2010-01-01
The sputtering target for high-resistance thin film resistors plays a decisive role in temperature coefficient of resistance (TCR). Silicon-rich chromium (Cr)-silicon (Si) target was designed and smelted for high-resistance thin film resistors with low TCR. Valve metal tantalum (Ta) and aluminum (Al) were introduced to the Cr-Si target to improve the performance of the target prepared. The measures for grain refining in smelting Cr-Si-Ta-Al target were taken to improve the performance of the prepared target. The mechanism and role of grain refinement were discussed in the paper. The phase structure of the prepared target was detected by X-ray diffraction (XRD). Rate of temperature drop was studied to reduce the internal stress of alloy target and conquer the easy cracking disadvantage of silicon-rich target. The electrical properties of sputtered thin film resistors were tested to evaluate the performance of the prepared target indirectly.
International Nuclear Information System (INIS)
Kanazu, Tsutomu
1998-01-01
When a reinforced concrete member is exposed to high temperature conditions over 100degC, tensile strain occurs in the concrete and compressive strain occurs in reinforcements due to a difference of thermal expansion coefficients between concrete and reinforcement. Its mechanism is the same as that of restrained stress caused by drying shrinkage of concrete; tensile stress occurs in the concrete because drying shrinkage strain is restrained by reinforcements, but there is a different point that the phenomenon at a high temperature condition includes the change of mechanical properties of concrete and reinforcement. In the study, the phenomenon is measured in the experiments and is clarified quantitatively. Moreover, the estimation method, which is derived from expanding the equation of average strain of reinforcement in the CEB Design Manual, is suggested and is verified by the comparison with the experimental results. (author)
Energy Technology Data Exchange (ETDEWEB)
Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)
2015-01-15
The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.
Sorption isotherms for oat flakes (Avena sativa L.
Directory of Open Access Journals (Sweden)
José Edgar Zapata M.
2014-04-01
Full Text Available Moisture sorption isotherms of oat flakes were determined at temperatures of 5, 25 and 37°C, using a gravimetric technique in an a w range of between 0.107 and 0.855. These curves were modeled using six equations commonly applied in food. The quality of the fit was assessed with the regression coefficient (r² and the mean relative percentage error (MRPE. The best fit were obtained with the Caurie model with r² of 0.996, 0.901 and 0.870, and MRPE of 7.190, 17.878 and 16.206, at 5, 25 and 37°C, respectively. The equilibrium moisture presented a dependence on temperature in the studied a w range, as did the security moisture (X S. These results suggest that the recommended storage conditions of oat flakes include: a relative air humidity of 50% between 5 and 25°C and of 38% up to 37°C.
International Nuclear Information System (INIS)
Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian
2016-01-01
Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.
Devi, M.; Predoi-Cross, A.; McKellar, R.; Benner, C.; Miller, C. E.; Toth, R. A.; Brown, L. R.
2008-12-01
Nearly 40 high resolution spectra of air-broadened CO2 recorded at temperatures between 215 and 294 K were analyzed using a multispectrum nonlinear least squares technique to determine temperature dependences of air-broadened half width and air-induced pressure shift coefficients in the 30013-00001 and 30012-00001 bands of 12CO2. Data were recorded with two different Fourier transform spectrometers (Kitt Peak FTS at the National Solar Observatory in Arizona and the Bomem FTS at NRC, Ottawa) with optical path lengths ranging between 25 m and 121 m. The sample pressures varied between 11 torr (pure CO2) and 924 torr (CO2-air) with volume mixing ratios of CO2 in air between ~ 0.015 and 0.11. To minimize systematic errors and increase the accuracy of the retrieved parameters, we constrained the multispectrum nonlinear least squares fittings to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line-by-line. The results suggest minimal vibrational dependence for the temperature dependence coefficients.1 1 A. Predoi-Cross and R. Mckellar are grateful for financial support from the National Sciences and Engineering Research Council of Canada. The research at the Jet Propulsion laboratory (JPL), California Institute of Technology, was performed under contract with National Aeronautics and Space Administration. The support received from the National Science Foundation under Grant No. ATM-0338475 to the College of William and Mary is greatly appreciated. The authors thank Mike Dulick of the National Solar Observatory for his assistance in obtaining the data recorded at Kitt Peak.
Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min
2016-01-01
Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type t...
Institute of Scientific and Technical Information of China (English)
Zhu Hu-Gang; Liu Zhi-Hua; Tian Yi-Ling; Xue Yuan; Yin Liang
2005-01-01
The molar volume isotherms of trans-decahydronaphthalene (C10H18) between 293 and 446 K and at pressures from 10 to 200 MPa have been determined. A modified Tait equation of state is used to fit each experimental molar volume isotherm with a maximum average deviation of 0.029%. The thermal expansivity (cubic expansion coefficient) α and isothermal compressibility κ were determined by fitting the slopes of the isobaric curves and isotherms, respectively.The coefficients in the equation Vm = C1 + C2T + C3T2 - C4p - C5pT have been fitted with an average deviation of 1.03%.
International Nuclear Information System (INIS)
Demaziere, C.
2002-01-01
The Moderator Temperature Coefficient of reactivity (MTC) is an important safety parameter of Pressurized Water Reactors (PWRs). In most countries, the so-called at-power MTC has to be measured a few months before the reactor outage, in order to determine if the MTC will not become too negative. Usually, the at-power MTC is determined by inducing a change in the moderator temperature, which has to be compensated for by other means, such as a change in the boron concentration. An MTC measurement using the boron dilution method is analysed in this thesis. It is demonstrated that the uncertainty of such a measurement technique is so large, that the measured MTC could become more negative than what the Technical Specifications allow. Furthermore, this technique incurs a disturbance of the plant operation. For this reason, another technique relying on noise analysis was proposed a few years ago. In this technique, the MTC is inferred from the neutron noise measured inside the core and the moderator temperature noise measured at the core-exit, in the same or in a neighbouring fuel assembly. This technique does not require any perturbation of the reactor operation, but was nevertheless proven to underestimate the MTC by a factor of 2 to 5. In this thesis, it is shown, both theoretically and experimentally, that the reason of the MTC underestimation by noise analysis is the radially loosely coupled character of the moderator temperature noise throughout the core. A new MTC noise estimator, accounting for this radially non-homogeneous moderator temperature noise is proposed and demonstrated to give the correct MTC value. This new MTC noise estimator relies on the neutron noise measured in a single point of the reactor and the radially averaged moderator temperature noise measured inside the core. In the case of the Ringhals-2 PWR in Sweden, Gamma-Thermometers (GTs) offer such a possibility since in dynamic mode they measure the moderator temperature noise, whereas in static
Isothermal deformation of gamma titanium aluminide
International Nuclear Information System (INIS)
Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.
1996-01-01
Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material
Transport Coefficients of Fluids
Eu, Byung Chan
2006-01-01
Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.
Demyk, K.; Meny, C.; Leroux, H.; Depecker, C.; Brubach, J.-B.; Roy, P.; Nayral, C.; Ojo, W.-S.; Delpech, F.
2017-10-01
Context. To model the cold dust emission observed in the diffuse interstellar medium, in dense molecular clouds or in cold clumps that could eventually form new stars, it is mandatory to know the physical and spectroscopic properties of this dust and to understand its emission. Aims: This work is a continuation of previous studies aiming at providing astronomers with spectroscopic data of realistic cosmic dust analogues for the interpretation of observations. The aim of the present work is to extend the range of studied analogues to iron-rich silicate dust analogues. Methods: Ferromagnesium amorphous silicate dust analogues were produced by a sol-gel method with a mean composition close to Mg1-xFexSiO3 with x = 0.1, 0.2, 0.3, 0.4. Part of each sample was annealed at 500 °C for two hours in a reducing atmosphere to modify the oxidation state of iron. We have measured the mass absorption coefficient (MAC) of these eight ferromagnesium amorphous silicate dust analogues in the spectral domain 30-1000 μm for grain temperature in the range 10-300 K and at room temperature in the 5-40 μm range. Results: The MAC of ferromagnesium samples behaves in the same way as the MAC of pure Mg-rich amorphous silicate samples. In the 30-300 K range, the MAC increases with increasing grain temperature whereas in the range 10-30 K, we do not see any change of the MAC. The MAC cannot be described by a single power law in λ- β. The MAC of the samples does not show any clear trend with the iron content. However the annealing process has, on average, an effect on the MAC that we explain by the evolution of the structure of the samples induced by the processing. The MAC of all the samples is much higher than the MAC calculated by dust models. Conclusions: The complex behavior of the MAC of amorphous silicates with wavelength and temperature is observed whatever the exact silicate composition (Mg vs. Fe amount). It is a universal characteristic of amorphous materials, and therefore of
Isothermality of the gas in the Coma cluster
International Nuclear Information System (INIS)
Hughes, J.P.; Yamashita, K.; Okumura, Y.; Tsunemi, H.; Matsuoka, M.
1988-01-01
The high-quality X-ray spectrum of the Coma cluster observed by the Japanese satelite Tenma in conjunction with imaging data from the Einstein Observatory was used to explore the temperature distribution of the cluster gas. It is found that pure polytropic models are inadequate to describe this temperature distribution. Instead, a hybrid model is proposed consisting of a central isothermal region surrounded by a polytropic distribution. It is shown that as much as 75 percent of the global emission may come from the isothermal component. 30 references
Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.
2011-12-01
On the example of soft magnetic Fe81B13Si4C2 and Fe77Ni1Si9B13 amorphous alloys, the relation between the level of magnetic properties and duration of isothermal holding in the course of heat treatment in air has been studied. The optimum temperature-dependent time τ of isothermal holding has been shown to be related to the volume fraction of domains ( V orth) with orthogonal magnetization in the initial (quenched) ribbon by equation V orth = ττ1/3. A temperature dependence of the proportionality coefficient α, which determines the degree of diffusion-process activity, has been determined. The results obtained allow us to substantially simplify the choice of optimum conditions of atmospheric heat treatment of soft magnetic Fe-based amorphous ribbons.
International Nuclear Information System (INIS)
Felmetsger, Valery V.
2010-01-01
Technological solutions for producing nanoscale cermet resistor films with sheet resistances above 1000 Ω/□ and low temperature coefficients of resistance (TCR) have been investigated. 2-40 nm thick cermet films were sputter deposited from CrSi 2 -Cr-SiC targets by a dual cathode dc S-gun magnetron. In addition to studying film resistance versus temperature, the nanofilm structural features and composition were analyzed using scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and electron energy loss spectroscopy. This study has revealed that all cermet resistor films deposited at ambient and elevated temperatures were amorphous. The atomic ratio of Si to Cr in these films was about 2 to 1. The film TCR displayed a significant increase when the deposited film thickness was reduced below 2.5 nm. An optimized sputter process consisting of wafer degassing, cermet film deposition at elevated temperature with rf substrate bias, and a double annealing in vacuum, consisting of in situ annealing following the film sputtering and an additional annealing following the exposure of the wafers to air, has been found to be very effective for the film thermal stabilization and for fine tuning the film TCR. Cermet films with thicknesses in the range of 2.5-4 nm deposited using this technique had sheet resistances ranging from 1800 to 1200 Ω/□ and TCR values from -50 ppm/ deg. C to near zero, respectively. A possible mechanism responsible for the high efficiency of annealing the cermet films in vacuum (after preliminary exposure to air), resulting in resistance stabilization and TCR reduction, is also discussed.
International Nuclear Information System (INIS)
Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.
2014-01-01
The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications
Energy Technology Data Exchange (ETDEWEB)
Ungan, F., E-mail: fungan@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Restrepo, R.L. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia AA 7516, Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-02-01
The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.
Directory of Open Access Journals (Sweden)
Masroor Ahmad Bhat
2016-12-01
Full Text Available Silver ions substituted samarium strontium manganite (Sm0.55Sr0.30Ag0.15MnO3 pervoskite was synthesized by using respective oxides in stoichiometric ratio through solid state reaction. The as-prepared sample was characterized by various analytical techniques to confirm its formation and understand the effect of monovalent silver ions in pervoskite lattice. X-ray diffraction pattern confirms the single phase formation while grain morphology in SEM image indicates good connectivity among the grains. The enhancement in metal to insulator transition temperature shows quenched disorder and magnetoresistance phenomena. The magnetoresistance (MR and temperature coefficient of resistance (TCR emerge from grain growth factor and homogeneity induced by Ag+ ions in the lattice. The reduction in hysteresis loss resulted from antiferromagnetic - ferromagnetic (TN and ferromagnetic - paramagnetic (Tc transitions reveals the removal of disorder in perovskite lattice by Ag+ ions substitution. This increases the magnetic moment across distinct ions on the applying magnetic field. The rise in MR% (~99% with silver doping emerging from smooth spin tunneling of the grains across the boundary and suppression of the disordered magnetic fluctuations with increase in magnetic field has been reported. The present compound exhibits the first order nature of magnetism and observed first time the highest value of TCR ~ 95%.
Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Younes, Rached ben
2018-05-01
The broadening, shifting and mixing coefficients of the doublet spectral lines in the ν2 and ν4 bands of PH3 perturbed by H2 have been determined at room temperature. Indeed, the collisional spectroscopic parameters: intensities, line widths, line shifts and line mixing parameters, are all grouped together in the collisional relaxation matrix. To analyse the collisional process and physical effects on spectra of phosphine (PH3), we have used the measurements carried out using a tunable diode-laser spectrometer in the ν2 and ν4 bands of PH3 perturbed by hydrogen (H2) at room temperature. The recorded spectra are fitted by the Voigt profile and the speed-dependent uncorrelated hard collision model of Rautian and Sobelman. These profiles are developed in the studies of isolated lines and are modified to account for the line mixing effects in the overlapping lines. The line widths, line shifts and line mixing parameters are given for six A1 and A2 doublet lines with quantum numbers K = 3n, (n = 1, 2, …) and overlapped by collisional broadening at pressures of less than 50 mbar.
Directory of Open Access Journals (Sweden)
Muhammad Tahir Amin
2015-11-01
Full Text Available The studies of the kinetics and isotherms adsorption of the Reactive Black 5 (RB5 onto bentonite clay were explored in a batch study in a laboratory. The maximum RB5 adsorption conditions of bentonite clay were optimized such as shaking speed (100 rpm, temperature (323 K, pH (10, contact time (40 min, initial dye concentration (170 mg·L−1, and particle size (177 µm. The adsorbent surface was characterized using Fourier Transform Infrared Spectroscopy spectroscopy. The mechanisms and characteristic parameters of the adsorption process were analyzed using two parameter isotherm models which revealed the following order (based on the coefficient of determination: Harkin-Jura (0.9989 > Freundlich (0.9986 and Halsey (0.9986 > Langmuir (0.9915 > Temkin (0.9818 > Dubinin–Radushkevich (0.9678. This result suggests the heterogeneous nature of bentonite clay. Moreover, the adsorption process was chemisorption in nature because it follows the pseudo-second order reaction model with R2 value of 0.9998, 0.9933 and 0.9891 at 25, 75 and 100 mg·L−1 RB5 dye in the solution, respectively. Moreover, based on the values of standard enthalpy, Gibbs free energy change, and entropy, bentonite clay showed dual nature of exothermic and endothermic, spontaneous and non-spontaneous as well as increased and decreased randomness at solid–liquid interface at 303–313 K and 313–323 K temperature, respectively.
Bernard, François; Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Burkholder, James B
2018-04-19
Permethylsiloxanes are emitted into the atmosphere during production and use as personal care products, lubricants, and cleaning agents. The predominate atmospheric loss process for permethylsiloxanes is expected to be via gas-phase reaction with the OH radical. In this study, rate coefficients, k(T), for the OH radical gas-phase reaction with the two simplest linear and cyclic permethylsiloxanes were measured using a pulsed laser photolysis-laser induced fluorescence technique over the temperature range of 240-370 K and a relative rate method at 294 K: hexamethyldisiloxane ((CH 3 ) 3 SiOSi(CH 3 ) 3 , L 2 ), k 1 ; octamethyltrisiloxane ([(CH 3 ) 3 SiO] 2 Si(CH 3 ) 2 , L 3 ), k 2 ; hexamethylcyclotrisiloxane ([-Si(CH 3 ) 2 O-] 3 , D 3 ), k 3 ; and octamethylcyclotetrasiloxane ([-Si(CH 3 ) 2 O-] 4 , D 4 ), k 4 . The obtained k(294 K) values and temperature-dependence expressions for the 240-370 K temperature range are (cm 3 molecule -1 s -1 , 2σ absolute uncertainties): k 1 (294 K) = (1.28 ± 0.08) × 10 -12 , k 1 ( T) = (1.87 ± 0.18) × 10 -11 exp(-(791 ± 27)/ T); k 2 (294 K) = (1.72 ± 0.10) × 10 -12 , k 2 ( T) = 1.96 × 10 -13 (T/298) 4.34 exp(657/ T); k 3 (294 K) = (0.82 ± 0.05) × 10 -12 , k 3 ( T) = (1.29 ± 0.19) × 10 -11 exp(-(805 ± 43)/ T); and k 4 (294 K) = (1.12 ± 0.10) × 10 -12 , k 4 ( T) = (1.80 ± 0.26) × 10 -11 exp(-(816 ± 43)/ T). The cyclic molecules were found to be less reactive than the analogous linear molecule with the same number of -CH 3 groups, while the linear and cyclic permethylsiloxane reactivity both increase with the increasing number of CH 3 - groups. The present results are compared with previous rate coefficient determinations where available. The permethylsiloxanes included in this study are atmospherically short-lived compounds with estimated atmospheric lifetimes of 11, 8, 17, and 13 days, respectively.
International Nuclear Information System (INIS)
Boulaich, Y.; El Bardouni, T.; Erradi, L.; Chakir, E.; Boukhal, H.; Nacir, B.; El Younoussi, C.; El Bakkari, B.; Merroun, O.; Zoubair, M.
2011-01-01
Highlights: → In the present work, we have analyzed the CREOLE experiment on the reactivity temperature coefficient (RTC) by using the three-dimensional continuous energy code (MCNP5) and the last updated nuclear data evaluations. → Calculation-experiment discrepancies of the RTC were analyzed and the results have shown that the JENDL3.3 and JEFF3.1 evaluations give the most consistent values. → In order to specify the source of the relatively large discrepancy in the case of ENDF-BVII nuclear data evaluation, the k eff discrepancy between ENDF-BVII and JENDL3.3 was decomposed by using sensitivity and uncertainty analysis technique. - Abstract: In the present work, we analyze the CREOLE experiment on the reactivity temperature coefficient (RTC) by using the three-dimensional continuous energy code (MCNP5) and the last updated nuclear data evaluations. This experiment performed in the EOLE critical facility located at CEA/Cadarache, was mainly dedicated to the RTC studies for both UO 2 and UO 2 -PuO 2 PWR type lattices covering the whole temperature range from 20 deg. C to 300 deg. C. We have developed an accurate 3D model of the EOLE reactor by using the MCNP5 Monte Carlo code which guarantees a high level of fidelity in the description of different configurations at various temperatures taking into account their consequence on neutron cross section data and all thermal expansion effects. In this case, the remaining error between calculation and experiment will be awarded mainly to uncertainties on nuclear data. Our own cross section library was constructed by using NJOY99.259 code with point-wise nuclear data based on ENDF-BVII, JEFF3.1 and JENDL3.3 evaluation files. The MCNP model was validated through the axial and radial fission rate measurements at room and hot temperatures. Calculation-experiment discrepancies of the RTC were analyzed and the results have shown that the JENDL3.3 and JEFF3.1 evaluations give the most consistent values; the discrepancy is
Energy Technology Data Exchange (ETDEWEB)
Haefele, W. [Kernforschungszentrum, Karlsruhe (Germany)
1962-03-15
The theory of coupled systems was extensively developed by Avery and co-workers at the Argonne National Laboratory. One of the main points of interest in a coupled system is the larger effective lifetime of neutrons. The effect of the thermal component acts as a sort of neutron-delayer. As in the theory of delayed neutrons the delaying effect disappears if the reactivity worth is high enough to make the fast component critical by itself. In the study a coupled reactor is considered where the fast component suffers a sudden reactivity step {alpha}{sub 0}. Because of the increasing power-level the temperature rises and two temperature coefficients start to work: the temperature coefficient of the fast component and the temperature coefficient of the thermal component. The problem is considered with one group of delayed neutrons (in the ordinary meaning). A formalism is given to express the effective lifetime and temperature coefficient during the different stages of the excursion. Excursions for different {alpha}{sub 0} are given so that the limit of fast-reactor kinetics is reached. (author) [French] La theorie des systemes a couplage a ete mise au point par Avery et ses collaborateurs au Laboratoire national d'Argonne. L'une des caracteristique les plus interessantes d'un systeme a couplage est que le temps de vie effectif des neutrons est plus long. L'effet de la partie thermique contribue en quelque sorte a retarder les neutrons. Comme dans la theorie des neutrons retardes, l'effet de retardement disparait lorsque la reactivite a une valeur suffisamment elevee pour rendre la partie rapide critique par elle-meme. L'auteur du memoire considere un reacteur a couplage dont la partie rapide subit un saut instantane de reactivite, {alpha}{sub 0}. La temperature s'eleve a cause de l'augmentation de puissance et deux coefficients de temperature commencent a s'appliquer: le coefficient de temperature de la partie rapide et le coefficient de temperature de la partie
International Nuclear Information System (INIS)
Phong, P.T.; Nguyen, L.H.; Manh, D.H.; Phuc, N.X.; Lee, I.-J.
2013-01-01
The temperature dependent resistivity and temperature coefficient of resistance of Ag doped La 0.7−x Ag x Ca 0.3 MnO 3 polycrystalline pellets (x=0, 0.05, 0.10, 0.15, and 0.20) are investigated. Ag substitution enhances the conductivity of this system. The Curie temperature also increases from 260 to 283 K with increasing Ag content. Using phase-coexistence transport model and phase separation model, we calculated the resistivity as a function of temperature and the temperature coefficient of resistivity (TCR) behavior. Comparing the calculated maximum TCR, we found that it is related to activation energy, transition temperature, and disorder in doped manganites. The relationship between the proposed TCR behavior and the transport parameters can suggest conditions improving TCR max of doped manganites for the use of the bolometric infrared detectors
Tunneling in cosmology and isothermal inflation
International Nuclear Information System (INIS)
Brout, R.; Spindel, P.
1991-01-01
The wave function for the universe, as proposed by Hartle and Hawking, experiences tunneling for small values of the radius of the universe. This induces thermal effects and so a hot big bang. We first give a detailed analysis of the observer accelerating in Minkowski space in terms of the tunneling of his wave function beyond his turning point. Applied to cosmology one finds a temperature at the big bang equal to the Gibbons-Hawking value. The residual thermal effects which result in an isothermal inflationary expansion give rise to a renormalized self-consistently determined Hubble constant (and hence Gibbons-Hawking temperature) through the trace anomaly. A thermodynamic interpretation is given. These results militate against phase transitions as a motor for inflation. (orig.)
International Nuclear Information System (INIS)
Durkee, J.W. Jr.
1983-01-01
The time-dependent convective-diffusion equation with radioactive decay is solved analytically in axisymmetric cylindrical geometry for laminar and slug velocity profiles under isothermal conditions. Concentration dependent diffusion is neglected. The laminar flow solution is derived using the method of separation of variables and Frobenius' technique for constructing a series expansion about a regular singular point. The slug flow multiregion solution is obtained using the method of separation of variables. The Davidon Variable Metric Minimization algorithm is used to compute the coupling coefficients. These solutions, which describe the transport of fission products in a flowing stream, are then used to determine the concentration of radioactive material deposited on a conduit wall using a standard mass transfer model. Fission product deposition measurements for five diffusion tubes in a Fort St. Vrain High-Temperature Gas-Cooled reactor plateout probe are analyzed. Using single region slug and laminar models, the wall mass transfer coefficients, diffusion coefficients, and inlet concentrations are determined using least squares analysis. The diffusion coefficients and inlet concentrations are consistent between tubes. The derived diffusion coefficients and wall mass transfer coefficients are in relative agreement with known literature values
Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.
2015-01-01
Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent
Improved Isotherm Data for Adsorption of Methane on Activated Carbons
Loh, Wai Soong; Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Choo, Yoo Sang; Khoo, Boo Cheong; Ng, Kim Choon
2010-01-01
This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed
ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY
Directory of Open Access Journals (Sweden)
Carlos Carvalho Engler-Pinto Júnior
2014-06-01
Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.
Aragao, Glaucia M F; Corradini, Maria G; Normand, Mark D; Peleg, Micha
2007-11-01
Published survival curves of Escherichia coli in two growth media, with and without the presence of salt, at various temperatures and in a Greek eggplant salad having various levels of essential oil, all had a characteristic downward concavity when plotted on semi logarithmic coordinates. Some also exhibited what appeared as a 'shoulder' of considerable length. Regardless of whether a shoulder was noticed, the survival pattern could be considered as a manifestation of an underlying unimodal distribution of the cells' death times. Mathematically, the data could be described equally well by the Weibull and log normal distribution functions, which had similar modes, means, standard deviations and coefficients of skewness. When plotted in their probability density function (PDF) form, the curves also appeared very similar visually. This enabled us to quantify and compare the effect of temperature or essential oil concentration on the organism's survival in terms of these temporal distributions' characteristics. Increased lethality was generally expressed in a shorter mean and mode, a smaller standard deviation and increased overall symmetry as judged by the distributions' degree of skewness. The 'shoulder', as expected, simply indicated that the distribution's standard deviation was much smaller than its mode. Rate models based on the two distribution functions could be used to predict non isothermal survival patterns. They were derived on the assumption that the momentary inactivation rate is the isothermal rate at the momentary temperature at a time that corresponds to the momentary survival ratio. In this application, however, the Weibullian model with a fixed power was not only simpler and more convenient mathematically than the one based on the log normal distribution, but it also provided more accurate estimates of the dynamic inactivation patterns.
Hardness of H13 Tool Steel After Non-isothermal Tempering
Nelson, E.; Kohli, A.; Poirier, D. R.
2018-04-01
A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.
Characterization of bainitic/martensitic structures formed in isothermal treatments below the M
Navarro Lopez, A.; Hidalgo Garcia, J.; Sietsma, J.; Santofimia Navarro, M.J.
2017-01-01
Advanced Multiphase High Strength Steels are generally obtained by applying isothermal treatments around the martensite start temperature (M_{s}). Previous investigations have shown that bainitic ferrite can form from austenite in isothermal treatments below M_{s}, where its
Directory of Open Access Journals (Sweden)
Kenichi Miyazaki
2016-05-01
Full Text Available We investigated the effects of chromium (Cr and niobium (Nb co-doping on the temperature coefficient of resistance (TCR and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2 films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.
Francisco, Ana Paula; Harner, Tom; Eng, Anita
2017-05-01
Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.
2016-11-01
The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.
Understand rotating isothermal collapses yet
International Nuclear Information System (INIS)
Tohline, J.E.
1985-01-01
A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references
Energy Technology Data Exchange (ETDEWEB)
Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)
2017-06-15
The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.
Mathematical modelling of the sorption isotherms of quince
Directory of Open Access Journals (Sweden)
Mitrevski Vangelce
2017-01-01
Full Text Available The moisture adsorption isotherms of quince were determined at four temperatures 15, 30, 45, and 60°C over a range of water activity from 0.110 to 0.920 using the standard static gravimetric method. The experimental data were fitted with generated three parameter sorption isotherm models on Mitrevski et al., and the referent Anderson model known in the scientific and engineering literature as Guggenheim- Anderson-de Boer model. In order to find which models give the best results, large number of numerical experiments was performed. After that, several statistical criteria for estimation and selection of the best sorption isotherm model was used. The performed statistical analysis shows that the generated three parameter model M11 gave the best fit to the sorption data of quince than the referent three parameter Anderson model.
Isothermal recovery rates in shape memory polyurethanes
International Nuclear Information System (INIS)
Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E
2011-01-01
This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)
International Nuclear Information System (INIS)
Joubert, H.D.; Terblans, J.J.; Swart, H.C.
2009-01-01
Classical inter-diffusion studies assume a constant time of annealing when samples are annealed in a furnace. It is assumed that the sample temperature reaches the annealing temperature immediately after insertion, while the sample temperature immediately drops to room temperature after removal, the annealing time being taken as the time between insertion and removal. Using the above assumption, the diffusion coefficient can be calculated in a number of ways. In reality, the sample temperature does not immediately reach the annealing temperature; instead it rises at a rate governed by several heat transfer mechanisms, depending on the annealing procedure. For short annealing times, the sample temperature may not attain the annealing temperature, while for extended annealing times the sample temperature may reach the annealing temperature only for a fraction of the annealing time. To eliminate the effect of heat transfer mechanisms, a linear temperature ramping regime is proposed. Used in conjunction with a suitable profile reconstructing technique and a numerical solution of Fick's second law, the inter-diffusion parameters obtained from a linear ramping of Ni/Cu thin film samples can be compared to those obtained from calculations performed with the so-called Mixing-Roughness-Information model or any other suitable method used to determine classical diffusion coefficients.
International Nuclear Information System (INIS)
Kumar, K. Vasanth; Porkodi, K.; Rocha, F.
2008-01-01
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r 2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r 2 ), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r 2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K 2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm
High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing
Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke
2016-01-01
The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...
Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do
2017-08-01
As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.
2003-01-01
Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat
Walait, Ahsan; Siddiqui, A M; Rana, M A
2018-02-13
The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.
International Nuclear Information System (INIS)
Avezova, N.R.; Avezov, R.R.
2015-01-01
The approximation formula is derived for calculating the normalized coefficient of thermal losses of flat solar collectors (FSCs) for heating heat-transfer fluid (HTF). These are used in hot water supply systems in the warmer part of the year, depending on the average working surface temperature of their radiation-absorbing thermal exchange panels (RATEPs) (t"-_w_s_r) and the ambient temperature (t_a_m_b) in their realistic variation range. (author)
Kondor, Anett; Dallos, András
2014-10-03
Adsorption isotherm data of some alkyl aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) measured in the temperature range of 423-523K on a partially dealuminated faujasite type DAY F20 zeolite by inverse gas chromatography are presented in this work. The temperature dependent form of Tóth's equation has been fitted to the multiple temperature adsorption isotherms of benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene with standard deviations of 4.6, 5.0, 5.9, 4.3, 5.1 and 6.3mmolkg(-1) and coefficients of determinations (r(2)) of 0.977, 0.971, 0.974, 0.975, 0.991 and 0.991, respectively. The gas-solid equilibria and modeling were interpreted on the basis of the interfacial properties of the zeolite, by dispersive, specific and total surface energy heterogeneity profiles and distributions of the adsorbent measured by surface energy analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-isothermal Moisture Transport Through Insulation Materials
DEFF Research Database (Denmark)
Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard
2008-01-01
An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...
Water adsorption isotherms and thermodynamic properties of cassava bagasse
International Nuclear Information System (INIS)
Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier
2016-01-01
Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.
Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal
Martin, Awaludin; Loh, Wai Soong; Rahman, Kazi Afzalur; Thu, Kyaw; Surayawan, Bambang; Alhamid, M. Idrus; Nasruddin,; Ng, Kim Choon
2011-01-01
) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300
Anomalous Seebeck coefficient in boron carbides
International Nuclear Information System (INIS)
Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.
1987-01-01
Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder
International Nuclear Information System (INIS)
Arantes Furtado, Filipe; Vieira Coelho, Gerson Luiz
2012-01-01
Highlights: ► Two approaches were proposed using SPME on determination of infinite dilution activity coefficients. ► Infinite dilution activity coefficients of nine solutes in solvent furfural at T = (298.15, 308.15, and 318.15) K. ► Fiber–gas partition coefficients of nine solutes on PDMS at T = (298.15, 308.15, and 318.15) K. ► Optical microscopy analysis and statistical tests to measure possible damages on fiber coating. ► Advantages and limitations of methodology proposed were discussed. - Abstract: A new methodology using the headspace solid phase microextraction (HS-SPME) technique has been used to evaluate the infinite dilution activity coefficient (γ 12 ∞ ) of nine hydrocarbons (alkanes, cycloalkanes, and aromatics) in furfural solvent. The main objective of this study was to validate a faster and lower cost methodology expanding the use of HS-SPME to determine infinite dilution activity of solutes in organic solvents. Two approaches were proposed for the determination of γ 12 ∞ in order to use this technique (HS-SPME). In addition, the fiber–gas partition coefficients (K fg ) for each analyte at each of the studied temperatures were determined. The activity and partition coefficients have been reported at temperatures of (298.15, 308.15, and 318.15) K. The data were compared with the literature infinite dilution data determined by other methods such as liquid–gas chromatography (GLC) and gas stripping. Partial molar excess enthalpies of mixing at infinite dilution for each solute have been determined. The fibers were tested before and after each experiment, using statistical methods to ensure that their properties do not change during the experiments. The fibers were also analyzed by optical microscopy to evaluate possible surface damage by comparing them with new fibers. The activity coefficient values correlated well with the data in the literature and showed average deviations less than 10%.
Isothermal vapour-liquid equilibrium data for the binary systems of (CHF3 or C2F6) and n-heptane
International Nuclear Information System (INIS)
Williams-Wynn, Mark D.; Naidoo, Paramespri; Ramjugernath, Deresh
2016-01-01
Highlights: • Isothermal static-analytic and static-synthetic phase equilibrium measurements. • Binary VLE data for (CHF3 or C 2 F 6 ) + n-heptane. • Thermodynamic models were fitted to the experimental data. • Critical locus estimation for the systems. - Abstract: Isothermal vapour-liquid equilibrium (VLE) values for two binary systems; trifluoromethane and n-heptane at temperatures between T = (272.9 and 313.2) K, and hexafluoroethane and n-heptane at temperatures between T = (293.0 and 313.2) K were measured with a static-analytic apparatus. Bubble pressures at temperatures between T = (293.0 and 313.2) K, at several compositions, were also measured with a variable-volume static-synthetic apparatus. Vapour-liquid-liquid equilibrium (VLLE) was found to occur for certain isotherms for both of the systems. The PR EOS, with the Mathias-Copeman (MC) alpha function, combined with either the classical mixing rule or the Wong-Sandler (WS) mixing rule was used to correlate the experimental results. Either the NRTL or the UNIQUAC activity coefficient model was used within the WS mixing rule. The indirect extended scaling laws of Ungerer et al. were used to extrapolate critical loci from the experimental coexistence data, and the calculation procedure of Heidemann and Khalil was employed to calculate the mixture critical locus curves at temperatures close to the refrigerant critical temperatures. At lower temperatures on the mixture critical curve, gas-liquid critical points occurred, whereas, at higher temperatures, the critical points occurred along a liquid-liquid locus curve. The two systems were categorised according to the van Konynenburg and Scott classification.
Thermodynamic properties of molybdenum borides at temperatures above 300 K
International Nuclear Information System (INIS)
Bolgar, A.S.; Blinder, A.V.; Serbova, M.I.
1990-01-01
Enthalpy of Mo 2 B, MoB, Mo 2 B 5 borides within the range of temperatures above 300 K has been experimentally studied. Parameters of temperature dependences of enthalpy, heat capacity, entropy and the reduced Gibbs energy of the studied substances are calculated within a wide range. It is stated that high-temperature heat capacity of the studied borides can be presented as a sum of the electron component, a harmonic part of the lattice component and a contribution caused by anharmonic oscillations of lattice atoms. Values of coefficients of isothermal compressibility of Mo 2 , MoB, Mo 2 B 5 within the high temperature range are estimated
Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles
DEFF Research Database (Denmark)
Luo, Hao; Wu, Hao; Lin, Weigang
Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...
Lunar ash flows - Isothermal approximation.
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.
Instabilities of isothermal liquid films
International Nuclear Information System (INIS)
Solesio, J.N.
1977-04-01
The integral forms of the mass and linear momentum balances are given for a two-phase flow system with surface tension and without material surface properties. The instantaneous local laws for each phase and the jump conditions for the interface are derived from these balance laws. Then, these laws are systematically simplified by means of dimensional analysis for an isothermal liquid film flowing down a plane. The stability studies of films are critically reviewed. The different methods are divided into two groups: the first one deals with the global approach, the second one with the perturbation theory. This group includes a new technique based upon the method of quadrature by differentiation. Finally, the different methods are compared [fr
Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.
Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip
2017-04-01
In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2 > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.
Energy Technology Data Exchange (ETDEWEB)
Yanagisawa, T; Koyanagi, T; Nakamura, K; Takahisa, K; Kojima, T [electrotechnical Laboratory, Tsukuba (Japan)
1996-10-27
Pursuant to the measuring of temperature dependency of the characteristics such as conversion efficiency, during the process of degradation in a-Si solar cells due to light and electric current and the process of recovery by annealing, this paper describes changes in temperature coefficients, correlation between the characteristic parameters and the degradation, and the results of the examination of their characteristics. The conversion efficiency {mu} degraded approximately by 45% of the initial value each by the irradiation under a light intensity with 3 SUN accelerated and by the infusion of current at 20mA/cm{sup 2}; and then, the efficiency recovered to 70-75% of the degradation by subsequent annealing. In addition, in the temperature dependency at 80{degree}C against at 20{degree}C, Isc slightly increased while Vcc greatly decreased. This slight increase in Isc was mainly due to the decrease in the width of the forbidden band, while the decrease in Vcc was due to the increase in the reverse saturation current. The temperature dependency of {mu}N was negative, becoming small in accordance with the degradation. The temperature dependency of FF/FFO was negative initially both in light and current, but it decreased with the degradation and turned to positive. The temperature coefficients of I-V parameters reversibly changed corresponding to the degradation and recovery of these parameters and stayed in a good correlation. 7 refs., 8 figs., 1 tab.
Isothermal α″ formation in β metastable titanium alloys
International Nuclear Information System (INIS)
Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.
2013-01-01
Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″
Isothermal α″ formation in β metastable titanium alloys
Energy Technology Data Exchange (ETDEWEB)
Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)
2013-11-15
Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.
THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...
African Journals Online (AJOL)
BAFFA
data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...
Directory of Open Access Journals (Sweden)
Yong Zhou
2018-01-01
Full Text Available The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 °C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (kLa were also studied. The values of volumetric oxygen transfer coefficient in the logarithmic phase increased with increase of agitation speed (from 14.53 to 32.82 h−1 and aeration rate (from 13.21 to 22.43 h−1. In addition, a successful scale-up from bench-scale to pilot-scale was performed based on volumetric oxygen transfer coefficient, resulting in final GP-1 production of 3.92, 4.03, 3.82 and 4.20 mg/L in 5 L, 15 L, 70 L and 500 L fermentors, respectively. These results indicated that constant volumetric oxygen transfer coefficient was appropriate for the scale-up of batch fermentation of glycoprotein GP-1 by Streptomyces kanasenisi ZX01, and this scale-up strategy successfully achieved 100-fold scale-up from bench-scale to pilot-scale fermentor.
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2013-03-15
The minimum energy path (MEP) of the reaction, CF(3)CHFCF(3) + H → transition state (TS) → CF(3)CFCF(3) + H(2), has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6-31++G**, BH&HLYP/cc-pVDZ, BMK/6-31++G**, M05/6-31+G**, M05-2X/6-31+G**, UMP2/6-31++G**, PUMP2/6-31++G**//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVDZ//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVTZ(spd,sp)//UMP2//6-31++G**, RCCSD(T)/CBS//M05/6-31+G**, and RCCSD(T)/CBS//UMP2/6-31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero-curvature, and small-curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000-1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6-31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. Copyright © 2012 Wiley Periodicals, Inc.
Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal
Martin, Awaludin
2011-03-10
This article presents an experimental approach for the determination of the adsorption isotherms of methane on activated carbon that is essential for methane storage purposes. The experiments incorporated a constant-volume- variable-pressure (CVVP) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300 to 318) K and pressures up to 3.5 MPa are analyzed using the Langmuir, Tóth, and Dubinin-Astakhov (D-A) isotherm models. The heat of adsorption for the single component methane-activated carbon system, which is concentration- and temperature-dependent, is determined from the measured isotherm data. © 2011 American Chemical Society.
Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang
1999-10-01
The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.
Summary report on the evaluation of a 1977--1985 edited sorption data base for isotherm modeling
International Nuclear Information System (INIS)
Polzer, W.L.; Beckman, R.J.; Fuentes, H.R.; Yong, C.; Chan, P.; Rao, M.G.
1993-01-01
Sorption data bases collected by Los Alamos National Laboratory (LANL) from 1977 to 1985 for the Yucca Mountain Project.(YMP) have been inventoried and fitted with isotherm expressions. Effects of variables (e.g., particle size) on the isotherm were also evaluated. The sorption data are from laboratory batch measurements which were not designed specifically for isotherm modeling. However a limited number of data sets permitted such modeling. The analysis of those isotherm data can aid in the design of future sorption experiments and can provide expressions to be used in radionuclide transport modeling. Over 1200 experimental observations were inventoried for their adequacy to be modeled b isotherms and to evaluate the effects of variables on isotherms. About 15% of the observations provided suitable data sets for modeling. The data sets were obtained under conditions that include ambient temperature and two atmospheres, air and CO 2
Method to Predict Tempering of Steels Under Non-isothermal Conditions
Poirier, D. R.; Kohli, A.
2017-05-01
A common way of representing the tempering responses of steels is with a "tempering parameter" that includes the effect of temperature and time on hardness after hardening. Such functions, usually in graphical form, are available for many steels and have been applied for isothermal tempering. In this article, we demonstrate that the method can be extended to non-isothermal conditions. Controlled heating experiments were done on three grades in order to verify the method.
Energy Technology Data Exchange (ETDEWEB)
Wellig, B.; Kegel, B.; Meier, M.
2006-07-01
The seasonal performance factor (SPF) of chilled water systems (CWS) is closely related to the temperature lift, i.e. the difference between the temperature of the heat source and the heat sink. In many applications in building services engineering, a temperature lift of 10-20 K is in principle sufficient. However, the potential for highly efficient refrigerating systems is not fully exploited as standard chillers are designed for lifts of 30-60 K. The exergy analysis of typical CWS shows that the external exergy losses are greater than the exergy losses of the chiller. The second-law (or exergetic) efficiency is usually far below 10%. It is therefore important to avoid unnecessarily high temperature lifts. Measurements on refrigeration systems in two office buildings have shown that even in state-of-the-art CWS, considerable energy savings (up to 50%) can be achieved by persistent use of small temperature lifts. However, SPF-values around 5-6 can hardly be exceeded in systems with electric driven chillers. SPFs higher than 10 or even above 20 can only be reached with optimized free cooling processes. Basic decisions, which ultimately lead to CWS with unnecessarily high temperature lifts, are taken in the early project stages. Therefore, this study presents guidelines for the design and operation of CWS with small temperature lifts. The implementation of these simple measures will lead to a considerable reduction of energy consumption and operating costs. (author)
The oxidation kinetics of zircaloy - 4 under isothermal conditions
International Nuclear Information System (INIS)
Santos, A.M.M. dos; Cardoso, P.E.
1982-01-01
The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt
High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing
Directory of Open Access Journals (Sweden)
Maria Domankova
2016-07-01
Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.
Isothermal dehydration of thin films of water and sugar solutions
Energy Technology Data Exchange (ETDEWEB)
Heyd, R. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Rampino, A. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Bellich, B.; Elisei, E. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Cesàro, A. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Elettra Sincrotrone Trieste, Area Science Park, I-34149 Trieste (Italy); Saboungi, M.-L. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Univ-UPMC, Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris (France)
2014-03-28
The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.
Isothermal thermogravimetric data acquisition analysis system
Cooper, Kenneth, Jr.
1991-01-01
The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.
International Nuclear Information System (INIS)
Sun Xinxi; Huang Yuying; Li Wangchang
1984-01-01
This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole
Tchakoua, Théophile; Nkot Nkot, Pierre René; Fifen, Jean Jules; Nsangou, Mama; Motapon, Ousmanou
2018-06-01
We present the first potential energy surface (PES) for the AlO(X2Σ+)-He(1 S) van der Waals complex. This PES has been calculated at the RCCSD(T) level of theory. The mixed Gaussian/Exponential Extrapolation Scheme of complete basis set [CBS(D,T,Q)] was employed. The PES was fitted using global analytical method. This fitted PES was used subsequently in the close-coupling approach for the computation of the state-to-state collisional excitation cross sections of the fine-structure levels of the AlO-He complex. Collision energies were taken up to 2500 cm-1 and they yield after thermal averaging, state-to-state rate coefficients up to 300 K. The propensity rules between the lowest fine-structure levels were studied. These rules show, on one hand, a strong propensity in favour of odd ΔN transitions, and on the other hand, that cross sections and collisional rate coefficients for Δj = ΔN transitions are larger than those for Δj ≠ ΔN transitions.
Energy Technology Data Exchange (ETDEWEB)
Flyckt, V M M; Raaymakers, B W; Lagendijk, J J W [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)
2006-10-07
Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest.
International Nuclear Information System (INIS)
Flyckt, V M M; Raaymakers, B W; Lagendijk, J J W
2006-01-01
Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest
Msaad, Asmaa; Belbahloul, Mounir; Zouhri, Abdeljalil
2018-05-01
Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process
Directory of Open Access Journals (Sweden)
Linlin Zhong
2017-07-01
Full Text Available C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO which are likely to exist in the mixtures, are calculated based on the G4(MP2 theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity, while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.
Zhong, Linlin; Rong, Mingzhe; Wang, Xiaohua; Wu, Junhui; Han, Guiquan; Han, Guohui; Lu, Yanhui; Yang, Aijun; Wu, Yi
2017-07-01
C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat) are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity) are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat) and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity), while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.
Isothermal release of tritium from neutron-irradiated Li/sub 2/O pellets
Energy Technology Data Exchange (ETDEWEB)
O' Hira, Shigeru; Nagao, Hiroshi; Fujii, Yasuhiko; Okamoto, Makoto
1986-04-01
Li/sub 2/O pellets irradiated with thermal neutrons were isothermally annealed to release tritium in a helium atmosphere at temperatures ranging from 673 to 1073 K. The release rates were found to significantly increase at elevated temperatures and to depend on the density of the Li/sub 2/O pellet. The overall diffusion coefficients of the release process were calculated using the cylindrical geometry model for the pellets as D(cm/sup 2/ s/sup -1/)=1.02 x 10/sup -3/ exp(-51.0 kJ mol/sup -1//RT)(90% theoretical density pellets), and D (cm/sup 2/ s/sup -1/)=2.64 x 10/sup -3/ exp(-46.5 kJ mol/sup -1//RT)(ca. 80% T.D. pellets) over the region 773 <= T <= 1073/sup 0/K. The result of the release experiment at 673/sup 0/K sugested that the diffusion rate was controlled by the decomposition of lithium hydroxide on the surface of Li/sub 2/O grains.
Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G
1951-01-01
An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.
Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek
2015-01-01
A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.
Numerical studies of pulsating buoyant plume in isothermal and non isothermal situations
International Nuclear Information System (INIS)
Sharma, Pavan K.; Singh, R.K.; Mohanty, Ananya; Das, D.
2014-01-01
A computational study has been carried out for predicting the behaviour of buoyant plume in isothermal and non isothermal configuration. General simulation objectives of any buoyant flow simulation are macroscopic in nature and deals with the grass data in respect of buoyancy induced scalar transport. However, the accuracy of predicting such macroscopic parameters is a strong function of several other microscopic parameters which govern the overall macroscopic behaviour. Some of the microscopic parameters for analysis could be buoyancy induced stable/unstable flows, relative plume behaviour, baroclinic velocity distribution etc. Only the CFD based flow modelling approach is capable of calculating several of these aspects. LES based modelling scores over the conventional RANS based computational modelling. The primary objective of the present study was to model buoyant plume simulation of different types in order to explore the details regarding plume and flow structure, instabilities and puffing behaviour. One of the influencing parameters on the overall plume behaviour is the buoyancy resolution index i.e. fineness of chosen grid in relation to the buoyancy intensity and other hydrodynamic parameters. The grid sensitivity studies have been carried out to find out the optimum value grid size by way of buoyant pool fire simulations. Comparative simulation has also been made for a square and round pool fire and it was found that for engineering simulations equivalent area square pool modeling is sufficient. Using the optimum value of grid size and square pool shape simulations have been carried out for different value of fire intensity. The flame puffing frequency as calculated by the reported correlation was compared against the computationally observed puffing frequency and the agreement was generally found to be excellent. Besides these results the comparisons of predicted peak flames temperatures data for various case studies with the available experimental data
Isotherms clustering in cosmic microwave background
International Nuclear Information System (INIS)
Bershadskii, A.
2006-01-01
Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2
DEFF Research Database (Denmark)
Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan
2017-01-01
Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...
Miniaturized isothermal nucleic acid amplification, a review.
Asiello, Peter J; Baeumner, Antje J
2011-04-21
Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2015-12-03
A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.
de Oliveira Elias, Susana; Noronha, Tiago Baptista; Tondo, Eduardo Cesar
2018-06-01
This study aimed to assess the growth of Salmonella and Escherichia coli O157:H7 on lettuce exposed to isothermal and non-isothermal conditions. Pathogens were inoculated on lettuce separately and stored under isothermal condition at 5 °C, 10 °C, 25 °C, 37 °C for both bacteria, at 40 °C for Salmonella and 42 °C for E. coli O157:H7. Growth curves were built by fitting the data to the Baranyi's DMFit, generating R 2 values greater than 0.92 for primary models. Secondary models were fitted with Ratkowsky equations, generating R 2 values higher than 0.91 and RMSE lower than 0.1. Experimental data showed that both bacteria could grow at all temperatures. Also, the growth of both pathogens under non-isothermal conditions was studied simulating temperatures found from harvest to supermarkets in Brazil. Models were analysed by R 2 , RMSE, bias factor (Bf) and accuracy factor (Af). Salmonella and E. coli O157:H7 were able to grow in this temperature profile and the models could predict the behavior of these microorganisms on lettuce under isothermal and non-isothermal conditions. Based on the results, a negligible growth time (ς) was proposed to provide the time which lettuce could be exposed to a specific temperature and do not present an expressive growth of bacteria. The ς was developed based on Baranyi's primary model equation and on growth potential concept. ς is the value of lag phase added of the time necessary to population grow 0.5 log CFU/g. The ς of lettuce exposed to 37 °C was 1.3 h, while at 5 °C was 3.3 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei
2006-01-01
The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K
Non-isothermal effects on multi-phase flow in porous medium
DEFF Research Database (Denmark)
Singh, Ashok; Wang, W; Park, C. H.
2010-01-01
In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...
Wang, D.; Yates, S. R.; Gan, J.; Knuteson, J. A.
Atmospheric emission of methyl bromide (MeBr) and its potential alternative chemicals such as 1,3-dichloropropene (1,3-D) and propargyl bromide (PrBr) can contribute to air pollution and ozone depletion (for MeBr). One of the main sources of these chemicals is from agricultural soil fumigation. To understand the volatilization dynamics, emission of MeBr, 1,3-D, and PrBr through a polyethylene-based high-barrier film (HBF) and a virtually impermeable film (VIF) was measured using an air flow and sampling system that produced >90% mass balance. The experiment was conducted outdoors and was subjected to ambient daily temperature variations. The HBF film was found to be very permeable to 1,3-D and PrBr, but somewhat less permeable to MeBr. The VIF film was very impermeable to 1,3-D, PrBr, or MeBr. Measured volatilization flux, in general, exhibited strong diurnal variations which were controlled by film temperature. Unlike the HBF film, a time lag (˜12 h) was observed between high-temperatures and high-emission flux values for the VIF film. An impermeable film may be used as an effective means of controlling the atmospheric emission of MeBr and its alternative chemicals.
Linlin Zhong; Mingzhe Rong; Xiaohua Wang; Junhui Wu; Guiquan Han; Guohui Han; Yanhui Lu; Aijun Yang; Yi Wu
2017-01-01
C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs en...
Energy Technology Data Exchange (ETDEWEB)
Siddiqua, Poppy; O' Leary, Stephen K., E-mail: stephen.oleary@ubc.ca [School of Engineering, The University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada)
2016-09-07
Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.
International Nuclear Information System (INIS)
Pal, Amalendu; Gaba, Rekha
2008-01-01
The densities, ρ and the speeds of sound, u, for {2-(2-hexyloxyethoxy)ethanol (C 6 E 2 ) + methanol, +1-propanol, +1-pentanol, and +1-heptanol} have been measured as a function of composition using an Anton-Paar DSA 5000 densimeter at temperatures (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure over the whole concentration range. The ρ and u values were used to calculate excess molar volumes, V E , and excess molar isentropic compressibility, K S,m E , respectively. Also, thermal expansivity, α, partial molar volume, V-bar i , and partial molar volume of the components at infinite dilution, V-bar i 0 , have been calculated. The variation of these properties with composition and temperature of the mixtures are discussed in terms of molecular interactions
Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions
Jin, Xiao; Ge, Hao
2018-04-01
The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.
Energy Technology Data Exchange (ETDEWEB)
Barker, C.E. (US Geological Survey, Denver, CO); Pawlewicz, M.J.; Bostick, N.H.; Elders, W.A.
1981-01-01
Temperature estimates from reflectance data in the Cerro Prieto system correlate with modern temperature logs and temperature estimates from fluid inclusion and oxygen isotope geothermometry indicating that the temperature in the central portion of the Cerro Prieto System is now at its historical maximum. Isoreflectance lines formed by contouring vitrinite reflectance data for a given isothermal surface define an imaginary surface that indicates an apparent duration of heating in the system. The 250/sup 0/C isothermal surface has a complex dome-like form suggesting a localized heat source that has caused shallow heating in the central portion of this system. Isoreflectance lines relative to this 250/sup 0/C isothermal surface define a zone of low reflectance roughly corresponding to the crest of the isothermal surface. Comparison of these two surfaces suggest that the shallow heating in the central portion of Cerro Prieto is young relative to the heating (to 250/sup 0/C) on the system margins. Laboratory and theoretical models of hydrothermal convection cells suggest that the form of the observed 250/sup 0/C isothermal surface and the reflectance surface derived relative to it results from the convective rise of thermal fluids under the influence of a regional hydrodynamic gradient that induces a shift of the hydrothermal heating effects to the southwest.
Energy Technology Data Exchange (ETDEWEB)
Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)
2016-10-15
Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.
International Nuclear Information System (INIS)
Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung
2016-01-01
Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived
Isothermal annealing of silicon implanted with 50 keV 10B ions
International Nuclear Information System (INIS)
Weidner, B.; Zaschke, G.
1974-01-01
Isothermal annealing characteristics of silicon implanted with boron were measured and compared with calculated results. Implantation was performed with 50 keV 10 B ions in the dose range of 7.5 x 10 12 cm -2 to 2.0 x 10 15 cm -2 . Annealing temperatures ranged from 700 to 900 0 C. Maximum annealing time was 10 4 minutes. Annealing time strongly increases with increasing dose and decreasing temperature. Assuming that there is only one activation energy the isothermal annealing curves of constant dose and different temperatures were combined to a reduced annealing curve and the reduced isothermal annealing curve calculated. Starting from first order kinetics, considering the doping profile of boron in silicon and assuming a depth-dependent decay constant the experimentally determined annealing curves could be easily described over the total dose and time range
β → α isothermal transformation in pure and weakly alloyed uranium
International Nuclear Information System (INIS)
Aubert, H.; Lelong, C.
1966-01-01
The TTT diagrams describing the β → α isothermal transformation have been made by isothermal dilatometry for pure uranium and 21 alloys based on chromium, silicon, molybdenum, iron, aluminium, zirconium. The thermal cycle preceding the isothermal step influences the decomposition kinetics at temperature corresponding to the eutectoid and martensitic mechanisms, but not in the range where the bainitic transformation occurs. The stability of the β phase decreases with the chromium, molybdenum and silicon concentration: it is affected differently for each of the three transformation mechanisms. The ternary additions, even at very low concentration have a considerable effect on the stability. When the concentration decreases the martensitic mechanism is active at progressively higher temperature, diminishing to the point of disappearance the temperature range where the transformation is considered as being of the bainitic mode. (author) [fr
Nguyen, Huong Giang T; Horn, Jarod C; Thommes, Matthias; van Zee, Roger D; Espinal, Laura
2017-12-01
Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO 2 and supercritical N 2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.
International Nuclear Information System (INIS)
Castro-Palacio, Juan Carlos; Bemish, Raymond J.; Meuwly, Markus
2015-01-01
The O( 3 P) + NO( 2 Π) → O 2 (X 3 Σ g − ) + N( 4 S) reaction is among the N- and O- involving reactions that dominate the energetics of the reactive air flow around spacecraft during hypersonic atmospheric re-entry. In this regime, the temperature in the bow shock typically ranges from 1000 to 20 000 K. The forward and reverse rate coefficients for this reaction derived directly from trajectory calculations over this range of temperature are reported in this letter. Results compare well with the established equilibrium constants for the same reaction from thermodynamic quantities derived from spectroscopy in the gas phase which paves the way for large-scale in silico investigations of equilibrium rates under extreme conditions
Castro-Palacio, Juan Carlos; Bemish, Raymond J; Meuwly, Markus
2015-03-07
The O((3)P) + NO((2)Π) → O2(X(3)Σg(-)) + N((4)S) reaction is among the N- and O- involving reactions that dominate the energetics of the reactive air flow around spacecraft during hypersonic atmospheric re-entry. In this regime, the temperature in the bow shock typically ranges from 1000 to 20,000 K. The forward and reverse rate coefficients for this reaction derived directly from trajectory calculations over this range of temperature are reported in this letter. Results compare well with the established equilibrium constants for the same reaction from thermodynamic quantities derived from spectroscopy in the gas phase which paves the way for large-scale in silico investigations of equilibrium rates under extreme conditions.
A self-consistent model of an isothermal tokamak
McNamara, Steven; Lilley, Matthew
2014-10-01
Continued progress in liquid lithium coating technologies have made the development of a beam driven tokamak with minimal edge recycling a feasibly possibility. Such devices are characterised by improved confinement due to their inherent stability and the suppression of thermal conduction. Particle and energy confinement become intrinsically linked and the plasma thermal energy content is governed by the injected beam. A self-consistent model of a purely beam fuelled isothermal tokamak is presented, including calculations of the density profile, bulk species temperature ratios and the fusion output. Stability considerations constrain the operating parameters and regions of stable operation are identified and their suitability to potential reactor applications discussed.
Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus
2012-01-10
Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for
Non-isothermal irradiation creep of nickel alloys Inconel 706 and PE-16
International Nuclear Information System (INIS)
Gilbert, E.R.; Chin, B.A.
1984-06-01
The results of in-reactor step temperature change experiments conducted on two nickel alloys, PE-16 and Inconel 706, were evaluated to determine the creep behavior under nonisothermal conditions. The effect of the temperature changes was found to be significantly different for the two alloys. Following a step temperature change, the creep rate of PE-16 adjusted to the rate found in isothermal tests at the new temperature. In contrast for Inconel 706, a reduction in temperature from 540 to 425 0 C produced a 300% increase in creep above that measured at 540 0 C in isothermal tests. The response of in-reactor creep in Inconel 706 to temperature changes was attributed to the dissolution of the gamma double-prime phase and subsequent loss of precipitation-strengthening at temperatures below 500 C
Alpert, P. A.; Knopf, D. A.
2015-05-01
Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An
Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien
2011-09-21
We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.
Resistivity behavior in isothermal annealing of Pd-H(D) alloys around 50 K
International Nuclear Information System (INIS)
Yamakawa, Kohji; Maeta, Hiroshi
2004-01-01
The behavior of electrical resistivity during hydrogen (deuterium) ordering is investigated for Pd-H(D) alloys of various hydrogen concentrations around 50 K. The disordered hydrogen (deuterium) atoms are introduced by quenching from 100 K into liquid helium immediately before isothermal annealings. The disordered atoms order by migration of the atoms during the heating-up of the specimens. On the isothermal curves of the resistivity in the high temperature range, the resistivity increases at first and then adopts a constant value dependent on the annealing temperature. On the other hand, the resistivity increases and then decreases during isothermal annealing in the low temperature range, nevertheless the ordering is progressing. The annealing time, at which the resistivity maximum appears, and the resistivity value of the maximum increase with decreasing annealing temperature. Furthermore, the decreasing resistivity after the maximum saturates to a value dependent on each annealing temperature. Therefore, it becomes clear that an equilibrium amount of ordering depends on the temperature and the resistivity increases in the early stage of hydrogen (deuterium) ordering and decreases in the later stage. The resistivity maximum in the isothermal annealing curve is caused by the nucleation and growth of ordered domains of hydrogen (deuterium) atoms
Numerical study of transient laminar natural convection over an isothermal sphere
International Nuclear Information System (INIS)
Yang, Shu; Raghavan, Vasudevan; Gogos, George
2007-01-01
The full Navier-Stokes equations and the energy equation for laminar natural convection heat transfer over an isothermal sphere have been discretized using the finite control volume formulation and solved by employing the SIMPLEC method. Transient and 'steady-state' results have been obtained for a wide range of high Grashof numbers (10 5 ≤ Gr ≤ 10 9 ) and a wide range of Prandtl numbers (Pr = 0.02, 0.7, 7 and 100). Main results are listed below. A plume with a mushroom-shaped cap forms above the sphere and drifts upward continuously with time. The upward movement of the plume cap is slowed as the Prandtl number increases. The size and the level of temperature of the transient cap and plume stem decrease with increasing Gr and Pr. The time at which the 'steady-state' is reached, increases with the Prandtl number. The presence of a vortex in the wake of the sphere has been predicted and has been clearly delineated as a function of both Grashof and Prandtl numbers. The overall Nusselt numbers and total drag coefficients for the range of Grashof and Prandtl numbers investigated are presented and they are in very good agreement with studies available in the literature
Directory of Open Access Journals (Sweden)
Dan Feng
2015-08-01
Full Text Available Biochars (BC generated from biomass residues have been recognized as effective sorbents for organic compounds. In this study, biochars as adsorbents for the removal of norfloxacin (NOR from aqueous solutions were evaluated. Biochars were prepared from cassava dregs at 350 °C, 450 °C, 550 °C, 650 °C, and 750 °C, respectively (labeled as BC350, BC450, BC550, BC650, and BC750. The results showed that the kinetic data were best fitted to the pseudo second-order model, indicating that the sorption was governed by the availability of sorption sites on the biochar surfaces rather than the NOR concentration in the solution. Sorption isotherms of NOR were well described by the Freundlich model, and the Freundlich coefficients (lgkF increased with the pyrolysis temperature of biochars. Thermodynamic analysis indicated the feasibility and spontaneity of the NOR adsorption process. The NOR adsorption on BC450, BC550, BC650, and BC750 was an endothermic process, while an exothermic process occurred for BC350. FTIR studies further suggested that the adsorption mechanism was possibly attributable to H-bond and π-π interactions between NOR and biochars. Overall, this work constitutes a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of biochar.
Zhang, Nan
constructed by calculating the theoretical M-K model with Newton method and backtracking algorithm. The obtained FLDs are found to be instructive and will be applied in the post-processing of FE simulation for stamping so as to identify the critical area of failure. The developed constitutive model and modified yield function are implemented in the form of user defined subroutine (VUMAT) in ABAQUS/Explicit. An explicit stress integration algorithm has been selected for the stress integration with rate-depend viscoplasticity model at temperature higher than 150°. In the low temperature range, the Newton method and cutting plane algorithm are utilized to update the stress tensor with a classic elastoplastic constitutive model. To validate the VUMAT, a non-isothermal tensile testing has been performed with aids of infrared thermal camera and DIC. The heat transfer coefficients in FE model are calibrated with captured thermal images. With appropriate selection of mesh size and mass scaling factor, the punch load vs. displacement curve obtained from the simulation perfectly correlates the experimental result.
International Nuclear Information System (INIS)
Zorebski, Edward; Geppert-Rybczynska, Monika
2010-01-01
Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg-Nissan and McAllister equations for viscosities of mixtures have also been examined.
International Nuclear Information System (INIS)
Coussens, Nathan P.; Schuck, Peter; Zhao, Huaying
2012-01-01
Highlights: ► We demonstrate the usefulness of global analysis of ITC data for proton-linked binding study. ► Various experimental strategies are evaluated for their information content. ► Data at multiple temperatures might improve the precision of binding parameters. ► Methods for detailed error analysis of parameter uncertainties are discussed. ► By global modeling, an uncertainty in molecular concentrations can be accounted for. - Abstract: Isothermal titration calorimetry (ITC) is a traditional and powerful method for studying the linkage of ligand binding to proton uptake or release. The theoretical framework has been developed for more than two decades and numerous applications have appeared. In the current work, we explored strategic aspects of experimental design. To this end, we simulated families of ITC data sets that embed different strategies with regard to the number of experiments, range of experimental pH, buffer ionization enthalpy, and temperature. We then re-analyzed the families of data sets in the context of global analysis, employing a proton linkage binding model implemented in the global data analysis platform SEDPHAT, and examined the information content of all data sets by a detailed statistical error analysis of the parameter estimates. In particular, we studied the impact of different assumptions about the knowledge of the exact concentrations of the components, which in practice presents an experimental limitation for many systems. For example, the uncertainty in concentration may reflect imperfectly known extinction coefficients and stock concentrations or may account for different extents of partial inactivation when working with proteins at different pH values. Our results show that the global analysis can yield reliable estimates of the thermodynamic parameters for intrinsic binding and protonation, and that in the context of the global analysis the exact molecular component concentrations may not be required. Additionally
Water-Column Stratification Observed along an AUV-Tracked Isotherm
Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.
2016-02-01
Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.
Thermal-mechanical and isothermal fatigue of IN 792 CC
International Nuclear Information System (INIS)
Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.
1997-01-01
The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)
Thermistor based, low velocity isothermal, air flow sensor
International Nuclear Information System (INIS)
Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A
2016-01-01
The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)
Sequence crystallization during isotherm evaporation of southern ...
African Journals Online (AJOL)
Southern Algerian's natural brine sampled from chott Baghdad may be a source of mineral salts with a high economic value. These salts are recoverable by simple solar evaporation. Indeed, during isothermal solar evaporation, it is possible to recover mineral salts and to determine the precipitation sequences of different ...
THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...
African Journals Online (AJOL)
BAFFA
The use of maize (Zea mays) cob for the biosorption of Cr(VI), Ni(II) and Cd(II) is ... Variations in the concentration of the different adsorbates during the adsorption process .... Langmuir isotherm is the dimensionless separation .... The use of Sago waste for the sorption of lead and copper. Water S. Afr., 24 (3), p251-256.
Isothermal Titration Calorimetry in the Student Laboratory
Wadso, Lars; Li, Yujing; Li, Xi
2011-01-01
Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…
Isothermal Gravitational Segregation: Algorithms and Specifications
DEFF Research Database (Denmark)
Halldórsson, Snorri; Stenby, Erling Halfdan
2000-01-01
New algorithms for calculating the isothermal equilibrium state of reservoir fluids under the influence of gravity are presented. Two types of specifications are considered: the specification of pressure and composition at a reference depth; and the specification of the total overall content of t...
Modelling isothermal fission gas release
International Nuclear Information System (INIS)
Uffelen, P. van
2002-01-01
The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)
International Nuclear Information System (INIS)
Morales, J.J.; Nuevo, J.M.; Rull, L.F.
1987-01-01
The new isothermic-isobaric MD(T,p,N) method of Nose and Hoover is applied in Molecular Dynamics simulations to both liquid and solid near the phase transition. We tested for an appropriate value of the isobaric friction coefficient before calculating the correlation length in the liquid and the disclinations per particle in solid on a big system of 2304 particles. The results are compared with those obtained by traditional MD simulation (E,V,N). (author)
Energy Technology Data Exchange (ETDEWEB)
Gadomski, A., E-mail: agad@utp.edu.pl; Kruszewska, N., E-mail: nkruszewska@utp.edu.pl
2014-08-01
The goal of this discussion letter is to argue how and why an inherent nanoscale thermodiffusion (Soret-type) effect can be relevant in (dis)orderly protein aggregation. We propose a model in which the aggregation of proteins, in the presence of temperature gradient, is described in terms of Smoluchowski dynamics in the phase space of nuclei sizes. The Soret coefficient of the aggregation is proportional to the variations of the aggregation free energy over temperature. The free energy is related to the (interface) boundary condition of the system. When boundary condition is of equilibrium Gibbs–Thomson type, with a well-stated surface tension of the nucleus, to the system can be assigned a negative Soret effect. On the contrary, when a non-equilibrium perturbing (salting-out) term enters the boundary condition, a positive Soret effect may manifest. A zero-value Soret regime is expected to occur in between, yielding very soft (“fragile”) non-Kossel protein-type crystals. - Highlights: • Comprehension for non-isothermal formation of (dis)orderly protein aggregation. • Classification of temperature-sensitive morphologies in colloid-type aggregation. • Morphologies split into near-equilibrium and nonequilibrium structural outcomes. • Classification on mesoscopic nonequilibrium thermodynamics near local equilibrium.
Fu, Bi; Yang, Yaodong; Gao, Kun; Wang, Yaping
2015-07-01
Ba(Ti0.80Zr0.20)O3-0.5(Ba0.7Ca0.3)TiO3 (abbreviated as BTZ-0.5BCT) is a piezoelectric ceramic with a high piezoelectric coefficient d33 (˜620 pC N-1) and has been regarded as one of the most promising candidates to replace PZT-based materials (200-710 pC N-1). However, its Curie temperature TC is relatively low (93 °C) limiting its application. In this letter, we found a temperature dependent Raman spectrum in BTZ-0.5BCT nanofibers (NFs), demonstrating a diffused tetragonal-to-cubic phase transition at 300 °C. This means that the TC of the NFs is nearly 207 °C higher than that of the normal bulk material. The increased TC is considered to be associated with the size effect of BTZ-0.5BCT nanoceramic subunits and the nanoporous nature of the fiber, resulting in discontinuous physical properties. The variation of the ferro/piezoelectricity over the fiber surface is attributed to the polycrystalline structure. The d33 (173.32 pm V-1) is improved in terms of the decreased Q factor result in an increase in d33 of 236.54 pm V-1 after polarization. With a high TC and a very large d33, BTZ-0.5BCT NFs are capable of providing electromechanical behavior used in moderate temperatures.
Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming
2013-10-04
A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina
2018-06-22
Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A. [Yazd Univ., Yazd (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Goharkhah, M.; Ashjaee, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering
2009-07-01
Laminar free convection heat transfer from an isothermal combined geometry which consists of a downward cone attached to a vertical cylinder was studied. In particular, a Mach-Zehnder interferometer was used to determine the change in local and average heat transfer coefficients on the surface of an isothermal combined geometry for different vertex angles. The effect of the vertex angle on heat transfer was also investigated by keeping the height of the cylinder and slant length of the cone constant for all objects. The experimental data showed that the local heat transfer coefficient on the conical part increased in the vicinity of the cylinder and cone intersection. The distance between the point of minimum heat transfer coefficient on the cone and vertex of the cone decreased as the vertex angle increased. The maximum average Nusselt number for a constant Rayleigh number was obtained for the geometry with the smallest vertex angle. For all objects, the average Nusselt number increased with an increase in the Rayleigh number. An experiment was carried out on a vertical isothermal cylinder of circular cross section in order to validate the experimental approach. An analytical solution was found to be in good agreement with experimental results. 31 refs., 9 figs.
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2015-03-21
The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.
Directory of Open Access Journals (Sweden)
Hamid Reza Pouretedal
2018-04-01
Full Text Available The kinetic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 °C, respectively, were studied by isothermal and non-isothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 °C. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminum metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30–330 °C at heating rates of 10, 15 and 20 °C⋅min−1. The TG/DTG data were used for determination of activation energy (Ea of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW and Kissinger-Akahira-Sunose (KAS methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99–120 and 66–70 kJ mol−1, respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade. Keywords: TNT, Isothermal, Non-isothermal, Kinetic, Mass loss
TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1977-present, 20C Isotherm Depth
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily 20C Isotherm Depth data (the depth at which the ocean temperature is 20C) from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/...
Evaluation of the quasi-isothermal method of modulated DSC for heat capacity measurement
International Nuclear Information System (INIS)
Venkata Krishnan, R.; Nagarajan, K.
2004-01-01
Heat capacity measurements were carried out on ThO 2 by Modulated Differential Scanning Calorimetry (MDSC) using quasi-isothermal method in the temperature range 323-723 K. The highest accuracy of the heat capacity data obtained by this method was ± 2-3% which is much lower than that reported in the literature. (author)
Isotopically exchangeable phosphorus as a correction value to adsorption isotherms
International Nuclear Information System (INIS)
Lopez, S.C.; Barbaro, N.O.; Rojas de Tramontini, S.L.; Martini, O.
1984-01-01
Adsorption isotherms in evaluation and characterization of soils are studied. The quantity of phosphorus present at first in soil, evaluated by radioisotopic techniques and used in correction of Langmuir and Freundlich isotherms, is discussed. (M.A.C.) [pt
Ahmadi, S.; Almasi, A.M.; Fatehi, F.; Struik, P.C.; Moradi, A.
2013-01-01
Loop-mediated isothermal amplification (LAMP) assay is a novel technique for amplifying DNA under constant temperature, with high specificity, sensitivity, rapidity and efficiency. We applied reverse transcription loop-mediated isothermal amplification (RT-LAMP) to visually detect Potato leafroll
Adsorption Isotherms from Temperature-Programmed Physiosorption - Equilibrium & Kinetics -
Mugge, J.M.
2000-01-01
The separation of gas mixtures is a major operation in the process industry for hydrocarbon separation, removal of pollutant from effluent streams, and purification of process streams. The work in this thesis is related to gas separation by pressure swing adsorption (PSA); a well-known example is
Isothermal calorimetry on enzymatic biodiesel production
DEFF Research Database (Denmark)
Fjerbæk, Lene
2008-01-01
information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...
Isothermal reaction calorimetry as a tool for kinetic analysis
International Nuclear Information System (INIS)
Zogg, Andreas; Stoessel, Francis; Fischer, Ulrich; Hungerbuehler, Konrad
2004-01-01
Reaction calorimetry has found widespread application for thermal and kinetic analysis of chemical reactions in the context of thermal process safety as well as process development. This paper reviews the most important reaction calorimetric principles (heat-flow, heat-balance, power-compensation, and Peltier principle) and their applications in commercial or scientific devices. The discussion focuses on the different dynamic behavior of the main calorimetric principles during an isothermal reaction measurement. Examples of available reaction calorimeters are further compared considering their detection limit, time constant as well as temperature range. In a second part, different evaluation methods for the isothermally measured calorimetric data are reviewed and discussed. The methods will be compared, focusing especially on the fact that reaction calorimetric data always contains additional informations not directly related to the actual chemical reaction such as heat of mixing, heat of phase-transfer/change processes or simple measurement errors. Depending on the evaluation method applied such disturbances have a significant influence on the calculated reaction enthalpies or rate constants
Mathematical modelling of non-isothermal venturi scrubbers
Energy Technology Data Exchange (ETDEWEB)
Rahimi, A. [Isfahan Univ., Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering; Taheri, M.; Fathikakajahi, J. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Chemical Engineering
2005-06-01
Venturi scrubbers collect gaseous pollutants and particulate matter from industrial exhaust. This air pollution control device is highly efficient, easy to maintain and has a low initial cost. However, the high pressure drop through the device results in a high running cost. The main mechanism for collecting particulates is the inertial impaction of the particles on the droplets, which occurs due to high velocity between the gas stream and droplets. Droplet acceleration and irreversible drag-force which results from this high relative velocity are responsible for the high pressure drop in this type of scrubber. While several attempts have been made to mathematically model particulate removal in Venturi scrubbers, most models do not consider simultaneous heat and mass transfer. This factor is important because most Venturi scrubbers operate under non-isothermal conditions where the inlet gas is humidified in order to cool it before entering the scrubber. For that reason, the authors developed a more realistic model to determine the effects of heat and mass transfer on the particulate removal efficiency of a non-isothermal Venturi type scrubber. The model considers the effect of droplet size distribution and liquid film flow on the walls. It consists of differential equations for energy, momentum and material exchange. Model results were compared with data from experimental studies and industrial facilities. It was concluded that the removal efficiency of the scrubber is influenced by the inlet humidity temperature of the inlet gas. 26 refs., 1 tab., 10 figs.
Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.
LoftiKatooli, L; Shahsavand, A
2017-01-01
Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.
Moisture sorption isotherms of dehydrated whey proteins
Suzana Rimac Brnčić; Vesna Lelas; Zoran Herceg; Marija Badanjak
2010-01-01
Moisture sorption isotherms describe the relation between the moisture content of the dry material (food) and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as...
Fragmentation in rotating isothermal protostellar clouds
International Nuclear Information System (INIS)
Bodenheimer, P.; Black, D.C.
1980-01-01
In this paper we report briefly the results of an extensive set of 3-D hydrodynamic calculations that have been performed during the past two and one-half years to investigate the susceptibility of rotating clouds to gravitational fragmentation. Because of the immensity of parameter space and the expense of computations, we have chosen to restrict this investigation to strictly isothermal collapse sequences. (orig./WL)
Local galactic kinematics: an isothermal model
International Nuclear Information System (INIS)
Nunez, J.
1983-01-01
The kinematical parameters of galactic rotation in the solar neighborhood and the corrections to the precession have been calculated. For this purpose, an isothermal model for the solar neighborhood has been used together with the high order momenta of the local stellar velocity distribution and the Ogorodnikov-Milne model. Both have been calculated using some samples of the ''512 Distant FK4/FK4 Sup. Stars'' of Fricke (1977) and of Gliese's Gatalogue. (author)
The Stellar IMF from Isothermal MHD Turbulence
Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke
2018-02-01
We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.
Transfer coefficients in ultracold strongly coupled plasma
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.
Asay, David B; Kim, Seong H
2007-11-20
The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.
WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK
Directory of Open Access Journals (Sweden)
Edgar M. Soteras
2014-03-01
Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.
International Nuclear Information System (INIS)
Semete, P.; Fevrier, B.; Delorme, J.; Sanahuja, J.; Desgree, P.; Le Pape, Y.
2015-01-01
The isotherm sorption curve is a first order parameter for the calculations of concrete drying and/or creep using Finite Element Analysis. An experimental campaign was undertaken by EDF MMC in order to characterize the first desorption isotherm at room temperature of a laboratory material representative of concrete containment buildings. Long term drying tests were carried out on cement paste and on three samples geometries on concrete (with radial and axial one-dimensional drying on thin disks and multi-dimensional drying on Representative Elementary Volumes). The measurements results (porosity, densities and mass loss curves) are provided and the isotherms obtained for the four different configurations are compared. Several analyses of the results are proposed including the assessment of a criterion for the determination of the moisture content final balance (estimation of the asymptotic mass loss) and the back-analysis of equivalent permeability. (authors)
Yi Wang; Yan Wang; Ai-Jing Ma; Dong-Xun Li; Li-Juan Luo; Dong-Xin Liu; Dong Jin; Kai Liu; Chang-Yun Ye
2015-01-01
We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61?65??C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primer...
Simulation of non-isothermal transient flow in gas pipeline
Energy Technology Data Exchange (ETDEWEB)
Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)
2009-07-01
Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)
Csach, K; Haruyama, O; Kasardova, A; Ocelik, Vaclav
1997-01-01
The structural relaxation of amorphous as-quenched Fe40Ni40B20 sample was investigated during isothermal annealing at temperatures close to 400 degrees C by: (i) the residual electrical resistance measured at liquid N-2 temperature; (ii) the in-situ electrical resistance; and (iii) the length
International Nuclear Information System (INIS)
Dos Santos, Adimir; Siqueira, Paulo de Tarso D.; Andrade e Silva, Graciete Simões; Grant, Carlos; Tarazaga, Ariel E.; Barberis, Claudia
2013-01-01
In year 2008 the Atomic Energy National Commission (CNEA) of Argentina, and the Brazilian Institute of Energetic and Nuclear Research (IPEN), under the frame of Nuclear Energy Argentine Brazilian Agreement (COBEN), among many others, included the project “Validation and Verification of Calculation Methods used for Research and Experimental Reactors . At this time, it was established that the validation was to be performed with models implemented in the deterministic codes HUEMUL and PUMA (cell and reactor codes) developed by CNEA and those ones implemented in MCNP by CNEA and IPEN. The necessary data for these validations would correspond to theoretical-experimental reference cases in the research reactor IPEN/MB-01 located in São Paulo, Brazil. The staff of the group Reactor and Nuclear Power Studies (SERC) of CNEA, from the argentine side, performed calculations with deterministic models (HUEMUL-PUMA) and probabilistic methods (MCNP) modeling a great number of physical situations of de reactor, which previously have been studied and modeled by members of the Center of Nuclear Engineering of the IPEN, whose results were extensively provided to CNEA. In this paper results of comparison of calculated and experimental results for temperature coefficients, kinetic parameters and fission rates spatial distributions are shown. (author)
International Nuclear Information System (INIS)
Brassier, Stephane
1998-01-01
The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr
Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun
2016-01-01
A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.
Isothermal calorimetry of enzymatic biodiesel reaction
DEFF Research Database (Denmark)
Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy
2010-01-01
Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....
Investigation of the thermal expansion of the refractory materials at high temperatures
Kostanovskiy, A.; Kostanovskaya, M.; Zeodinov, M.; Pronkin, A.
2017-11-01
We present the experimental investigation of the relative elongation and the coefficient of linear thermal expansion for monocrystaline alumina Al2O3 (1200 K - 1860 K), zirconia ZrO2 (1200 K - 2730 K) and siliconized silicon carbide SiC+Si (1150 K - 2500 K) in the specified range of temperatures. The following approach is used to measure the relative elongation: the through-cylindrical-marks located in the centre of isothermal part of the sample, and the measurement of temperature by two blackbody models, taken out of the area of the sample where the relative elongation is measured.
On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel
Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.
2017-02-01
High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.
Influence of isothermal thermomechanical treatment on structure and properties of structural steels
International Nuclear Information System (INIS)
Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.
1997-01-01
A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures
Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.
2018-04-01
This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.
Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.
Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat
2016-02-01
In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.
Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.
Wood, Mark; Goldberg, Scott; Lau, Melissa; Goel, Aneesh; Alexander, Daniel; Han, Frederick; Feinstein, Shawn
2011-06-01
The lethal isotherm for radiofrequency catheter ablation of cardiac myocardium is widely accepted to be 50°C, but this has not been directly measured. The purpose of this study was to directly measure the tissue temperature at the edge of radiofrequency lesions in real time using infrared thermal imaging. Fifteen radiofrequency lesions of 6 to 240 seconds in duration were applied to the left ventricular surface of isolated perfused pig hearts. At the end of radiofrequency delivery, a thermal image of the tissue surface was acquired with an infrared camera. The lesion was then stained and an optical image of the lesion was obtained. The thermal and optical images were electronically merged to allow determination of the tissue temperature at the edge of the lesion at the end of radiofrequency delivery. By adjusting the temperature overlay display to conform with the edge of the radiofrequency lesion, the lethal isotherm was measured to be 60.6°C (interquartile ranges, 59.7° to 62.4°C; range, 58.1° to 64.2°C). The areas encompassed by the lesion border in the optical image and the lethal isotherm in the thermal image were statistically similar and highly correlated (Spearman ρ=0.99, Pradiofrequency delivery or to lesion size (both P>0.64). The areas circumscribed by 50°C isotherms were significantly larger than the areas of the lesions on optical imaging (P=0.002). By direct measurement, the lethal isotherm for cardiac myocardium is near 61°C for radiofrequency energy deliveries radiofrequency ablation is important to clinical practice as well as mathematical modeling of radiofrequency lesions.
Energy Technology Data Exchange (ETDEWEB)
Guo, Yanbing [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng, Kai; Lu, Fenggui; Zhang, Ke [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Hosseini, Seyed Reza Elmi [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Min [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)
2015-12-01
Highlights: • Nanobainitic coatings under 200, 250 and 300 °C heat treatments are fabricated. • The size of bainite sheaves increased with the isothermal temperature increasing. • Textured and chaotic distributions are observed in 200 and 300 °C microstructures. • The evolution model of nanobainite morphology is established and analyzed. • The bainitic ferrite of 200 °C heat treatment has a true thickness of 45 nm. - Abstract: Laser cladding and subsequent isothermal heat treatments have been used to fabricate nanostructured bainitic coatings. XRD has been used to determine the kinetics of bainitic transformation process. OM, SEM and TEM have been used to characterize the morphology and microstructures at different stages of transformation. The results showed that at the initial stage of bainitic transformation, the bainite sheaves are short and thin at a relatively low transformation temperature. The fully transformed bainitic microstructure obtained at a relatively high temperature present a textured morphology. The chaotic growth orientations of the sheaves and the island like of the retained austenite have been observed at the low transformation temperature. A simple model has been established to describe the microstructures and the bainite sheaves growth evolutions during the isothermal holding at the different transformed temperatures. The morphology and distribution of the bainite in the coatings were analyzed by using the nucleation and growth rate of bainitic transformation theories, which is consisted with the experiment results.
International Nuclear Information System (INIS)
Guo, Yanbing; Feng, Kai; Lu, Fenggui; Zhang, Ke; Li, Zhuguo; Hosseini, Seyed Reza Elmi; Wang, Min
2015-01-01
Highlights: • Nanobainitic coatings under 200, 250 and 300 °C heat treatments are fabricated. • The size of bainite sheaves increased with the isothermal temperature increasing. • Textured and chaotic distributions are observed in 200 and 300 °C microstructures. • The evolution model of nanobainite morphology is established and analyzed. • The bainitic ferrite of 200 °C heat treatment has a true thickness of 45 nm. - Abstract: Laser cladding and subsequent isothermal heat treatments have been used to fabricate nanostructured bainitic coatings. XRD has been used to determine the kinetics of bainitic transformation process. OM, SEM and TEM have been used to characterize the morphology and microstructures at different stages of transformation. The results showed that at the initial stage of bainitic transformation, the bainite sheaves are short and thin at a relatively low transformation temperature. The fully transformed bainitic microstructure obtained at a relatively high temperature present a textured morphology. The chaotic growth orientations of the sheaves and the island like of the retained austenite have been observed at the low transformation temperature. A simple model has been established to describe the microstructures and the bainite sheaves growth evolutions during the isothermal holding at the different transformed temperatures. The morphology and distribution of the bainite in the coatings were analyzed by using the nucleation and growth rate of bainitic transformation theories, which is consisted with the experiment results.
International Nuclear Information System (INIS)
Egbewande, A.T.; Chukwukaeme, C.; Ojo, O.A.
2008-01-01
The effect of process variables on the microstructure of transient liquid phase bonded IN 600 using a commercial filler alloy was studied. Microstructural examination of bonded specimens showed that isothermal solidification of the liquated insert occurred during holding at the joining temperatures. In cases where the holding time was insufficient for complete isothermal solidification, the residual liquid transformed on cooling into a centerline eutectic product. The width of the eutectic decreased with increased holding time and an increase in initial gap width resulted in thicker eutectic width in specimens bonded at the same temperature and for equivalent holding times. In addition to the centerline eutectic microconstituent, precipitation of boron-rich particles was observed within the base metal region adjacent to the substrate-joint interface. Formation of these particles appeared to have influenced the rate of solidification of the liquated interlayer during bonding. In contrast to the conventional expectation of an increase in the rate of isothermal solidification with an increase in temperature, a decrease in the rate was observed with an increase in temperatures above 1160 deg. C. This could be related to a decrease in solubility of boron in nickel above the Ni-B eutectic temperature
Coefficient of performance of Stirling refrigerators
E Mungan, Carl
2017-09-01
Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.
Sarada, B.; Krishna Prasad, M.; Kishore Kumar, K.; Murthy, Ch V. R.
2017-11-01
The present study attempted to analyze the biosorption behavior of novel biosorbent, Araucaria heterophylla (green plant) biomass, to remove Cd+2 from solutions against various parameters, i.e., initial metal ion concentration, pH, temperature, sorbent dosage and biomass particle size. The maximum biosorption was found to be 90.02% at pH 5.5 and biosorption capacity ( q e) of Cd+2 is 9.2506 mg g-1. The Langmuir and Freundlich equilibrium adsorption isotherms were studied and it was observed that Freundlich model is the best fit than the Langmuir model with correlation co-efficient of 0.999. Kinetic studies indicated that the biosorption process of Cd+2 well followed the pseudo-second-order model with R 2 0.999. Thermodynamic studies observed that the process is exothermic (Δ H ° negative). Free energy change (Δ G °) with negative sign reflected the feasibility and spontaneous nature of the process. The chemical functional -OH groups, CH2 stretching vibrations, C=O carbonyl group of alcohol, C=O carbonyl group of amide, P=O stretching vibrations and -CH groups were involved in the biosorption process. The XRD pattern of the A. heterophylla was found to be mostly amorphous in nature. The SEM studies showed Cd+2 biosorption on selective grains of the biosorbent. It was concluded that A. heterophylla leaf powder can be used as an effective, low-cost, and environmentally friendly biosorbent for the removal of Cd+2 from aqueous solution.