WorldWideScience

Sample records for isothermal remanent magnetization

  1. Anisotropy evolution of nanoparticles under annealing: Benefits of isothermal remanent magnetization simulation

    Science.gov (United States)

    Tournus, Florent; Tamion, Alexandre; Hillion, Arnaud; Dupuis, Véronique

    2016-12-01

    Isothermal remanent magnetization (IRM) combined with Direct current demagnetization (DcD) are powerful tools to qualitatively study the interactions (through the Δm parameter) between magnetic particles in a granular media. For magnetic nanoparticles diluted in a matrix, it is possible to reach a regime where Δm is equal to zero, i.e. where interparticle interactions are negligible: one can then infer the intrinsic properties of nanoparticles through measurements on an assembly, which are analyzed by a combined fit procedure (based on the Stoner-Wohlfarth and Néel models). Here we illustrate the benefits of a quantitative analysis of IRM curves, for Co nanoparticles embedded in amorphous carbon (before and after annealing): while a large anisotropy increase may have been deduced from the other measurements, IRM curves provide an improved characterization of the nanomagnets intrinsic properties, revealing that it is in fact not the case. This shows that IRM curves, which only probe the irreversible switching of nanomagnets, are complementary to widely used low field susceptibility curves.

  2. Anisotropy evolution of nanoparticles under annealing: Benefits of isothermal remanent magnetization simulation

    International Nuclear Information System (INIS)

    Tournus, Florent; Tamion, Alexandre; Hillion, Arnaud; Dupuis, Véronique

    2016-01-01

    Isothermal remanent magnetization (IRM) combined with Direct current demagnetization (DcD) are powerful tools to qualitatively study the interactions (through the Δm parameter) between magnetic particles in a granular media. For magnetic nanoparticles diluted in a matrix, it is possible to reach a regime where Δm is equal to zero, i.e. where interparticle interactions are negligible: one can then infer the intrinsic properties of nanoparticles through measurements on an assembly, which are analyzed by a combined fit procedure (based on the Stoner–Wohlfarth and Néel models). Here we illustrate the benefits of a quantitative analysis of IRM curves, for Co nanoparticles embedded in amorphous carbon (before and after annealing): while a large anisotropy increase may have been deduced from the other measurements, IRM curves provide an improved characterization of the nanomagnets intrinsic properties, revealing that it is in fact not the case. This shows that IRM curves, which only probe the irreversible switching of nanomagnets, are complementary to widely used low field susceptibility curves.

  3. Anisotropy evolution of nanoparticles under annealing: Benefits of isothermal remanent magnetization simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tournus, Florent, E-mail: florent.tournus@univ-lyon1.fr; Tamion, Alexandre; Hillion, Arnaud; Dupuis, Véronique

    2016-12-01

    Isothermal remanent magnetization (IRM) combined with Direct current demagnetization (DcD) are powerful tools to qualitatively study the interactions (through the Δm parameter) between magnetic particles in a granular media. For magnetic nanoparticles diluted in a matrix, it is possible to reach a regime where Δm is equal to zero, i.e. where interparticle interactions are negligible: one can then infer the intrinsic properties of nanoparticles through measurements on an assembly, which are analyzed by a combined fit procedure (based on the Stoner–Wohlfarth and Néel models). Here we illustrate the benefits of a quantitative analysis of IRM curves, for Co nanoparticles embedded in amorphous carbon (before and after annealing): while a large anisotropy increase may have been deduced from the other measurements, IRM curves provide an improved characterization of the nanomagnets intrinsic properties, revealing that it is in fact not the case. This shows that IRM curves, which only probe the irreversible switching of nanomagnets, are complementary to widely used low field susceptibility curves.

  4. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  5. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment.

    Science.gov (United States)

    Barima, Yao Sadaiou Sabas; Angaman, Djédoux Maxime; N'gouran, Kobenan Pierre; Koffi, N'guessan Achille; Kardel, Fatemeh; De Cannière, Charles; Samson, Roeland

    2014-02-01

    Particulate matter (PM) emissions, and the associated human health risks, are likely to continue increasing in urban environments of developing countries like Abidjan (Ivory Cost). This study evaluated the potential of leaves of several herbaceous and tree species as bioindicators of urban particulate matter pollution, and its variation over different land use classes, in a tropical area. Four species well distributed (presence frequencies >90%) over all land use classes, easy to harvest and whose leaves are wide enough to be easily scanned were selected, i.e.: Amaranthus spinosus (Amaranthaceae), Eleusine indica (Poaceae), Panicum maximum (Poaceae) and Ficus benjamina (Moraceae). Leaf sampling of these species was carried out at 3 distances from the road and at 3 height levels. Traffic density was also noted and finally biomagnetic parameters of these leaves were determined. Results showed that Saturation Isothermal Remanent Magnetization (SIRM) of leaves was at least 4 times higher (27.5×10(-6)A) in the vicinity of main roads and industrial areas than in parks and residential areas. The main potential sources of PM pollution were motor vehicles and industries. The slightly hairy leaves of the herbaceous plant A. spinosus and the waxy leaves of the tree F. benjamina showed the highest SIRM (25×10(-6)A). Leaf SIRM increased with distance to road (R(2)>0.40) and declined with sampling height (R(2)=0.17). The distance between 0 and 5m from the road seemed to be the most vulnerable in terms of PM pollution. This study has showed that leaf SIRM of herbaceous and tree species can be used to assess PM exposure in tropical urban environments. © 2013.

  6. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...

  7. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  8. Recent advances in anisotropy of magnetic remanence

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    2011-01-01

    Roč. 1, č. 2 (2011), , , E02-1-E02-2 ISSN N. [Latinmag Biennial Meeting /2./. 23.11.2011-26.11.2011, Tandil] Institutional research plan: CEZ:AV0Z30130516 Keywords : palaeomagnetism * geophysics * magnetic remanence Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www. geofisica .unam.mx/LatinmagLetters/LL11-0102P/E/E02-chadima-2.pdf

  9. Induced remanent magnetization of social insects

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Cernicchiaro, G.; Acosta-Avalos, D.; El-Jaick, L.J.; Esquivel, D.M.S. E-mail: darci@cbpf.br

    2001-05-01

    The induced remanent magnetization (IRM) of honeybees Apis mellifera and ants as Pachycondyla marginata, a migratory species, and Solenopsis sp., a fire ant, was obtained using a SQUID magnetometer from 10 to 300 K. An anomalous sharp change of the remanent magnetization is observed at 67{+-}0.2 K for migratory ants. The IRM at room temperature indicates the presence of at least 10 times lower concentration of magnetic material in the whole fire ant as compared to the migratory ant abdomen (0.22{+-}0.33x10{sup -6} emu/ant, and 2.8{+-}1.2x10{sup -6} emu/abdomen, respectively). Our results in honeybee abdomen (4.6{+-}0.9x10{sup -6} emu/abdomen) agree with other reported values. IRM at room temperature in ants and honeybees indicates the presence of single domain (SD) or aggregates of magnetite nanoparticles. The loss of remanence from 77 to 300 K can be related to the stable-superparamagnetic (SPM) transition of small particles (less than ca. 30 nm). From these values and considering their estimated volumes an upper limit 10{sup 10} SPM and 10{sup 9} SD or aggregate particles are obtained in these insects.

  10. Induced remanent magnetization of social insects

    International Nuclear Information System (INIS)

    Wajnberg, E.; Cernicchiaro, G.; Acosta-Avalos, D.; El-Jaick, L.J.; Esquivel, D.M.S.

    2001-01-01

    The induced remanent magnetization (IRM) of honeybees Apis mellifera and ants as Pachycondyla marginata, a migratory species, and Solenopsis sp., a fire ant, was obtained using a SQUID magnetometer from 10 to 300 K. An anomalous sharp change of the remanent magnetization is observed at 67±0.2 K for migratory ants. The IRM at room temperature indicates the presence of at least 10 times lower concentration of magnetic material in the whole fire ant as compared to the migratory ant abdomen (0.22±0.33x10 -6 emu/ant, and 2.8±1.2x10 -6 emu/abdomen, respectively). Our results in honeybee abdomen (4.6±0.9x10 -6 emu/abdomen) agree with other reported values. IRM at room temperature in ants and honeybees indicates the presence of single domain (SD) or aggregates of magnetite nanoparticles. The loss of remanence from 77 to 300 K can be related to the stable-superparamagnetic (SPM) transition of small particles (less than ca. 30 nm). From these values and considering their estimated volumes an upper limit 10 10 SPM and 10 9 SD or aggregate particles are obtained in these insects

  11. Remanent magnetization stratigraphy of lunar cores

    Science.gov (United States)

    Banerjee, S. K.; Gingrich, D.; Marvin, J. A.

    1977-01-01

    Depth dependent fluctuations have been observed in the natural remanent magnetizations (NRM) of drive cores and drill strings from Apollo 16 and 17 missions. Partial demagnetization of unstable secondary magnetizations and identification of characteristic error signals from a core which is known to have been recently disturbed allow us to identify and isolate the stable NRM stratigraphy in double drive core 60010/60009 and drill strings 60002-60004. The observed magnetization fluctuations persist after normalization to take into account depth dependent variations in the carriers of stable NRM. We tentatively ascribe the stable NRM stratigraphy to instantaneous records of past magnetic fields at the lunar surface and suggest that the stable NRM stratigraphy technique could develop as a new relative time-stratigraphic tool, to be used with other physical measurements such as relative intensity of ferromagnetic resonance and charged particle track density to study the evolution of the lunar regolith.

  12. Intergrain exchange interaction estimation from the remanence magnetization analysis

    International Nuclear Information System (INIS)

    Bolyachkin, Anton S.; Volegov, Aleksey S.; Kudrevatykh, Nikolay V.

    2015-01-01

    Analysis of δm(H)=[M d (H)−M r (∞)+2M r (H)]/M r (∞) curves constructed from dc demagnetization and isothermal remanent magnetization (M d (H) and M r (H) respectively) is important for characterization of the interactions in ferromagnets. Up to now, it has been mainly used for qualitative deductions about them. In this work, the novel functional relation between the maximum of the δm(H) plot and the microscopic parameters of the weakly coupled Stoner–Wohlfarth ensemble with the isotropic distribution of easy magnetization axes was established using computer modeling. It allows quantitative analysis in the frame of the model to be performed. Finally, a new method of estimating the intergrain exchange interaction constant for nanostructured high anisotropy magnets could be formulated taking into account the results of the modeling. - Highlights: • Computer modelling of the weakly coupled Stoner–Wohlfarth like ensemble was performed. • The novel functional relation for maxima of the Kelly plots is established. • Method of the estimation of intergrain exchange interaction constant is formulated

  13. Magnetic Force Microscopy Observation of Perpendicular Recording Head Remanence

    Science.gov (United States)

    Dilekrojanavuti, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    In this work, magnetic force microscopy (MFM) was utilized to observe the magnetic write head remanence, which is the remaining out-of-plane magnetic field on magnetic write heads after a write current is turned off. This remnant field can write unwanted tracks or erase written tracks on a magnetic media. The write head remanence can also occur from device and slider fabrication, either by applying current to the write coil during the inspection or biasing the external magnetic field to magnetic recording heads. This remanence can attract magnetic nanoparticles, which is suspended in cleaning water or surrounding air, and cause device contamination. MFM images were used to examine locations of the remnant field on the surface of magnetic recording heads. Experimental results revealed that the remanence occurred mostly on the shield and is dependent on the initial direction of magnetic moments. In addition, we demonstrated a potential use of MFM imaging to investigate effects of different etching gases on the head remanence.

  14. Modelling of isothermal remanence magnetisation curves for an assembly of macrospins

    International Nuclear Information System (INIS)

    Tournus, F.

    2015-01-01

    We present a robust and efficient framework to compute isothermal remanent magnetisation (IRM) curves for magnetic nanoparticle assemblies. The assembly is modelled by independent, randomly oriented, uniaxial macrospins and we use a Néel model to take into account the thermal relaxation. A simple analytic expression is established for a single size, in a sudden switching approximation, and is compared to more evolved models. We show that for realistic samples (necessarily presenting a size dispersion) the simple model is very satisfactory. With this framework, it is then possible to reliably simulate IRM curves, which can be compared to experimental measurements and used in a best fit procedure. We also examine the influence of several parameters on the IRM curves and we discuss the link between the irreversible susceptibility and the switching field distribution. - Highlights: • A framework to compute IRM curves for nanoparticle assemblies is presented. • A simple analytic expression (for a single size) is compared to more evolved models. • The simple expression can reliably simulate IRM curves for realistic samples. • Irreversible susceptibility and the influence of several parameters is discussed

  15. Influence of remanent magnetization on pitting corrosion in pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H. [ESIME Zacatenco, SEPI Electronica Instituto Politecnico Nacional Mexico, D. F. (Mexico); Caleyo, F.; Hallen, J. M. [DIM-ESIQIE, Instituto Politecnico Nacional Mexico D. F. (Mexico); Lopez-Montenegro, A.; Perez-Baruch, E. [Pemex Exploracion y Produccion, Region Sur Villahermosa, Tabasco (Mexico)

    2010-07-01

    Statistical studies performed in Mexico indicate that leakage due to external pitting corrosion is the most likely cause of failure of buried pipelines. When pipelines are inspected with the magnetic flux leakage (MFL) technology, which is routinely used, the magnetization level of every part of the pipeline changes as the MFL tool travels through it. Remanent magnetization stays in the pipeline wall after inspection, at levels that may differ from a point to the next. This paper studies the influence of the magnetic field on pitting corrosion. Experiments were carried out on grade 52 steel under a level of remanent magnetization and other laboratory conditions that imitated the conditions of a pipeline after an MLF inspection. Non-magnetized control samples and magnetized samples were subjected to pitting by immersion in a solution containing chlorine and sulfide ions for seven days, and then inspected with optical microscopy. Results show that the magnetic field in the pipeline wall significantly increases pitting corrosion.

  16. Experiments in Ice Contaminant Remanent Magnetization of Dusty Frost Deposits

    Science.gov (United States)

    Grossman, Y.; Aharonson, O.; Shaar, R.

    2017-12-01

    Sedimentary rocks can acquire magnetization in the presence of an external field as grains settle out of suspension in a water column - a process known as Depositional Remanent Magnetization (DRM). In analogy with this, here we propose and experimentally demonstrate a new mechanism for acquisition of magnetization by ice and particulate mixtures which we term Ice Contaminant Remanent Magnetization (ICRM). This phenomenon results from the settling of atmospheric dust containing magnetic particles (e.g. magnetite or other iron oxides). Upon freezing, magnetic dust particles assume a preferential orientation that depends on the external planetary field, resulting in bulk magnetization of the dusty ice. Hence over geologic timescales, the ice stratigraphy is expected to record the geomagnetic history. To test this hypothesis, we designed a set of experiments in which mixtures of ice and dust were deposited in a controlled ambient magnetic field environment. We measured the ratio between the volume normalized magnetization of the dusty ice (m) and the applied field (H) during deposition of the mixture, which is expressed as the effective ICRM susceptibility: m=χICRMH. A magnetic field was applied by a 3-axis Helmholtz coil at the Weizmann Simulating Planetary Ices & Environments Laboratory, and the frozen samples were analyzed in a 2G-Entreprises SQUID Rock Magnetometer at the Hebrew University Institute for Earth Sciences. We measured a clear correlation in amplitude and direction between the ambient magnetic field applied during deposition and the remanent magnetic moment of the resulting samples. We studied various concentrations and particle sizes (diameters 5 µm to 50 µm) of iron and magnetite particles. Effective bulk susceptibilities show a range of values, starting from 10-3 and up to values that saturate the analytical instrument. Our preliminary results indicate that natural ice deposits may acquire variable magnetization due to ICRM, which may in turn be

  17. Investigation of natural gas theft by magnetic remanence mapping.

    Science.gov (United States)

    Dobó, Zsolt; Kovács, Helga; Tóth, Pál; Palotás, Árpád B

    2014-12-01

    Natural gas theft causes major losses in the energy industry in Hungary. Among the non-technical losses occurring in natural gas networks, fraudulent residential consumption is one of the main factors. Up to 2014, gas meters that are most widely used in residential monitoring are manufactured with ferromagnetic moving components, which makes it possible to alter or disrupt the operation of the meters non-intrusively by placing permanent magnets on the casing of the meters. Magnetic remanence mapping was used to investigate a sample of 80 recalled residential meters and detect potentially fraudulent activity. 10% of the meters were found suspect by magnetic remanence measurement, of which 50% were confirmed to be potentially hijacked by further mechanical investigation. The details of the technique are described in this paper, along with experimental results and the discussion of the analysis of the real-world samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Extraction of remanent magnetization from magnetization vector inversions of airborne full tensor magnetic gradiometry data

    Science.gov (United States)

    Queitsch, M.; Schiffler, M.; Stolz, R.; Meyer, M.; Kukowski, N.

    2017-12-01

    Measurements of the Earth's magnetic field are one of the most used methods in geophysical exploration. The ambiguity of the method, especially during modeling and inversion of magnetic field data sets, is one of its biggest challenges. Additional directional information, e.g. gathered by gradiometer systems based on Superconducting Quantum Interference Devices (SQUIDs), will positively influence the inversion results and will thus lead to better subsurface magnetization models. This is especially beneficial, regarding the shape and direction of magnetized structures, especially when a significant remanent magnetization of the underlying sources is present. The possibility to separate induced and remanent contributions to the total magnetization may in future also open up advanced ways for geological interpretation of the data, e.g. a first estimation of diagenesis processes. In this study we present the results of airborne full tensor magnetic gradiometry (FTMG) surveys conducted over a dolerite intrusion in central Germany and the results of two magnetization vector inversions (MVI) of the FTMG and a conventional total field anomaly data set. A separation of the two main contributions of the acquired total magnetization will be compared with information of the rock magnetization measured on orientated rock samples. The FTMG inversion results show a much better agreement in direction and strength of both total and remanent magnetization compared to the inversion using only total field anomaly data. To enhance the separation process, the application of additional geophysical methods, i.e. frequency domain electromagnetics (FDEM), in order to gather spatial information of subsurface rock susceptibility will also be discussed. In this approach, we try to extract not only information on subsurface conductivity but also the induced magnetization. Using the total magnetization from the FTMG data and the induced magnetization from the FDEM data, the full separation of

  19. Precise measurement of remanent magnetism of rocks under non-magnetic fields; Mujikaika deno ganseki zanryu jiki no seimitsu sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y; Nakatsuka, K [Tohoku University, Sendai (Japan)

    1997-10-22

    Various magnetic information data from solidification or deposition up to date are contained in rocks. For the analysis of remanent magnetism, in general, the stable thermal remanent magnetization and the secondary magnetization are separately evaluated using vector variations determined by the location changes of magnetic pole from ac demagnetization or thermal demagnetization. Especially, in geothermal fields, the remanent magnetism in rocks is complicated due to the predominant alteration. When the remanent magnetism of rocks can be precisely measured and the primary and secondary magnetization can be evaluated, important data can be obtained, which represent oriented core samples required for evaluating the geothermal reservoirs. A rock remanent magnetism measuring system using superconductive magnetic shield has been developed, to evaluate the location of magnetic pole. This system can distinguish the remanent magnetization in rocks, and can be applied to the remanent magnetism in rocks in which the location of dipole model is shifted from the center of core. Important basic data of orientation information in rocks can be provided. 6 figs.

  20. Remanent and induced magnetization in the volcanites of Lipari and Vulcano (Aeolian Islands

    Directory of Open Access Journals (Sweden)

    R. Lanza

    1994-06-01

    Full Text Available The role of remanent and induced magnetization as sources of magnetic anomalies in the Lipari and Vulcano islands has been studied by systematic sampling. Remanent magnetization is higher than induced magnetization in almost all lithotypes. Its polarity is normal, and the mean directions are close to the present magnetic field. A slight thermal enhancement of the magnetic susceptibility occurs up to 450-500 °C, followed by a fall up to the Curie point, which is comprised in the range 550 ± 30 °C. This points to titanomagnetite as the main carrier of magnetization. The blocking temperature spectrum of the remanence ranges between the Curie point and 400 °C in most lithotypes, and falIs to 150-200 °C in the pyroclastic deposits. The results as a whole yield an outline of the areal distribution of the total magnetization intensity within the two islands.

  1. Complex remanent magnetization in the Kızılkaya ignimbrite (central Anatolia): Implication for paleomagnetic directions

    Science.gov (United States)

    Agrò, Alessandro; Zanella, Elena; Le Pennec, Jean-Luc; Temel, Abidin

    2017-04-01

    Pyroclastic flow deposits, known as ash-flow tuffs or ignimbrites, are invaluable materials for paleomagnetic studies, with many applications for geological and tectonic purposes. However, little attention has been paid to evaluating the consistency and reliability of the paleomagnetic data when results are obtained on a single volcanic unit with uneven magnetic mineralogy. In this work we investigate this issue by concentrating on the Kızılkaya ignimbrite, the youngest large-volume unit of the Neogene ignimbrite sequence of the Central Anatolian Volcanic Province in Turkey, bringing evidence of significant magnetic heterogeneities in ignimbrite deposits (magnetic mineralogy, susceptibility, magnetic remanence, coercivity, etc.) and emphasizing the importance of a stratigraphic sampling strategy for this type of volcanic rocks in order to obtain reliable paleomagnetic data. Six sections were sampled at different stratigraphic heights within the devitrified portion of the ignimbrite. Isothermal remanence measurements point to low-Ti titanomagnetite as the main magnetic carrier at all sites; at some sites, the occurrence of oxidized Ti-magnetite and hematite is disclosed. The bulk susceptibility (km) decreases vertically at two out of six sections: its value for the topmost samples is commonly one order of magnitude lower than that of the samples at the base. In most cases, low km values relate to high coercivity of remanence (BCR) values, which range from 25 to > 400 mT, and to low S-ratios (measured at 0.3 T) between 0.28 and 0.99. These data point to the occurrence of oxidized magnetic phases. We therefore consider the km parameter as a reliable proxy to check the ignimbrite oxidation stage and to detect the presence of oxidized Ti-magnetite and hematite within the deposit. The characteristic remanent magnetization is determined after stepwise thermal and AF demagnetization and clearly isolated by principal component analysis at most sites. For these sites, the

  2. Lunar surface remanent magnetic fields detected by the electron reflection method

    Science.gov (United States)

    Lin, R. P.; Anderson, K. A.; Bush, R.; Mcguire, R. E.; Mccoy, J. E.

    1976-01-01

    We present maps of the lunar surface remanent magnetic fields detected by the electron reflection method. These maps provide substantial coverage of the latitude band from 30 N southward to 30 S with a resolution of about 40 km and a sensitivity of about 0.2 gamma at the lunar surface. Regions of remanent magnetization are observed ranging in size from the resolution limit of 1.25 deg to above approximately 60 deg. The largest contiguous region fills the Big Backside Basin where it is intersected by the spacecraft orbital tracks. Preliminary analyses of the maps show that the source regions of lunar limb compressions correspond to regions of strong surface magnetism, and that there does not appear to be sharply discontinuous magnetization at the edges of maria. We also analyze the electron reflection observations to obtain information on the direction and distribution of magnetization in the Van de Graaff anomaly region.

  3. Study of pitting corrosion in line-pipe steel under the influence of remanent magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J H; Caleyo, F; Hallen, J M [Instituto Politecnico Nacional (IPN), Zacatenco (Mexico)

    2009-07-01

    The influence of remanent magnetization on pitting corrosion in line-pipe steels is studied. Pitting corrosion experiments have been carried out on samples of an API 5L grade 52 steel under a magnetization level of the same order of magnitude of the remanent magnetization in the pipeline wall after in-line inspection based on magnetic flux leakage. The samples were magnetized using rings of the same grade as the investigated steel. Immediately after magnetization, the investigated samples were subjected to pitting by immersing them in a solution containing dissolved Cl{sup -} and SO{sup 2-}{sub 4} and ions. The pitting experiments were conducted during a seven days period. The pit depth distribution and the maximum pit depth in each sample were recorded and used to conduct extreme value analyses of the pitting process in magnetized and non-magnetized control samples. The statistical assessment of the pitting corrosion data collected during this study shows that the magnetic field reduces the average depth of the pit population and also the extreme pit depth values that can be predicted from the maximum values observed in the magnetized samples in comparison with to the non-magnetized control samples. Scanning electron microscopy observations show that the magnetic field alters the pit morphology by increasing the pit mouth opening. (author)

  4. Detrital and early chemical remanent magnetization in redbeds and their rock magnetic signature: Zicapa Formation, southern Mexico

    Science.gov (United States)

    Sierra-Rojas, Maria Isabel; Molina-Garza, Roberto Stanley

    2018-06-01

    Poles from continental redbeds are a large fraction of the world's palaeomagnetic database. Nonetheless, the time of acquisition and origin of the remanent magnetization of redbeds has been long debated. We report palaeomagnetic data, rock magnetic data and microscope observations for Lower Cretaceous redbeds in southern Mexico. These data allow us to discriminate between the hysteresis properties of remanent magnetizations of detrital and chemical origin, and to establish the early origin of a chemical remanence. Red sandstones of the Zicapa Formation contain a multicomponent remanence revealed by thermal demagnetization, and consisting of three stable components with partially overlapping laboratory unblocking temperatures of 600 °C, (low, intermediate and high temperature, respectively). They are interpreted as a viscous remanence residing in detrital magnetite, a chemical remanence residing in authigenic hematite and a depositional remanence residing in detrital hematite, respectively. The low-temperature component is nearly parallel to the recent dipole field. The tilt-corrected overall site means of the intermediate (chemical) and high temperature (depositional) components are indistinguishable (Dec = 282.0°, Inc = 12.4°, k = 13.33, α95 = 10.1°, N = 17, for the intermediate temperature; and Dec = 272.5°, Inc = 16.5°, k = 14.04, α95 = 11, N = 14, for the high temperature). Elongation/inclination analysis suggests that depositional and chemical components require applying an f = factor of approximately 0.4. Both of these components define a magnetic polarity zonation, but the polarity of the chemical and detrital components may or may not be the same. The chemical remanence coincides, more often than not, with the polarity of the depositional remanence of the overlying (younger) strata, suggesting a delay in remanence acquisition of tens to a few hundred ka for the chemical component. Pigmentary and detrital haematite were recognized with microscopic

  5. Effect of crystal alignment on the remanence of sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Kawai, T.; Ma, B.M.; Sankar, S.G.; Wallace, W.E.

    1990-01-01

    Nd 15.4 Fe 77.8 B 6.8 magnets of various degrees of crystal alignment have been prepared by the conventional powder metallurgy technique. The alignment of these magnets have been determined by x-ray diffraction and fitting the standard deviation of a Gaussian distribution for the relative intensity versus the angle between the normals of (hkl) and the tetragonal c axis. The standard deviation is a good indicator for crystal alignment. An aligning field of 8 kOe is found to be essential to obtain a well-aligned NdFeB magnet. The remanence of sintered magnets is directly affected by the crystal alignment. Furthermore, the effect of crystal alignment on the remanence follows the theoretical prediction of the Stoner--Wohlfarth model. Below the spin reorientation temperature, the effect of crystal alignment on the shape of hysteresis loop becomes more significant. The remanences extrapolated from first and second quadrant of the hysteresis loops have been found to be consistent with the prediction of Stoner--Wohlfarth model

  6. Absence of aging in the remanent magnetization in Migdal-Kadanoff spin glasses

    International Nuclear Information System (INIS)

    Ricci-Tersenghi, F.; Ritort, F.

    2000-04-01

    We study the non-equilibrium behavior of three-dimensional spin glasses in the Migdal-Kadanoff approximation. This approximation is exact for disordered hierarchical lattices which have a unique ground state and equilibrium properties correctly described by the droplet model. Extensive numerical simulations show that this model lacks aging in the remanent magnetization as well as a maximum in the magnetic viscosity in disagreement with experiments as well as with numerical studies of the Edwards-Anderson model. This result strongly limits the validity of the droplet model (at least in its simplest form) as a good model for real spin glasses. (author)

  7. Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field-implications for paleomagnetic studies of red beds

    NARCIS (Netherlands)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Tauxe, Lisa; Qin, Huafeng; Barrón, Vidal; Torrent, José

    2015-01-01

    Hematite-bearing red beds are renowned for their chemical remanent magnetization (CRM). If the CRM was acquired substantially later than the sediment was formed, this severely compromises paleomagnetic records. To improve our interpretation of the natural remanent magnetization, the intricacies of

  8. A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability

    International Nuclear Information System (INIS)

    Ryu, K.S.; Nahm, S.H.; Park, J.S.; Yu, K.M.; Kim, Y.B.; Son, D.

    2002-01-01

    We present a new magnetic and non-destructive procedure to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. The method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive force. The measurement principle is based on the foundation harmonics voltage induced in a coil using a lock-in amplifier tuned to a frequency of the exciting one. Results obtained for reversible magnetic permeability and Vickers hardness on the aged sample show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel

  9. The stability test of natural remanent magnetization (NRM) vulcanic rock of merapi mountain in central Java

    International Nuclear Information System (INIS)

    Husna; Rauf, Nurlela; Bijaksana, Satria

    2002-01-01

    An assessment has been done on magnetic properties of the rock from the area around the top of Merapi Mountain. The research conducted In form of stability test of Natural Remanent Magnetization (NRM), Which 16 specimens that used in that test were taken from Pasar Bubar, Kali Gendol and Kali Gendong Alternating Field Demagnetization Methods applied on measurement of intensity and direction of NRM and demagnetization process. The result shown that the rock from Pasar Bubar had mean intensity of 2255486 mA/meter with a range of declination 32.80 -650 and inclination -37.40 -3.90, Kali Gendol had mean intensity of 2469.387 mA/meter with range of declination of 356.10-110 and inclination of -490 --0.10, and Kali Gendong had mean Intensity of 4139.062 mA/meter with range of declination of 62.10 -12540 and inclination of -0.80 -3520. The stability test is determined from intensity curve, stereo net Plot. Zijderveld diagram and Maximum Angular Deviation (MAD) According the result, the specimen from kali gendol were the most stable and qualifield for further used on paleomagnetic study

  10. Experimental and numerical simulation of the acquisition of chemical remanent magnetization and the Thellier procedure

    Science.gov (United States)

    Shcherbakov, V. P.; Sycheva, N. K.; Gribov, S. K.

    2017-09-01

    The results of the Thellier-Coe experiments on paleointensity determination on the samples which contain chemical remanent magnetization (CRM) created by thermal annealing of titanomagnetites are reported. The results of the experiments are compared with the theoretical notions. For this purpose, Monte Carlo simulation of the process of CRM acquisition in the system of single-domain interacting particles was carried out; the paleointensity determination method based on the Thellier-Coe procedure was modeled; and the degree of paleointensity underestimation was quantitatively estimated based on the experimental data and on the numerical results. Both the experimental investigations and computer modeling suggest the following main conclusion: all the Arai-Nagata diagrams for CRM in the high-temperature area (in some cases up to the Curie temperature T c) contain a relatively long quasi-linear interval on which it is possible to estimate the slope coefficient k and, therefore, the paleointensity. Hence, if chemical magnetization (or remagnetization) took place in the course of the magnetomineralogical transformations of titanomagnetite- bearing igneous rocks during long-lasting cooling or during repeated heatings, it can lead to incorrect results in determining the intensity of the geomagnetic field in the geological past.

  11. Environmental history of Lake Hovsgul from physical interpretation of remanent magnetization endmember analysis

    Science.gov (United States)

    Kosareva, Lina; Fabian, Karl; Shcherbakov, Valera; Nurgaliev, Danis

    2016-04-01

    The environmental history of Lake Hovsgul (Mongolia) is studied based on magnetic measurements of the core KDP-01. The drill hole reached a maximum depth of 53 m, from which sediment cores with a total length of 48 m were recovered. Coring gaps are due to the applied drilling technology. Following the approach by Heslop and Dillon, 2007, we develop the way of decomposition of the total magnetic fraction of a sample into not virtual but real three distinctive mineralogical components. For this, we first apply the end-member non-negative matrix factorization (NMF) modeling for the unmixing magnetic remanence curves. Having these results in hands, we decompose the hysteresis loops, backfield and strong field thermomagnetic curves into the components which now can be interpreted as certain mineralogical fractions. The likely interpretation of the components obtained is as follows. The soft component is represented by a coarse grained magnetite fraction as it typically results from terrigenous influx via fluvial transport. The second component is presented by a sharply defined magnetite grain size fraction in the 30-100 nm range that in lake environments is related to magnetosome chains of magnetotactic bacteria. It apparently covaries with a diamagnetic mineral, most likely carbonate. This indicates a link to organic authigenic fractions and fits to biogenic magnetite from magnetotactic bacteria. The third component also has a very high coercivity around 85 mT and is identified as a mixture of biogenic and abiotic greigite common in suboxic/anoxic sediments. The results of such the combined study are used to infer information on paleoclimatic and paleogeography conditions around the lake Hovsgul's area for the period of the last million years. A correlation between the outbursts of biogenic magnetite and greigite content with warm periods is found. Within some parts of the core the dominance of greigite contribution into magnetic signal is observed which we link to

  12. An integrated natural remanent magnetization acquisition model for the Matuyama-Brunhes reversal recorded by the Chinese loess

    Science.gov (United States)

    Jin, Chunsheng; Liu, Qingsong; Hu, Pengxiang; Jiang, Zhaoxia; Li, Cange; Han, Peng; Yang, Huihui; Liang, Wentian

    2016-08-01

    Geomagnetic polarity reversal boundaries are key isochronous chronological controls for the long Chinese loess sequences, and further facilitate paleoclimatic correlation between Chinese loess and marine sediments. However, owing to complexity of postdepositional remanent magnetization (pDRM) acquisition processes related to variable dust sedimentary environments on the Chinese Loess Plateau (CLP), there is a long-standing dispute concerning the downward shift of the pDRM recorded in Chinese loess. In this study, after careful stratigraphic correlation of representative climatic tie points and the Matuyama-Brunhes boundaries (MBB) in the Xifeng, Luochuan, and Mangshan loess sections with different pedogenic environments, the downward shift of the pDRM is semiquantitatively estimated and the acquisition model for the loess natural remanent magnetization (NRM) is discussed. The measured MB transition zone has been affected by the surficial mixing layer (SML) and remagnetization. Paleoprecipitation is suggested to be the dominant factor controlling the pDRM acquisition processes. Rainfall-controlled leaching would restrict the efficiency of the characterized remanent magnetization carriers aligning along the ancient geomagnetic field. We conclude that the MBB in the central CLP with moderate paleoprecipitation could be considered as an isochronous chronological control after moderate upward adjustment. A convincing case can then be made to correlate L8/S8 to MIS 18/19.

  13. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  14. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  15. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    Science.gov (United States)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a

  16. A Systematic Comparison of the Anisotropy of Magnetic Susceptibility (AMS) and Anisotropy of Remanence (ARM) Fabrics of Ignimbrites: Examples from the Quaternary Bandelier Tuff, Jemez Mountains, New Mexico and Miocene Ignimbrites Near Gold Point, Nevada

    Science.gov (United States)

    Lycka, Ranyah

    Anisotropy of magnetic susceptibility (AMS) has been widely used to define petrofabrics in silicic, elevated-temperature pyroclastic deposits (i.e., ignimbrites) and these fabrics have been successfully utilized to infer pyroclastic emplacement, or transport, directions in many cases. Selected exposures of the Quaternary Bandelier Tuff, exposed in the Jemez Mountains, New Mexico, have been studied to systematically compare anisotropy of remanence (mainly anhysteretic remanent magnetization, AARM) with AMS data from the same sites. In addition, as part of a broad study to understand the Neogene history of deformation associated with a displacement transfer system in the western Great Basin, paleomagnetic and magnetic fabric data have been collected from ignimbrites that originated from the Timber Mountain Caldera complex, active from about 14 to 11.5 Ma. Here, AMS and AARM are compared for 21 (9-12 samples per site) sites in the Quaternary Bandelier Tuff, and 15 (9-10 samples per site) sites in Timber Mountain ignimbrites, with each chosen to examine the effects of varying degrees of welding and crystal content on the fabrics obtained. The relationships between AARM and AMS fabrics for the selected sites are not uniform, and include normal, intermediate, reverse, and oblique fabrics. The differences may be controlled by the degree of welding and/or crystal content, which requires further explanation. Ultimately, the fabrics identified in both suites of rocks are compared with anisotropy of isothermal remanent magnetization (AIRM) data, along with other rock magnetic data, to more fully evaluate the domain state control on the fabrics.

  17. Recent advances in anisotropy of magnetic remanence: New software and practical examples

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    -, special issue (2012), s. 59-60 ISSN 1335-2806. [Castle meeting New Trends in Geomagnetism : Paleo, rock and environmental magnetism/13./. 17.06.2012-23.06.2012, Zvolen] Institutional support: RVO:67985831 Keywords : magnetic susceptibility * anisotropy * anisotropy of magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://gauss.savba.sk/GPIweb/conferences/Castle2012/abstrCastle.pdf

  18. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    Science.gov (United States)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2017-03-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.

  19. Magnetic ground and remanent states of synthetic metamagnets with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Kiselev, N S; Roessler, U K; Bogdanov, A N; Hellwig, O

    2011-01-01

    In this work, we summarize our theoretical results within a phenomenological micromagnetic approach for magnetic ground state and nonequilibrium states as topological magnetic defects in multilayers with strong perpendicular anisotropy and antiferromagnetic (AF) interlayer exchange coupling (IEC), e.g. [Co/Pt(Pd)]/Ru(Ir, NiO). We give detailed analysis of our model together with the most representative results which elucidate common features of such systems. We discuss phase diagrams of the magnetic ground state, and compare solutions of our model with experimental data. A model to assess the stability of so-called tiger tail patterns is presented. It is found that these modulated topological defect cannot be stabilized by an interplay between magnetostatic and IEC energies only. It is argued that tiger tail patterns arise as nuclei of ferro-stripe structure in AF domain walls and that they are stabilized by domain wall pinning.

  20. Roles of coercivity and remanent flux density of permanent magnet in interior permanent magnet synchronous motor (IPMSM) performance for electric vehicle applications

    Science.gov (United States)

    Won, Hoyun; Hong, Yang-Ki; Lee, Woncheol; Choi, Minyeong

    2018-05-01

    We used four rotor topologies of an interior permanent magnet synchronous motor (IPMSM) to investigate the effects of remanent flux density (Br) and coercivity (Hc) of permanent magnet on motor performance. Commercial strontium hexaferrite (SrFe12O19: energy product, (BH)max, of 4.62 MGOe) and Nd-Fe-B ((BH)max of 38.2 MGOe) magnets were used for the rotor designs. The same machine specifications and magnet volume keep constant, while the Hc and Br vary to calculate torque and energy efficiency with the finite-element analysis. A combination of high Hc and low Br more effectively increased maximum torque of IPMSM when the hexaferrite magnet was used. For Nd-Fe-B magnet, the same combination did not affect maximum torque, but increased energy efficiency at high speed. Therefore, the Hc value of a permanent magnet is more effective than the Br in producing high maximum torque for SrM-magnet based IPMSM and high energy efficiency at high speed for Nd-Fe-B magnet based IPMSM.

  1. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    Science.gov (United States)

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  2. Remanence properties of Co-precipitated cobalt ferrite

    International Nuclear Information System (INIS)

    Bueno-Baques, D.; Medina-Boudri, Angela; Matutes-Aquino, J.

    2001-01-01

    Isothermal remanent magnetization (IRM) and DC demagnetization (DCD) curves of a co-precipitated cobalt ferrite sample were obtained. From the IRM and DCD data, the Henkel plot was obtained and analyzed in the Preisach model framework. The Henkel plot data are below the Wohlfarth line that indicates a dominant local disorder (demagnetizing-like effect). Forward and reverse switching field distribution curves were obtained from differentiation of the IRM and DCD curves. The peak values of these switching field distributions differ by a factor of about 2.7

  3. Natural remanent magnetization and rock magnetic parameters from the North-East Atlantic continental margin : Insights from a new, automated cryogenic magnetometer at the Geological Survey of Norway

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone

    2017-04-01

    Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.

  4. Mechanically induced demagnetization and remanent magnetization rotation in Ni-Mn-Ga (-B) magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Straka, L.; Soroka, A.; Heczko, Oleg; Hänninen, H.; Sozinov, A.

    2014-01-01

    Roč. 87, SEP (2014), s. 25-28 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GAP107/11/0391 Grant - others:AV ČR(CZ) M100101241 Institutional support: RVO:68378271 Keywords : heusler phases * ferromagnetic shape memory * magnetic properties * coercivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.224, year: 2014 http://www.sciencedirect.com/science/article/pii/S1359646214002176

  5. A theoretical study of interaction effects on the remanence curves of particulate dispersions

    Science.gov (United States)

    Fearon, M.; Chantrell, R. W.; Wohlfarth, E. P.

    1990-05-01

    The remanence curves of strongly interacting fine-particle systems are investigated theoretically. It is shown that the Henkel plot of the dc demagnetisation remanence vs. the isothermal remanence is a useful representation of interactions. The form of the plot is found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is also investigated. The results are consistent with a previous experimental study. Finally, the effect of interactions on the Switching Field Distribution are investigated.

  6. Exploring the potential of acquisition curves of the anhysteretic remanent magnetization as a tool to detect subtle magnetic alteration induced by heating

    Science.gov (United States)

    de Groot, Lennart V.; Dekkers, Mark J.; Mullender, Tom A. T.

    2012-03-01

    Recently, many new methods and improved protocols to determine the absolute paleointensity of lavas reliably have been proposed. Here we study eight recent flows from three different volcanic edifices (Mt. Etna, La Palma and Hawaii) with the so-called multispecimen parallel differential pTRM (MSP) method including the recently proposed domain-state correction (MSP-DSC) (Fabian and Leonhardt, 2010). Surprisingly, apart from approximately correct paleointensity values, we observe major underestimates of the paleofield. These deviations are possibly related to alteration that is not revealed by rock-magnetic analysis. We explore the potential of high-resolution acquisition curves of the anhysteretic remanent magnetization (ARM) to detect subtle alteration in the samples. It appears that assessing changes in the ARM acquisition properties before and after heating to the desired MSP temperature discriminates between underestimates and approximately correct estimations of the paleofield in the outcomes of the MSP-DSC protocol. By combining observations from the domain-state corrected MSP protocol and ARM acquisition experiments before and after heating, an extended MSP protocol is suggested which makes it possible to assess the best set temperature for the MSP-DSC protocol and to label MSP results as being approximately correct, or an underestimate of the paleofield.

  7. A new method to study ferroelectrics using the remanent Henkel plots

    Science.gov (United States)

    Vopson, Melvin M.

    2018-05-01

    Analysis of experimental curves constructed from dc demagnetization and isothermal remanent magnetization known as Henkel and delta M plots, have served for over 53 years as an important tool for characterization of interactions in ferromagnets. In this article we address the question whether the same experimental technique could be applied to the study of ferroelectric systems. The successful measurement of the equivalent dc depolarisation and isothermal remanent polarization curves and the construction of the Henkel and delta P plots for ferroelectrics is reported here. Full measurement protocol is provided together with experimental examples for two ferroelectric ceramic samples. This new measurement technique is an invaluable experimental tool that could be used to further advance our understanding of ferroelectric materials and their applications.

  8. The coercivity mechanism of sintered SM(Co_b_a_lFe_0_._2_4_5Cu_0_._0_7Zr_0_._0_2)_7_._8 permanent magnets with different isothermal annealing time

    International Nuclear Information System (INIS)

    Sun, Wei; Zhu, Minggang; Guo, Zhaohui; Fang, Yikun; Li, Wei

    2015-01-01

    Precipitation-hardened 2:17-type SmCo permanent magnet has attracted much attention due to its high Curie temperature and excellent magnetic properties. Sm(Co_b_a_lFe_0_._2_4_5Cu_0_._0_7Zr_0_._0_2)_7_._8 (at%) sintered magnets with high remanence (B_r ~1.15 T) were prepared using a traditional powder metallurgy method. The intrinsic coercivity H_c_j of the magnets was increased from 429 to 994 kA m"−"1 with isothermal annealing time increasing from 10 to 40 h, which is different from the phenomenon that increasing aging time leads to a reduced coercivity mentioned in the Ref. [16]. In consideration of rarely report about the microstructure of the final magnet isothermally annealed for 40 h, we have tried to originally analyze the relationship between the microstructure and the magnetic properties. Besides, the lattice constants of sintered Sm(Co_b_a_lFe_0_._2_4_5Cu_0_._0_7Zr_0_._0_2)_7_._8 permanent magnet isothermally annealed for 40 h have been given by indexing the HRTEM results including the selected area electron diffraction (SAED) and HRTEM images.

  9. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?

    Science.gov (United States)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Guo, Zhaojie; Waldrip, Ross; Li, Xiaochun; Zhang, Xiaoran; Liu, Dongdong; Kapp, Paul

    2015-01-01

    Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previously yielded data suggesting a low paleolatitude ( 10°N). New zircon U-Pb dates indicate an age of 52 Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1° (35.7°, 40.5°) (95% significance) and a secondary remanence with inclination of 42.9° (41.5°,44.4°) (95% significance). The paleolatitude defined by the modeled primary remanence—21°N (19.8°N, 23.1°N)—is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at 20°N and took place by 50 Ma.

  10. Study of magnetic behavior in hexagonal-YMn1−xFexO3 (x=0 and 0.2) nanoparticles using remanent magnetization curves

    International Nuclear Information System (INIS)

    Chauhan, Samta; Singh, Amit Kumar; Srivastava, Saurabh Kumar; Chandra, Ramesh

    2016-01-01

    We have studied the magnetic behavior of YMn 1−x Fe x O 3 (x=0 and 0.2) nanoparticles synthesized by conventional solid state reaction method. The as-synthesized nanoparticles were found to have hexagonal phase with P6 3cm space group confirmed by X-Ray diffraction. The particle size was found to be ~70 nm as confirmed by both X-Ray diffraction and Transmission Electron Microscopy. DC magnetization and memory effect measurements imply that the h-YMnO 3 nanoparticles bear a resemblance to super spin-glass state following de Almeida–Thouless like behavior which is being suppressed by Fe-doping. The Fe-doping in YMnO 3 enhances the antiferromagnetic (AFM) transition temperature T N to ~79 K and induces a new magnetic state due to the surface spins which is realized as diluted antiferromagnet in a field (DAFF) as explored by the thermoremanent and isothermoremanent magnetization measured with different applied magnetic field. - Highlights: • Magnetic behavior of h-YMn 1−x Fe x O 3 (x=0 and 0.2) nanoparticles have been studied. • The nanoparticles (~70 nm) were synthesized by solid state reaction method. • Magnetic data reveal spin-glass behavior in YMnO 3 which was suppressed in YMn 0.8 Fe 0.2 O 3 . • The h-YMnO 3 nanoparticles show memory effect and obey de-Almeida Thouless line. • TRM and IRM suggest spin glass nature for YMnO 3 , while the YMn 0.8 Fe 0.2 O 3 resembles DAFF.

  11. Bat head contains soft magnetic particles: evidence from magnetism.

    Science.gov (United States)

    Tian, Lanxiang; Lin, Wei; Zhang, Shuyi; Pan, Yongxin

    2010-10-01

    Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non-migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating-field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM(1T_brain)) of migratory species is higher than those of non-migratory species. Furthermore, the SIRM(1T_brain) of migratory bats is greater than their SIRM(1T_skull). Low-temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field.

  12. Magnetic constraints on early lunar evolution revisited: Limits on accuracy imposed by methods of paleointensity measurements

    Science.gov (United States)

    Banerjee, S. K.

    1984-01-01

    It is impossible to carry out conventional paleointensity experiments requiring repeated heating and cooling to 770 C without chemical, physical or microstructural changes on lunar samples. Non-thermal methods of paleointensity determination have been sought: the two anhysteretic remanent magnetization (ARM) methods, and the saturation isothermal remanent magnetization (IRMS) method. Experimental errors inherent in these alternative approaches have been investigated to estimate the accuracy limits on the calculated paleointensities. Results are indicated in this report.

  13. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: Kinetic, isotherm and thermodynamic studies

    International Nuclear Information System (INIS)

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-01-01

    Highlights: • Cr(VI) can oxidize biological molecules and be one of the most harmful substance. • Magnetic seperation techniques are used on different applications in many fields. • Magnetic systems can be used for rapid and selective removal as a magnetic processor. • We investigate properties of both new material and other magnetic adsorbents reported in the literatures on the adsorption of Cr(VI) ions. • No researchments were reported on adsorption of Cr(VI) with magnetic vinylphenyl boronic acid microparticles. - Abstract: Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)–vinylphenyl boronic acid(VPBA)) [m-poly(EG–VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG–VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG–VPBA) microparticles were characterized by N 2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG–VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin–Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG–VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic

  14. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    Science.gov (United States)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  15. Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2017-10-01

    We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative below the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i}  ≈ 0–0.8, the cutoff lies in the range ω{sub c}  ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β  = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.

  16. Dynamics of particle suspensions subjected to biaxial and triaxial magnetic fields: vortex mixing and isothermal magnetic advection

    Science.gov (United States)

    Martin, James

    2010-03-01

    We have developed several new magnetic methods for stimulating functional fluid flows. These methods depend on adding magnetic particles to the fluids and subjecting them to spatially uniform, time-dependent magnetic fields. The key aspect is the nature of the particles and the way in which the direction and magnitude of the magnetic field changes with time. The first of these new methods, which we call vortex field mixing, gives rise to vigorous fluid mixing that occurs uniformly throughout the sample volume, eliminating the stagnation regions that plague standard methods. This method is ideally suited for microfluidic devices, but can used for mixing at any scale. The second method involves the stimulation of organized fluid flow fields that can efficiently transfer heat and mass along any desired direction. This isothermal magnetic advection has the functionality of natural convection, but because the effect does not depend on gravity or the existence of a thermal gradient, it can be used to stimulate flow where natural convection fails. It is possible to cool under or beside a hot object, in the microgravity environments of space, and without any concern over the magnitude of the thermal gradient.

  17. Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA

    Directory of Open Access Journals (Sweden)

    Na Feng

    Full Text Available ABSTRACT We developed a loop-mediated isothermal amplification (LAMP assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.

  18. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    Science.gov (United States)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  19. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  20. Biogenic magnetite as a primary remanence carrier in limestone deposits

    Science.gov (United States)

    Chang, Shih-Bin R.; Kirschvink, Joseph L.; Stolz, John F.

    1987-06-01

    Studies on the microbial communities and magnetic phases of samples collected from carbonate oozes at Sugarloaf Key, FL, U.S.A. and calcareous laminated sediments from Laguna Figueroa, Baja California, Mexico have revealed the existence of magnetotactic bacteria and ultrafine-grained single domain magnetite in both environments. Magnetotactic bacteria were identified by light and electron microscopy. The single domain magnetite was detected by coercivity spectra analysis with a SQUID magnetometer and examined under the transmission electron microscope. The similarity, in terms of size and shape, between the single domain magnetite found in these sediments and the magnetite observed in the bacterial magnetosome from enriched cultures indicates the ultrafine-grained magnetite in these two marine environments was biologically formed. These results, combined with the common occurrences of ultrafine-grained magnetite in limestone deposits detected rock magnetically, suggest biogenic magnetite may be present and contribute to the magnetic remanence in these rocks. Several Cambrian limestone samples, separately collected from Siberia, China, and Kazakhstan, were examined for the presence of bacterial magnetite. Samples from the Lower Cambrian Sinskian Formation at Siberia Platform were found to contain both a large amount of apparently bacterial magnetite particles and a very stable primary magnetic component. Post-Cambrian diagenesis does not seem to affect the microgranulometry of these apparently bacterial magnetite crystals or the magnetic remanence carried by them. Assessing the potential role of biogenic magnetite as a primary remanence carrier in other Phanerozoic limestone deposits ought to be further pursued.

  1. Time of isothermal holding in the course of in-air heat treatment of soft magnetic Fe-based amorphous alloys and their magnetic properties

    Science.gov (United States)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2011-12-01

    On the example of soft magnetic Fe81B13Si4C2 and Fe77Ni1Si9B13 amorphous alloys, the relation between the level of magnetic properties and duration of isothermal holding in the course of heat treatment in air has been studied. The optimum temperature-dependent time τ of isothermal holding has been shown to be related to the volume fraction of domains ( V orth) with orthogonal magnetization in the initial (quenched) ribbon by equation V orth = ττ1/3. A temperature dependence of the proportionality coefficient α, which determines the degree of diffusion-process activity, has been determined. The results obtained allow us to substantially simplify the choice of optimum conditions of atmospheric heat treatment of soft magnetic Fe-based amorphous ribbons.

  2. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  3. Performance of remanent supermirror benders

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Clemens, D.; Horisberger, M.; Rubio, D.; Tixier, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hahn, W. [ISIS (United Kingdom)

    1997-09-01

    Polarising supermirrors composed of magnetic and non-magnetic layers have been deposited on thin glass sheets by means of reactive DC-magnetron sputtering. Benders that are composed of such glass have an excellent transmission and can be used for polarising neutrons in zero field. (author) 3 figs., 1 tab., 2 refs.

  4. Separated CoFe{sub 2}O{sub 4}/CoFe nanoparticles by the SiO{sub x} matrix: revealing the intrinsic origin for the small remanence magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Geng, B. Q.; Ma, Y. Q., E-mail: yqma@ahu.edu.cn; Xu, Y. F.; Xu, S. T.; Sun, X.; Zheng, G. H.; Dai, Z. X. [Anhui University, Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science (China)

    2015-07-15

    In order to clarify the intrinsic reason for the smaller remanence (M{sub r})-to-saturation (M{sub s}) magnetization ratio M{sub r}/M{sub s} than that expected by the Stoner–Wohlfarth model in CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles in the previous report, we first prepared well-dispersed CoFe{sub 2}O{sub 4} nanoparticles, and then they were diluted in the SiO{sub 2} matrix followed by reduction in H{sub 2} as far as possible to exclude or reduce disadvantageous variables (such as the growth and aggregation of particles and the exchange coupling between soft magnetic particles in the process of reducing) affecting magnetic properties. Such an idea has not been taken into account before to our knowledge. The analyses on the magnetic results indicate that the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles herein reported are a pure dipolar system, in which the coercivity (H{sub c}) and M{sub r}/M{sub s} ratio are very sensitive to the anisotropy and the strength of dipolar interaction. These results signify that it is important to maintain the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles with higher anisotropy and weaker dipolar interaction for improving M{sub r}/M{sub s} and H{sub c}. This suggestion was further confirmed by our another result wherein an M{sub r}/M{sub s} value of 0.64 was obtained even though no exchange coupling was observed in the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles, and further work is in process. Graphical abstract: Numerous efforts have devoted to improve the values of M{sub s} and M{sub r}/M{sub s} by compositing hard CoFe{sub 2}O{sub 4} (CFO) ferrite with soft CoFe{sub 2} (CF) alloy, which unfortunately give the low M{sub r}/M{sub s} value (<0.5) even in presence of the exchange coupling. Key issues involve the preparation of CFO/CF composite. Previously the preparation of CFO/CF undergoes the synthesis of CFO and the subsequent reducing in the H{sub 2} ambient, as shown in Figure (a), while in this work well dispersed CFO

  5. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Low, B. C., E-mail: low@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80301 (United States); Egan, A. K., E-mail: andrea.egan@colorado.edu [Barnard College, New York, New York 10027, USA and Department of Physics, Colorado University, Boulder, Colorado 80309 (United States)

    2014-06-15

    This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset

  6. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections.

    Science.gov (United States)

    Oldfield, F; Thompson, R; Barber, K E

    1978-02-10

    Magnetic measurements of ombrotrophic peat allow a reconstruction of changes in the past fallout of magnetic particles through the atmosphere. In recent peat profiles from three sites in Britain and Northern Ireland, a marked increase in saturated isothermal remanent magnetization of the peat is recorded in levels which can be shown to postdate the onset of the Industrial Revolution. Furthermore the spatial variation in contemporary isothermal remanent magnetization values is consistent with a recent industrial and urban origin for the bulk of the magnetic minerals present. Pre-Industrial Revolution values are between two and three orders of magnitude lower, suggesting that the natural cosmic and terrestrial sources previously cited for such material have been dominated in recent times by the products of human activity. Magnetic measurements provide a simple, rapid, and nondestructive method of monitoring and differentiating various types of particulate atmospheric fallout for both recent and preindustrial times.

  7. Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior

    Directory of Open Access Journals (Sweden)

    Javier Idárraga-García

    2018-01-01

    After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform (northward to ∼20°S, which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.

  8. Magnetic paleointensities in fault pseudotachylytes and implications for earthquake lightnings

    Science.gov (United States)

    Leibovitz, Natalie Ruth

    Fault pseudotachylytes commonly form by frictional melting due to seismic slip. These fine-grained clastic rocks result from melt quenching and may show a high concentration of fine ferromagnetic grains. These grains are potentially excellent recorders of the rock natural remanent magnetization (NRM). The magnetization processes of fault pseudotachylytes are complex and may include the following: i) near coseismic thermal remanent magnetization (TRM) acquired upon cooling of the melt; ii) coseismic lightning induced remanent magnetization (LIRM) caused by earthquake lightnings (EQL); iii) post seismic chemical remanent magnetization (CRM) related to both devitrification and alteration. Deciphering these magnetization components is crucial to the interpretation of paleointensities to see if coseismic phenomena such as EQL's were recorded within these rocks. Hence the paleomagnetic record of fault pseudotachylytes provides an independent set of new constraints on coseismic events. Fault pseudotachylytes from the Santa Rosa Mountains, California host a magnetic assemblage dominated by stoichiometric magnetite, formed from the breakdown of ferromagnesian silicates and melt oxidation at high temperature. Magnetite grain size in these pseudotachylytes compares to that of magnetite formed in friction experiments. Paleomagnetic data on these 59 Ma-old fault rocks reveal not only anomalous magnetization directions, inconsistent with the coseismic geomagnetic field, but also anomalously high magnetization intensities. Here we discuss results of rock magnetism and paleointensity experiments designed to quantify the intensity of coseismic magnetizing fields. The REM' paleointensity method, previously tested on meteorites, is particularly well suited to investigate NRMs resulting from non-conventional and multiple magnetization processes. Overall findings indicate an isothermal remanent magnetization (IRM) in some, but not all, specimens taken from four different Santa Rosa

  9. Study of magnetic behavior in hexagonal-YMn{sub 1−x}Fe{sub x}O{sub 3} (x=0 and 0.2) nanoparticles using remanent magnetization curves

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Samta; Singh, Amit Kumar; Srivastava, Saurabh Kumar; Chandra, Ramesh, E-mail: ramesfic@iitr.ac.in

    2016-09-15

    We have studied the magnetic behavior of YMn{sub 1−x}Fe{sub x}O{sub 3} (x=0 and 0.2) nanoparticles synthesized by conventional solid state reaction method. The as-synthesized nanoparticles were found to have hexagonal phase with P6{sub 3cm} space group confirmed by X-Ray diffraction. The particle size was found to be ~70 nm as confirmed by both X-Ray diffraction and Transmission Electron Microscopy. DC magnetization and memory effect measurements imply that the h-YMnO{sub 3} nanoparticles bear a resemblance to super spin-glass state following de Almeida–Thouless like behavior which is being suppressed by Fe-doping. The Fe-doping in YMnO{sub 3} enhances the antiferromagnetic (AFM) transition temperature T{sub N} to ~79 K and induces a new magnetic state due to the surface spins which is realized as diluted antiferromagnet in a field (DAFF) as explored by the thermoremanent and isothermoremanent magnetization measured with different applied magnetic field. - Highlights: • Magnetic behavior of h-YMn{sub 1−x}Fe{sub x}O{sub 3} (x=0 and 0.2) nanoparticles have been studied. • The nanoparticles (~70 nm) were synthesized by solid state reaction method. • Magnetic data reveal spin-glass behavior in YMnO{sub 3} which was suppressed in YMn{sub 0.8}Fe{sub 0.2}O{sub 3}. • The h-YMnO{sub 3} nanoparticles show memory effect and obey de-Almeida Thouless line. • TRM and IRM suggest spin glass nature for YMnO{sub 3}, while the YMn{sub 0.8}Fe{sub 0.2}O{sub 3} resembles DAFF.

  10. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong

    2014-11-01

    Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Quasistatic remanence in Dzyaloshinskii-Moriya interaction driven weak ferromagnets and piezomagnets

    Science.gov (United States)

    Pattanayak, Namrata; Bhattacharyya, Arpan; Nigam, A. K.; Cheong, Sang-Wook; Bajpai, Ashna

    2017-09-01

    We explore remanent magnetization (μ ) as a function of time and temperature, in a variety of rhombohedral antiferromagnets (AFMs) which are also weak ferromagnets (WFMs) and piezomagnets (PzMs). These measurements, across samples with length scales ranging from nano to bulk, firmly establish the presence of a remanence that is quasistatic in nature and exhibits a counterintuitive magnetic field dependence. These observations unravel an ultraslow magnetization relaxation phenomenon related to this quasistatic remanence. This feature is also observed in a defect-free single crystal of α -Fe2O3 , which is a canonical WFM and PzM. Notably, α -Fe2O3 is not a typical geometrically frustrated AFM, and in single crystal form it is also devoid of any size or interface effects, which are the usual suspects for a slow magnetization relaxation phenomenon. The underlying pinning mechanism appears exclusive to those AFMs which either are symmetry allowed WFMs, driven by Dzyaloshinskii-Moriya interaction, or can generate this trait by tuning of size and interface. The qualitative features of the quasistatic remanence indicate that such WFMs are potential piezomagnets, in which magnetization can be tuned by stress alone.

  12. Remanent life management of nuclear power plants

    International Nuclear Information System (INIS)

    Pinedo, J.; Gomez Santamaria, J.

    1995-01-01

    The concept of life in the nuclear power plants is very special. The main aceptions are: design life, economic life and useful life. The good management of NPP will do the prolongation of the life in the NPP. The remanent of management life summarizes certain activities in order to prolong the lifetime of the NPP. This article presents the activities of the RML program, the technological program and its benefits

  13. Holocene paleoclimatic variation in the Schirmacher Oasis, East Antarctica: A mineral magnetic approach

    Science.gov (United States)

    Phartiyal, Binita

    2014-12-01

    An analysis of remanent magnetism and radiocarbon ages in the dry lacustrine/sediment fills of the Schirmacher Oasis (SO) in East Antarctica was conducted to reconstruct past climatic condition. The statistically run mineral magnetic data on paleontological statistics software package (multivariate cluster analysis) placed on accelerator mass spectrometer radiocarbon chronology of the three sediment sections, trace 6 phases of climatic fluctuation between 13 and 3 ka, (Phases 1, 3 and 5 represent cold periods while Phases 2, 4, and 6 represent warm periods). One short warm period (Phase 2, ca. 12.5 ka) occurred in the late Pleistocene, and two marked warm periods (Phase 4, 11-8.7 ka; Phase 6, 4.4-3 ka) occurred in the Holocene. High magnetic susceptibility (χ), saturation isothermal remanent magnetism (SIRM), and soft isothermal remanent magnetism (soft IRM) values correspond to colder periods and low values reflect comparatively warmer lacustrine phases. Holocene Optima (Phase 4) and Mid Holocene Hypsithermal (Phase 6) are distinguished by decreased values of concentrations dependent parameters. Remanence is preserved in the low-coercive minerals. Heavy metals in the sediments include, Fe, Rb, Zn, Mo, Co, Pb, Mn, Cu, and As in order of decreasing abundance.

  14. Effects of magnetic field and hydrostatic pressure on the isothermal martensitic transformation in an Fe-25.0Ni-4.0Cr alloy

    International Nuclear Information System (INIS)

    Kakeshita, T.; Saburi, T.; Shimizu, K.

    1995-01-01

    Effects of magnetic fields and hydrostatic pressures on the isothermal martensitic transformation, whose nose temperature is about 140K, in an Fe-25.0Ni-4.0Cr alloy (mass%) has been examined by applying magnetic fields up to 30MA/m and hydrostatic pressures up to 1.5GPa. The obtained results are the following: The martensitic transformation is induced instantaneously (less than 20μsec.) under pulsed magnetic fields higher than a critical field over a wide temperature range between 4.2 and 200K. The critical magnetic field increases with increasing temperature, and the relation between critical magnetic field and temperature is in good agreement with the one calculated by the equation previously derived by the authors. The T T T diagram under static magnetic field shows a lower nose temperature and a shorter incubation time than that under no external magnetic field, while the T T T diagram under hydrostatic pressure shows a higher nose temperature and a longer incubation time than that under no external hydrostatic pressure. These results are well explained by the new phenomenological theory, which gives a unified explanation on the isothermal and athermal kinetics of martensitic transformations previously constructed by the authors. (orig.)

  15. SQUID measurements of remanent magnetisation in refillable 3He spin-filter cells (SFC)

    Science.gov (United States)

    Hutanu, V.; Rupp, A.; Sander-Thömmes, T.

    2007-07-01

    A strong influence of external magnetic fields on the relaxation time constant T1 of glass cells serving as reservoirs for polarised 3He, observed for various alkali metal-coated cells made of different glass types, was initially associated with the presence of a large number of ferromagnetic clusters on the glass surface. Later experiments showed the presence of the so-called “ T1 hysteresis” phenomenon with a similar distinctiveness also in uncoated cells made of pure synthetic quartz glass. It suggests that the origin of such a relaxation is a macroscopic magnetisation in the bulk of the cell. We present the results of a multi-SQUID system investigation on magnetised and non-magnetised quartz glass cells, Cs coated as well as bare wall, to be used as neutron spin filters at HMI Berlin. The presence of a macroscopic remanent magnetic moment in the cells after their exposition to external magnetic fields has been experimentally shown. More than 80% of the remanent magnetic moment of the magnetised cells was found to be concentrated in the region of the glass valves. SQUID measurements reveal the existence of some remanent magnetisation in all valve parts and also in the vacuum grease, but most magnetic are the plastic parts and the O-ring. Different valve and sealing types have been compared in order to find the less magnetisable one.

  16. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, G.P.; Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Guerra, Y.; Silva, D.B.O.; Farias, B.V.M. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil)

    2017-02-01

    We present here our experimental results for the preparation and characterization of nanowires of nickel and the analysis of the angular dependence of coercivity and remanence using experimental data and micromagnetic simulation. The fabrication was made by using aluminum oxide membranes as templates and deposited nickel by an electrochemical route. The magnetic measurements showed that coercivity and remanence are dependent of the angle of application of the external magnetic field. Our results are different than that expected for the coherent, vortex and transversal modes of the reversion for the magnetic moments. According to the transmission electron microscopy analysis we can see that our nanowires have not a perfect cylindrical format. That is why we have used the ellipsoids chain model for better understanding the real structure of wires and its relation with the magnetic behavior. In order to generate theoretical results for this configuration we have made micromagnetic simulation using Nmag code. Our numerical results for the realistic distances are in correspondence with the magnetic measurements and we can see that there are contradictions if we assume the transverse reversal mode. Then, we can conclude that structure of nanowires should be taken into account to understand the discrepancies reported in the literature for the reversion mechanism in arrays of nickel nanowires. - Highlights: • We present answers for the problem of angular dependence for the coercivity and remanence. • Experimental and theoretical results confirmed the great importance of the real structure. • Micromagnetic calculations confirmed the importance of the real structure.

  17. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    Science.gov (United States)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  18. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-08-25

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  19. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  20. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2016-08-01

    Full Text Available Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF, the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  1. Preliminary magnetostratigraphy and environmental magnetism of the Lower Cretaceous from the Italian Dolomites

    Science.gov (United States)

    Savian, J. F.; Jovane, L.; Florindo, F.; Lukeneder, A.

    2011-12-01

    The Lower Cretaceous (~146 to 100 Ma) represents an enigmatic time interval for paleoclimatic, paleogeography and paleomagnetic evolution of the Earth's history. The climatic changes include global oceanic anoxic events (OAEs), biotic changes, global excursions of carbon and strontium isotopes, rises in eustatic sea level and paleotemperature. Paleoceanography was marked by a rapid rate of ocean spreading in the Atlantic. The opening of the Atlantic Ocean was wide enough to allow significant circulation of masses of waters across the equator. This period is furthermore important for the oceanographic events occurring at the base of the Aptian (Selli Level). This period also present one of the most intriguing geomagnetic events: the long normal Cretaceous superchron, lasted for almost 40 million years. We study here the lower Cretaceous deposits of the Puez section in the Dolomites (northern Italy) which represents a continuous section during this period. The samples collected represent marine sedimentary materials of the Biancone and Puez formations. The Puez section consists essentially of green-grey to red limestones and calcareous marls. We present preliminary results of integrated magnetostratigraphic analysis, including a detailed lithostratigraphy and environmental magnetism. We recognize magnetic behavior that are relative to normal polarity (the normal Cretaceous superchron), with a short reverse interval that might represent the M-1r event. We also recognize a series of normal and reverse polarities (below the normal Cretaceous superchron) which can be referred to the magnetozones M1/M5. The environmental magnetic data consists of magnetic susceptibility (χ), natural remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM) at 900 mT and backfield isothermal remanent magnetization (BIRM) at 100 mT and 300 mT. Derived parameters, such as S-ratio (S300=BIRM300/IRM900) and hard isothermal remanent

  2. Assessment of Rock Magnetic Parameters for Fly Ash Pollution Screening in Topsoil of the Deccan Trap Basalt Area, India

    Science.gov (United States)

    Blaha, U.; Basavaiah, N.; Das, P. K.; Deenadayalan, K.

    2012-04-01

    Rock magnetic parameters of highly magnetic topsoil of the Deccan Trap basalt area are evaluated for their suitability for efficient environmental magnetic pollution screening. Parameters, such as magnetic susceptibility (χ), frequency dependence of magnetic susceptibility (κ fd%), anhysteretic remanent magnetization (ARM), saturation isothermal remanent magnetization (SIRM), soft isothermal remanent magnetization (Soft IRM), as well as thermo-magnetic analysis (κ-T) are compared and assessed for best depiction of topsoil contamination due to ash deposition around the Nashik thermal power station (NTPS). Fifty-five topsoil samples, collected along north-south and west-east stretching transects of 24 km length, are the basis for evaluation of the specific ash distribution pattern around the plant and its adjacent ash pond. Similar decline of the magnetic signals with increasing distance from the point source is observed in the concentration dependent magnetic parameters and can be modeled. The magnetic grain size parameters instead reveal increasing trends with increasing distance. Verwey-transition and Hopkinson peak obtained from κ-T analyses demonstrate to be important parameters to prove fly ash accumulation in soils of basaltic origin. The importance of magnetic parameters for indirect tracing of pollutants, such as heavy metals, is shown by Pb, Zn and Cu data, revealing similar distribution pattern as obtained from the concentration dependent magnetic parameters. Confirmation of the presence of a very high amount of ash particles in the vicinity of the NTPS and a low number of particles in more distant areas is provided by scanning electron microscopy (SEM) on quantitatively extracted magnetic particles at 5.5 km and 11.9 km distance in eastern direction. The investigation demonstrates that the majority of the rock magnetic parameters has the potential to be successfully applied in environmental magnetic studies in areas with high magnetic background

  3. Magnetic record of Mio-Pliocene red clay and Quaternary loess-paleosol sequence in the Chinese Loess Plateau

    Directory of Open Access Journals (Sweden)

    Yougui Song

    2018-02-01

    Full Text Available This article presents magnetic data of a 300-m-thick Mio-Pliocene red clay and Quaternary loess-paleosol sequence near Chaona town in the Central Chinese Loess Plateau. Detailed magnetostratigraphy shows that the aeolian red clay began to accumulate at ca. 8.1 Ma. Here, we presented a high-resolution rock magnetic data at 20–40 cm intervals within 4.5–8 ka span per sample of this section, which has been published in Song et al. (2014 [1] and (2017 [2]. The dataset including the following magnetic parameters: mass magnetic susceptibility (χ, frequency-dependent susceptibility (χfd, saturation magnetization (Ms, saturation remanent magnetization (Mrs, coercive force (Bc, remanent coercivity (Bcr, saturation isothermal remanent magnetization (SIRM and S-ratio. Magnetic susceptibility and hysteresis parameters were measured at Lanzhou University and Kyoto University, respectively. This data provides a high-resolution rock magnetic evidences for understanding East Asia Monsoon change, Asian interior aridification and tectonic effect of the uplift of the Tibetan Plateau since middle Miocene period. Keywords: Rock magnetic record, Late Miocene and Pliocene red clay, Quaternary loess-paleosol sequence, Chinese Loess Plateau

  4. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Lerche, I., E-mail: lercheian@yahoo.com [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle, D-06099 Halle (Germany)

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are of use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].

  5. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    International Nuclear Information System (INIS)

    Lavín, R.; Gallardo, C.; Palma, J.L.; Escrig, J.; Denardin, J.C.

    2012-01-01

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: ► Angular dependence of the coercivity and remanence of Co nanowire arrays. ► Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. ► Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  6. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, R. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Facultad de Ingenieria, Universidad Diego Portales, UDP, Ejercito 441, Santiago (Chile); Gallardo, C.; Palma, J.L. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Escrig, J. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile); Denardin, J.C., E-mail: jcdenardin@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile)

    2012-08-15

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: Black-Right-Pointing-Pointer Angular dependence of the coercivity and remanence of Co nanowire arrays. Black-Right-Pointing-Pointer Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Black-Right-Pointing-Pointer Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  7. Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico

    Science.gov (United States)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.; Caballero-Miranda, C.; Vivallo, W.

    2001-03-01

    Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580°, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes. Magmatic titanomagnetites, which are found in igneous rocks, show trellis, sandwich, and composite textures, which are compatible with high temperature (deuteric) oxy-exsolution processes. Hydrothermal alteration in ore deposits is mainly indicated by martitization in oxide minerals. Grain sizes range from a few microns to >100 mm, and possible magnetic state from single to multidomain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and IRM (isothermal remanent magnetization) acquisition suggest a predominance of spinels as magnetic carriers, most probably titanomagnetites with low

  8. Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia

    DEFF Research Database (Denmark)

    Brownlee, Sarah J.; Feinberg, Joshua M.; Kasama, Takeshi

    2011-01-01

    Paleomagnetic studies of the 91 Ma Ecstall pluton and other Cretaceous plutons of British Columbia imply large northward tectonic movements (>2000 km) may have occurred during the tectonic evolution of western North America. However, more recent studies have shown that the eastern edge...... of the Ecstall pluton experienced considerable mineralogical changes as younger Eocene plutons, such as the ∼58 Ma Quottoon Pluton, were emplaced along its margins. We investigated changes in the rock magnetic properties associated with this reheating event by examining isolated grains of intergrown ilmenite...... and hematite, the primary paleomagnetic recorder in the Ecstall pluton. Measurements of hysteresis properties, low-temperature remanence, and room temperature isothermal remanent magnetization acquisition and observations from magnetic force microscopy and off-axis electron holography indicate that samples...

  9. Magnetic insights on seismogenic processes from scientific drilling of fault

    Science.gov (United States)

    Ferre, E. C.; Chou, Y. M.; Aubourg, C. T.; Li, H.; Doan, M. L.; Townend, J.; Sutherland, R.; Toy, V.

    2017-12-01

    Modern investigations through scientific drilling of recently seismogenic faults have provided remarkable insights on the physics of rupture processes. Following devastating earthquakes, several drilling programs focused since 1995 on the Nojima, Chelungpu, San Andreas, Wenchuan, Nankai Trough, Japan Trench and New Zealand Alpine faults. While these efforts were all crowned with success largely due to the multidisciplinarity of investigations, valuable insights were gained from rock magnetism and paleomagnetism and deserve to be highlighted. Continuous logging of magnetic properties allows detection of mineralogical and chemical changes in the host rock and fault zone particularly in slip zones, whether these are caused by frictional melting, elevation of temperature, ultracataclasis, or post-seismic fluid rock interaction. Further magnetic experiments on discrete samples including magnetic susceptibility, natural remanent magnetization, hysteresis properties, isothermal remanent magnetization acquisition and first order reversal curves, provide additional constrains on the nature, concentration and grain size of magnetic carriers. These experiments typically also inform on magnetization processes by thermal, chemical, or electrical mechanisms. Magnetic fabrics are generally not investigated on fault rocks from drill cores primarily in an effort to conserve the recovered core. However, recent methodological developments now would allow chemically non-destructive anisotropy of magnetic susceptibility (AMS) measurements to be performed on small 3.5 mm cubes. The mini-AMS method could provide crucial information on the kinematics of frictional melts produced during recent or ancient earthquakes and therefore would constrain the corresponding focal mechanisms. Finally, demagnetization experiments of the natural remanent magnetization (NRM) are one of the most powerful items in the magnetic toolkit because they provide chronological constrains on magnetization processes

  10. Magnetic signature of daily sampled urban atmospheric particles

    Science.gov (United States)

    Muxworthy, Adrian R.; Matzka, Jürgen; Davila, Alfonso Fernández; Petersen, Nikolai

    The magnetic signature of two sets of daily sampled particulate matter (PM) collected in Munich, Germany, were examined and compared to variations in other pollution data and meteorological data using principal component analysis. The magnetic signature arising from the magnetic minerals in the PM was examined using a fast and highly sensitive magnetic remanence measurement. The longest data set studied was 160 days, significantly longer than that of similar magnetic PM studies improving the statistical robustness. It was found that the variations in the mass-dependent magnetic parameters displayed a complicated relationship governed by both the meteorological conditions and the PM loading rate, whereas mineralogy/grain-size-dependent magnetic parameters displayed little variation. A six-fold increase in the number of vehicles passing the sampling locations only doubled the magnetic remanence of the samples, suggesting that the measured magnetic signature is in addition strongly influenced by dispersion rates. At both localities the saturation isothermal remanent magnetisation (SIRM) was found to be strongly correlated with the PM mass, and it is suggested that measuring SIRM as a proxy for PM monitoring is a viable alternative to magnetic susceptibility when the samples are magnetically too weak. The signal was found to be dominated by magnetite-like grains less than 100 nm in diameter which is thought to be derived primarily from vehicles. Such small grains are known to be particularly dangerous to humans. There was also evidence to suggest from magnetic stability parameters that the magnetite-like grains were covered with an oxidised rim. The concentration of magnetic PM was in the range of 0.3-0.5% by mass.

  11. Advanced UXO Discrimination using Magnetometry: Understanding Remanent Magnetization

    Science.gov (United States)

    2009-09-01

    moments of steel samples. The MRIP comprises six three-component fluxgate magnetometers symmetrically distributed around a rotating sample holder. Samples...comprises six three- component fluxgate magnetometers symmetrically distributed around a rotating sample holder. Samples are placed on the holder... fluxgate magnetometers symmetrically distributed around a rotating sample holder. Samples are placed on the holder and are slowly spun through two

  12. Inverse thermo-remanent magnetization of extraterrestrial Allende material

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther

    2017-01-01

    Roč. 52, SI 1 (2017), A168 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /80./. 23.07.2017-28.07.2017, Santa Fe] Institutional support: RVO:67985831 Keywords : meteorits * Allende chondrite * ITRM Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://onlinelibrary.wiley.com/doi/10.1111/maps.2017.52.issue-S1/issuetoc

  13. Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow

    Science.gov (United States)

    Ali, Farhad; Imtiaz, Anees; Khan, Ilyas; Sheikh, Nadeem Ahmad

    2018-06-01

    In the sixteenth century, medical specialists were of the conclusion that magnet can be utilized for the treatment or wipe out the illnesses from the body. On this basis, the research on magnet advances day by day for the treatment of different types of diseases in mankind. This study aims to investigate the effect of magnetic field and their applications in human body specifically in blood. Blood is a non-Newtonian fluid because its viscosity depends strongly on the fraction of volume occupied by red cells also called the hematocrit. Therefore, in this paper blood is considered as an example of non-Newtonian Casson fluid. The blood flow is considered in a vertical cylinder together with heat transfer due to mixed conviction caused by buoyancy force and the external pressure gradient. Effect of magnetic field on the velocities of blood and magnetic particles is also considered. The problem is modelled using the Caputo-Fabrizio derivative approach. The governing fractional partial differential equations are solved using Laplace and Hankel transformation techniques and exact solutions are obtained. Effects of different parameters such as Grashof number, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field are shown graphically. Both velocity profiles increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of magnetic field.

  14. Rock Magnetic Properties of Laguna Carmen (Tierra del Fuego, Argentina): Implications for Paleomagnetic Reconstruction

    Science.gov (United States)

    Gogorza, C. G.; Orgeira, M. J.; Ponce, F.; Fernández, M.; Laprida, C.; Coronato, A.

    2013-05-01

    We report preliminary results obtained from a multi-proxy analysis including paleomagnetic and rock-magnetic studies of two sediment cores of Laguna Carmen (53°40'60" S 68°19'0" W, ~83m asl) in the semiarid steppe in northern Tierra del Fuego island, Southernmost Patagonia, Argentina. Two short cores (115 cm) were sampled using a Livingstone piston corer during the 2011 southern fall. Sediments are massive green clays (115 to 70 cm depth) with irregularly spaced thin sandy strata and lens. Massive yellow clay with thin sandy strata continues up to 30 cm depth; from here up to 10 cm yellow massive clays domain. The topmost 10 cm are mixed yellow and green clays with fine sand. Measurements of intensity and directions of Natural Remanent Magnetization (NRM), magnetic susceptibility, isothermal remanent magnetization, saturation isothermal remanent magnetization (SIRM), back field and anhysteretic remanent magnetization at 100 mT (ARM100mT) were performed and several associated parameters calculated (ARM100mT/k and SIRM/ ARM100mT). Also, as a first estimate of relative magnetic grain-size variations, the median destructive field of the NRM (MDFNRM), was determined. Additionally, we present results of magnetic parameters measured with vibrating sample magnetometer (VSM). The stability of the NRM was analyzed by alternating field demagnetization. The magnetic properties have shown variable values, showing changes in both grain size and concentration of magnetic minerals. It was found that the main carrier of remanence is magnetite with the presence of hematite in very low percentages. This is the first paleomagnetic study performed in lakes located in the northern, semiarid fuegian steppe, where humid-dry cycles have been interpreted all along the Holocene from an aeolian paleosoil sequence (Orgeira et el, 2012). Comparison between paleomagnetic records of Laguna Carmen and results obtained in earlier studies carried out at Laguna Potrok Aike (Gogorza et al., 2012

  15. A New Tool for Separating the Magnetic Mineralogy of Complex Mineral Assemblages from Low Temperature Magnetic Behavior

    Directory of Open Access Journals (Sweden)

    France Lagroix

    2017-07-01

    Full Text Available One timeless challenge in rock magnetic studies, inclusive of paleomagnetism and environmental magnetism, is decomposing a sample's bulk magnetic behavior into its individual magnetic mineral components. We present a method permitting to decompose the magnetic behavior of a bulk sample experimentally and at low temperature avoiding any ambiguities in data interpretation due to heating-induced alteration. A single instrument is used to measure the temperature dependence of remanent magnetizations and to apply an isothermal demagnetization step at any temperature between 2 and 400 K. The experimental method is validated on synthetic mixtures of magnetite, hematite, goethite as well as on natural loess samples where the contributions of magnetite, goethite, hematite and maghemite are successfully isolated. The experimental protocol can be adapted to target other iron bearing minerals relevant to the rock or sediment under study. One limitation rests on the fact that the method is based on remanent magnetizations. Consequently, a quantitative decomposition of absolute concentration of individual components remains unachievable without assumptions. Nonetheless, semi-quantitative magnetic mineral concentrations were determined on synthetic and natural loess/paleosol samples in order to validate and test the method as a semi-quantitative tool in environmental magnetism studies.

  16. Magnetic properties of frictional volcanic materials

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    magnetisation (ARM), as expected for a thermal origin, the remanence of volcanic pseudotachylyte has been found to be comparable to an isothermal remanent magnetisation (IRM). Thus, the pseudotachylyte has experienced a strong magnetic field that overwrote the previous thermoremanent magnetisation of the magma, such as the strong local electric current that occurs in faults (e.g. Ferré et al., 2005). Additionally, the pseudotachylyte seems more often to comprise of uniaxial non-interacting single-domain particles compared to pseudo-single in the host, and to have a single Curie temperature whereas the host more commonly exhibits multiple phases. Differences in rock-magnetic parameters between the pseudotachylyte and host are significant, but not as high as those observed in granites by Nakamura et al. (2002) or Ferré et al. (2005), probably because granitic host rocks do not already carry a strong and stable remanence as do these extrusive volcanic rocks. The application of rock-magnetic tests in volcanology will undoubtedly continue to be a "go-to" tool for identification of pseudotachylytes, which are increasingly being recognised to play an important role in dome-building eruptions. Refs: Ferré, E.C., Zechmeister, M.S., Geissman, J.W., MathanaSekaran, N. and Kocak, K., 2005. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 402(1-4): 125-139. Nakamura, N., Hirose, T. and Borradaile, G.J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. . Earth and Planetary Science Letters, 201(1): 13-18.

  17. Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples

    Science.gov (United States)

    Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao

    2018-04-01

    Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.

  18. Chemical and magnetic analyses on tree bark as an effective tool for biomonitoring: A case study in Lisbon (Portugal).

    Science.gov (United States)

    Brignole, Daniele; Drava, Giuliana; Minganti, Vincenzo; Giordani, Paolo; Samson, Roeland; Vieira, Joana; Pinho, Pedro; Branquinho, Cristina

    2018-03-01

    Tree bark has proven to be a reliable tool for biomonitoring deposition of metals from the atmosphere. The aim of the present study was to test if bark magnetic properties can be used as a proxy of the overall metal loads of a tree bark, meaning that this approach can be used to discriminate different effects of pollution on different types of urban site. In this study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, P, Pb, V and Zn were measured by ICP-OES in bark samples of Jacaranda mimosifolia, collected along roads and in urban green spaces in the city of Lisbon (Portugal). Magnetic analyses were also performed on the same bark samples, measuring Isothermal Remanent Magnetization (IRM), Saturation Isothermal Remanent Magnetization (SIRM) and Magnetic Susceptibility (χ). The results confirmed that magnetic analyses can be used as a proxy of the overall load of trace elements in tree bark, and could be used to distinguish different types of urban sites regarding atmospheric pollution. Together with trace element analyses, magnetic analyses could thus be used as a tool to provide high-resolution data on urban air quality and to follow up the success of mitigation actions aiming at decreasing the pollutant load in urban environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Palaeomagnetic dating method accounting for post-depositional remanence and its application to geomagnetic field modelling

    Science.gov (United States)

    Nilsson, A.; Suttie, N.

    2016-12-01

    Sedimentary palaeomagnetic data may exhibit some degree of smoothing of the recorded field due to the gradual processes by which the magnetic signal is `locked-in' over time. Here we present a new Bayesian method to construct age-depth models based on palaeomagnetic data, taking into account and correcting for potential lock-in delay. The age-depth model is built on the widely used "Bacon" dating software by Blaauw and Christen (2011, Bayesian Analysis 6, 457-474) and is designed to combine both radiocarbon and palaeomagnetic measurements. To our knowledge, this is the first palaeomagnetic dating method that addresses the potential problems related post-depositional remanent magnetisation acquisition in age-depth modelling. Age-depth models, including site specific lock-in depth and lock-in filter function, produced with this method are shown to be consistent with independent results based on radiocarbon wiggle match dated sediment sections. Besides its primary use as a dating tool, our new method can also be used specifically to identify the most likely lock-in parameters for a specific record. We explore the potential to use these results to construct high-resolution geomagnetic field models based on sedimentary palaeomagnetic data, adjusting for smoothing induced by post-depositional remanent magnetisation acquisition. Potentially, this technique could enable reconstructions of Holocene geomagnetic field with the same amplitude of variability observed in archaeomagnetic field models for the past three millennia.

  20. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  1. Magnetic properties of natural pyrrhotite Part I : Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework

    NARCIS (Netherlands)

    Dekkers, M.J.

    1988-01-01

    The grain-size dependence of the initial susceptibility, saturation magnetization, saturation remanence , coercive force, remanent coercive force and remanent acquisition coercive force, is reported for four natural pyrrhotites in a grain-size range from 250 µm down to <5 µm.

  2. Rock Magnetic Study of IODP/ICDP Expedition 364 Site M0077A Drill Cores: Post-Impact Sediments, Impact Breccias, Melt, Granitic Basement and Dikes

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.

    2017-12-01

    Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities

  3. Magnetic properties of natural pyrrhotite Part I: Behaviour

    NARCIS (Netherlands)

    Dekkers, M.J.

    1988-01-01

    The grain-size dependence of the initial susceptibility (X 1~),saturation magnetization (.1,), saturation remanence (J~),coercive force (He), remanent coercive force (Hcr) and remanent acquisition coercive force (Hcr’), is reported for four natural pyrrhotites in a grain-size range from 250

  4. Magnetic ordering at low temperatures in some random superconducting and insulating compounds

    International Nuclear Information System (INIS)

    Hueser, D.

    1985-01-01

    This thesis presents the results of some investigations on the magnetic ordering phenomena in some random superconducting and insulating materials. The results are described of an investigation of the coexistence of superconductivity and random magnetic freezing in (Th,Nd)Ru 2 . On the basis of various measurements as function of temperature and external magnetic field the author found that spin glass-like freezing can occur far below the superconductivity and even that a sample may re-enter the superconducting state below a freezing temperature. Associated with the isothermal remanent magnetization of a random magnetic material he observed strong anomalies in the critical field versus temperature curves. Also a magnetic field memory effect has been found. (Auth.)

  5. Adsorption of Cd(II) by Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Ran-ran; Yan, Liang-guo, E-mail: yanyu-33@163.com; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Highlights: • The Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can efficiently remove Cd(II) from aqueous solutions. • The adsorption mechanisms of Cd(II) were discussed in detail. • The adsorption kinetic, isothermal and thermodynamic properties of Cd(II) were studied. • Magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can be quickly and easily separated using a magnet. - Abstract: Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO{sub 3} emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO{sub 3} precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-LDH can be quickly and easily separated using a magnet before and after the adsorption process.

  6. Estimating the remanent life of boiler pressure parts: Pt. 3

    International Nuclear Information System (INIS)

    Askins, M.C.

    1988-04-01

    A cast of 1Cr1/2Mo steel has been creep tested in argon at stresses in the range 34-80 MPa and temperatures between 590-630 0 C in various heat treatment states, including normalized and tempered, and overaged. To assess their use in remanent life evaluations, various techniques have been used including hardness, bulk extraction of carbides and X-ray examination of the phases present, determination of matrix solute content, X-ray determination of the matrix lattice parameter and carbide extraction replication of the structure and measurement of various interparticle spacing parameters. The dependence of the spacing on time and temperature has been established and used to calibrate a model of tertiary creep for the material, based on the coarsening of the interparticle separation. The model is shown to match and predict the material's behaviour well. In application to plant the interparticle spacing can be determined from a small sample removed from the component. The model can be used to give estimates of the time to rupture, or more usefully, estimate the time to any given strain. Of all the techniques used, interparticle spacing determinations give the best estimates of remanent life. (author)

  7. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  8. The full size validation of remanent life assessment methods

    International Nuclear Information System (INIS)

    Hepworth, J.K.; Williams, J.A.

    1988-03-01

    A range of possible life assessment techniques for the remanent life appraisal of creeping structures is available in the published literature. However, due to the safety implications, the true conservatism of such methods cannot be assessed on operating plant. Consequently, the CEGB set up a four vessel programme in the Pressure Vessel Test Facility at the Marchwood Engineering Laboratories of the CEGB to underwrite and quantify the accuracy of these methods. The application of two non-destructive methods, namely strain monitoring and hardness measurement, to the data generated during about 12,000 hours of testing is examined. The current state of development of these methods is reviewed. Finally, the future CEGB programme relating to these vessels is discussed. (author)

  9. Angular and geometry dependence of coercivity and remanence nickel nanotube isolated

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.L.; Davila, Y.G.; Garcia, R.P.; Del Toro, A.D.; Martins, I.G.; Hernandez, E.P. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    , where we vary the angle of the magnetic field applied to the ferromagnetic system. We investigated the role of geometry in the coercivity and remanence of hysteresis curves, where we analyze the types of magnetization reversal modes that can appear in isolated nanotube system. (author)

  10. Introduction to permanent magnets

    International Nuclear Information System (INIS)

    Zijlstra, H.

    1985-01-01

    Some general considerations concerning the application of permanent magnets are developed. The relevant magnet properties are discussed, with particular reference to Nd-Fe-B alloy. The author comes to the following conclusions; the air gap field B should be high, for high electrical efficiency; the magnet should face the air gap, for efficient use of the magnet material; the magnet material should therefore have a high remanence; and the new Nd-Fe-B magnet fits in nicely, having (potentially) the highest remanence ever reported in permanent magnets, combined with sufficient coercivity to sustain it

  11. Security strategy of powered-off SRAM for resisting physical attack to data remanence

    International Nuclear Information System (INIS)

    Yu Kai; Zou Xuecheng; Yu Guoyi; Wang Weixu

    2009-01-01

    This paper presents a security strategy for resisting a physical attack utilizing data remanence in powered-off static random access memory (SRAM). Based on the mechanism of physical attack to data remanence, the strategy intends to erase data remanence in memory cells once the power supply is removed, which disturbs attackers trying to steal the right information. Novel on-chip secure circuits including secure power supply and erase transistor are integrated into conventional SRAM to realize erase operation. Implemented in 0.25 μm Huahong-NEC CMOS technology, an SRAM exploiting the proposed security strategy shows the erase operation is accomplished within 0.2 μs and data remanence is successfully eliminated. Compared with conventional SRAM, the retentive time of data remanence is reduced by 82% while the operation power consumption only increases by 7%.

  12. Remanence coercivity of dot arrays of hcp-CoPt perpendicular films

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuzuka, K; Shimatsu, T; Aoi, H [Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577 (Japan); Kikuchi, N; Okamoto, S; Kitakami, O, E-mail: shimatsu@riec.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 (Japan)

    2010-01-01

    The remanence coercivity, H{sub r}, of hcp-CoPt dot arrays with various dot thicknesses, {delta}, (3 and 10 nm) and Pt content (20-30at%) were experimentally investigated as a function of the dot diameter, D(30-400 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to H{sub r}. The angular dependence of H{sub r} for the dot arrays indicated coherent rotation of the magnetization during nucleation. H{sub r} increased as Ddecreased in all series of dot arrays with various {delta} and Pt content. Assuming that the nucleation field of a dot is determined by the switching field of a grain having the smallest switching field, we calculated the value of nucleation field H{sub n}{sup cal} taking account of the c-axis distribution and the distribution of the demagnetizing field in the dot. The values of H{sub r} obtained experimentally are in good agreement with those of H{sub n}{sup cal}, taking account of thermal agitation of magnetization. This result suggested that the reversal process of hcp-CoPt dot arrays starts from a nucleation at the center of the dot followed by a propagation process.

  13. Fine particle magnetic mineralogy of archaeological ceramics

    International Nuclear Information System (INIS)

    Atkinson, D; King, J A

    2005-01-01

    This study investigated the magnetic mineralogy of a worldwide collection of archaeological pottery. The mineral types, the mass fractions and the domain states of the constituent magnetic fine particles were elucidated from a range of measurements including magnetic hysteresis behaviour, the acquisition of isothermal remanence, low field susceptibility and thermomagnetic curves. The magnetic mineralogy of most samples was dominated by magnetite. Titanomagnetites with limited titanium substitution and cation deficient magnetites (indicative of low temperature oxidation) were dominant in some samples. Haematite was detected in 53% of the samples, but seldom contributed much to the saturation magnetization. Magnetic particle sizes are skewed to smaller sizes, with sherds mostly having a large superparamagnetic or a stable single domain fraction. Low temperature susceptibility data suggest that 30% of samples had some multidomain component. The percentage by mass of magnetic material in the ancient pottery studied was less than 0.8% for all but one of the samples and the majority of samples contain less than 0.3% by weight of magnetic fine particles. The presence of low temperature oxidation in many samples and the occurrence of a multidomain component in a third of the collection suggest that ancient pottery may not always be suitable for determining the intensity of the ancient geomagnetic field

  14. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  15. Magnetic properties and emplacement of the Bishop tuff, California

    Science.gov (United States)

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  16. Effect of pb on the magnetic interactions of the M-type hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A.L., E-mail: azdlobo@gmail.com [Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón No. 64, Col. Centro, San Luis Potosí, S.L.P. 78000, México (Mexico); Mirabal-García, M. [Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón No. 64, Col. Centro, San Luis Potosí, S.L.P. 78000, México (Mexico); Palomares-Sánchez, S.A.; Martínez, J.R. [Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón No. 64, Col. Centro, San Luis Potosí, S.L.P. 78000, México (Mexico)

    2016-02-01

    This work reports the magnetic interactions of M-type lead hexaferrites. The samples were prepared using the solid state reaction method varying the lead concentration and compensating its lost by thermal treatment in order to obtain pure phases. The structural characterization was made through X-ray diffraction and the Rietveld refinement method. The morphology and grain-growth analysis were carried out using scanning electron microscopy. The magnetic interactions were studied through isothermal remanence (IRM) and DC demagnetization (DCD) remanence curves and through the construction of Henkel plots. By analyzing deviations from the Stoner–Wohlfarth model for non-interacting particles, it was determined the way in which lead modifies the interaction state in the hexaferrites. The experimental results show that the demagnetizing interactions prevail in systems with high lead content, and as lead concentration diminishes the intensity of magnetic interactions also decreases giving rise to magnetizing interactions - Highlights: • Construction of Henkel Plots of substituted hexaferrites. • Evaluation of magnetostatic and exchange interactions. • Effect of lead substitution on magnetic properties of the hexaferrites.

  17. Mineral magnetism of atmospheric dust over southwest coast of India: Impact of anthropogenic activities and implications to public health

    Science.gov (United States)

    Warrier, Anish Kumar; Shankar, R.; Manjunatha, B. R.; Harshavardhana, B. G.

    2014-03-01

    We have used rock magnetic techniques in this study to assess atmospheric pollution at five stations in and around Mangalore city on the southwestern coast of India. Samples of dust were collected from two suburban areas (Thokkottu and Pumpwell located respectively ~ 10 km and 3 km from the city center), the city center itself (Milagres) and industrial/port areas (Panambur and Mangalore Refinery and Petrochemicals Limited (MRPL)). Low-frequency magnetic susceptibility (χlf), frequency-dependent susceptibility (χfd), susceptibility of anhysteretic remanent magnetization (χARM) and isothermal remanent magnetization (IRM 20 to 1000 mT) were determined on 23 dust samples and inter-parametric ratios calculated. Results show that samples from suburban areas (particularly Thokkottu) are characterized by low χlf (Company Limited (KIOCL) at Panambur and its storage and export through the nearby New Mangalore Port. However, the dust sample from MRPL has magnetically "soft" minerals like magnetite. This magnetic mineral may have originated from petroleum refining processes at MRPL. Particulate pollution from industrial activities and motor vehicle exhaust is a threat to human health and is known to cause cardiovascular and respiratory ailments. Therefore, the pollution levels brought out by this study warrant a comprehensive epidemiological study in the area of study.

  18. Toward constructing a time-series of geomagnetic field variations from thermal remanence in slowly cooled igneous rocks

    Science.gov (United States)

    Burns, Z.; Gee, J. S.

    2017-12-01

    Analysis of paleomagnetic data can not only help us to understand the behavior of the ancient magnetic field but may also further our understanding of the current field, as well as of the mechanisms and constraints of the geodynamo and geomagnetic reversals. A question of particular interest is the possible relationship between reversal frequency and geomagnetic field intensity. Some research appears to indicate a correlation between low intensity and high reversal frequency, seeming to support the theory that low field intensity is what makes reversals possible. In order to study this correlation, we obtained several hundred samples from the 182 Ma Dufek Massif, in Antarctica. This intrusion was cooled slowly, at depth, during the high reversal frequency era of the early Jurassic, and most of our samples record multiple polarity intervals. This, combined with their particularly homogeneous magnetic characteristics, makes them ideally suited for recovering a record of geomagnetic field variations. On approximately 300 samples from the lower portion of the intrusion, we performed step-wise thermal demagnetization of the natural remanent magnetization (NRM), followed by thermal demagnetization of a laboratory thermoremance (TRM), imparted as partial TRMs in three orthogonal directions to assess the reliability of the remanence. These two sets of measurements can tell us about the amount and direction of magnetization acquired at each temperature step and the sample's capacity to acquire a remanence. Corrected for anisotropy, the ratio of the NRM/TRM values at each step multiplied by the value of the lab field can give us an estimate of the paleofield intensity. When convolved with a thermal cooling model for the intrusion, this yields a model of the time-varying ancient field during the intrusion's cooling period. Initial analysis of our data shows average field values of around 20 µT and a minimum of four reversals. The average at this high-latitude site is lower

  19. Remanent resistance changes in metal- PrCaMnO-metal sandwich structures

    Energy Technology Data Exchange (ETDEWEB)

    Scherff, Malte; Meyer, Bjoern-Uwe; Scholz, Julius; Hoffmann, Joerg; Jooss, Christian [Institute of Materials Physics, University of Goettingen (Germany)

    2012-07-01

    The non-volatile electric pulse induced resistance change (EPIR) seems to be a rather common feature of oxides sandwiched by electrodes. However, microscopic mechanisms are discussed controversially. We present electrical transport measurements of sputtered Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} films sandwiched by metallic electrodes with variation of electrode materials, device geometry and PCMO deposition parameters. Cross-plane transport measurements have been performed as function of temperature and magnetic field. Specifically, the transition from dynamic resistance changes due to non-linear transport to remanent switching is analyzed. By analyzing changes of magneto-resistance at low temperatures in different resistance states we aim for separation between interface and film contributions to switching. Comparing switching behavior in symmetric and asymmetric electrode configuration allows for identification of the active, single interface in the switching process and the origin of an observed switching polarity inversion. The influence of excitation field and power on the switching characteristics of different noble metal electrodes is discussed. Samples from macroscopic devices and in situ stimulated sandwich structures were studied in a transmission electron microscope in order to investigate the induced structural, chemical and electronic changes.

  20. Remanent dose rates around the collimators of the LHC beam cleaning insertions

    International Nuclear Information System (INIS)

    Brugger, M.; Roesler, S.

    2005-01-01

    The LHC will require an extremely powerful and unprecedented collimation system. As ∼30% of the LHC beam is lost in the cleaning insertions, these will become some of the most radioactive locations around the entire LHC ring. Thus, remanent dose rates to be expected during later repair or maintenance interventions must be considered in the design phase itself. As a consequence, the beam cleaning insertions form a unique test bed for a recently developed approach to calculate remanent dose rates. A set of simulations, different in complexity, is used in order to evaluate methods for the estimation of remanent dose rates. The scope, as well as the restrictions, of the omega-factor method are shown and compared with the explicit simulation approach. The latter is then used to calculate remanent dose rates in the beam cleaning insertions. Furthermore, a detailed example for maintenance dose planning is given. (authors)

  1. Remanent dose rates around the collimators of the LHC beam cleaning insertions.

    Science.gov (United States)

    Brugger, M; Roesler, S

    2005-01-01

    The LHC will require an extremely powerful and unprecedented collimation system. As approximately 30% of the LHC beam is lost in the cleaning insertions, these will become some of the most radioactive locations around the entire LHC ring. Thus, remanent dose rates to be expected during later repair or maintenance interventions must be considered in the design phase itself. As a consequence, the beam cleaning insertions form a unique test bed for a recently developed approach to calculate remanent dose rates. A set of simulations, different in complexity, is used in order to evaluate methods for the estimation of remanent dose rates. The scope, as well as the restrictions, of the omega-factor method are shown and compared with the explicit simulation approach. The latter is then used to calculate remanent dose rates in the beam cleaning insertions. Furthermore, a detailed example for maintenance dose planning is given.

  2. Rock Magnetic Properties, Paleosecular Variation Record and Relative Paleointensity Stack between 11 and 21 14C kyr B.P. From Sediment Cores, Lake Moreno (Argentina)

    Science.gov (United States)

    Gogorza, C. S.; Irurzun, M. A.; Lirio, J. M.; Nunez, H.; Chaparro, M. A.; Sinito, A. M.

    2008-05-01

    We conducted a detailed study of natural remanence and rock magnetic properties on sediments cores from lake Moreno (South-Western Argentina). Based on these measurements, we constructed a paleosecular variation (PSV) record (Irurzun et al., 2008) and a relative paleointensity stack for the period 11-21 14C. The Declination and Inclination logs of the characteristic remanent magnetization for the cores as function of shortened depth are obtained. The data from all cores were combined to obtain a composite record using the Fisher method. Comparison between stacked inclination and declination records of lake Moreno and results obtained in previous works, lake Escondido (Gogorza et al., 1999; Gogorza et al., 2002) and lake El Trébol (Irurzun et al., 2008), shows good agreement. This agreement made possible to transform the stacked curves into time series that spans the interval 11 and 21 14C kyr B.P. Rock magnetic properties of the sediments cores showed uniform magnetic mineralogy and grain size, suggesting that they were suitable for relative paleointensity studies. The remanent magnetization at 20mT (NRM20mT) was normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent magnetization at 20mT (SIRM20mT) and the low field magnetic susceptibility {k}. Coherence analysis showed that the normalized records were not affected by local environmental conditions. The recorded pseudo-Thellier paleointensity was compared with records obtained from conventional normalizing methods. Comparing the paleointensity curves with others obtained previously in other lakes in the area has allowed us to reach reliable conclusions about centennial-scale features. References: Gogorza, C.S.G., Sinito, A.M., Di Tommaso, I., Vilas, J.F., Creer, K., Núnez, H. Holocene Geomagnetic Secular Variations Recorded by Sediments from Escondido lake (South Argentina). Earth, Planets and Space, V51(2), 93- 106. 1999. Gogorza, C.S.G., Sinito, A

  3. Isothermal Martensite Formation

    DEFF Research Database (Denmark)

    Villa, Matteo

    Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanism...... of lattice strains provided fundamental information on the state of stress in the material and clarified the role of the strain energy on martensite formation. Electron backscatter diffraction revealed that the microstructure of the material and the morphology of martensite were independent on the cooling...... leading to isothermal kinetics acquired new practical relevance because of the identification of isothermal martensite formation as the most likely process responsible for enhanced performances of sub-zero Celsius treated high carbon steel products. In the present work, different iron based alloys...

  4. Adiabatic and isothermal resistivities

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1989-01-01

    The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester

  5. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks

    Science.gov (United States)

    Huang, Wentao; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Garzanti, Eduardo; Dupont-Nivet, Guillaume; Lippert, Peter C.; Li, Xiaochun; Maffione, Marco; Langereis, Cor G.; Hu, Xiumian; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India," the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5°S [52.5°S, 58.6°S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India" during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8°S [21.8°S, 26.1°S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.

  6. Study of true-remanent polarization using remanent hysteresis task and resistive leakage analysis in ferroelectric 0.64Pb(Mg1/3Nb2/3)O3-0.36PbTiO3 ceramics

    Science.gov (United States)

    Joseph, Abhilash J.; Kumar, Binay

    2018-03-01

    The conventionally reported value of remanent polarization (Pr) contains contribution from non-remanent components which are not usable for memory device applications. This report presents techniques which extract the true-remanent (intrinsic) component of polarization after eliminating the non-remanent component in ferroelectric ceramics. For this, "remanent hysteresis task" and "positive-up-negative-down technique" were performed which utilized the switchable properties of polarizations to nullify the contributions from the non-remanent (non-switchable) components. The report also addresses the time-dependent leakage behavior of the ceramics focusing on the presence of resistive leakage (a time-dependent parameter) present in the ceramics. The techniques presented here are especially useful for polycrystalline ceramics where leakage current leads to an erroneous estimation of Pr.

  7. Application of magnetic methods for assessment of soil restoration in the vicinity of metallurgical copper-processing plant in Bulgaria.

    Science.gov (United States)

    Jordanova, N; Petrovský, E; Kapicka, A; Jordanova, D; Petrov, P

    2017-04-01

    Copper ore mining and processing are among the most harmful anthropogenic influences for the environment and they are a subject of international and national law regulations. Recultivation of areas influenced by mining and processing industry is commonly applied and monitored in order to restore as much as possible the natural environment. In this study, environmental magnetic methods are applied in order to assess the degree of soil restoration in terms of soil development, after remediation of waste dump from Cu-processing plant. Soils developed under birch forest stands of different age (5, 15, and 25 years) as well as raw waste material were sampled along depth down to 20-30 cm. Variations in magnetic parameters and ratios obtained (magnetic susceptibility, frequency-dependent magnetic susceptibility, anhysteretic remanence (ARM), isothermal remanence (IRM), ARM/IRM 100mT ) suggest the presence of magnetic enhancement in the upper 0-15 cm, the thickness of this layer varying depending on the age of the forest stand. Magnetic mineral responsible for this enhancement is of magnetite type, while waste material contains a large amount of hematite, as evidenced by coercivity analysis of IRM acquisition curves and thermal demagnetization of composite IRM. Magnetic grain-sized proxy parameters suggest that magnetite particles are coarser, magnetically stable, while no or minor amount of superparamagnetic grains were detected at room temperature. A well-defined linear regression between the topsoil magnetic susceptibility and the approximate age of the forest stand provides an indication that the magnetic enhancement is of pedogenic origin. It is concluded that the observed magnetic enhancement of recultivated soils studied is linked to a combined effect of pedogenic contribution and possible additions of industrial ashes as a liming agent for soil restoration.

  8. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenyin [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Zhang, Weiguo, E-mail: wgzhang@sklec.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Ma, Honglei [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Feng, Huan [Department of Earth and Environmental Studies, Montclair State University, NJ 07043 (United States); Lu, Honghua [Department of Geography, College of Resources and Environmental Science, East China Normal University, Shanghai 200241 (China); Dong, Yan [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Institute of Geographic Engineering Technology, School of Geographical Science, Nantong University, Nantong 226007 (China); Yu, Lizhong [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China)

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of {sup 137}Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr{sup −1} for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ{sub ARM}) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ{sub ARM}) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment.

  9. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    International Nuclear Information System (INIS)

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-01-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of 137 Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr −1 for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ ARM ) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ ARM ) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment

  10. Crustal evolution inferred from apollo magnetic measurements

    International Nuclear Information System (INIS)

    Dyal, P.; Daily, W.D.; Vanyan, L.L.

    1978-09-01

    Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments

  11. Analysis of the Variations in Rock Magnetic Properties of the Quaternary Blackwater Draw (Eolian) Formation, West Texas

    Science.gov (United States)

    Stine, J. M.; Ferguson, J. F.; Geissman, J. W.; Sweet, D. E.

    2017-12-01

    The Quaternary Blackwater Draw Formation consists of the surficial deposits ( 10 + m thick) that directly overlie the Neogene Ogallala Formation in the Southern High Plains (SHP). These Quaternary deposits display a rhythmic pattern where eolian derived sediments (loess) are in turn punctuated by several paleosol layers, implying that Quaternary glacial-interglacial climate cycles are recorded in the Blackwater Draw Formation. In order to investigate this hypothesis, several rock magnetic parameters obtained from the Blackwater Draw Formation were analyzed using exploratory data analysis (EDA) techniques. The Blackwater Draw Formation was sampled at high resolution (2.5-5 cm intervals in depth, which serves as a proxy for time). Rock magnetic parameters measured are bulk magnetic susceptibility (χ, median: 1.56 * 10-4 SI volume), anhysteretic remanent magnetization (ARM, median: 0.1612 A/m), and isothermal remanent magnetization (IRM, median: 2.5367 A/m) intensity, which allow for the determination of two common environmental magnetic ratios (ARM/χ and ARM/IRM, medians: 1051 and 0.068 respectively) that are often used to approximate magnetic grain size. The data were analyzed using robust EDA methods for classification, correlation, and signal extraction. Using these techniques, it becomes evident that a good correspondence exists between the geophysical data and the geologic model (stratigraphy). For example, the cross plots showed that the magnetic data segregate into clusters corresponding to stratigraphy. Smoothing of the magnetic ratio data produces an oscillatory signal that may correspond to climate cyclicity. Additionally the smoothed models show a noticeable change in periodicity, where the ARM, IRM and χ values in the uppermost section exhibit a much higher amplitude and lower frequency than the bottom part of the section (with the reverse being true for the ratios). When comparing the data to the geologic model this change appears to correlate with

  12. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia, E-mail: cxzhang@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Qiao Qingqing [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Piper, John D.A. [Geomagnetism Laboratory, Department of Earth and Ocean Science, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Huang, Baochun [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China)

    2011-10-15

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: > Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. > HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. > A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. > The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  13. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    International Nuclear Information System (INIS)

    Zhang Chunxia; Qiao Qingqing; Piper, John D.A.; Huang, Baochun

    2011-01-01

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: → Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. → HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. → A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. → The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  14. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta.

    Science.gov (United States)

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36' E, 31°00' N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of (137)Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr(-1) for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χARM) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140-236 cm). Co-variation between magnetic properties (χ, SIRM and χARM) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. Copyright © 2014. Published by Elsevier B.V.

  15. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-03-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  16. Quantitative interpretation of magnetic properties as a way to characterize biogeophysical signatures of biodegraded contaminated sites

    Science.gov (United States)

    Ustra, A.; Kessouri, P.; Leite, A.; Mendonça, C. A.; Bandeira, N.

    2017-12-01

    Magnetic minerals in soils and rocks are one way to study biogechemical and paleoenvironmental processes. The ultrafine fraction of these minerals (superparmagnetic (SP) and stable single domain (SSD)) are usually investigated in environmental magnetism studies, since changes in mineralogy, concentration, size and morphology of the magnetic grains can be related to biogeochemical processes. In this study, we use low-field frequency dependent susceptibility (FDS) and isothermal remanent magnetization (IRM) to characterize the magnetic properties of materials in environmental magnetism. Magnetic susceptibility (MS) measurements are frequently used as a proxy of magnetic minerals present in soils and rocks. MS is a complex function of magnetic mineralogy and grain size, as well as magnitude and frequency of the applied field. This work presents a method for inverting low-field FDS data. The inverted parameters can be interpreted in terms of grain size variations of magnetic particles on the SP-SSD transition. This work also presents a method for inverting IRM demagnetization curves, to obtain the saturation magnetization, the individual magnetic moment for an assemblage of ultrafine SP minerals and estimate the concentration of magnetic carriers. IRM magnetization curves can be interpreted as resulting from distinct contributions of different mineral phases, which can be described by Cummulative Log-Gaussian (CLG) distributions. Each acquisition curve provides fundamental parameters that are characteristic of the respective mineral phase. The CLG decomposition is widely used in an interpretation procedure named mineral unmixing. In this work we present an inversion method for mineral unmixing, implementing the genetic algorithm to find the parameters of distinct components. These methodologies have been tested by synthetic models and applied to data from environmental magnetism studies. In this work we apply the proposed methodologies to characterize the magnetic

  17. Soil magnetic susceptibility mapping as a pollution and provenance tool: an example from southern New Zealand

    Science.gov (United States)

    Martin, A. P.; Ohneiser, C.; Turnbull, R. E.; Strong, D. T.; Demler, S.

    2018-02-01

    The presence or absence, degree and variation of heavy metal contamination in New Zealand soils is a matter of ongoing debate as it affects soil quality, agriculture and human health. In many instances, however, the soil heavy metal concentration data do not exist to answer these questions and the debate is ongoing. To address this, magnetic susceptibility (a common proxy for heavy metal contamination) values were measured in topsoil (0-30 cm) and subsoil (50-70 cm) at grid sites spaced at 8 km intervals across ca. 20 000 km2 of southern New Zealand. Samples were measured for both mass- and volume-specific magnetic susceptibility, with results being strongly, positively correlated. Three different methods of determining anomalies were applied to the data including the topsoil-subsoil difference method, Tukey boxplot method and geoaccumulation index method, with each method filtering out progressively more anomalies. Additional soil magnetic (hysteresis, isothermal remanence and thermomagnetic) measurements were made on a select subset of samples from anomalous sites. Magnetite is the dominant remanence carrying mineral, and magnetic susceptibility is governed by that minerals concentration in soils, rather than mineral type. All except two anomalous sites have a dominant geogenic source (cf. anthropogenic). By proxy, heavy metal contamination in southern New Zealand soils is minimal, making them relatively pristine. The provenance of the magnetic minerals in the anomalous sites can be traced back to likely sources in outcrops of igneous rocks within the same catchment, terrane or rock type: a distance of Soil provenance is a key step when mapping element or isotopic distribution, vectoring to mineralization or studying soil for agricultural suitability, water quality or environmental regulation. Measuring soil magnetic susceptibility is a useful, quick and inexpensive tool that usefully supplements soil geochemical data.

  18. Distribution of magnetic particulates in a roadside snowpack based on magnetic, microstructural and mineralogical analyses

    Science.gov (United States)

    Bućko, Michał S.; Mattila, Olli-Pekka; Chrobak, Artur; Ziółkowski, Grzegorz; Johanson, Bo; Čuda, Jan; Filip, Jan; Zbořil, Radek; Pesonen, Lauri J.; Leppäranta, Matti

    2013-10-01

    Vehicle traffic is at present one of the major sources of environmental pollution in urban areas. Magnetic parameters are successfully applied in environmental studies to obtain detailed information about concentrations and quality of iron-bearing minerals. A general aim of this research was to investigate the magnetic, microstructural and mineralogical properties of dust extracted from the roadside snowpack accumulated on the side of an urban highway, northern Helsinki. Vertical snow profiles were taken at different distances (5, 10 and 15 m) from the road edge, during winter season 2010-2011. The temporal distribution of mass magnetic susceptibility (χ) of the road dust shows that the concentration of magnetic particles increases in the snowpack during winter. Roadside snowpack preserves a large fraction of the magnetic particulate until the late stages of melting and this could be considered as one of the main factors responsible for the resuspension phenomenon observed in Nordic countries. The vertical distribution of χ and SIRM (saturation isothermal remanent magnetization)/χ ratio may indicate the migration of magnetic particles down in the snowpack during melting conditions. Ultrafine to coarse-grained (superparamagnetic to multidomain) magnetite was identified as the primary magnetic mineral in all the studied road dust samples. The examined road dust contains significant amount of dia/paramagnetic minerals (e.g. quartz, albite, biotite) and the content of magnetite is relatively low (below 1 weight percent, wt%). The roadside snowpack is enriched in anthropogenic particles such as angular and spherical iron-oxides, tungsten-rich particles and sodium chloride. This study demonstrates the suitability of snow as an efficient collecting medium of magnetic particulates generated by anthropogenic activities.

  19. Radiological observation: 'remanence of radioactivity of artificial origin'. Mission report 2016

    International Nuclear Information System (INIS)

    Aubry, S.; Boulet, B.; Cagnat, X.; Cossonnet, C.; Mekhlouche, D.; Thomas, S.; Vivien, C.; Chevreuil, M.; Malfait, V.; Manach, E.; Claval, D.; Mourier, D.; Pourcelot, L.; Salaun, G.; Metivier, J.M.

    2016-04-01

    Thirty years after the Chernobyl accident, some areas in France, mainly mountain areas, display radioactivity levels higher or even much higher than those noticed in other areas, even at the vicinity of nuclear plants. These areas are called 'areas of remanence of artificial radioactivity'. After having recalled this observation based on radiological measurements, and an overview of an atmospheric deposition of artificial radioactivity (nuclear tests, Chernobyl accident, satellite falls, Fukushima accident), this report describes the adopted strategy (sampling and measurements) to assess and study this phenomenon. It analyses the obtained results in terms of remanence in the continental water environment and in soils, fields and forests. It also proposes a synthesis of previously acquired results. Appendices present methods used for sampling and sample processing, a list of samples, data related to mass activity of artificial radioactivity in soils, inventories of artificial radioactivity in soils, and methods for the calculation of efficient doses

  20. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  1. The Stellar IMF from Isothermal MHD Turbulence

    Science.gov (United States)

    Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke

    2018-02-01

    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.

  2. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  3. Relationship Between Physical Properties and Magnetism of Soils From Various Pedoenvironments

    Science.gov (United States)

    Jordanova, N.; Jordanova, D.; Todorova, D.; Hirt, A.; Petrov, P.

    2009-05-01

    Characterization of soils with respect to their fertility, sustainable use and conservation require extensive, time- consuming and costly analyses. Establishment of well defined relationships between certain physical, geochemical and magnetic parameters would be useful tool in pedometrics, giving opportunity to carry out large scale studies on soil properties in more economically effective and fast way. Interdisciplinary analysis of 15 type soils from different pedoenvironments (oxidative, water-logged, salty, etc.) includes extensive magnetic measurements (magnetic susceptibility, anhysteretic (ARM) and isothermal (IRM) remanences, hysteresis parameters); determination of a set of physical characteristics (grain size fractions, pH) and geochemical analyses (total Fe content, oxalate- and dithionite-soluble Fe). Empirical linear relationship is found between soil reaction (pH) and magnetic susceptibility for aerobic soils, and negative relationship between pH and ARM for water-logged soils. Different type soils, showing magnetic enhancement along the solum, show higher ARM intensity with increasing percent of the clay fraction. This feature most probably is related to the fact that pedogenic ferrimagnetic minerals are strongly linked to clay fraction. The absence of such correlation for soils, affected by water-logging conditions suggests prevailing role of amorphous phases and antiferromagnetic Fe oxides in magnetic mineralogy. The role of pedogenic factors for particular behavior of other magnetic parameters will be discussed.

  4. Magnetic evaluation of TSP-filters for air quality monitoring

    Science.gov (United States)

    Castañeda-Miranda, Ana Gabriela; Böhnel, Harald N.; Molina-Garza, Roberto S.; Chaparro, Marcos A. E.

    2014-10-01

    We present the magnetic properties of the powders collected by high volume total suspended particle air samplers used to monitor atmospheric pollution in Santiago de Querétaro, a city of one million people in central Mexico. The magnetic measurements have been combined with scanning electron microscopy observations and analysis, in order to characterize the particles captured in the filters as natural and anthropogenic. The main goal of the study is to test if magnetic measurements on the sampled atmospheric dust can be effective, low-cost, proxy to qualitatively estimate the air quality, complementing the traditional analytical methods. The magnetic properties of the powder collected in the filters have been investigated measuring the low field magnetic susceptibility, hysteresis loops, thermomagnetic curves, and isothermal remanent magnetization. The rock magnetism data have been supplemented by energy-dispersive X-ray spectroscopy analysis and Raman spectroscopy. It was found that the main magnetic carrier is low-Ti magnetite in the PSD range with a contribution from SP particles, and small but significant contributions from hematite, maghemite and goethite particles. Total suspended particles in the atmosphere during the monitored days ranged between about 30 and 280 μg/m3. Magnetic susceptibility values are well correlated with the independently determined total suspended particles concentration (R = 0.93), but particle concentration does not correlate as well with IRM1T. This may be attributed to contributions from SP and paramagnetic particles to the susceptibility signal, but not to the remanence. The effects of climate in particle size, composition and concentration were considered in terms of precipitation and wind intensity, but they are actually minor. The main effect of climate appears to be the removal of SP particles during rainy days. There is a contribution to air pollution from natural mineral sources, which we attribute to low vegetation cover

  5. Magnetic polarity stratigraphy of the Siwalik sequence in Nurpur ...

    Indian Academy of Sciences (India)

    calculated from the acquired characteristic remanent magnetization (ChRM) directions. The observed ... researchers dated various stratigraphic and faunal events. ... J. Earth Syst. Sci. 124 .... from 575–625◦C was used to determine the ChRM.

  6. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  7. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  8. Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)

    Science.gov (United States)

    Phillips, Stephen C.; Johnson, Joel E.; Clyde, William C.; Setera, Jacob B.; Maxbauer, Daniel P.; Severmann, Silke; Riedinger, Natascha

    2017-06-01

    Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore-arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3-7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal-bearing unit (˜2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low-coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300-400°C), higher ARM, higher-frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal-bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine-grained authigenic magnetite. We suggest that iron-reducing bacteria facilitated the production of fine-grained magnetite within the coal-bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron-reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal-bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere.

  9. Trap-nest occupation by solitary wasps and bees (Hymenoptera: Aculeata) in a forest urban remanent

    OpenAIRE

    Loyola, Rafael D.; Martins, Rogério P.

    2006-01-01

    Temporal variation of solitary wasps and bees, nesting frequency, mortality, and parasitism were recorded from a remanent forest in Belo Horizonte, MG, Brazil. Wasps and bees were collected in trap-nests placed in areas with 25, 100, and 400 m², from February to November 2004. The 137 trap-nests collected contained 11 species of wasps and bees. Wasps occupied most nests (75%). Occupation peaks occurred in March (25%) and September (26%); in June, the lowest occupation (2%) was observed. Excep...

  10. GEMAS: Unmixing magnetic properties of European agricultural soil

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  11. The history of permanent magnet materials

    International Nuclear Information System (INIS)

    Livingston, J.D.

    1990-01-01

    Permanent-magnet materials play a large and growing, but largely unseen, role in today's technology. Many common devices in the home and elsewhere, including appliances, computers and printers, contain permanent-magnet motors and actuators. The growth of applications for permanent magnets results in large part from the improvements in magnetic properties, which allow the engineer to design smaller, lighter and more efficient devices. The properties of the greatest technological interest are remanence, coercivity and maximum energy product. All are non-equilibrium and high structure-sensitive. Coercivity is particularly sensitive to microstructure, while remanence is sensitive to texture (crystallographic alignment). The energy product depends on both coercivity and remanence. The more than one hundredfold increase in the available energy product in this century, and the corresponding amount of magnet required for a specific application, are shown

  12. Magnetic signature of river sediments drained into the southern and eastern part of the South China Sea (Malay Peninsula, Sumatra, Borneo, Luzon and Taiwan)

    Science.gov (United States)

    Kissel, Catherine; Liu, Zhifei; Li, Jinhua; Wandres, Camille

    2017-01-01

    Magnetic properties of 22 river samples collected in the Malay Peninsula, Sumatra, Borneo, Luzon and Taiwan have been investigated in order to magnetically characterize the sediments drained and deposited into the South China Sea. The geological formations as well as the present climatic conditions are different from one region to another. Laboratory analyses include low-field magnetic susceptibility, anhysteretic (ARM) and isothermal (IRM) remanent magnetizations acquisition and decay, back-field acquisition, thermal demagnetization of three-axes IRM, hysteresis cycles and low-temperature magnetic measurements. The magnetic properties indicate that the sediments are a mixture of hematite, magnetite and pyrrhotite in different proportions depending on the region. Combined with results previously reported for the three main Asian rivers (Pearl, Red and Mekong rivers), the new data indicate that, in general, hematite-rich sediments are delivered to the southern basin of the South China Sea while the northern basin is fed with magnetite and pyrrhotite-rich sediments. In addition to this general picture, some variability is observed at smaller geographic scales. Indeed, the magnetic assemblages are closely related to the geology of the various catchments while clay minerals, previously reported for the same samples, are more representative of the climatic conditions under which the parent rocks have evolved within each catchment. The magnetic fraction, now well characterized in the main river sediments drained into the South China Sea, can be used as a tracer for changes in precipitation on land and in oceanic water mass transport and exchange.

  13. Magnetic volcanos in gadolinium Langmuir-Blodgett films

    DEFF Research Database (Denmark)

    Tishin, A.M.; Snigirev, O.V.; Khomutov, G.B.

    2001-01-01

    -plane and out-of-plane pre-magnetization in a field of 1.4 T at 300 K. Randomly placed “magnetic volcanos” with a remanent magnetic moment of the order of 10−13 A m2 was observed. A decay of the remanent magnetization with a characteristic time of about 120 h was observed. It is suggested that the magnetic...... order is relatively long ranged, and that topological defects (vortices) lead to the observed out-of-plane field lines, and are responsible for the magnetic volcanos. Finally, it is hypothesized that a similar topology of field lines is responsible for superconductivity as observed in ceramic high...

  14. Management of remanent lifetime. Short-term benefits of the maintenance evaluation and improvement programme

    International Nuclear Information System (INIS)

    Sainero Garcia, J.

    1993-01-01

    Remanent Lifetime Management, which is scientifically based on knowing the degradatory phenomena associated with aging, today allows us to optimize plant life through a long-term maintenance strategy combining preventive maintenance and condition monitoring programmes. Within a project for Remanent Lifetime Management (RLM), the determination of methods of control and mitigation of degradations due to aging depends on the programme of Maintenance Evaluation and Improvement (MEI). This programme, underpinned by the analysis of degradatory phenomena to which plant components are subjected, evaluates current maintenance practices and defines the complementary actions which would facilitate establishment of a long-term strategy to control aging. Together with this main objective of the RLM project, the MEI programme achieves short-term benefits since, right from the beginning, it offers solutions to mitigate and guard against degradations in crucial plant components, and generally sets out a programme to control aging. The MEI programme further serves as a tool to reach the final objectives of the new 10CFR50.65 rule, 'Requirements for Maintenance Programs for NPPs'. The MEI always offers the option should the Utility Owner decide to extend plant life. (author)

  15. Benchmark studies of induced radioactivity and remanent dose rates produced in LHC materials

    International Nuclear Information System (INIS)

    Brugger, M.; Mayer, S.; Roesler, S.; Ulrici, L.; Khater, H.; Prinz, A.; Vincke, H.

    2005-01-01

    Samples of materials that will be used for elements of the LHC machine as well as for shielding and construction components were irradiated in the stray radiation field of the CERN-EU high-energy Reference Field facility. The materials included various types of steel, copper, titanium, concrete and marble as well as light materials such as carbon composites and boron nitride. Emphasis was put on an accurate recording of the irradiation conditions, such as irradiation profile and intensity, and on a detailed determination of the elemental composition of the samples. After the irradiation, the specific activity induced in the samples as well as the remanent dose rate were measured at different cooling times ranging from about 20 minutes to two months. Furthermore, the irradiation experiment was simulated using the FLUKA Monte Carlo code and specific activities. In addition, dose rates were calculated. The latter was based on a new method simulating the production of various isotopes and the electromagnetic cascade induced by radioactive decay at a certain cooling time. In general, solid agreement was found, which engenders confidence in the predictive power of the applied codes and tools for the estimation of the radioactive nuclide inventory of the LHC machine as well as the calculation of remanent doses to personnel during interventions. (authors)

  16. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  17. Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record

    Science.gov (United States)

    Hatfield, Robert G.; Stoner, Joseph S.; Reilly, Brendan T.; Tepley, Frank J.; Wheeler, Benjamin H.; Housen, Bernard A.

    2017-09-01

    We use isothermal and temperature dependent in-field and magnetic remanence methods together with electron microscopy to characterize different sieved size fractions from terrestrial sediments collected in Iceland and southern Greenland. The magnetic fraction of Greenland silts (3-63 μm) and sands (>63 μm) is primarily composed of near-stoichiometric magnetite that may be oxidized in the finer clay (samples, in contrast to coarser PSD and multi-domain (MD) discrete magnetites from southern Greenland. We demonstrate the potential of using magnetic properties of the silt fraction for source unmixing by creating known endmember mixtures and by using naturally mixed marine sediments from the Eirik Ridge south of Greenland. We develop a novel approach to ferrimagnetic source unmixing by using low temperature magnetic susceptibility curves that are sensitive to the different crystallinity and cation substitution characteristics of the different source regions. Covariation of these properties with hysteresis parameters suggests sediment source changes have driven the magnetic mineral variations observed in Eirik Ridge sediments since the last glacial maximum. These observations assist the development of a routine method and interpretative framework to quantitatively determine provenance in a geologically realistic and meaningful way and assess how different processes combine to drive magnetic variation in the North Atlantic sediment record.

  18. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China

    International Nuclear Information System (INIS)

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-01-01

    Highlights: ► Elevated magnetic particles and heavy metals coexist in dust. ► Morphology and mineralogy of magnetic particles were studied by SEM-EDX and XRD. ► Magnetic minerals in the dust consist of magnetite, hematite, and metallic iron. ► Impact of metallic iron particles and multi-sources of metal pollutants was notable. -- Abstract: Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ–T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants

  19. Magnetic response in the vicinity of magnetic compensation: a case study in spin ferromagnetic Sm1-xGdxAl2 intermetallic alloys

    International Nuclear Information System (INIS)

    Venkatesh, S; Vaidya, Ulhas; Rakhecha, Veer Chand; Ramakrishnan, S; Grover, A K

    2010-01-01

    A compensated magnetic state in an ideally homogeneous system with long range magnetic order is characterized by a net zero magnetization (M) throughout the sample (macroscopic). In the pristine state of the sample (i.e. with no external field, H = 0), this implies that at the magnetic compensation temperature (T comp ) we must have M = 0 at H = 0 irrespective of any thermal and magnetic history of the sample and any underlying physics. This simple fact voids the usual identification (and interpretation) of M-H loop parameters at and in the vicinity of magnetic compensation temperature, specifically the coercivity, the remanence, and the exchange bias characteristics. The physics of coercivity and exchange bias continues to be fully relevant, but its manifestation in an M-H loop would get camouflaged at (and near) a magnetic compensation because M→0 at H = 0. We present an experimental elucidation of the above premise through a case study in the spin ferromagnetic Sm 1-x Gd x Al 2 alloys [x = 0.01-0.06], where the specimens with x ≤ 0.03 show compensation below the Curie temperature T c , while those with x ≥ 0.03 have rather small magnetization due to near cancellation of opposing contributions, but are otherwise devoid of compensation. The experiments comprised low field (near zero) as well as high field (70 kOe) magnetization measurements from the paramagnetic state down to 5 K in the ordered regime (T c ∼ 125 K) and isothermal M-H loop studies on the remnant magnetic state of polycrystalline samples.

  20. Benchmark studies of induced radioactivity produced in LHC materials, Part II: Remanent dose rates.

    Science.gov (United States)

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    A new method to estimate remanent dose rates, to be used with the Monte Carlo code FLUKA, was benchmarked against measurements from an experiment that was performed at the CERN-EU high-energy reference field facility. An extensive collection of samples of different materials were placed downstream of, and laterally to, a copper target, intercepting a positively charged mixed hadron beam with a momentum of 120 GeV c(-1). Emphasis was put on the reduction of uncertainties by taking measures such as careful monitoring of the irradiation parameters, using different instruments to measure dose rates, adopting detailed elemental analyses of the irradiated materials and making detailed simulations of the irradiation experiment. The measured and calculated dose rates are in good agreement.

  1. Remanent radiation fields around medical linear accelerators due to the induced radionuclides

    International Nuclear Information System (INIS)

    Sabol, J.; Khalifa, O.; Berka, Z.; Stankus, P.; Frencl, L.

    1998-01-01

    Radiation fields around two linear accelerators, Saturn 43 and a Saturn 2 Plus, installed at radiotherapy department is Prague, were measured and interpreted. The measurements included the determination of the dose equivalent rate resulting from photons emitted by induced radionuclides produced in reactions of high-energy photons with certain elements present in air and accelerator components as well as in the shielding and building materials in the treatment rooms, which are irradiated by high-energy X-rays, and due to radionuclides formed by capture of photoneutrons. While scattered photons and photoneutrons are only present during the accelerator operation, residual radioactivity creates a remanent radiation field persisting for some time after the instrument shutdown. The activity induced in the accessories is also an important source of exposure. (P.A.)

  2. Trap-nest occupation by solitary wasps and bees (Hymenoptera: Aculeata) in a forest urban remanent.

    Science.gov (United States)

    Loyola, Rafael D; Martins, Rogério P

    2006-01-01

    Temporal variation of solitary wasps and bees, nesting frequency, mortality, and parasitism were recorded from a remanent forest in Belo Horizonte, MG, Brazil. Wasps and bees were collected in trap-nests placed in areas with 25, 100, and 400 m2, from February to November 2004. The 137 trap-nests collected contained 11 species of wasps and bees. Wasps occupied most nests (75%). Occupation peaks occurred in March (25%) and September (26%); in June, the lowest occupation (2%) was observed. Except for Trypoxylon (Trypargilum) lactitarse Saussure, no significant correlation was found between number of occupied nests, and temperature and rainfall means. In the nests, 48% of the immature specimens died; 13% of the nests were parasitized. Total death and parasitism rates of wasps and bees differed significantly.

  3. Comment on “Performance of Halbach magnet with finite coercivity” [J. Magn. Magn. Mater. 407, 369–376 (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaonong, E-mail: xnxu@nju.edu.cn

    2017-05-01

    In the recent study given by Insinga et al. [J. Magn. Magn. Mater. 407, 369–376 (2016)], two kind of magnetic hysteresis loops, magnetization versus magnetic field strength (M-H), and magnetic induction versus magnetic field strength (B-H) of the permanent magnetic material with finite coercivity are involved. However, M-H and B-H functions are sensitive to the shape of magnetic element, moreover, M and B are possibly the multivalue functions at H=H{sub c}, perhaps the third kind magnetic hysteresis loop of magnetization versus magnetic induction (M-B) is more appropriate for predicting the phenomena of demagnetization and reversal of original remanence in magnet array. - Highlights: • Demagnetization is analyzed by the magnetic induction dependent remanence function M(B). • Partial demagnetization and remanence reversal may be distinguished by M(B) function.

  4. Magnetic elements for switching magnetization magnetic force microscopy tips

    International Nuclear Information System (INIS)

    Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.

    2010-01-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.

  5. Understand rotating isothermal collapses yet

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references

  6. Influence of {gamma} and neutron irradiation on the magnetic properties of Nd Fe B, Alnico, and Mn Al type permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, S; Setnescu, R; Kappel, W; Alexandru, St [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica, Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1996-12-31

    The influence of {gamma} and neutron irradiation on the magnetic properties of Nd Fe B, Alnico and Mn Al type permanent magnets was studied. With the used neutron energies and fluences, no changes in remanent induction values for Nd Fe B type permanent magnets are shown. For Alnico type permanent magnets the remanent induction changes are due to reversible variation of the magnetization directions. Only in case of Mn Al type permanent magnets irreversible structural changes take place, which lead to irreversible losses of induction. (author) 4 figs., 2 tabs., 12 refs. (author).

  7. Influence of γ and neutron irradiation on the magnetic properties of Nd Fe B, Alnico, and Mn Al type permanent magnets

    International Nuclear Information System (INIS)

    Jipa, S.; Setnescu, R.; Kappel, W.; Alexandru, St.

    1995-01-01

    The influence of γ and neutron irradiation on the magnetic properties of Nd Fe B, Alnico and Mn Al type permanent magnets was studied. With the used neutron energies and fluences, no changes in remanent induction values for Nd Fe B type permanent magnets are shown. For Alnico type permanent magnets the remanent induction changes are due to reversible variation of the magnetization directions. Only in case of Mn Al type permanent magnets irreversible structural changes take place, which lead to irreversible losses of induction. (author) 4 figs., 2 tabs., 12 refs. (author)

  8. Evaluation of the Applicability of Environmental Magnetic Pollution Screening in Soils of Basaltic Origin: Results from Nashik Thermal Power Station, Maharashtra, India

    Science.gov (United States)

    Blaha, U.; Nathani, B.; Das, P. K.; Kannan, D.

    2011-12-01

    Magnetic parameters and heavy metal contents of highly magnetic topsoil of the Deccan Trap basalt region were investigated for their potential to be used for environmental magnetic pollution screening. Data of magnetic susceptibility (χ) and soft isothermal remanent magnetization (Soft IRM) of 55 soil samples from N-S and W-E transects reveal a significant input of anthropogenic magnetic particulate matter within a range of 6 km around both the coal fired power plant and its adjacent ash pond. Less developed and thin topsoil layers as well as limited contribution from the fly ash sources in N direction pose difficulties for unambiguous assessment of the magnetic parameters. Heavy metal data, i.e. Pb, Zn and Cu concentrations of the soil grain size of <63 μm reveal similar distribution patterns as obtained from the magnetic parameters of all directions. Fluctuations are observed in magnetic as well as in heavy metal data and are primarily attributed to soil development. Thermo-magnetic measurements identify magnetite of anthropogenic origin in the vicinity of the pollution source based on Verwey-Transition and Hopkinson peak. The quantitative decrease of the anthropogenic ferrimagnetic mineral concentration with distance is proven by Soft IRM. Confirmation of the presence of extremely high and low amounts of ash particles in the magnetically and chemically distinguished zones is provided by scanning electron microscopy (SEM) on quantitatively extracted magnetic particles at 5.5 km and 11.9 km distance. Evaluation of magnetic and chemical data including pollution load indices (PLIS) of Pb, Zn and Cu reveals good relationship of χ with the metal contents. The highest of the PLIS for Pb, Zn and Cu reveals threefold enhancement of concentration with respect to the natural background at 12 km distance and is obtained close to the fly ash sources.

  9. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  10. Ground Penetrating Radar, Magnetic and Compositional Analysis of Sediment Cores and Surface Samples: The Relationships Between Lacustrine Sediments and Holocene Lake- Level and Climate Change at Deming Lake, Minnesota, USA

    Science.gov (United States)

    Murray, R.; Lascu, I.; Plank, C.

    2007-12-01

    Deming Lake is a small (Deming. Cores were sampled continuously at a 1-2 cm resolution and sediment composition (in terms of percent organic matter, carbonate material, and minerogenic residue) was determined via loss on ignition (LOI). Isothermal remanent magnetization (IRM) and anhysteretic remanent magnetization (ARM) were used as proxies of magnetic mineral concentration and grain size. Four lithostratigraphic units were identified and correlated between cores based on these analyses. Changes in GPR facies corroborate the correlation between the two shallow cores. In order to inform our interpretation of down-core variations in magnetic properties and LOI values in terms of variations in lake depth, a suite of over 70 modern sediment samples were collected from the basin and analyzed. LOI compositional variability across the basin was high, with no clear trends related to depth or distance from shore. A sharp decrease in minerogenic content was observed at depths consistent with a predicted wave-base of 0.5 m, but aside from this trend it appears the steep slopes of much of the basin promote gravity driven slumping and mixing of sediments at depth. In the profundal sediments IRM values are routinely 5% higher than in the slope and littoral environments, while ARM/IRM ratios indicate an increase in magnetic grain size with water depth. We infer that an increase in coarse organic material in the shallow-water cores of Deming records a period of aridity (associated with a decrease lake-level less than 2m based on GPR profiles) and/or increased water clarity during the regionally expansive mid-Holocene dry period. We do not see clear evidence of late-Holocene lake level change of a significant magnitude (i.e. >1m). While remanence measurements (especially IRM) often correlate with the LOI residue, interference in the IRM resulting from the dissolution of magnetic minerals casts uncertainty into the reliability of our magnetic measurements as a signal of climate

  11. Optimally segmented permanent magnet structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector......, with respect to a linear objective functional. We illustrate the approach with results for magnet design problems from different areas, such as a permanent magnet electric motor, a beam focusing quadrupole magnet for particle accelerators and a rotary device for magnetic refrigeration....

  12. Electric Field Tuning Non-volatile Magnetism in Half-Metallic Alloys Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 Heterostructure

    Science.gov (United States)

    Dunzhu, Gesang; Wang, Fenglong; Zhou, Cai; Jiang, Changjun

    2018-03-01

    We reported the non-volatile electric field-mediated magnetic properties in the half-metallic Heusler alloy Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure at room temperature. The remanent magnetization with different applied electric field along [100] and [01-1] directions was achieved, which showed the non-volatile remanent magnetization driven by an electric field. The two giant reversible and stable remanent magnetization states were obtained by applying pulsed electric field. This can be attributed to the piezostrain effect originating from the piezoelectric substrate, which can be used for magnetoelectric-based memory devices.

  13. Rare-earth magnets and their applications. Vol. 2. Proceedings

    International Nuclear Information System (INIS)

    Schultz, L.; Mueller, K.H.

    1998-01-01

    The following topics were dealt with: permanent magnets, rare- earth magnets, manufacturing, markets, powder metallurgy, sintering, mechanical alloying, nanocrystalline magnets, Curie temperature, domain structure, exchange coupling, stoichiometry effects, coercive force, remanence, magnetisation distribution, demagnetisation, mechanical properties, deformation behaviour, microstructure, grain size effects, texture, magnetic anisotropy, hydrogen assisted processing, nitriding, hydrogen embrittlement, permanent magnet motors, permanent magnet generators, brushless machines, linear motors, DC motors, AC motors, servomotors, magnetic levitation, magnetic field calculations, magnetic damping, magnet system design, system optimisation, corrosion protection, magnetometers, hard magnetic films, magnetostriction, magnetic multilayers, spin glass behaviour

  14. Room temperature isotherms for Mo and Ni

    International Nuclear Information System (INIS)

    Masse, J.L.

    1986-11-01

    Isotherms at room temperature for Mo and Ni are proposed. They are of three types: BIRCH, KEANE and BORN-MIE. The adjustable constants appearing in these isotherms have been determined from experimental quantities at zero pressure. An evaluation of the limit of (δB T /δP) T as P #-> # ∞, where B T is the isothermal bulk modulus, has been also used. These three isotherms obtained for Mo and Ni are compared with isotherms derived from shock-wave data according to the PRIETO's model. There is a good agreement between these and these derived from shock-wave data. The three isotherms proposed for Mo and Ni can be considered as valid until pressures of several B To , where B To is the bulk modulus B T at P = o [fr

  15. Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees

    Science.gov (United States)

    Muñoz, David; Aguilar, Bertha; Fuentealba, Raúl; Préndez, Margarita

    2017-03-01

    Emissions from motor vehicles are considered to be one of the main sources of airborne particulate matter in Santiago. International researchers have shown that particulate matter contains metal oxides and magnetic particles, both of which are emitted mainly from vehicles exhaust pipes. On the other hand, trees are effective in reducing such contamination, so that they act as passive collectors of particulate matter. This work presents the results obtained from the first magnetic study of the particulate matter collected in two areas of the city of Santiago de Chile. Magnetic susceptibility and Saturation Isothermic Remanent Magnetization (SIRM) were determined in leaves from abundant urban trees and from urban dust samples. Results indicate that most of the samples contain ferromagnetic minerals with magnetite (Fe3O4) as the main carrier. Values of magnetic susceptibility (SI ×10-6 m3/kg) in the range 0.04-0.24 for leaves and in the range 10-45 for urban dust were determinated. In one of the city areas studied, significant correlation between the particulate matter deposited on leaves of Platanus orientalis and measured traffic flows was obtained. In addition, it was possible to estimate that the species Platanus orientalis and Acer negundo have a better ability to capture particulate matter than the species Robinia pseudoacacia.

  16. Magnetic force microscopy and simulation studies on Co 50 Fe 50 ...

    Indian Academy of Sciences (India)

    We studied the magnetization reversal mechanism of single-layered Co50Fe50 nanomagnets by measuring the magnetization reversal and using the micromagnetic simulations. The magnetization reversal strongly depends on the thickness of the nanomagnets. In the remanent state, the magnetic force microscopy studies ...

  17. Optimization of permanent-magnet undulator magnets ordering using simulated annealing algorithm

    International Nuclear Information System (INIS)

    Chen Nian; He Duohui; Li Ge; Jia Qika; Zhang Pengfei; Xu Hongliang; Cai Genwang

    2005-01-01

    Pure permanent-magnet undulator consists of many magnets. The unavoidable remanence divergence of these magnets causes the undulator magnetic field error, which will affect the functional mode of the storage ring and the quality of the spontaneous emission spectrum. Optimizing permanent-magnet undulator magnets ordering using simulated annealing algorithm before installing undulator magnets, the first field integral can be reduced to 10 -6 T·m, the second integral to 10 -6 T·m 2 and the peak field error to less than 10 -4 . The optimized results are independent of the initial solution. This paper gives the optimizing process in detail and puts forward a method to quickly calculate the peak field error and field integral according to the magnet remanence. (authors)

  18. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  19. Instabilities of isothermal liquid films

    International Nuclear Information System (INIS)

    Solesio, J.N.

    1977-04-01

    The integral forms of the mass and linear momentum balances are given for a two-phase flow system with surface tension and without material surface properties. The instantaneous local laws for each phase and the jump conditions for the interface are derived from these balance laws. Then, these laws are systematically simplified by means of dimensional analysis for an isothermal liquid film flowing down a plane. The stability studies of films are critically reviewed. The different methods are divided into two groups: the first one deals with the global approach, the second one with the perturbation theory. This group includes a new technique based upon the method of quadrature by differentiation. Finally, the different methods are compared [fr

  20. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...

  1. Isothermal transitions of a thermosetting system

    Science.gov (United States)

    Gillham, J. K.; Benci, J. A.; Noshay, A.

    1974-01-01

    A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.

  2. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  3. Magnetism and the history of the moon

    Science.gov (United States)

    Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Carnes, J. G.

    1973-01-01

    All lunar samples measured to date contain a weak but stable remanent magnetization of lunar origin. The magnetization is carried by metallic iron and is considered to be caused by cooling from above the Curie point in the presence of a magnetic field. Although at present the moon does not have a global field, the remanent magnetization of the rock samples and the presence of magnetic anomalies, both on the near and far side of the moon, imply that the moon experienced a magnetic field during some portion of its history. The field could have been generated in a liquid iron core sustaining a self-exciting dynamo, but there are some basic thermal and geochemical objections that need to be resolved.

  4. Temperature stability limits for an isothermal demagnetization refrigerator

    Science.gov (United States)

    Kittel, P.

    1984-01-01

    It is pointed out that magnetic refrigeration can provide additional cooling for infrared detectors on space missions, taking into account the Shuttle Infrared Telescope Facility (SIRTF) and the Large Deployable Reflector (LDR). From a temperature of 2 K provided by the primary cryogens, magnetic refrigerators could cool bolometers or pumped photoconductors to 0.1 K or below. Such a reduction in operating temperature would increase the sensitivity for bolometers, while the response at longer wavelengths for pumped photoconductors would be improved. Two types of magnetic refrigeration cycles have been proposed. One type uses a complete demagnetization. The present investigation is concerned with the second type, which uses a feedback-controlled isothermal demagnetization, taking into account the temperature stability limits. Attention is given to control system resolution, thermometer noise, reaction time, and thermal time constants.

  5. Signatures and significance of aeolian, fluvial, bacterial and diagenetic magnetic mineral fractions in Late Quaternary marine sediments off Gambia, NW Africa

    NARCIS (Netherlands)

    Just, A.; Dekkers, M.J.; Dobeneck, T. von; Hoesel, A. van; Bickert, T.

    Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602–1 and GeoB 13601–4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply end-member (EM) unmixing to 350 acquisition curves of isothermal remanent

  6. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  7. The physical principles of rock magnetism

    CERN Document Server

    Stacey, Frank

    1974-01-01

    Developments in Solid Earth Geophysics 5: The Physical Principles of Rock Magnetism explores the physical principles of rock magnetism, with emphasis on the properties of finely divided magnetic materials. It discusses the origin and stability of rock magnetizations, the role of remanent magnetism in interpreting magnetic surveys, magnetic anisotropy as an indicator of rock fabric, and the relationship between piezomagnetic changes and seismic activity. Organized into 13 chapters, this volume discusses the properties of solids, magnetite and hematite grains, and rocks with magnetite grains

  8. Magnetic relaxation behaviour in Pr_2NiSi_3

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2016-01-01

    Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr_2NiSi_3 have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.

  9. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya

    2010-01-01

    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...

  10. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Chia-Chen Chang

    2012-06-01

    Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  11. Diagnostic devices for isothermal nucleic acid amplification.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  12. Magnetic signature of the 22 June 1932 tsunami deposits (Jalisco, Mexican Pacific coast)

    Science.gov (United States)

    Bógalo, M. F.; Ramírez-Herrera, M.-T.; Goguitchaichvili, A.; Rey, D.; Mohamed, K. J.; Calvo-Rathert, M.; Corona, N.

    2017-06-01

    Recent studies have demonstrated that rock-magnetic analysis may provide additional information to distinguish and characterize extreme marine inundation events such as tsunamis. Rock-magnetic proxies reinforce and improve the environmental evidences supplied by other methods, adding some decisive clues for the interpretation of the origin and genesis of the sedimentary deposits. Here we report rock-magnetic, XRD, and SEM microscopy results obtained in the Palo Verde estuary (Colima Pacific coast, Mexico) in order to enhance the tools for identification and reconstruction of two tsunami-induced deposits. The sedimentary sequence includes two sand units, a tsunami deposit (PV1) associated with the 22 June 1932 tsunami and a deeper sandy layer (PV2) related to a possible paleotsunami that occurred around 1300 C.E. Both sandy units are topped by finer grained units. Magnetic properties exhibit a significant correlation with the stratigraphy. High susceptibility (χ) and high saturation isothermal remanence (SIRM) values typical of high concentrations of (titano)magnetite are a distinctive feature of the most recent sandy tsunamigenic unit PV1 and the overlaying soil. The lower sandy tsunamigenic unit PV2 shows significantly lower χ and SIRM values, indicating lower concentration of (titano)magnetite in this unit and the overlaying clayey-silt unit. The latter also shows a higher coercivity component associated with (titano)hematite. Magnetic grain-size differences are also observed between PV1 and PV2 suggesting differences in hydraulic conditions at the time of deposition. The bulk mineralogical composition and sediment texture of these units also support the hypothesis of different provenances for each tsunamigenic unit as inferred from magnetic properties.

  13. Preliminary Geochemical and Rock Magnetic Study of a Stalagmite From Quintana Roo, Northeastern Yucatan Peninsula

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Perez-Cruz, L.; Zhao, X.; Rebolledo-Vieyra, M.; Rodriguez, A.

    2012-04-01

    We present the preliminary results of geochemical, stable isotopes and rock magnetic studies of a stalagmite from a cave in eastern Quintana Roo, northern Yucatan peninsula. In the past years, there has been increased interest in understanding the paleoclimatic and paleoenvironmental evolution of the Yucatan peninsula and northern Central America, investigating the relationships between climate variations and the development of the Maya civilization. In particular, the variations in regional precipitation and occurrence of several drought periods, which might have been related to the collapse of the Classic Maya period. Stable isotope data on speleothems from different sites in Yucatan and Central America have provided evidence on changes in precipitation, which have affected the Maya region. The stalagmite is ~47 cm long and about 4-5 cm wide at its base. It was collected from the Hilariós Well cave in Tulum, Quintana Roo. Magnetic susceptibility and geochemical analyses have been completed as part of the initial characterization of the stalagmite, with measurements taken every centimeter. Geochemical analyses have been carried out for x-ray fluorescence, with a Niton XRF analyzer. Magnetic susceptibility was determined with a Bartington MS2 instrument using the high resolution surface probe. Additional rock magnetic analyses include magnetic hysteresis loops and isothermal remanent magnetization (IRM) acquisition, and saturation IRM demagnetization, which have been measured with a MicroMag instrument. Hysteresis loops are diamagnetic, with small varying low-coercivity ferromagnetic components. The elemental compositions of major oxides and trace elements vary with depth. Calcium is the major element and displays a pattern of small amplitude fluctuations with a trend to lower values at the bottom, which are also shown in other elements such as barium. Silica and elements such as titanium and strontium are positively correlated and show an apparent cyclic pattern

  14. Magnet properties of Mn70Ga30 prepared by cold rolling and magnetic field annealing

    International Nuclear Information System (INIS)

    Ener, Semih; Skokov, Konstantin P.; Karpenkov, Dmitriy Yu.; Kuz'min, Michael D.; Gutfleisch, Oliver

    2015-01-01

    The remanence and coercivity of arc melted Mn 70 Ga 30 can be substantially improved by cold rolling. For best performance the rolled material should be annealed at T=730 K in the presence of a magnetic field of 1 T. The so-obtained magnet has a remanence of 0.239 T and a coercivity of 1.24 T at room temperature. The underlying reason for the high coercivity and remanence is the increase of the content of a metastable ferrimagnetic D0 22 phase at the expense of the normally stable anti-ferromagnetic D0 19 . Magnetic field significantly increases the nucleation rate of the ferromagnetic D0 22 phase that leads to grain size refinement and as a consequence of improving remanence and coercive field. - Highlights: • Alternative synthesis method for D0 22 phase formation in Mn–Ga is developed. • Effect of cold rolling and annealing on magnetic properties of Mn 70 Ga 30 is examined. • Small magnetic fields are sufficient to accelerate nucleation of the D0 22 phase

  15. Magnetic crustal thickness in Greenland from CHAMP and Ørsted data

    DEFF Research Database (Denmark)

    Maule, Cathrine Fox; Purucker, Michael E.; Olsen, Nils

    2005-01-01

    and observatory data. After correcting for the remanent magnetization, we determine the vertically integrated magnetization of the crust. Making some simplifying assumptions about the susceptibility, the thickness of the magnetic crust is determined by iteratively improving an initial crustal thickness model...

  16. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample

    International Nuclear Information System (INIS)

    Saha, B.; Maiti, A.K.; Ghoshal, A.K.

    2006-01-01

    Pyrolysis, one possible alternative to recover valuable products from waste plastics, has recently been the subject of renewed interest. In the present study, the isoconversion methods, i.e., Vyazovkin model-free approach is applied to study non-isothermal decomposition kinetics of waste PET samples using various temperature integral approximations such as Coats and Redfern, Gorbachev, and Agrawal and Sivasubramanian approximation and direct integration (recursive adaptive Simpson quadrature scheme) to analyze the decomposition kinetics. The results show that activation energy (E α ) is a weak but increasing function of conversion (α) in case of non-isothermal decomposition and strong and decreasing function of conversion in case of isothermal decomposition. This indicates possible existence of nucleation, nuclei growth and gas diffusion mechanism during non-isothermal pyrolysis and nucleation and gas diffusion mechanism during isothermal pyrolysis. Optimum E α dependencies on α obtained for non-isothermal data showed similar nature for all the types of temperature integral approximations

  17. Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB

    International Nuclear Information System (INIS)

    Yu, L.Q.; Wen, Y.H.; Yan, M.

    2004-01-01

    Dy and Nb were added into the sintered NdFeB magnets with the aim of improving their magnetic properties and corrosion resistance. It was found that intrinsic coercivity of magnets is promoted whilst remanence is reduced as a result of Dy addition. Simultaneous addition of Dy and Nb not only gives rise to greatly improved coercivity, but also suppresses the undesirable effect of Dy on the remanence. The optimum magnetic properties were achieved when 1.0% Dy and 1.5% Nb were incorporated. Moreover, corrosion resistance of NdFeB magnets improves with the increase in the content of Dy and Nb

  18. Isothermal calorimeter for reactor radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Radak, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Odeljenje za radijacionu hemiju, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    An isothermal calorimeter with thermistors for measuring absorbed dose rates from 10{sup 4}-5-6.10{sup 5} rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within {+-} 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)

  19. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  20. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  1. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  2. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  3. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  4. Saw-toothed pattern of sedimentary paleointensity records explained by cumulative viscous remanence

    NARCIS (Netherlands)

    Kok, Yvo S.; Tauxe, Lisa

    1996-01-01

    The relative paleointensity of the earth's magnetic field from ODP Site 851 has been characterized by progressive decay w x towards polarity reversals, followed by sharp recovery of pre-reversal values 1 . We resampled the Gilbert-Gaub reversal boundary of this deep-sea core, and show that during

  5. Method for the detection of a magnetic field utilizing a magnetic vortex

    Science.gov (United States)

    Novosad, Valentyn [Chicago, IL; Buchanan, Kristen [Batavia, IL

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  6. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.; Alfadhel, Ahmed; Al-Nassar, Mohammed Y.; Perez, Jose E.; Vazquez, Manuel; Chuvilin, Andrey; Kosel, Jü rgen

    2016-01-01

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  7. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.

    2016-04-13

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  8. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  9. Sedimentary sources and processes in the eastern Arabian Sea: Insights from environmental magnetism, geochemistry and clay mineralogy

    Directory of Open Access Journals (Sweden)

    Kumar Avinash

    2016-03-01

    Full Text Available The spatial distribution patterns of surficial sediment samples from different sedimentary domains (shallow to deep-sea regions of the eastern Arabian Sea were studied using sediment proxies viz. environmental magnetism, geochemistry, particle size and clay mineralogy. Higher concentrations of magnetic minerals (high χlf were recorded in the deep-water sediments when compared with the shallow water sediments. The magnetic mineralogy of one of the shallow water samples is influenced by the presence of bacterial magnetite as evidenced from the χARM/χlf vs. χARM/χfd biplot. However, the other samples are catchment-derived. The high correlation documented for χlf, anhysteretic remanent magnetisation (χARM and isothermal remanent magnetisation (IRM with Al indicates that the deep-sea surficial sediments are influenced by terrigenous fluxes which have been probably derived from the southern Indian rivers, the Sindhu (the Indus and the Narmada-Tapti rivers. A lower Mn concentration is recorded in the upper slope sediments from the oxygen minimum zone (OMZ but a higher Mn/Al ratio is documented in the lower slope and deep-sea sediments. Clay minerals such as illite (24–48.5%, chlorite (14.1–34.9%, smectite (10.6–28.7% and kaolinite (11.9–27.5% dominate the sediments of shallow and deep-sea regions and may have been derived from different sources and transported by fluvial and aeolian agents. Organic carbon (OC data indicate a low concentration in the shallow/shelf region (well oxygenated water conditions and deeper basins (increased bottom-water oxygen concentration and low sedimentation rate. High OC concentrations were documented in the OMZ (very low bottom-water oxygen concentration with high sedimentation rate. The calcium carbonate concentration of the surface sediments from the continental shelf and slope regions (<1800 m up to the Chagos-Laccadive Ridge show higher concentrations (average = 58% when compared to deep basin

  10. Magnetism of nakhlites and chassignites

    Science.gov (United States)

    Cisowski, S. M.

    1985-01-01

    Hysteresis measurements on three shergottite and two nakhlite meteorites indicate single domain grain size behavior for the highly shocked Shergotty, Zagami, and EETA 79001 meteorites, with more multidomain-like behavior for the unshocked Nakhla and Governador Valadares meteorites. High viscosity and initial susceptibility for Antarctic shergottite ALHA 7705 indicate the presence of superparamagnetic grains in this specimen. Thermomagnetic analysis indicate Shergotty and Zagami as the least initially oxidized, while EETA 79001 appears to be the most oxidized. Cooling of the meteorite samples from high temperature in air results in a substantial increase in magnetization due to the production of magnetite through oxidation exsolution of titanomagnetite. However, vacuum heating substantially suppresses this process, and in the case of EETA 79001 and Nakhla, results in a rehomogenization of the titanomagnetite grains. Remanence measurements on several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. The meteorites' weak field environment is consistent with Martian or asteroidal body origin but inconsistent with terrestrial origin.

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  14. Adsorption isotherms of pear at several temperatures

    OpenAIRE

    Mitrevski Vangelče; Lutovska Monika; Mijakovski Vladimir; Pavkov Ivan S.; Babić Mirko M.; Radojčin Milivoje T.

    2015-01-01

    The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for...

  15. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  16. Magnet properties of Mn{sub 70}Ga{sub 30} prepared by cold rolling and magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ener, Semih, E-mail: ener@fm.tu-darmstadt.de [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Skokov, Konstantin P. [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Karpenkov, Dmitriy Yu. [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Faculty of Physics, Tver State University, 170100 Tver (Russian Federation); Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Kuz' min, Michael D. [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gutfleisch, Oliver [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Fraunhofer IWKS, Project Group for Material Cycles and Resource Strategy, 63457 Hanau (Germany)

    2015-05-15

    The remanence and coercivity of arc melted Mn{sub 70}Ga{sub 30} can be substantially improved by cold rolling. For best performance the rolled material should be annealed at T=730 K in the presence of a magnetic field of 1 T. The so-obtained magnet has a remanence of 0.239 T and a coercivity of 1.24 T at room temperature. The underlying reason for the high coercivity and remanence is the increase of the content of a metastable ferrimagnetic D0{sub 22} phase at the expense of the normally stable anti-ferromagnetic D0{sub 19}. Magnetic field significantly increases the nucleation rate of the ferromagnetic D0{sub 22} phase that leads to grain size refinement and as a consequence of improving remanence and coercive field. - Highlights: • Alternative synthesis method for D0{sub 22} phase formation in Mn–Ga is developed. • Effect of cold rolling and annealing on magnetic properties of Mn{sub 70}Ga{sub 30} is examined. • Small magnetic fields are sufficient to accelerate nucleation of the D0{sub 22} phase.

  17. Testing the Remanent Fertilizing Effect that the Compost Prepared with Slurry Resulted from Urban Treatment Plants Has on Corn Crops

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2011-05-01

    Full Text Available Research was done on the remanent fertilizing effect that the compost resulted from treatment plant slurry and cellulosic waste has on corn growth and development. The fertilization was performed on chernozem soil from Banat plain region, by using three quantitative variations: 25 t, 50 t and 100 t of compost per ha. Research was done in the second year of compost fertilization. The greatest corn production was obtained on the variant fertilized with 50 t per ha, which provided a production gain of 19.9 % higher than the unfertilized variant. For the same variant, the corn production yield was also 5.34 % higher than the control sample. Although the corn production and the yield obtained in the variant of 100 t per ha fertilization were higher in comparison to the unfertilized variant (control sample and to the level of 25 t per ha, these values were inferior to the level of 50 t per ha fertilization.

  18. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  19. Geology of the Wilkes land sub-basin and stability of the East Antarctic Ice Sheet: Insights from rock magnetism at IODP Site U1361

    Science.gov (United States)

    Tauxe, L.; Sugisaki, S.; Jiménez-Espejo, F.; Escutia, C.; Cook, C. P.; van de Flierdt, T.; Iwai, M.

    2015-02-01

    IODP Expedition 318 drilled Site U1361 on the continental rise offshore of Adélie Land and the Wilkes subglacial basin. The objective was to reconstruct the stability of the East Antarctic Ice Sheet (EAIS) during Neogene warm periods, such as the late Miocene and the early Pliocene. The sedimentary record tells a complex story of compaction, and erosion (thus hiatuses). Teasing out the paleoenvironmental implications is essential for understanding the evolution of the EAIS. Anisotropy of magnetic susceptibility (AMS) is sensitive to differential compaction and other rock magnetic parameters like isothermal remanence and anhysteretic remanence are very sensitive to changes in the terrestrial source region. In general, highly anisotropic layers correspond with laminated clay-rich units, while more isotropic layers are bioturbated and have less clay. Layers enriched in diatoms are associated with the latter, which also have higher Ba/Al ratios consistent with higher productivity. Higher anisotropy layers have lower porosity and moisture contents and have fine grained magnetic mineralogy dominated by maghemite, the more oxidized form of iron oxide, while the lower anisotropy layers have magnetic mineralogies dominated by magnetite. The different magnetic mineralogies support the suggestion based on isotopic signatures by Cook et al. (2013) of different source regions during low productivity (cooler) and high productivity (warmer) times. These two facies were tied to the coastal outcrops of the Lower Paleozoic granitic terranes and the Ferrar Large Igneous Province in the more inland Wilkes Subglacial Basin respectively. Here we present evidence for a third geological unit, one eroded at the boundaries between the high and low clay zone with a "hard" (mostly hematite) dominated magnetic mineralogy. This unit likely outcrops in the Wilkes subglacial basin and could be hydrothermally altered Beacon sandstone similar to that detected by Craw and Findlay (1984) in Taylor

  20. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  3. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  4. Sequence crystallization during isotherm evaporation of southern ...

    African Journals Online (AJOL)

    Southern Algerian's natural brine sampled from chott Baghdad may be a source of mineral salts with a high economic value. These salts are recoverable by simple solar evaporation. Indeed, during isothermal solar evaporation, it is possible to recover mineral salts and to determine the precipitation sequences of different ...

  5. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    The use of maize (Zea mays) cob for the biosorption of Cr(VI), Ni(II) and Cd(II) is ... Variations in the concentration of the different adsorbates during the adsorption process .... Langmuir isotherm is the dimensionless separation .... The use of Sago waste for the sorption of lead and copper. Water S. Afr., 24 (3), p251-256.

  6. Isothermal Titration Calorimetry in the Student Laboratory

    Science.gov (United States)

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  7. Isothermal Gravitational Segregation: Algorithms and Specifications

    DEFF Research Database (Denmark)

    Halldórsson, Snorri; Stenby, Erling Halfdan

    2000-01-01

    New algorithms for calculating the isothermal equilibrium state of reservoir fluids under the influence of gravity are presented. Two types of specifications are considered: the specification of pressure and composition at a reference depth; and the specification of the total overall content of t...

  8. Magnetic Nanostructures Patterned by Self-Organized Materials

    Science.gov (United States)

    2016-01-05

    Palma , J. Escrig, J. C. Denardin Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires Journal of...J. L. Palma , C. Gallardo, L. Spinu, J. M. Vargas, L. S. Dorneles, J. C. Denardin, J. Escrig, Magnetic properties of Fe20 Ni80 antidots: Pore size and...array disorder, Journal of Magnetism and Magnetic Materials., 344, 2013, 8-13 7. E. Vargas, P. Toro, J.L. Palma , J. Escrig, C. Chaneac,

  9. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  10. Magnetic relaxation behaviour in Pr{sub 2}NiSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pakhira, Santanu, E-mail: santanupakhira20006@gmail.com; Mazumdar, Chandan; Ranganathan, R. [Condensed Matter Physics Division, Saha Institute Of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2016-05-06

    Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr{sub 2}NiSi{sub 3} have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.

  11. Unravelling the magnetic record in marine and continental sediments : climatic versus geomagnetic signals

    NARCIS (Netherlands)

    Kruiver, Pauline Pascal

    2001-01-01

    Magnetic iron oxides and iron sulfides are present as trace constituents in sediments. These magnetic particles can carry a natural remanent magnetisation (NRM). When the sediment consolidates and lithifies after deposition, the direction of the then ambient field is preserved. The amount of

  12. Microstructure, texture, and magnetic properties of backward extruded NdFeB ring magnets

    International Nuclear Information System (INIS)

    Gruenberger, W.; Hinz, D.; Schlaefer, D.; Schultz, L.

    1996-01-01

    Radially-oriented NdFeB ring magnets have been prepared by backward extrusion of melt-spun material. The average remanence measured in the radial direction reaches values above 1.2 T. Due to the inhomogeneity of the deformation, the magnetic properties and X-ray diffraction patterns revealed a gradual improvement of the alignment from the outer shell to regions near the inner surface of the ring. (orig.)

  13. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  14. Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization

    Science.gov (United States)

    Muxworthy, Adrian R.; Bland, Phillip A.; Davison, Thomas M.; Moore, James; Collins, Gareth S.; Ciesla, Fred J.

    2017-10-01

    We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low ( 6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.

  15. Magnetic Memory of two lunar samples, 15405 and 15445

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Kameníková, T.; Fuller, M.; Čížková, Kristýna

    2016-01-01

    Roč. 51, SI, Supplement 1 (2016), A375-A375 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : Lunar rocks * 15405 * 15445 * Apollo 15 * magnetic remanence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. Magnetic Properties of NdFe10Mo2-N Bonded Magnet

    Science.gov (United States)

    Zhang, Hong-Wei; Hu, Bo-Ping; Han, Zhong-Fan; Jin, Han-Min; Fu, Quan

    1997-06-01

    The dependence of remanence and coercivity on the magnetizing field is studied for isotropic and anisotropic epoxy resin bonded magnets. It was found that the coercivity of the NdFe10Mo2-N bonded magnet is mainly controlled by nucleation of reversed magnetic domains. Variation of iHc with Zn content and heat treatment conditions is studied. The value of 0 iHc obtained in the best Zn-bonded condition is about 0.15 T higher than before bonding. The variation of the amount of α-Fe with processing conditions is demonstrated for anisotropic Zn-bonded magnets.

  17. Deep Magnetic Diagenesis in Sediments: Progressive and Punctuated Processes.

    Science.gov (United States)

    Musgrave, R. J.; Kars, M. A. C.; Vega, M. E.

    2017-12-01

    Magnetic diagenesis in the tuffaceous muds, mudstones and volcaniclastic rocks cored at IODP Site U1437 is a product of progressive processes that continue throughout the 1800-m-thick sequence, punctuated by superimposed features corresponding to a series of influxes of fluids and concentrations of hydrocarbons. XRD, visual examination and SEM images indicate the presence of both magnetite and the magnetic sulfide greigite. Inferences from high values of saturation isothermal remanence normalised by magnetic susceptibility (SIRM/χ), distribution of hysteresis data near a diagenetic greigite curve on a Day plot, and 'humping' of low-temperature cycles of SIRM suggest that detrital magnetite and diagenetic greigite are both significant contributors to the magnetic assemblage, with greigite constituting a higher proportion in shallower samples. Progressive magnetic diagenesis is expressed as a continuing background decrease in SIRM/χ. FORC curves indicate an initial diagenetic growth of one or more higher-coercivity phases, followed downhole by increasing loss of all but low-coercivity material. The downhole pattern is consistent with progressive loss of fine-grained magnetite, initial authigenesis of greigite, and progressive pyritisation of the greigite. Some coarse-grained samples from the base of the sequence buck the trend, exhibiting SD behavior probably related to surviving magnetite inclusions in silicates. Shipboard fluid analysis revealed a complex profile of interstitial-water geochemistry, marked by several fluid influxes, including inputs of sulfate-rich water at about 275 and 460 meters below seafloor (mbsf). Methane concentrations, mostly low, markedly increase in the interval between 750 and 1460 mbsf, and ethane appears below an inferred fault at 1104 mbsf. Each of these fluid events is marked by offsets in the rock magnetic parameters SIRM/χ, S-0.3T, and DJH, representing repeated phases of late diagenetic growth of greigite in response to

  18. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  19. Isotopically exchangeable phosphorus as a correction value to adsorption isotherms

    International Nuclear Information System (INIS)

    Lopez, S.C.; Barbaro, N.O.; Rojas de Tramontini, S.L.; Martini, O.

    1984-01-01

    Adsorption isotherms in evaluation and characterization of soils are studied. The quantity of phosphorus present at first in soil, evaluated by radioisotopic techniques and used in correction of Langmuir and Freundlich isotherms, is discussed. (M.A.C.) [pt

  20. Production for high thermal stability NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China)], E-mail: iyy2000@163.com; Zhang, J.; Hu, S.Q.; Han, Z.D. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2008-04-15

    To improve sintered NdFeB magnets' thermal stability and magnetic properties, combined addition of elements Cu and Gd was investigated. It was found that with Gd addition increase to 1.0%, the temperature coefficient {alpha} improved from -0.15 to -0.05%/deg. C (maximum working temperature 120 deg. C), but the remanence and the maximum energy product linearly decreased. With addition of Cu in Gd-containing magnets the intrinsic coercivity increased greatly, and the remanence increased also because of their density improvement, and optimum Cu content was achieved at 0.2%. Microstructure analysis showed that most of the Cu distributed at grain boundaries and led to clear and smooth morphologies. Magnets with high thermal stability {alpha}=-0.05%/deg. C and magnetic properties were obtained with addition of Gd=0.8% and Cu=0.2%.

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  2. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  3. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  5. Synthesis, non-isothermal crystallization and magnetic properties of ...

    Indian Academy of Sciences (India)

    perties and modifies the physical properties of the matrix considerably. However ... perties and harmlessness to health. PEVA, in their different ..... crystals causing a depression in Tm and Tp. In all the cases, the crystallization enthalpy peak ...

  6. Characterization of the magnetic properties of NdFeB thick films exposed to elevated temperatures

    Science.gov (United States)

    Fujiwara, Ryogen; Devillers, Thibaut; Givord, Dominique; Dempsey, Nora M.

    2018-05-01

    Hard magnetic films used in magnetic micro-systems may be exposed to elevated temperatures during film and system fabrication and also during use of the micro-system. In this work, we studied the influence of temperature on the magnetic properties of 10 μm thick out-of-plane textured NdFeB films fabricated by high rate triode sputtering. Out-of-plane hysteresis loops were measured in the range 300K - 650K to establish the temperature dependence of coercivity, magnetization at 7 T and remanent magnetization. Thermal demagnetization was measured and magnetization losses were recorded from 350K in films heated under zero or low (-0.1 T) external field and from 325 K for films heated under an external field of -0.5 T. The effect of thermal cycling under zero field on the remanent magnetization was also studied and it was found that cycling between room temperature and 323 K did not lead to any significant loss in remanence at room temperature, while a 4% drop is recorded when the sample is cycled between RT and 343K. Measurement of hysteresis loops at room temperature following exposure to elevated temperatures reveals that while remanent magnetisation is practically recovered in all cases, irreversible losses in coercivity occur (6.7 % following heating to 650K, and 1.3 % following heating to 343K). The relevance of these results is discussed in terms of system fabrication and use.

  7. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  8. Moisture sorption isotherms of dehydrated whey proteins

    OpenAIRE

    Suzana Rimac Brnčić; Vesna Lelas; Zoran Herceg; Marija Badanjak

    2010-01-01

    Moisture sorption isotherms describe the relation between the moisture content of the dry material (food) and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as...

  9. Fragmentation in rotating isothermal protostellar clouds

    International Nuclear Information System (INIS)

    Bodenheimer, P.; Black, D.C.

    1980-01-01

    In this paper we report briefly the results of an extensive set of 3-D hydrodynamic calculations that have been performed during the past two and one-half years to investigate the susceptibility of rotating clouds to gravitational fragmentation. Because of the immensity of parameter space and the expense of computations, we have chosen to restrict this investigation to strictly isothermal collapse sequences. (orig./WL)

  10. Local galactic kinematics: an isothermal model

    International Nuclear Information System (INIS)

    Nunez, J.

    1983-01-01

    The kinematical parameters of galactic rotation in the solar neighborhood and the corrections to the precession have been calculated. For this purpose, an isothermal model for the solar neighborhood has been used together with the high order momenta of the local stellar velocity distribution and the Ogorodnikov-Milne model. Both have been calculated using some samples of the ''512 Distant FK4/FK4 Sup. Stars'' of Fricke (1977) and of Gliese's Gatalogue. (author)

  11. Magnetization reversal mechanisms in hybrid resin-bonded Nd Fe B magnets

    Science.gov (United States)

    Plusa, D.; Dospial, M.; Slusarek, B.; Kotlarczyk, U.

    2006-11-01

    The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd-Fe-Co-B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries.

  12. Magnetization reversal mechanisms in hybrid resin-bonded Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Plusa, D.; Dospial, M.; Slusarek, B.; Kotlarczyk, U.

    2006-01-01

    The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd-Fe-Co-B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries

  13. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope

    Science.gov (United States)

    Glenn, D. R.; Fu, R. R.; Kehayias, P.; Le Sage, D.; Lima, E. A.; Weiss, B. P.; Walsworth, R. L.

    2017-08-01

    Remanent magnetization in geological samples may record the past intensity and direction of planetary magnetic fields. Traditionally, this magnetization is analyzed through measurements of the net magnetic moment of bulk millimeter to centimeter sized samples. However, geological samples are often mineralogically and texturally heterogeneous at submillimeter scales, with only a fraction of the ferromagnetic grains carrying the remanent magnetization of interest. Therefore, characterizing this magnetization in such cases requires a technique capable of imaging magnetic fields at fine spatial scales and with high sensitivity. To address this challenge, we developed a new instrument, based on nitrogen-vacancy centers in diamond, which enables direct imaging of magnetic fields due to both remanent and induced magnetization, as well as optical imaging, of room-temperature geological samples with spatial resolution approaching the optical diffraction limit. We describe the operating principles of this device, which we call the quantum diamond microscope (QDM), and report its optimized image-area-normalized magnetic field sensitivity (20 µTṡµm/Hz1/2), spatial resolution (5 µm), and field of view (4 mm), as well as trade-offs between these parameters. We also perform an absolute magnetic field calibration for the device in different modes of operation, including three-axis (vector) and single-axis (projective) magnetic field imaging. Finally, we use the QDM to obtain magnetic images of several terrestrial and meteoritic rock samples, demonstrating its ability to resolve spatially distinct populations of ferromagnetic carriers.

  14. Adsorption isotherms of pear at several temperatures

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelče

    2015-01-01

    Full Text Available The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for estimation and selection of the best sorption isotherm equations were used. For each equation and experimental data set, the average performance index was calculated and models were ranked afterwards. After that, some statistical rejection criteria were checked (D’Agostino-Pearson test of normality, single-sample run test and significance and precision of the model parameters. The performed statistical analysis shows that the Guggenheim-Anderson-de Boer (GAB equation has the highest value of average performance index, but higher correlation between pair of parameters leads to lower precision of estimated parameters.[Projekat Ministarstva nauke Republike Srbije, br. TR 31058

  15. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  16. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  17. Static and dynamic magnetic properties of densely packed magnetic nanowire arrays

    DEFF Research Database (Denmark)

    Dmytriiev, O.; Al-Jarah, U.A.S.; Gangmei, P.

    2013-01-01

    and a continuous ferromagnetic thin film. In particular, the competition between anisotropies associated with the shape of the individual nanowires and that of the array as a whole has been studied. Measured and simulated hysteresis loops are largely anhysteretic with zero remanence, and the micromagnetic...... configuration is such that the net magnetization vanishes in directions orthogonal to the applied field. Simulations of the remanent state reveal antiferromagnetic alignment of the magnetization in adjacent nanowires and the formation of vortex flux closure structures at the ends of each nanowire....... The excitation spectra obtained from experiment and micromagnetic simulations are in qualitative agreement for magnetic fields applied both parallel and perpendicular to the axes of the nanowires. For the field parallel to the nanowire axes, there is also good quantitative agreement between experiment...

  18. Magnetic study of turbidites

    Science.gov (United States)

    Tanty, Cyrielle; Valet, Jean Pierre; Carlut, Julie

    2015-04-01

    Turbidites induce sedimentary reworking and re-deposition caused by tsunami, earthquake, volcanic processes, and other catastrophic events. They result from rapid depositional processes and are thus considered not being pertinent for comparison with pelagic sediments. Turbidites are evidently ruled out from paleomagnetic records dealing with time-series. Consequently, no attention has ever been paid to the magnetization of turbidites which is fully justified if the high level of turbulence governing the depositional processes influences the acquisition of magnetization. In certain conditions like channeled turbidity currents, levees of sediment are generated and then associated with relatively calm although very fast redeposition processes. Such conditions will thus govern the subsequent acquisition of magnetization through mechanical lock-in of the magnetic grains. This situation is actually quite similar to what happens during the experiences of artificial redeposition that are conducted in laboratory. Therefore, combining laboratory experiments and studies of natural turbidites could reveal important information on the processes involved in the acquisition of magnetization, especially if the comparison with the overlying hemipelagic sediments does not show any striking difference. We will present the results of magnetic measurements performed on four different and relatively recent turbidites. We selected different origins associated either with spillover of channeled turbidity currents or with co-seismic faulting. Each event is characterized by a different thickness (ten to few tens of cm), lithology and mean granulometry (few tens of μm to hundreds of μm). We have carried out measurements of magnetic susceptibility, magnetic remanence, anisotropy of magnetic susceptibility (AMS) and we also scrutinize the evolution of various rock magnetic parameters (ARM, IRM, S ratio, magnetic grain sizes, hysteresis parameters…). The magnetic characteristics of the

  19. Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets

    International Nuclear Information System (INIS)

    Romero, S.A.; Campos, M.F. de; Castro, J.A. de; Moreira, A.J.; Landgraf, F.J.G.

    2013-01-01

    Highlights: ► Use of the Stoner-Wohlfarth Callen Liu Cullen model in 2:17 type magnets. ► Data suggest exchange coupling between Sm2(CoFe)17 and Sm(CoCu)5 phases. ► It is given structural data for phase Sm0.33Zr0.67TM3, with TM=Co,Fe,Cu. ► The beneficial effect of the slow cooling treatment is explained. - Abstract: The microstructure and magnetic properties of 2:17 type isotropic magnets were investigated. The slow cooling heat treatment (cooling at 1 °C/min from 820 to 400 °C, and isothermal treatment during 24 h) was interrupted after the temperatures of 820, 700, 600 and 500 °C and their hysteresis were measured with fields up to 9 T. The fully heat treated sample presented coercivity (μ 0 H) of 3.32 T, after 24 h at 400 °C. The microstructure was investigated with SEM–FEG (Scanning Electron Microscope with Field Emission Gun) and X-ray Diffraction Rietveld analysis. The application of the Stoner–Wohlfarth–Callen–Liu–Cullen (SW–CLC) model points out exchange coupling between ferromagnetic Sm 2 (CoFe) 17 nanocells and ferromagnetic Sm(CoCu) 5 present at the cell boundary phase. The results are interpreted with the double shell model: first-a cobalt-rich ferromagnetic Sm(CoCu) 5 shell originates exchange coupling and second-a copper-rich paramagnetic Sm(CuCo) 5 shell produces magnetic decoupling. This double shell helps to maximize coercivity and remanence. The anisotropy field of the Sm 2 (CoFe) 17 cell phase was estimated in 7 T with the SW–CLC model.

  20. Zinc and resin bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    2002-01-01

    Zinc and resin bonded NdFeB magnets were processed. Basic magnetic parameters as well as compressive strength were evaluated versus annealing temperature and volume fraction of the bonding agent. For the zinc bonded magnets phase composition was investigated. The additional NdZn 5 phase was found in the Zn bonded magnets after annealing. Comparison of the Zn and resin bonded magnets reveals higher remanence for the former and higher coercivity for the latter. For the Zn and resin bonded magnets, 15 wt.% Zn / 370 o C and 7-10 wt.% resin were chosen as the optimal processing parameters. (author)

  1. Magnetic properties of a cermet on the base of Al2O3

    International Nuclear Information System (INIS)

    Tien, C.; Charnaya, E.V.; Gropyanov, V.M.; Mikhailova, I.S.; Wur, C.S.; Abramovich, A.A.

    2000-01-01

    The zero-field-cooled and field-cooled magnetizations, magnetization versus field, and remanent magnetization were measured for a cermet on the base of Al 2 O 3 using a SQUID magnetometer in the temperature range of 2-360 K. It was shown that magnetic properties of the cermet are determined by independent ferromagnetic, paramagnetic and spin-glass contributions. The spin-glass behavior was studied

  2. Low-temperature magnetism of alabandite: Crucial role of surface oxidation

    Czech Academy of Sciences Publication Activity Database

    Čuda, J.; Kohout, Tomáš; Filip, J.; Tuček, J.; Kosterov, A.; Haloda, J.; Skála, Roman; Santala, E.; Medřík, I.; Zbořil, R.

    2013-01-01

    Roč. 98, 8/9 (2013), s. 1550-1556 ISSN 0003-004X R&D Projects: GA AV ČR KJB300130903 Institutional support: RVO:67985831 Keywords : alabandite (MnS) * hausmannite (Mn3O4) * magnetism * troilite (FeS) * crystallization * experimental mineralogy * ferromanganese deposit * hysteresis * low temperature * magnetic anomaly * magnetic field * manganese deposit * oxidation * remanent magnetization * stoichiometry * sulfide Subject RIV: DD - Geochemistry Impact factor: 2.059, year: 2013

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  4. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  5. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  6. Paleofield determination from compositional dependent magnetic minerals within meteorites that post cooled down through their blocking temperatures

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Wieczorek, M.

    2016-01-01

    Roč. 51, SI, Supplement 1 (2016), A374-A374 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : theory of remanence * magnetic minerals * magnetic anomalies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  7. Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states

    Directory of Open Access Journals (Sweden)

    Ronald E. Lukins

    2017-05-01

    Full Text Available Differences in VSM magnetization vector rotation associated with various initial magnetization states were demonstrated. Procedures and criteria were developed to select sample orientation and initial magnetization states to allow for the combination of two different 2D measurements runs (with the same field profiles to generate a dataset that can be representative of actual 3D magnetization rotation. Nickel, cast iron, and low moment magnetic tape media were used to demonstrate these effects using hysteresis and remanent magnetization test sequences. These results can be used to generate 2D and 3D magnetic properties to better characterize magnetic phenomena which are inherently three dimensional. Example applications are magnetic tape-head orientation sensitivity, reinterpretation of 3D coercivity and other standard magnetic properties, and multi-dimensional shielding effectiveness.

  8. Sequential magnetic switching in Fe/MgO(001) superlattices

    Science.gov (United States)

    Magnus, F.; Warnatz, T.; Palsson, G. K.; Devishvili, A.; Ukleev, V.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2018-05-01

    Polarized neutron reflectometry is used to determine the sequence of magnetic switching in interlayer exchange coupled Fe/MgO(001) superlattices in an applied magnetic field. For 19.6 Å thick MgO layers we obtain a 90∘ periodic magnetic alignment between adjacent Fe layers at remanence. In an increasing applied field the top layer switches first followed by its second-nearest neighbor. For 16.4 Å MgO layers, a 180∘ periodic alignment is obtained at remanence and with increasing applied field the layer switching starts from the two outermost layers and proceeds inwards. This sequential tuneable switching opens up the possibility of designing three-dimensional magnetic structures with a predefined discrete switching sequence.

  9. A capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients.

    Science.gov (United States)

    Xu, Gaolian; Zhao, Hang; Cooper, Jonathan M; Reboud, Julien

    2016-10-06

    We demonstrate a multiplexed loop mediated isothermal amplification (LAMP) assay for infectious disease diagnostics, where the analytical process flow of target pathogens genomic DNA is performed manually by moving magnetic beads through a series of plugs in a capillary. Heat is provided by a water bath and the results are read by the naked eye, enabling applications in low resource settings.

  10. Tuning microstructure and magnetic properties of electrodeposited CoNiP films by high magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun; Wang, Kai [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Li, Donggang, E-mail: lidonggang@smm.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lou, Changsheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Zhao, Yue; Gao, Yang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-10-15

    A high magnetic field (up to 12 T) has been used to anneal 2.6-µm-thick Co{sub 50}Ni{sub 40}P{sub 10} films formed by pulse electrodeposition. The effects of high magnetic field annealing on the microstructure and magnetic properties of CoNiP thin films have been investigated. It was found that a high magnetic field accelerated a phase transformation from fcc to hcp and enhanced the preferred hcp-(002) orientation during annealing. Compared with the films annealed without a magnetic field, annealing at 12 T decreased the surface particle size, roughness, and coercivity, but increased the saturation magnetization and remanent magnetization of CoNiP films. The out-of-plane coercivity was higher than that the in-plane for the as-deposited films. After annealing without a magnetic field, the out-of-plane coercivity was equal to that of the in-plane. However, the out-of-plane coercivity was higher than that of the in-plane when annealing at 12 T. These results indicate that high magnetic field annealing is an effective method for tuning the microstructure and magnetic properties of thin films. - Highlights: • High magnetic field annealing accelerated phase transformation from γ to ε. • High magnetic field annealing enhanced preferred hcp-(002) orientation. • High magnetic field annealing decreased particle size, roughness and coercivity. • High magnetic field annealing increased the saturation and remanent magnetization.

  11. Comparison of Magnetic and Moessbauer Results Obtained for Palaeozoic Rocks of Hornsund, Southern Spitsbergen, Arctic

    International Nuclear Information System (INIS)

    Szlachta, K.; Galazka-Friedman, J.; Michalski, K.; Brzozka, K.; Gorka, B.

    2008-01-01

    This analysis was performed as a part of the palaeomagnetic project focused on the reconstruction of the palaeogeographic position of the Svalbard Archipelago and adjacent crustal units (European Arctic) in the Palaeozoic and Mesozoic. Three rock formations | Cambrian, Devonian and Carboniferous were sampled in the area of Hornsund, southern Spitsbergen. The main aim of the presented study is to identify ferromagnetic minerals (sensu lato) - the carriers of the natural remanent magnetisation in the investigated rocks. A wide range of magnetic methods were used: the Lowrie tests, unblocking temperatures determinations and the measurement of coercivity spectra as well as the Moessbauer studies. In Devonian and Carboniferous samples all applied methods indicate the domination of the hematite natural remanent magnetisation carrier. In Cambrian rocks magnetic measurements reveal a mixture of ferromagnetic (sensu lato) minerals with varying coercivities and unblocking temperatures. The Moessbauer data improve the identification, suggesting that in Cambrian rocks the carrier of the dominating natural remanent magnetisation component is maghemite. (authors)

  12. Structure and magnetic properties of hot deformed Nd{sub 2}Fe{sub 14}B magnets doped with DyH{sub x} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.G.; Yue, M., E-mail: yueming@bjut.edu.cn; Zhang, D.T.; Liu, W.Q.; Zhang, J.X.

    2016-04-15

    Commercial NdFeB powders mixed with DyH{sub x} nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyH{sub x} is increased by 66.7%, compared with the magnet without DyH{sub x}, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer between Nd-rich phase and NdFeB main phase. - Highlights: • The hot deformed magnet exhibits strong c-axis crystallographic texture. • The coercivity of the magnet significantly improved, and the remanence decreases slight. • TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer.

  13. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  14. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  15. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties

    International Nuclear Information System (INIS)

    Li, X.T.; Yue, M.; Liu, W.Q.; Li, X.L.; Yi, X.F.; Huang, X.L.; Zhang, D.T.; Chen, J.W.

    2015-01-01

    The waste Nd–Fe–B sintered magnets up to 500 kg per batch were recycled to manufacture anisotropic sintered magnets by combination of hydrogen decrepitation (HD) and alloying technique. Magnetic properties and thermal stability of both the waste magnets and recycled magnets were investigated. The recycled magnet exhibits magnetic properties with remanence (B r ) of 12.38 kGs, coercivity (H ci ) of 24.89 kOe, and maximum energy product [(BH) max ] of 36.51 MGOe, respectively, which restores 99.20% of B r , 105.65% of H ci , and 98.65% of (BH) max of the waste magnets, respectively. The volume fraction of Nd-rich phase in the recycled magnets is about 10.1 vol.%, which is bigger than that of the waste magnets due to the additive of Nd 3 PrFe 14 B alloy containing more rare earth. The remanence temperature coefficient (α) and coercivity temperature coefficient (β) of the recycled magnets are −0.1155%/K and −0.5099%/K in the range of 288–423 K, respectively, which are comparative to those of the waste magnets. - Highlights: • Large batch recycling of waste Nd–Fe–B sintered magnets were performed. • The recycled magnet restores 99.20% of B r , 105.65% of H ci and 98.65% of (BH) max of the magnet. • The recycled magnets bears bigger volume fraction and better distribution of Nd-rich phase. • The recycled magnets exhibit similar temperature coefficients and maximum working temperature

  16. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  17. Isothermal calorimetry of enzymatic biodiesel reaction

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy

    2010-01-01

      Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....

  18. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    OpenAIRE

    Vemulkar, T; Mansell, Rhodri; Petit, Dorothee Celine; Cowburn, Russell Paul; Lesniak, MS

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer...

  19. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  20. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  1. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  3. Analysis of nitrogen and carbon tetrachloride adsorption isotherms and pore size distribution for siliceous MCM-41 synthesized from rice husk silica

    Directory of Open Access Journals (Sweden)

    Siriluk Chiarakorn

    2004-02-01

    Full Text Available RH-MCM-41 particles were synthesized using sodium silicate prepared from rice husk as a silica source and hexadecyltrimethylammonium bromide (CTAB as a surfactant. The molar compositions were 1.0SiO2: 1.1NaOH: 0.13CTAB: 0.12H2O. This material was used for adsorption isotherm studies of carbon tetrachloride (CT at 25 oC using a magnetically coupled microbalance, and compared with adsorption isotherms using nitrogen at 77 K. The CT isotherms were classified as reversible Type V isotherms, and the nitrogen adsorption isotherm was Type IVc. Capillary condensation was found in a very narrow pressure range, indicating the presence of nearly uniform pores in the RH-MCM-41 particles, which agrees very well with TEM results. The surface area estimated by using the BET method was (800 ± 8 m2 g-1. Pore size distributions (PSD of nitrogen and CT adsorption isotherms for a series of MCM-41 were calculated by using method recommended by Naono and Hakuman (1997. The pore size distributions from the nitrogen isotherm using the BJH and Naono methods showed quite narrow pore diameter distributions, centered around 27 and 29 Å, respectively. Similarly, the peak pore diameters calculated from CT isotherms using the BJH and Naono methods were 24 and 28 Å. It was found that the PSDs analyzed by the BJH method were underestimated compared to that from Naono method.

  4. Macroscopic simulation of isotropic permanent magnets

    International Nuclear Information System (INIS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material. - Highlights: • Simulations of isotropic permanent magnets. • Accurate calculation of remanence magnetization and strayfield. • Comparison with strayfield measurements and anisotropic magnet simulations. • Efficient 3D FEM–BEM coupling for solution of Maxwell equations.

  5. Isothermal and non-isothermal conditions of isotope separation by chemical exchange method

    International Nuclear Information System (INIS)

    Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.

    1992-01-01

    The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)

  6. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    Science.gov (United States)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  7. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  8. Evaluation of aging and hydration in natural volcanic glass: magnetic property variations during artificial aging and hydration experiments

    Science.gov (United States)

    Bowles, J. A.; Patiman, A.

    2017-12-01

    The recorded geomagnetic field intensity is a function of magnetic mineralogy, grain size, and mineral concentration as well as material stability in nature and during laboratory experiments. Fresh, unhydrated, volcanic glasses are recognized as a nearly ideal natural material for use in paleointensity experiments because they contain the requisite single domain to pseudo-single-domain magnetic particles. Although alteration of magnetic mineralogy can be monitored during the experiments, it is unclear how mineralogy and hence magnetization might change with age as the metastable glass structure relaxes and/or the glass becomes hydrated. Bulk magnetic properties as a function of age show no clear trend, even over hundreds of millions of years. This may be due to the fact that even in fresh, unhydrated glass, there are small-scale differences in magnetic properties due to variation cooling rate or composition variations. Therefore, in order to better understand how magnetic mineralogy evolves with time and hydration, we conducted artificial aging and hydration experiments on fresh, unhydrated rhyolitic (South Deadman Creek, California, 650-yr) and basaltic (Axial Seamount, 2011) end-member glasses. Here, we present the results of artificial aging and hydration experiments. Elevated temperatures accelerate the glass relaxation process in a way that relaxation time decreases with increasing temperature. Aged samples are dry-annealed at 200, 300 and 400 °C for up to 240 days. A second set of samples are hydrated under pressure at 300°C and 450°C. In all cases, isothermal remanent magnetization (IRM) acquisition is monitored to assess changes in the coercivity spectrum and saturation IRM. Preliminary aging results show that in basaltic and rhyolitic glass there is one main peak coercivity at 150 mT and 35 mT, respectively. An increasing sIRM and decreasing peak coercivity trend is observed in basaltic glass whereas no trend is shown in the rhyolitic glass in both

  9. Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites

    International Nuclear Information System (INIS)

    Pozo Lopez, G.; Silvetti, S.P.; Urreta, S.E.; Cabanillas, E.D.

    2007-01-01

    Composites Ni 0.5 Zn 0.5 Fe 2 O 4 /SiO 2 are obtained after high-energy ball milling precursor oxides, in stoichiometric proportions, for 200 h at room temperature and further isothermal annealing for 1 h at 1273 K, under air and argon atmosphere, respectively. After 200 h grinding, a complex microstructure develops with small hematite crystals mixed with SiO 2 and remanent NiO and ZnO particles, and very small NiZn ferrite clusters, reaching a mean size of ∼9 nm. The high temperature treatments remove the hematite grains from the powder and promote the growth of NiZn ferrite grains to reach mean sizes nearly ∼20 nm. For treatments in oxidizing atmospheres, the major phases are SiO 2 and NiZn ferrite, while for annealing in Ar a new phase appears, fayalite, which is paramagnetic at room temperature. The M-H loops are all well described by the sum of a ferromagnetic and a superparamagnetic-like contribution. The observed properties are interpreted considering the different magnetic phases obtained, their crystal sizes and their mutual interactions

  10. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques...... of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent...... magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information....

  11. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2010-01-01

    austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...... with a continuation of the martensitic transformation. On prolonged isothermal holding a volume reduction was observed for AISI 52100, but not for AISI 1070. A mechanism is proposed that explains the occurrence of isothermal martensite formation....

  12. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Science.gov (United States)

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  13. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  14. On the angular dependence of the coercivity of NdFeB hard magnets

    International Nuclear Information System (INIS)

    Jahn, L.; Christoph, V.; Pastuschenko, J.S.

    1989-01-01

    In order to test the model assumptions on hard magnetic properties of sintered NdFeB magnets, a comparison of the measured and calculated values of the magnetization and remanence coercivities H C and H R , respectively, as a function of the angle between texture axis and external field θ in Nd 16 Fe 76 B 8 and (Nd 0.9 Tb 0.1 ) 16 Fe 76 B 8 is given and explained qualitatively

  15. Magnetic paleointensities recorded in fault pseudotachylytes and implications for earthquake lightnings

    Science.gov (United States)

    Leibovitz, Natalie; Ferré, Eric; Geissman, John; Gattacceca, Jérôme

    2015-04-01

    Fault pseudotachylytes commonly form by frictional melting due to seismic slip. These fine-grained clastic rocks result from melt quenching and may show a high concentration of fine ferromagnetic grains. These grains are potentially excellent recorders of the rock natural remanent magnetization (NRM). The magnetization processes of fault pseudotachylytes are complex and may include the following: i) near coseismic thermal remanent magnetization (TRM) acquired upon cooling of the melt; ii) coseismic lightning induced remanent magnetization (LIRM) caused by earthquake lightnings (EQL); iii) post seismic chemical remanent magnetization (CRM) related to both devitrification and alteration. Deciphering these magnetization components is crucial to the interpretation of microstructures and the timing of microstructural development. Hence the paleomagnetic record of fault pseudotachylytes provides an independent set of new constraints on coseismic and post-seismic deformation. Fault pseudotachylytes from the Santa Rosa Mountains, California host a magnetic assemblage dominated by stoichiometric magnetite, formed from the breakdown of ferromagnesian silicates and melt oxidation at high temperature. Magnetite grain size in these pseudotachylytes compares to that of magnetites formed in friction experiments. Paleomagnetic data on these 59 Ma-old fault rocks reveal not only anomalous magnetization directions, inconsistent with the coseismic geomagnetic field, but also anomalously high magnetization intensities. Here we discuss preliminary results of paleointensity experiments designed to quantify the intensity of coseismic magnetizing fields. The REM' paleointensity method is particularly well suited to investigate NRMs resulting from non-conventional and multiple magnetization processes. The anomalously high NRM recorded in a few, but not all, specimens points to LIRM as the dominant origin of magnetization.

  16. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): a stochastic TMDSC study

    OpenAIRE

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus Solé, Yolanda; Fraga Rivas, Iria

    2012-01-01

    The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures Tc has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature Tg as a function of isothermal cure time is determined by co...

  17. Tunneling in cosmology and isothermal inflation

    International Nuclear Information System (INIS)

    Brout, R.; Spindel, P.

    1991-01-01

    The wave function for the universe, as proposed by Hartle and Hawking, experiences tunneling for small values of the radius of the universe. This induces thermal effects and so a hot big bang. We first give a detailed analysis of the observer accelerating in Minkowski space in terms of the tunneling of his wave function beyond his turning point. Applied to cosmology one finds a temperature at the big bang equal to the Gibbons-Hawking value. The residual thermal effects which result in an isothermal inflationary expansion give rise to a renormalized self-consistently determined Hubble constant (and hence Gibbons-Hawking temperature) through the trace anomaly. A thermodynamic interpretation is given. These results militate against phase transitions as a motor for inflation. (orig.)

  18. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  19. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  20. Field dependence of magnetic viscosity of CoCrTa in-plane media

    NARCIS (Netherlands)

    Phan le kim, P.L.K.; Lodder, J.C.; Popma, T.J.A.

    1999-01-01

    In this paper we will present a study of magnetic viscosity as a function of applied field of CoCrTa/Cr in-plane media. The viscosity versus applied field curves (viscosity curves) of the samples exhibit a sharp peak at remanence coercivity (Hcr). Their activation volume was found to be close to the

  1. Magnetisation processes and magnetic viscosity of mechanically alloyed SmCo5

    International Nuclear Information System (INIS)

    Ding, J.; Smith, P.A.I.; McCormick, P.G.; Street, R.

    1996-01-01

    Mechanically alloyed SmCo 5 materials with coercivities in the range of 50-75 kOe were studied in this work. Irreversible magnetisation processes were investigated by measuring remanences after initial magnetisation and after demagnetisation. A large deviation of the demagnetisation remanence from the Wohlfarth relationship indicated that interactions between grains play an important role in the irreversible magnetisation process. Viscosity tests showed nearly linear relationship between the magnetic field and the viscosity parameter for the initial magnetisation, while the viscosity was not strongly dependent on the field for the demagnetisation. High values of the viscosity parameter, Λ, between 120 to 220 Oe were measured at fields near coercivity. (orig.)

  2. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    Science.gov (United States)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  3. The Crustal Magnetization Mapping in the Ocean Basin of the South China Sea and its Tectonic Implications

    Science.gov (United States)

    Guo, L.; Meng, X.

    2015-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, was formed by the interaction of the three plates and the Cenozoic seafloor spreading. Magnetic data is the crucial data for understanding tectonic evolution and seafloor spreading model in the SCS. Magnetization intensity is related closely to rock type and tectonics. Through magnetization mapping, the distribution of apparent magnetization in the subsurface will be obtained, benefiting in lithologic classification and geological mapping. Due to strong remanence presented in the oceanic crust, magma and seamounts in the SCS, the magnetization directions are complex and heterogeneous, quite different from the modern geomagnetic field directions. However, the routine techniques for magnetization mapping are based on negligence of remanence. The normalized source strength (NSS), one quantity transformed from the magnetic anomalies, is insensitive to remanence and responds well to the true locations of magnetic sources. The magnetization mapping based on the NSS will effectively reduce effects of remanence, benefitting in better geological interpretation. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then transformed them into the NSS. Then we did magnetization mapping based on the NSS to obtain the crustal magnetization distribution in the studied area. The results show that the magnetization distribution inside of each subbasin is relatively homogeneous, but that of eastern subbasin is mostly strong with amplitude of 0.2A/m~4.2A/m, while that of southwestern subbasin is weak with amplitude of 0.2A/m~1.1A/m. It implies that magnetic structure and tectonic features in the crust are discriminative between both subbasins, and the tectonic boundary between both subbasins is roughly ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank.

  4. Financial Statement Audit Report of Isothermal Community College.

    Science.gov (United States)

    Campbell, Ralph

    This report presents the results of the Isothermal Community College financial statement audit for the fiscal year ending on June 30, 1998. Isothermal Community College is a component of the State of North Carolina, thus the authority to audit is granted by Article 5A of G.S. 147. The accounts and operations of the institution were subject to…

  5. Adsorption isotherms and kinetics for dibenzothiophene on activated

    Indian Academy of Sciences (India)

    Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for ...

  6. Interpretation of Quasi-Isothermal Thermogravimetric Weight Curves

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1979-01-01

    Quasi-isothermal analysis (QIA) is a very useful technique. Compared to conventional non-isothermal thermogravimetry, close-lying reactions can easily be separated by use of this method and kinetic data can be obtained for each intermediate reaction in a single run. This paper discusses the shape...

  7. New Theoretical Expressions for the Five Adsorption Type Isotherms ...

    African Journals Online (AJOL)

    New Theoretical Expressions for the Five Adsorption Type Isotherms Classified by Bet Basing on Statistical Physics Treatment. ... that we have proposed, basing on statistical physics treatment, are rather powerful to better understand and interpret the various five physical adsorption Type isotherms at a microscopic level.

  8. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  9. Globally Optimal Segmentation of Permanent-Magnet Systems

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective...... remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast...

  10. Electron back scattered diffraction study of SmCo magnets

    International Nuclear Information System (INIS)

    Yonamine, T.; Fukuhara, M.; Machado, R.; Missell, F.P.

    2008-01-01

    The remanence and energy product of permanent magnets is a strong function of their crystallographic texture. Electron back scattered diffraction (EBSD) is a tool for texture analysis providing information about the atomic layers up to 50 nm below the surface of the material. This paper discusses experimental requirements for performing EBSD measurements on rare-earth permanent magnets and presents results on commercial SmCo magnet material. EBSD measurements proved to be very sensitive to misaligned grains and were sensitive to texture in good agreement with information provided by X-ray diffraction scans. Results for nanostructured Sm(CoFeCuZr) z magnets are also discussed

  11. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Science.gov (United States)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  12. Reversal mechanisms and interactions in magnetic systems: coercivity versus switching field and thermally assisted demagnetization

    Directory of Open Access Journals (Sweden)

    Cebollada, F.

    2005-06-01

    Full Text Available In this paper we present a comparative analysis of the magnetic interactions and reversal mechanisms of two different systems: NdFeB-type alloys with grain sizes in the single domain range and Fe-SiO2 nanocomposites with Fe concentrations above and below the percolation threshold. We evidence that the use of the coercivity as the main parameter to analyse them might be misleading due to the convolution of both reversible and irreversible magnetization variations. We show that the switching field and thermally assisted demagnetization allow a better understanding of these mechanisms since they involve just irreversible magnetization changes. Specifically, the experimental analysis of the coercivity adquisition process for the NdFeB-type system suggests that the magnetization reversal is nucleated at the spin misalignments present due to intergranular exchange interactions. On the other hand, the study of the magnetic viscosity and of the isothermal remanent magnetization (IRM and direct field demagnetization (DCD remanence curves indicates that the dipolar interactions are responsible for the propagation of the switching started at individual particles.

    En este artículo presentamos un análisis comparativo de la influencia de la microestructura a través de las interacciones magnéticas en los mecanismos de inversión de la magnetización en dos sistemas diferentes: aleaciones tipo NdFeB con tamaños de grano en el rango de monodominio y nanocompuestos de Fe-SiO2 con concentraciones de Fe tanto por encima como por debajo del umbral de percolación. Ponemos de manifiesto que el uso del campo coercitivo como parámetro de análisis puede llevar a equívocos debido a la coexistencia de variaciones reversibles e irreversibles de la magnetización. También mostramos que el campo de conmutación y la desimanación térmicamente asistida permiten una mejor comprensión de dichos mecanismos ya que reflejan exclusivamente cambios irreversibles de

  13. Paleocurrents of the Middle-Upper Jurassic strata in the Paradox Basin, Colorado, inferred from anisotropy of magnetic susceptibility (AMS)

    Science.gov (United States)

    Ejembi, J. I.; Ferre, E. C.; Potter-McIntyre, S. L.

    2017-12-01

    The Middle-Upper Jurassic sedimentary strata in the southwestern Colorado Plateau recorded pervasive eolian to fluvio-lacustrine deposition in the Paradox Basin. While paleocurrents preserved in the Entrada Sandstone, an eolian deposition in the Middle Jurassic, has been well constrained and show a northwesterly to northeasterly migration of ergs from the south onto the Colorado Plateau, there is yet no clear resolution of the paleocurrents preserved in the Wanakah Formation and Tidwell Member of the Morrison Formation, both of which are important sedimentary sequences in the paleogeographic framework of the Colorado Plateau. New U-Pb detrital zircon geochronology of sandstones from these sequences suggests that an abrupt change in provenance occurred in the early Late Jurassic, with sediments largely sourced from eroding highlands in central Colorado. We measured the anisotropy of magnetic susceptibility (AMS) of sediments in oriented sandstone samples from these three successive sequences; first, to determine the paleocurrents from the orientations of the AMS fabrics in order to delineate the source area and sediments dispersal pattern and second, to determine the depositional mechanisms of the sediments. Preliminary AMS data from two study sites show consistency and clustering of the AMS axes in all the sedimentary sequences. The orientations of the Kmin - Kint planes in the Entrada Sandstone sample point to a NNE-NNW paleocurrent directions, which is in agreement with earlier studies. The orientations of the Kmin - Kint planes in the Wanakah Formation and Tidwell Member samples show W-SW trending paleocurrent directions, corroborating our hypothesis of a shift in provenance to the eroding Ancestral Front Range Mountain, located northeast of the Paradox Basin, during the Late Jurassic. Isothermal remanence magnetization (IRM) of the samples indicate that the primary AMS carriers are detrital, syndepositional ferromagnetic minerals. Thus, we contend that AMS can

  14. Static devices with new permanent magnets

    International Nuclear Information System (INIS)

    Chavanne, J.; Laforest, J.; Pauthenet, R.

    1987-01-01

    The high remanence and coercivity of the new permanent magnet materials are of special interest in the static applications. High ordering temperature and are uniaxial anisotropy at the origin of their good permanent magnet properties are obtained in rare earth-transition metal compounds. Binary SmCo/sub 5/ and Sm/sub 2/Co/sub 17/ and ternary Nd/sub 2/Fe/sub 14/B compounds are the basis materials of the best permanent magnets. new concepts of calculations of static devices with these magnets can be applied: the magnetization can be considered as ridig, the density of the surface Amperian current is constant, the relative permeability is approximately 1 and the induction calculations are linear. Examples of hexapoles with Sm-Co and NdFeB magnets are described and the performances are compared. The problems of temperature behavior and corrosion resistance are underlined

  15. Adsorption isotherm special study. Final report

    International Nuclear Information System (INIS)

    1993-05-01

    The study was designed to identify methods to determine adsorption applicable to Uranium Mill Tailings Remedial Action (UMTRA) Project sites, and to determine how changes in aquifer conditions affect metal adsorption, resulting retardation factors, and estimated contaminant migration rates. EPA and ASTM procedures were used to estimate sediment sorption of U, As, and Mo under varying groundwater geochemical conditions. Aquifer matrix materials from three distinct locations at the DOE UMTRA Project site in Rifle, CO, were used as the adsorbents under different pH conditions; these conditions stimulated geochemical environments under the tailings, near the tailings, and downgradient from the tailings. Grain size, total surface area, bulk and clay mineralogy, and petrography of the sediments were characterized. U and Mo yielded linear isotherms, while As had nonlinear ones. U and Mo were adsorbed strongly on sediments acidified to levels similar to tailings leachate. Changes in pH had much less effect on As adsorption. Mo was adsorbed very little at pH 7-7.3, U was weakly sorbed, and As was moderately sorbed. Velocities were estimated for metal transport at different pHs. Results show that the aquifer materials must be characterized to estimate metal transport velocities in aquifers and to develop groundwater restoration strategies for the UMTRA project

  16. Isothermal thermogravimetric data acquisition analysis system

    Science.gov (United States)

    Cooper, Kenneth, Jr.

    1991-01-01

    The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.

  17. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E

    2011-01-01

    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  18. Magnetism and magnetic mineralogy of ash flow tuffs from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schlinger, C.M.; Veblen, D.R.; Rosenbaum, J.G.

    1991-01-01

    The magnetic susceptibility χ and remanent magnetization of an ash flow sheet are profoundly influenced by cooling history after emplacement. Maxima and minima in χ measured along profiles at Yucca Mountain, Nevada, identify persistent magnetic marker horizons within vitric portions of the Tiva Canyon and underlying Topopah Spring Members of the Paintbrush Tuff. The observed stratigraphic changes in magnetic properties reflect variations in amounts and mineralogy of Fe-Ti oxide phenocrysts, and the presence, shape, size, and mineralogy of magnetic Fe-oxide microcrystals that precipitated at high temperature after emplacement of each sheet. The size variations of the precipitated Fe-oxides, which were established using transmission electron microscopy (TEM) and petrographic observation, are consistent both with variations in magnetic susceptibility measured at the outcrop and with variations in the intensity of remanent magnetization. Several interpretations of the shape anisotropy of the precipitated Fe-oxide are possible, including growth by a dislocation mechanism. Additionally, the observed elongation of precipitated microcrystals is consistent with theoretical predictions for growth in a uniaxial stress field. Susceptibility variations as established at the outcrop, as well as in the borehole, offer a potentially useful tool for stratigraphic correlation of ash flow sheets

  19. Sedimentology and Rock Magnetism of Bailey River Peat Cores, Sudbury Area: Preliminary Results

    Science.gov (United States)

    Yurtseven, A.; Cioppa, M. T.; Dean, K.

    2009-05-01

    Magnetic measurements on peat can reveal atmospheric anthropogenic contamination. Two cores were collected from a marsh surrounding the Bailey River, 10 km north of Sudbury, Ontario, using a Russian peat borer. The BR1 core (1.4 m) was collected right at the river's edge, whereas the BR2 core (2.5 m) was collected about 50 m away from the river's edge, close to the edge of the marsh and near the forest. Significant sedimentological variation between the two cores was observed: core BR1 had several centimeter to decimeter scale fine to coarse grey sand layers at 0.14 m, 0.46 m and 0.87 m between thicker organic-rich (peat) zones, whereas core BR2 had only one 5 cm sand-rich layer at 0.94 m within the organic-rich material. The cores were subsampled at 2.5 cm intervals for laboratory magnetic analysis. Volume susceptibility was measured using a Bartington MS2B meter, and mass-specific susceptibility was then calculated. In core BR1, the sand layers had relatively higher susceptibility (13 x 10-8 m3/kg) , while the organic rich layers had very low susceptibility (0 - 2 x 10-8 m3/kg). In core BR2, which had little sand, the susceptibility variation was dominated by higher values near-surface (10 x 10-8 m3/kg), and very low susceptibility (0.3 x 10-8 m3/kg) below 0.3 m depth. Since the lithology in this core did not vary substantially, susceptibility variations may be controlled by anthropogenic deposition in the near-surface during the peak mining and smelting decades. These preliminary results suggest that any anthropogenic signal in core BR1 appears to be masked by the sedimentological variation. On pilot results from eight samples in core BR1, saturation isothermal remanence acquisition showed 95% saturation by 200 mT, and the S-ratios (0.3T/0.9T) were above 0.93, suggesting that magnetite is the major magnetization carrier. In core BR2, six out of eight samples showed similar results; however, two samples had slightly more higher coercivity minerals (90% saturation

  20. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  1. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...

  2. Management of remanent lifetime. Short-term benefits of the maintenance evaluation and improvement programme; Gestion de la vida remanente de instalaciones industriales. Extension de vida

    Energy Technology Data Exchange (ETDEWEB)

    Sainero Garcia, J [Empresarios Agrupados, Madrid (Spain)

    1993-12-15

    Remanent Lifetime Management, which is scientifically based on knowing the degradatory phenomena associated with aging, today allows us to optimize plant life through a long-term maintenance strategy combining preventive maintenance and condition monitoring programmes. Within a project for Remanent Lifetime Management (RLM), the determination of methods of control and mitigation of degradations due to aging depends on the programme of Maintenance Evaluation and Improvement (MEI). This programme, underpinned by the analysis of degradatory phenomena to which plant components are subjected, evaluates current maintenance practices and defines the complementary actions which would facilitate establishment of a long-term strategy to control aging. Together with this main objective of the RLM project, the MEI programme achieves short-term benefits since, right from the beginning, it offers solutions to mitigate and guard against degradations in crucial plant components, and generally sets out a programme to control aging. The MEI programme further serves as a tool to reach the final objectives of the new 10CFR50.65 rule, 'Requirements for Maintenance Programs for NPPs'. The MEI always offers the option should the Utility Owner decide to extend plant life. (author)

  3. Tuberculosis Biomarker Extraction and Isothermal Amplification in an Integrated Diagnostic Device.

    Directory of Open Access Journals (Sweden)

    Amy Creecy

    Full Text Available In this study, we integrated magnetic bead-based sample preparation and isothermal loop mediated amplification (LAMP of TB in a single tube. Surrogate sputum samples produced by the Program for Appropriate Technology in Health containing inactivated TB bacteria were used to test the diagnostic. In order to test the sample preparation method, samples were lysed, and DNA was manually extracted and eluted into water in the tube. In a thermal cycler, LAMP amplified TB DNA from 103 TB cells/mL of sputum at 53.5 ± 3.3 minutes, 104 cells/mL at 46.3 ± 2.2 minutes, and 105 cells/mL at 41.6 ± 1.9 minutes. Negative control samples did not amplify. Next, sample preparation was combined with in-tubing isothermal LAMP amplification by replacing the water elution chamber with a LAMP reaction chamber. In this intermediate configuration, LAMP amplified 103 cells/mL at 74 ± 10 minutes, 104 cells/mL at 60 ± 9 minutes, and 105 TB cells/mL of sputum at 54 ± 9 minutes. Two of three negative controls did not amplify; one amplified at 100 minutes. In the semi-automated system, DNA was eluted directly into an isothermal reaction solution containing the faster OptiGene DNA polymerase. The low surrogate sputum concentration, 103 TB cells/mL, amplified at 52.8 ± 3.3 minutes, 104 cells/mL at 45.4 ± 11.3 minutes, and 105 cells/mL at 31.8 ± 2.9 minutes. TB negative samples amplified at 66.4 ± 7.4 minutes. This study demonstrated the feasibility of a single tube design for integrating sample preparation and isothermal amplification, which with further development could be useful for point-of-care applications, particularly in a low-resource setting.

  4. Manipulation of incoherent and coherent spin ensembles in diluted magnetic semiconductors via ferromagnetic fringe fields; Manipulation inkohaerenter und kohaerenter Spinensembles in verduennt-magnetischen Halbleitern mittels ferromagnetischer Streufelder

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Simon

    2009-05-19

    In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)

  5. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner–Nordström–de Sitter Black Hole

    International Nuclear Information System (INIS)

    Hasan, M. Khayrul; Ali, M. Hossain

    2009-01-01

    We formulate the general relativistic magnetohydrodynamic equations for isothermal plasma in spatially flat Reissner–Nordström–de Sitter metric by using 3+1 split of spacetime. Respective perturbed equations are linearized for rotating magnetized surroundings. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed both analytically and numerically in order to investigate the nature of waves with positive angular frequency around the horizon

  6. Test of an Hypothesis of Magnetization, Tilt and Flow in an Hypabyssal Intrusion, Colombian Andes

    Science.gov (United States)

    Muggleton, S.; MacDonald, W. D.; Estrada, J. J.; Sierra, G. M.

    2002-05-01

    Magnetic remanence in the Miocene Clavijo intrusion in the Cauca Valley, adjacent to the Cordillera Central, plunges steeply northward (MacDonald et al., 1996). Assuming magnetization in a normal magnetic field, the expected remanence direction is approximately I= 10o, D= 000o; the observed remanence is I=84o, D=003o. The discrepancy could be explained by a 74o rotation about a horizontal E-W axis, i.e., about an axis normal to the nearby N-S trending Romeral fault zone. If the intrusion is the shallow feeder of a now-eroded andesitic volcano, then perhaps the paleovertical direction is preserved in flow lineations and provides a test of the tilt/rotation of the remanence. In combination, the steep remanence direction, vertical flow, and the inferred rotation of the volcanic neck lead to the hypothesis of a shallow-plunging southward lineation for this body. Using anisotropy of magnetic susceptibility (AMS) as a proxy for the flow lineation, it is predicted that the K1 (maximum susceptibility) axis in this body plunges gently south. This hypothesis was tested using approximately 50 oriented cores from 5 sites near the west margin of the Clavijo intrusion. The results suggest a NW plunging lineation, inconsistent with the initial hypothesis. However, a relatively consistent flow lineation is suggested by the K1 axes. If this flow axis represents paleovertical, it suggests moderate tilting of the Clavijo body towards the southeast. The results are encouraging enough to suggest that AMS may be useful for determining paleo-vertical in shallow volcanic necks and hypabyssal intrusions, and might ultimately be useful in a tilt-correction for such bodies. Other implications of the results will be discussed. MacDonald, WD, Estrada, JJ, Sierra, GM, Gonzalez, H, 1996, Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: Dual rotation modes: Tectonophysics, v 261, p. 277-289.

  7. Magnetism and the interior of the moon

    Science.gov (United States)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972, 11 magnetometers were sent to the moon. The primary purpose of this paper is to review the results of lunar magnetometer data analysis, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are 38, 103 (maximum), 3, and 327 gammas (maximum), respectively. Simultaneous magnetic field and solar plasma pressure measurements show that the Apollo 12 and 16 remanent fields are compressed during times of high plasma dynamic pressure. Apollo 15 and 16 subsatellite magnetometers have mapped in detail the field above portions of the lunar surface and have placed an upper limit on the global permanent dipole moment. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. Magnetic fields are stronger in highland regions than in mare regions and stronger on the lunar far side than on the near side. The largest magnetic anomaly measured to date is between the craters Van de Graaff and Aitken on the lunar far side.

  8. Magnetization of the oceanic crust: TRM or CRM?

    Science.gov (United States)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  9. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    Isothermal, kinetic and thermodynamic studies on basic dye sorption onto tartaric acid esterified wheat straw. ... African Journal of Biotechnology ... esterified wheat straw (EWS), was originally prepared by solid phase thermochemistry method.

  10. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... The isothermal data correlated with the Langmuir model better than the. Freundlich model. ... there were two intra-particle diffusion steps in the dye sorption processes. .... rated monolayer of sorbate molecule on the sorbent.

  11. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  12. Universality of isothermal fluid spheres in Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.

    2016-02-01

    We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.

  13. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2012-01-01

    , quenched in oil, and thereafter investigated with vibrating sample magnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the sub-zero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5 K...... with a continuation of the martensitic transformation. On prolonged isothermal holding, a volume reduction was observed for AISI 52100, but not for AISI 1070. Copyright © 2011 by ASTM International....

  14. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  15. Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xia [Department of Chemical and Biological Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Hong, Yang-Ki, E-mail: ykhong@eng.ua.edu [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Park, Jihoon; Lee, Woncheol [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Lane, Alan M. [Department of Chemical and Biological Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Cui, Jun [Energy and Environment Directorate, Pacific Northwestern National Laboratory, Richland, WA 99354 (United States)

    2015-11-15

    Exchange coupled hard/soft MnBi/Fe–Co core/shell structured composites were synthesized using a magnetic self-assembly process. MnBi particles were prepared by arc-melting, and Fe–Co nanoparticles were synthesized by an oleic acid assisted chemical reduction method. Grinding a mixture of micron-sized MnBi and Fe–Co nanoparticles in hexane resulted in MnBi/Fe–Co core/shell structured composites. The MnBi/Fe–Co (95/5 wt%) composites showed smooth magnetic hysteresis loops, enhanced remanent magnetization, and positive values in the ΔM curve, indicating exchange coupling between MnBi and Fe–Co particles. - Graphical abstract: Both MnBi and Fe–Co particles were dispersed in hexane for grinding. Because of the oleic acid used during the Fe–Co nanoparticle synthesis, they could be well dispersed in hexane. During the grinding, the size of MnBi particles was decreased, hexane was evaporated, and the Fe–Co nanoparticles were concentrated in the solvent and magnetically attracted by MnBi particles, forming a core/shell structure. - Highlights: • Exchange coupled MnBi/Fe–Co composites are synthesized through magnetic selfassembly. • Magnetic exchange coupling is demonstrated by smooth magnetic hysteresis loops, enhanced remanent magnetization, and dominant positive peak in the ΔM curve. • The experimental results in magnetic properties are close to the theoretical calculation results.

  16. Strain-controlled nonvolatile magnetization switching

    Science.gov (United States)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  17. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  18. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  19. 'Blocking' effects in magnetic resonance? The ferromagnetic nanowires case

    International Nuclear Information System (INIS)

    Ramos, C.A.; De Biasi, E.; Zysler, R.D.; Vassallo Brigneti, E.; Vazquez, M.

    2007-01-01

    We present magnetic resonance results obtained at L, X, and Q bands (1.2, 9.4 and 34GHz, respectively) on ferromagnetic nanowires with a hysteresis cycle characterized by a remanent magnetization M r /M s ∼0.92 and a coercive field H c =1.0kOe. The hysteretic response of the ferromagnetic resonance spectra is discussed in terms of independent contributions of the nanowires aligned along and opposite to the applied field. We will discuss the implications of this study on the magnetic resonance in nanoparticles and other systems with large anisotropy

  20. Magnetic and electrical properties of ITER vacuum vessel steels

    International Nuclear Information System (INIS)

    Mergia, K.; Apostolopoulos, G.; Gjoka, M.; Niarchos, D.

    2007-01-01

    Full text of publication follows: Ferritic steel AISI 430 is a candidate material for the lTER vacuum vessel which will be used to limit the ripple in the toroidal magnetic field. The magnetic and electrical properties and their temperature dependence in the temperature range 300 - 900 K of AISI 430 ferritic stainless steels are presented. The temperature variation of the coercive field, remanence and saturation magnetization as well as electrical resistivity and the effect of annealing on these properties is discussed. (authors)

  1. Intrinsic and extrinsic magnetic properties of the naturally layered manganites

    International Nuclear Information System (INIS)

    Berger, A.; Mitchell, J. F.; Miller, D. J.; Jiang, J. S.; Bader, S. D.

    1999-01-01

    Structural and magnetic properties of the two-layered Ruddlesden-Popper phase SrO(La 1-x Sr x MnO 3 ) 2 with x = 0.3--0.5 are highlighted. Intrinsic properties of these naturally layered manganites include a colossal magnetoresistance, a composition-dependent magnetic anisotropy, and almost no remanence. Above the Curie temperature there is a non-vanishing extrinsic magnetization attributed to intergrowths (stacking faults in the layered structure). These lattice imperfections consist of additional or missing manganite layers, as observed in transmission electron microscopy. Their role in influencing the properties of the host material is highlighted

  2. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2010-01-01

    for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...... except for the case where p for the inner magnet is one minus p for the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the inner magnet p is equal to minus the outer magnet p. Thus there can never be a force and a torque in the same system....

  3. Numerical studies of pulsating buoyant plume in isothermal and non isothermal situations

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Mohanty, Ananya; Das, D.

    2014-01-01

    A computational study has been carried out for predicting the behaviour of buoyant plume in isothermal and non isothermal configuration. General simulation objectives of any buoyant flow simulation are macroscopic in nature and deals with the grass data in respect of buoyancy induced scalar transport. However, the accuracy of predicting such macroscopic parameters is a strong function of several other microscopic parameters which govern the overall macroscopic behaviour. Some of the microscopic parameters for analysis could be buoyancy induced stable/unstable flows, relative plume behaviour, baroclinic velocity distribution etc. Only the CFD based flow modelling approach is capable of calculating several of these aspects. LES based modelling scores over the conventional RANS based computational modelling. The primary objective of the present study was to model buoyant plume simulation of different types in order to explore the details regarding plume and flow structure, instabilities and puffing behaviour. One of the influencing parameters on the overall plume behaviour is the buoyancy resolution index i.e. fineness of chosen grid in relation to the buoyancy intensity and other hydrodynamic parameters. The grid sensitivity studies have been carried out to find out the optimum value grid size by way of buoyant pool fire simulations. Comparative simulation has also been made for a square and round pool fire and it was found that for engineering simulations equivalent area square pool modeling is sufficient. Using the optimum value of grid size and square pool shape simulations have been carried out for different value of fire intensity. The flame puffing frequency as calculated by the reported correlation was compared against the computationally observed puffing frequency and the agreement was generally found to be excellent. Besides these results the comparisons of predicted peak flames temperatures data for various case studies with the available experimental data

  4. A partial isothermal section at 1000 ˚C of Al-Mn-Fe phase diagram in vicinity of Taylor phase and decagonal quasicrystal

    Czech Academy of Sciences Publication Activity Database

    Priputen, P.; Černíčková, I.; Lejček, Pavel; Janičkovič, D.; Janovec, J.

    2016-01-01

    Roč. 37, č. 2 (2016), 130-134 ISSN 1547-7037 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : aluminium alloys * equilibria * experimental phase * intermetallics * isothermal section * phase diagram Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.938, year: 2016

  5. Isothermal and non-isothermal infiltration and deuterium transport: a case study in a soil column from a headwater catchment

    Czech Academy of Sciences Publication Activity Database

    Sobotková, M.; Sněhota, M.; Budínová, E.; Tesař, Miroslav

    2017-01-01

    Roč. 65, č. 3 (2017), s. 234-243 ISSN 0042-790X Grant - others:GA ČR(CZ) GA14-03691S Institutional support: RVO:67985874 Keywords : isothermal infiltration * non-isothermal infiltration * column leaching * breakthrough curve * deuterium * viscosity * capillary trapping * entrapped air * permeability Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.654, year: 2016

  6. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): A stochastic TMDSC study

    International Nuclear Information System (INIS)

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus, Yolanda; Fraga, Iria

    2012-01-01

    Highlights: ► First evaluation of T g of tri-functional epoxy resin TGAP by DSC. ► Clearly shows advantages of TOPEM for isothermal and non-isothermal cure analysis. ► Evidence of highly non-linear enthalpy relaxation in partially cured TGAP system. - Abstract: The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures T c has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature T g as a function of isothermal cure time is determined by conventional DSC from a second (non-isothermal) scan, and the vitrification time t v is obtained as the time at which T g = T c . In parallel, TOPEM experiments at the same T c lead directly to the determination of t v from the sigmoidal change in the quasi-static heat capacity. It is not possible to identify the glass transition temperature of the fully cured system, T g∞ , in a third scan by conventional DSC. In contrast, with TOPEM a second (non-isothermal) scan at 2 K/min after the isothermal cure gives rise to three separate transitions: devitrification of the partially cured and vitrified material; almost immediate vitrification as the T g of the system again rises; finally another devitrification, at a temperature approximating closely to T g∞ . Thus with TOPEM it is possible to obtain a calorimetric measure of the glass transition temperature of this fully cured system.

  7. Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW in Indonesia using non-isothermal and isothermal experimental

    Directory of Open Access Journals (Sweden)

    Indra Mamad Gandidi

    2017-09-01

    Full Text Available Municipal solid waste (MSW, disposed of at open dumping sites, poses health risks, contaminates surface water, and releases greenhouse gasses such as methane. However, pyrolysis offers the opportunity to convert MSW into Bio-Oil (BO for clean energy resource. In this paper, an MSW sample consisting of plastic, paper and cardboard, rubber and textiles, and vegetable waste is pyrolysed on a laboratory scale in a fixed-bed vacuum reactor. In the non-isothermal process, the sample was fed into the reactor and then heated. In the isothermal process, the reactor is first heated and then the sample is added. The non-isothermal process created greater BO in both quality and quantity. The BO had a larger amount of gasoline species than diesel-48 fuel, with at 33.44%the BO produced by isothermal pyrolysis and 36.42% in non-isothermal pyrolysis. However the product of isothermal pyrolysis had a higher acid content that reduced its heating value.

  8. Magnetic volcanos in gadolinium Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Tishin, A.M. E-mail: amt@mailaps.org; Snigirev, O.V.; Khomutov, G.B.; Gudoshnikov, S.A.; Bohr, J

    2001-09-01

    Magnetic, structural and electronic properties of Langmuir-Blodgett films with incorporated Gd{sup 3+} ions has been detected using a scanning DC SQUID microscope, scanning electron microscope and X-ray diffraction. The magnetic images of 28 and 50 layer thick films at 77 K have been obtained after in-plane and out-of-plane pre-magnetization in a field of 1.4 T at 300 K. Randomly placed 'magnetic volcanos' with a remanent magnetic moment of the order of 10{sup -13} A m{sup 2} was observed. A decay of the remanent magnetization with a characteristic time of about 120 h was observed. It is suggested that the magnetic order is relatively long ranged, and that topological defects (vortices) lead to the observed out-of-plane field lines, and are responsible for the magnetic volcanos. Finally, it is hypothesized that a similar topology of field lines is responsible for superconductivity as observed in ceramic high-T{sub C} superconductors.

  9. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    Science.gov (United States)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to

  10. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    Science.gov (United States)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  11. Iron nanoparticle assemblies: structures and magnetic behavior

    International Nuclear Information System (INIS)

    Farrell, D; Cheng, Y; Kan, S; Sachan, M; Ding, Y; Majetich, S A; Yang, L

    2005-01-01

    Self-assembly of spherical, surfactant-coated nanoparticles is discussed, an examples are presented to demonstrate the variety of structures that can be formed, and the conditions that lead to them. The effect of the concentration on the magnetic properties is then examined for 8.5 nm Fe nanoparticles. Dilute dispersions, arrays formed by evaporation of the dispersions, and nanoparticle crystals grown by slow diffusion of a poorly coordinating solvent were characterized by zero field-cooled magnetization, remanent hysteresis loop, and magnetic relaxation measurements. The average spacing between the particles was determined from a combination of transmission electron microscopy and small angle x-ray scattering. In the arrays the spacing was 2.5 nm between the edges of the particle cores, while in the nanoparticle crystals the particles were more tightly packed, with a separation of 1.1 nm. The reduced separation increased the magnetostatic interaction strength in the nanoparticle crystals, which showed distinctly different behavior in the rate of approach to saturation in the remanent hysteresis loops, and in the faster rate of time-dependent magnetic relaxation

  12. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  13. Estimation of Soil Erosion by Using Magnetic Method: A Case Study of an Agricultural Field in Southern Moravia (Czech Republic)

    Science.gov (United States)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Dlouha, S.; Kodesova, R.; Jaksik, O.

    2013-05-01

    In this study we have applied magnetism of soils for estimation of erosion at an agricultural land. The testing site is situated in loess region in Southern Moravia (in Central Europe). The approach is based on well-established method of differentiation of magnetic parameters of the topsoil and the subsoil horizons as a result of in situ formation of strongly magnetic iron oxides. Our founding is established on a simple tillage homogenization model described by Royall (2001) using magnetic susceptibility and its frequency dependence to estimate soil loss caused by the tillage and subsequent erosion. The original dominant Soil Unit in the investigated area is Haplic Chernozem, which is due to intensive erosion progressively transformed into different Soil Units. The site is characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). The side valley represents a major line of concentrated runoff emptying into a colluvial fan. Field measurements of the topsoil volume magnetic susceptibility were carried out by the Bartington MS2D probe. Data are resulting in regular grid of 101 data points, where the bulk soil material was gathered for further laboratory investigations. Moreover, vertical distribution of magnetic susceptibility (deep to 40 cm) was measured on selected transects using the SM400 kappameter. In the laboratory, after drying and sieving of collected soil samples, mass-specific magnetic susceptibility and its frequency-dependent susceptibility was measured. In order to identify magnetic minerals the thermomagnetic analyses were performed using the AGICO KLY-4S Kappabridge with CS-3 furnace. Hysteresis loops were carried out on vibrating magnetometer ADE EV9 to assess the grain-size distribution of ferrimagnetic particles. Hereafter, the isothermal remanent magnetization acqusition followed by D.C. demagnetization were done. All these laboratory magnetic measurements were performed in order to

  14. Mineral magnetism of dusty olivine

    DEFF Research Database (Denmark)

    Lappe, Sophie-Charlotte L. L.; Church, Nathan S.; Kasama, Takeshi

    2011-01-01

    The magnetic properties of olivine-hosted Fe-Ni particles have been studied to assess the potential of "dusty olivine" to retain a pre-accretionary remanence in chondritic meteorites. Both body-centered (bcc) and face-centered cubic (fcc) Fe-Ni phases were formed by reduction of a terrestrial...... olivine precursor. The presence of Ni complicates the magnetic properties during heating and cooling due to the fcc-bcc martensitic transition. First-order reversal curve (FORC) diagrams contain a central ridge with a broad coercivity distribution extending to 600 mT, attributed to non-interacting single......-domain (SD) particles, and a "butterfly" structure extending to 250 mT, attributed to single-vortex (SV) states. SD and SV states were imaged directly using electron holography. The location of the SD/SV boundary is broadly consistent with theoretical predictions. A method to measure the volume of individual...

  15. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  16. Magnetic and electrical transport properties of delta-doped amorphous Ge:Mn magnetic semiconductors

    International Nuclear Information System (INIS)

    Li, H.L.; Lin, H.T.; Wu, Y.H.; Liu, T.; Zhao, Z.L.; Han, G.C.; Chong, T.C.

    2006-01-01

    We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature

  17. Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of Jeju Island, Korea: Geomagnetic excursional behavior or rock magnetic anomalies?

    Science.gov (United States)

    Ahn, Hyeon-Seon; Sohn, Young Kwan; Lee, Jin-Young; Kim, Jin Cheul

    2018-05-01

    Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13-25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today's axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240-320 °C entirely having normal-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240-320 and 520-580 °C that have anomalous directions, concentrated in the 13-34-cm-depth interval ( 17-19 ka in inferred age) and possibly below 53 cm depth (before 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having 300 and 580 °C Curie temperature as remanence carriers, suggestive of (titano)maghemite and/or Ti-rich titanomagnetite and magnetite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub 300

  18. Annealing dependence of magnetic properties in nanostructured Sm0.5Y0.5Co5

    International Nuclear Information System (INIS)

    Elizalde-Galindo, J.T.; Hidalgo, J.L.; Botez, C.E.; Matutes-Aquino, J.A.

    2008-01-01

    Nanocrystalline Sm 0.5 Y 0.5 Co 5 powders with high coercivity H C and enhanced remanence M r were prepared by mechanical milling and subsequent annealing. Annealing temperatures T ranging from 973 to 1173 K, and times t ranging from 1 to 5 min were used. X-ray diffraction (XRD) and DC-magnetization measurements were carried out to study the microstructure and magnetic properties of these samples. XRD patterns demonstrate that the average grain size of the nanocrystalline powders depends on the annealing temperature T and time t: ranges from 11 nm (for T=973 K and t=1 min) to 93 nm (for T=1173 K and t=5 min). Magnetic measurements performed at room temperature indicate high coercivity values (H C >955 kA/m), and enhanced remanence (M r /M max >0.5) for all samples. A strong annealing-induced grain size dependence of these magnetic properties was found

  19. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    Science.gov (United States)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  20. Determination of Differential Enthalpy and Isotherm by Adsorption Calorimetry

    Directory of Open Access Journals (Sweden)

    V. Garcia-Cuello

    2008-01-01

    Full Text Available An adsorption microcalorimeter for the simultaneous determination of the differential heat of adsorption and the adsorption isotherm for gas-solid systems are designed, built, and tested. For this purpose, a Calvet heat-conducting microcalorimeter is developed and is connected to a gas volumetric unit built in stainless steel to record adsorption isotherms. The microcalorimeter is electrically calibrated to establish its sensitivity and reproducibility, obtaining K=154.34±0.23 WV−1. The adsorption microcalorimeter is used to obtain adsorption isotherms and the corresponding differential heats for the adsorption of CO2 on a reference solid, such as a NaZSM-5 type zeolite. Results for the behavior of this system are compared with those obtained with commercial equipment and with other studies in the literature.

  1. Mathematical modelling of the sorption isotherms of quince

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelce

    2017-01-01

    Full Text Available The moisture adsorption isotherms of quince were determined at four temperatures 15, 30, 45, and 60°C over a range of water activity from 0.110 to 0.920 using the standard static gravimetric method. The experimental data were fitted with generated three parameter sorption isotherm models on Mitrevski et al., and the referent Anderson model known in the scientific and engineering literature as Guggenheim- Anderson-de Boer model. In order to find which models give the best results, large number of numerical experiments was performed. After that, several statistical criteria for estimation and selection of the best sorption isotherm model was used. The performed statistical analysis shows that the generated three parameter model M11 gave the best fit to the sorption data of quince than the referent three parameter Anderson model.

  2. Sorption isotherms: A review on physical bases, modeling and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France) and Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France)]. E-mail: guillaumelimousin@yahoo.fr; Gaudet, J.-P. [Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France); Charlet, L. [Laboratoire de Geophysique Interne et Techtonophysique - CNRS-IRD-LCPC-UJF-Universite de Savoie, BP 53, 38041 Grenoble Cedex (France); Szenknect, S. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Barthes, V. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Krimissa, M. [Electricite de France, Division Recherche et Developpement, Laboratoire National d' Hydraulique et d' Environnement - P78, 6 quai Watier, 78401 Chatou (France)

    2007-02-15

    The retention (or release) of a liquid compound on a solid controls the mobility of many substances in the environment and has been quantified in terms of the 'sorption isotherm'. This paper does not review the different sorption mechanisms. It presents the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sorption isotherm. For appropriate measurements and interpretations of isotherm data, this review emphasizes 4 main points: (i) the adsorption (or desorption) isotherm does not provide automatically any information about the reactions involved in the sorption phenomenon. So, mechanistic interpretations must be carefully verified. (ii) Among studies, the range of reaction times is extremely wide and this can lead to misinterpretations regarding the irreversibility of the reaction: a pseudo-hysteresis of the release compared with the retention is often observed. The comparison between the mean characteristic time of the reaction and the mean residence time of the mobile phase in the natural system allows knowing if the studied retention/release phenomenon should be considered as an instantaneous reversible, almost irreversible phenomenon, or if reaction kinetics must be taken into account. (iii) When the concentration of the retained substance is low enough, the composition of the bulk solution remains constant and a single-species isotherm is often sufficient, although it remains strongly dependent on the background medium. At higher concentrations, sorption may be driven by the competition between several species that affect the composition of the bulk solution. (iv) The measurement method has a great influence. Particularly, the background ionic medium, the solid/solution ratio and the use of flow-through or closed reactor are of major importance. The chosen method should balance easy-to-use features and representativity of the studied

  3. Magnetization process in antiferromagnetic EuPdIn

    International Nuclear Information System (INIS)

    Ito, T.; Nishigori, S.; Hiromitsu, I.

    1998-01-01

    Magnetization and magnetic susceptibility measurements have been m[e on EuPdIn single crystals. Isothermal magnetization curves measured along the a-, b- and c-axis exhibit three anomalies at the maximum. The phase diagrams determined by the critical fields are explained by the molecular field theory in weak magnetocrystalline anisotropy. (orig.)

  4. Kinetics of first order phase transformation in metals and alloys. Isothermal evolution in martensite transformation

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2011-01-01

    The 11th lecture about microstructures and fluctuation in solids reports on the martensitic phase transformation of alkali metals and alloys. The martensitic transformation is a diffusionless first order phase transformation. Martensitic transformations are classified into two with respect to kinetics, one is isothermal transformation and the other is athermal transformation. The former transformation depends upon both temperature and time, but the latter solely depends on temperature. The former does not have a definite transformation start temperature but occurs after some finite incubation time during isothermal holding. The isothermal martensitic transformation is changed to the athermal one under high magnetic field, and also the reverse transformation occurs under the application of hydrostatic pressure. The former phenomena were observed in Fe-Ni-Mn alloys, Fe-Ni-Cr alloys and also the reverse transformation in Fe-3.1at%Ni-0.5at%Mn alloys. The athermal transformation was observed in Li and Na metals at 73 and 36 K, respectively. A neutron diffraction study has been performed on single crystals of metallic Na. On cooling the virgin sample, the incubation time to transform from the bcc structure to the low-temperature structure (9R structure) is formed to be more than 2h at 38 K, 2 K higher than the transformation temperature of 36 K. The full width of half maximum of the Bragg reflection suddenly increased, due to some deformation introduced by the nucleation of the low-temperature structure. In relation to the deformation, strong extra-diffuse scattering (Huang scattering) was observed around the Bragg reflection in addition to thermal diffuse scattering. The kinetics of the martensitic transformation in In-Tl alloys has been studied by x-ray and neutron diffraction methods. A characteristic incubation time appeared at fixed temperature above Ms, the normal martensitic transformation start temperature. (author)

  5. Isothermality of the gas in the Coma cluster

    International Nuclear Information System (INIS)

    Hughes, J.P.; Yamashita, K.; Okumura, Y.; Tsunemi, H.; Matsuoka, M.

    1988-01-01

    The high-quality X-ray spectrum of the Coma cluster observed by the Japanese satelite Tenma in conjunction with imaging data from the Einstein Observatory was used to explore the temperature distribution of the cluster gas. It is found that pure polytropic models are inadequate to describe this temperature distribution. Instead, a hybrid model is proposed consisting of a central isothermal region surrounded by a polytropic distribution. It is shown that as much as 75 percent of the global emission may come from the isothermal component. 30 references

  6. Magnetization-induced enhancement of photoluminescence in core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Zhou, Zhihua; Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Chen, Jianrong [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Zhang, Yihe [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2013-12-07

    After the core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite synthesized through a facile sol-gel method was magnetized under an external magnetic field of 0.25 T for 4 h, an enhancement of ∼56% in photoluminescence intensity was observed. The remanent magnetization of the CoFe{sub 2}O{sub 4} core increases the intensity of the excited charge transfer transition of VO{sub 4}{sup 3−} group in YVO{sub 4}:Eu{sup 3+} shell, which may enhance the probability related to the Eu{sup 3+} radiative transition {sup 5}D{sub 0}-{sup 7}F{sub 2}, yielding to a high photoluminescence. The obvious remanent-magnetization-induced enhancement in photoluminescence is helpful in developing excellent magnetic/luminescent material for the practical display devices.

  7. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  8. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  9. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...... amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...

  10. Kerr microscopy study of exchange-coupled FePt/Fe exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zaineb; Kumar, Dileep [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Noida 201303 (India)

    2017-05-15

    Magnetization reversal and magnetic microstructure of top soft magnetic layer (Fe) in exchange spring coupled L1{sub 0} FePt/Fe is studied using high resolution Kerr microscopy. With remnant state of the hard magnetic layer (L1{sub 0} FePt) as initial condition, magnetization loops along with magnetic domains are recorded for the top soft magnetic layer (Fe) using Kerr microscopy. Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. It is also observed that one can tune the magnitude of hysteresis shift by reaching the remanent state from different saturating fields (H{sub SAT}) and also by varying the angle between measuring field and H{sub SAT}. The hysteresis loops and magnetic domains of top soft Fe layer demonstrate unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of established model of exchange bias phenomena framed for field-cooled ferromagnetic - antiferromagnetic bilayer systems. - Highlights: • Kerr microscopy of top soft magnetic Fe layer in exchange spring coupled L1{sub 0} FePt (30 nm)/Fe (22 nm) is reported. • Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. • Tuneable nature of magnitude of hysteresis shift is shown. • It is unambiguously shown that the top soft Fe magnetic layer at remanent state is having unidirectional anisotropy.

  11. Anisotropy of Anhysteretic Remanenct Magnetization (AARM) and its Dependence on Experimental Parameters - Implications for Fabric Interpretation and Paleomagnetic Corrections

    Science.gov (United States)

    Feinberg, J. M.; Biedermann, A. R.; Bilardello, D.; Jackson, M.

    2017-12-01

    Magnetic fabrics often serve as proxies for mineral fabrics, and anisotropy of remanent magnetization in particular assesses the crystallographic and shape preferred orientation of ferromagnetic (sensu lato) minerals. Anisotropy of anhysteretic remanent magnetization (AARM) is most commonly measured by imparting a set of directional anhysteretic remanences over the entire coercivity range of the sample, or up to the maximum field the (de)magnetizer can reach. However, if several ferromagnetic minerals or grain sizes coexist in a rock, they may be affected by different stress fields or stages of deformation. For example, if magnetite is present both as exsolution lamellae within silicates as well as interstitial grains between silicates, then these two populations may possess significantly different fabrics. In this study, we investigate how AARM in a rock changes when the remanence is imparted over different coercivity windows. For this, remanences are imposed over 0-20, 0-50, 0-100, 0-180, and 20-50, 50-100 and 100-180 mT. We will also investigate how the strength of the DC bias field affects AARM tensors. Preliminary results on rocks from a series of lithologies indicate that principal directions, degree and shape of the ARM anisotropy can vary dramatically across different coercivity windows. The degree of anisotropy can either decrease or increase as higher-coercivity grains are included. In particular, it should be noted that the coercivity fraction carrying the largest portion of the remanence does not necessarily dominate the AARM. Principal directions can be similar for all coercivity windows, but a number of samples show distinct orientations of the 0-20 mT AARM tensors vs the 50-100 or 100-180 mT tensors, with the 0-50, 0-100 and 0-180 mT AARMs being a combination of these two fabrics. Changes in AARM tensors will influence the interpretation of inferred flow or deformation patterns, as well as anisotropy corrections of paleomagnetic data. Therefore

  12. Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature

    International Nuclear Information System (INIS)

    Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki

    2009-01-01

    We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.

  13. Fe-based bulk metallic glasses used for magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Va; Codrean, C; UTu, D [Politehnica University of Timisoara, Depart for Materials Science and Welding, 1, M. Viteazu Bvd., 300222, Timisoara (Romania); ErcuTa, A, E-mail: serban@mec.upt.r [West University of Timisoara, Faculty of Physics, 4, Vasile Parvan Bdv., Timisoara 300223 (Romania)

    2009-01-01

    The casting in complex shapes (tubular) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small addition of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  14. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    Science.gov (United States)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  15. Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Corona, R.M. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: Black-Right-Pointing-Pointer Coercivity and remanence are strongly affected by the shape anisotropy of the particles. Black-Right-Pointing-Pointer Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. Black-Right-Pointing-Pointer Elliptical particles with {delta}{<=}0.6, the hystereses resemble the square loops of wires. Black-Right-Pointing-Pointer An anhisteretic behavior appears for {theta}=90 Degree-Sign for elliptical particles, which do not appear in stadium-shaped particles. Black-Right-Pointing-Pointer Stadium-shaped particles have unique properties that allow us to suggest them for applications.

  16. Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy

    International Nuclear Information System (INIS)

    Corona, R.M.; Altbir, D.; Escrig, J.

    2012-01-01

    Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: ► Coercivity and remanence are strongly affected by the shape anisotropy of the particles. ► Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. ►Elliptical particles with δ≤0.6, the hystereses resemble the square loops of wires. ► An anhisteretic behavior appears for θ=90° for elliptical particles, which do not appear in stadium-shaped particles. ► Stadium-shaped particles have unique properties that allow us to suggest them for applications.

  17. Influence of pre-treatments on the desorption isotherm ...

    African Journals Online (AJOL)

    Influence of pre-treatments on the desorption isotherm characteristics of plaintain. P-N T Johnson. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjs.v39i1.15851 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  18. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  19. Loop-mediated isothermal amplification (LAMP) based detection of ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... 2 months for growing in a culture. Therefore, to control .... The LAMP reaction is carried out in a 25 µL reaction mixture containing ..... J. Fish Dis. 32(6):491-497. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy ...

  20. RAND-Based Formulations for Isothermal Multiphase Flash

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael L.; Stenby, Erling H.

    2018-01-01

    Two algorithms are proposed for isothermal multiphase flash. These are referred to as modified RAND and vol-RAND. The former uses the chemical potentials and molar-phase amounts as the iteration variables, while the latter uses chemical potentials and phase volumes to cosolve a pressure...

  1. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    Science.gov (United States)

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  2. Water adsorption isotherms and thermodynamic properties of cassava bagasse

    International Nuclear Information System (INIS)

    Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier

    2016-01-01

    Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.

  3. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong; Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Choo, Yoo Sang; Khoo, Boo Cheong; Ng, Kim Choon

    2010-01-01

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed

  4. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  5. Development and application of a loop-mediated isothermal ...

    African Journals Online (AJOL)

    Haemophilus parasuis is the causative agent of Glässer's disease that has received much attention recently, due to the increasing economic losses this disease inflicts upon the pig industry worldwide. In this study, loop-mediated isothermal amplification method (LAMP) methodology was designed for diagnosing H.

  6. Development of loop-mediated isothermal amplification method for ...

    African Journals Online (AJOL)

    A novel assay method to detect the highly virulent Porcine reproductive and respiratory syndrome virus (PRRSV) termed reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), was reported by using hydroxynaphthol blue (HNB) as the LAMP product colorimetric judgment. By the set of special primers, ...

  7. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M. [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Yu, Z.J.; Xu, H. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Mao, W.G., E-mail: ssamao@126.com [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Pei, Y.M.; Li, F.X. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Feng, X. [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Fang, D.N., E-mail: fangdn@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials. - Highlights: • A novel bulge apparatus was designed to study electromagnetic materials. • The mechanical-magnetic features of Ni film were studied by this new apparatus. • The ΔE effect of Ni film was observed and analyzed. • The mechanical electronic-magnetic characteristics of PZT/Ni film were discussed.

  8. Synthesis, magnetic and microstructural properties of Alnico magnets with additives

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair, E-mail: dza.isit@yahoo.com [School of Materials Science and Engineering, South China, University of Technology, Guangzhou 510640 (China); Liu, Zhongwu [School of Materials Science and Engineering, South China, University of Technology, Guangzhou 510640 (China); Ul Haq, A. [Riphah International University, I-14, Islamabad (Pakistan)

    2017-04-15

    The phase formation, crystal structure, crystallographic texture, microstructure and magnetic properties of Alnico-8 alloys with varying Co and Nb content have been investigated and presented. Alnico-8 alloys were fabricated by induction melting and casting techniques. Magnetic properties in the alloys were induced by optimized thermomagnetic treatment and subsequent aging. The 37.9Fe-32Co-14Ni-7.5Al-3.1Cu-5.5Ti alloy exhibits coercivity of 110 kA/m, remanence of 0.66 T and energy product of 31.2 kJ/m{sup 3}. The addition of 35 wt% Co in conjunction with 1.5 wt% Nb to 37.9Fe-14Ni-7.5Al-3.1Cu-5.5Ti alloys led to increase the magnetic properties, especially coercivity. The enhancement of the coercivity is attributed to ideal shape anisotropy and optimum mass fraction of ferromagnetic Fe-Co rich particles, which are 25–30 nm in diameter and 300–350 nm in length. The 33.4Fe-35Co-14Ni-7.5Al-5.5Ti-3.1Cu-1.5 Nb alloy yields the optimum magnetic properties of coercivity of 141.4 kA/m, remanence of 0.83 T and energy product of 42.4 kJ/m{sup 3}. The good magnetic properties in the studied alloys are attributed to the nanostructured microstructure comprising textured Fe-Co-Nb rich α{sub 1} phase and Al-Ni-Cu rich α{sub 2} phase. - Highlights: • Synthesize of Alnico-8 magnets by casting and thermomagnetic treatment. • High coercivity up to 148.3 kA/m can be obtained with Alnico magnets. • Properties are affected by intrinsic properties of spinodal phases and thermal cycle. • Magnet exhibits properties as: H{sub c}=141.4 kA/m, B{sub r}=0.83 T and (BH){sub max}=42.4 kJ/m{sup 3}.

  9. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  10. Magnetic Properties of Three Impact Structures in Canada

    Science.gov (United States)

    Scott, R. G.; Pilkington, M.; Tanczyk, E. I.; Grieve, R. A. F.

    1995-09-01

    Magnetic anomaly lows associated with the West Hawk Lake (Manitoba), Deep Bay (Saskatchewan) and Clearwater Lakes (Quebec) impact structures, are variable in lateral extent and intensity, a characteristic shared with most impact structures [1]. Drill core from the centres of these structures provides a unique opportunity to ground truth the causes of the reduction in magnetic field intensity in impact structures. Magnetic susceptibility and remanent magnetization levels have been found to be well below regional levels in melt rocks, impact breccias, fractured/shocked basement rocks in the central uplifts, and post-impact sediments. Deep Bay, formed in Pre-Cambrian paragneisses, is a complex crater with a submerged central uplift. It has been extensively infilled with non-magnetic black shales of Cretaceous age [2]. An airborne magnetic low of about 100 nT is associated with the Deep Bay structure. Below the shales and along the rim of the structure are highly brecciated country rocks with variable amounts of very fine rock flour. Susceptibility and remanent magnetization are both weak due to extensive alteration in the brecciated rocks. Alteration of the brecciated rocks, and the effect of several hundred meters of non-magnetic sedimentary infill, both contribute to the magnetic low. West Hawk Lake, a simple crater, was excavated in metavolcanic and metasedimentary rocks of the Superior Province [3], and has a ground magnetic low of about 250 nT. As with Deep Bay, West Hawk Lake has been infilled with dominantly non-magnetic sediments. Brecciation and alteration are extensive, with breccia derived from greenschist-facies meta-andesite displaying slightly higher susceptibilities and remanent magnetizations than breccia derived from the more felsic metasediments. Brecciation has effectively randomized magnetization vectors, and subsequent alteration resulted in the destruction of magnetic phases. These two factors contribute to the magnetic low over this structure

  11. Greigite (Fe3S4) as an indicator of drought - The 1912-1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA

    Science.gov (United States)

    Reynolds, R.L.; Rosenbaum, J.G.; Van Metre, P.; Tuttle, M.; Callender, E.; Goldin, A.

    1999-01-01

    Combined magnetic and geochemical studies were conducted on sediments from White Rock Lake, a reservoir in suburban Dallas (USA), to investigate how land use has affected sediment and water quality since the reservoir was filled in 1912. The chronology of a 167-cm-long core is constrained by the recognition of the pre-reservoir surface and by 137Cs results. In the reservoir sediments, magnetic susceptibility (MS) and isothermal remanent magnetization (IRM) are largely carried by detrital titanomagnetite that originally formed in igneous rocks. Titanomagnetite and associated hematite are the dominant iron oxides in a sample from the surficial deposit in the watershed but are absent in the underlying Austin Chalk. Therefore, these minerals were transported by wind into the watershed. After about 1960, systematic decreases in Ti, Fe, and Al suggest diminished input of detrital Fe-Ti oxides from the surficial deposits. MS and IRM remain constant over this interval, however, implying compensation by an increase in strongly magnetic material derived from human activity. Anthropogenic magnetite in rust and ferrite spherules (from fly ash?) are more common in sediment deposited after about 1970 than before and may account for the constant magnetization despite the implied decrease in detrital Fe-Ti oxides. An unexpected finding is the presence of authigenic greigite (Fe3S4), the abundance of which is at least partly controlled by climate. Greigite is common in sediments that predate about 1975, with zones of concentration indicated by relatively high IRM/MS. High greigite contents in sediment deposited during the early to mid-1950s and during the mid-1930s correspond to several-year periods of below-average precipitation and drought from historical records. Relatively long water-residence times in the reservoir during these periods may have led to elevated levels of sulfate available for bacterial sulfate reduction. The sulfate was probably derived via the oxidation of

  12. Comparison of Geochemical, Grain-Size, and Magnetic Proxies for Rock Flour and Ice- Rafted Debris in the Late Pleistocene Mono Basin, CA

    Science.gov (United States)

    Zimmerman, S. H.; Hemming, S. R.; Kent, D. V.

    2008-12-01

    Advance and retreat of mountain glaciers are important indicators of climate variability, but the most direct proxy record, mapping and dating of moraines, is by nature discontinous. The Sierra Nevada form the western boundary of the Mono Lake basin, and the proximity of the large Pleistocene lake to the glacial canyons of the Sierra presents a rare opportunity to examine glacial variability in a continuous, well-dated lacustrine sequence. We have applied a geochemical proxy for rock flour to the glacial silts of the late Pleistocene Wilson Creek Formation, but because it is time- and sample-intensive, another method is required for a high-resolution record. Previous microscopic examination, thermomagnetic measurements, XRD analysis, and new isothermal remnant magnetization (IRM) acquisition curves show that the magnetic mineralogy is dominated by fine-grained, unaltered magnetite. Bulk measurements show strong susceptibility (mean ~ 16 x 10- 6 m3/kg) and remanent magnetization (mean IRM ~ 10-2 Am2/kg) compared to diluting components (carbonate, smectite, rhyolitic ash). The Wilson Creek type section sediments also contain a coarse lithic fraction, quantified by counting the >2cm clasts in outcrop and the >425 μm fraction in the bulk sediment. Susceptibility, IRM, and ARM (anhysteretic remnant magnetization) are quite similar throughout the type section, with the abundance of coarse lithic fraction correlative to the ratio k/IRM. Because the magnetic fraction of the rock flour is fine-grained magnetite, IRM should capture the changes in concentration of flour through time, and the major features of the (low-resolution) geochemical flour proxy record are identifiable in the IRM record. Flux-correction of the IRM results in a rock flour proxy record with major peaks between 36 and 48 ka, similar to a rock flour record from neighboring Owens Lake. This regional glacial signal contrasts with peaks in coarse lithics between 58 and 68 ka in the Wilson Creek record

  13. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  14. Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets

    Science.gov (United States)

    Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.

    2016-11-01

    The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.

  15. Different weathering stages indicated by the magnetization of limestones: An example from the southeast Pyrenees, Spain

    Science.gov (United States)

    Keller, P.; Gehring, A. U.

    1992-06-01

    Paleomagnetic and structural data from the Pedraforca thrust sheet in the southeast Pyrenees show that the chemical weathering of the late Cretaceous limestones is a multistage process. The first weathering stage, of latest Eocene to early Oligocene age, is indicated by a chemical remanent magnetization carried by hematite. The formation of hematite as the dominant weathering product suggests a subtropical climate in northeast Spain during this period. The second weathering stage is indicated by the presence of goethite, which carries a chemical remanent magnetization parallel to the present earth field. This suggests formation of the goethite since the late Pleistocene under cooler climatic conditions similar to the present-day climate in the Pyrenees.

  16. IL CONTRIBUTO DI INNOCENZO III ALLA FORMAZIONE DELLA CULTURA GIURIDICA OCCIDENTALE: IN PARTICOLARE IN RELAZIONE AL NOTO PRINCIPIO «REI PUBLICAE INTEREST NE CRIMINA REMANEANT IMPUNITA»

    Directory of Open Access Journals (Sweden)

    Cesare Edoardo Varalda

    2016-12-01

    Full Text Available Within the period so called renovatio, many principles contained in the Roman legal sources have been explained in a new and innovative way, influencing the history of juridical thought and contributing to the development of the European legal experience. In fact, the principle "Rei publice interest it crimina remaneant impunita" (mentioned in two decretals of Innocent III: i.e. the Inauditum in 1199 and i.e. the Ut famae in 1203 has an essential role in the development of the conceptual system of modern criminal law. The content of this study will be, on the one hand, the detailed study of historical iter by which this principle has been consolidated and has been embraced by canonical experience and, more generally, in the Western one; on the other hand, it will analyse both from a technical and a metagiuridico point of view the origin of such formula and on the contribution that Christian theology might have given by clarifying and specifying its meaning. Therefore, it’s clear the importance of this principle in the development of the European legal system and, broadly, in the Western legal experience.

  17. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    Science.gov (United States)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  18. Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids

    Science.gov (United States)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2018-02-01

    Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.

  19. Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean)

    Science.gov (United States)

    Channell, J. E. T.; Ohneiser, C.; Yamamoto, Y.; Kesler, M. S.

    2013-02-01

    AbstractSediments from the equatorial Pacific Ocean, at the Integrated Ocean Drilling Program sites U1334 and U1335, record reliable magnetic polarity stratigraphies back to ~26.5 Ma (late Oligocene) at sedimentation rates usually in the 5-20 m/Myr range. Putative polarity subchrons that do not appear in current polarity timescales occur within Chrons C5ACr, C5ADn, and C5Bn.1r at Site U1335; and within Chrons C6AAr.2r, C6Br, C7Ar, and C8n.1n at Site U1334. Subchron C5Dr.1n (~17.5 Ma) is recorded at both sites, supporting its apparent recording in the South Atlantic Ocean, and has an estimated duration of ~40 kyr. The Oligocene-Miocene calcareous oozes have magnetizations carried by submicron magnetite, as indicated by thermal demagnetization of magnetic remanences, the anhysteretic remanence to susceptibility ratio, and magnetic hysteresis parameters. Transmission electron microscopy of magnetic separates indicates the presence of low-titanium iron oxide (magnetite) grains with size (50-100 nm) and shape similar to modern and fossil bacterial magnetite, supporting other evidence that biogenic submicron magnetite is the principal remanence carrier in these sediments. In the equatorial Pacific Ocean, low organic-carbon burial arrests microbial pore-water sulfate reduction, thereby aiding preservation of bacterial magnetite.

  20. Overview of the magnetic signatures of the Palaeoproterozoic Rustenburg Layered Suite, Bushveld Complex, South Africa

    Science.gov (United States)

    Cole, Janine; Finn, Carol A.; Webb, Susan J.

    2013-01-01

    Aeromagnetic data clearly delineate the mafic rocks of the economically significant Bushveld Igneous Complex. This is mainly due to the abundance of magnetite in the Upper Zone of the Rustenburg Layered Suite of the Bushveld, but strongly remanently magnetised rocks in the Main Zone also contribute significantly in places. In addition to delineating the extent of the magnetic rocks in the complex, the magnetic anomalies also provide information about the dip and depth of these units. The presence of varying degrees of remanent magnetisation in most of the magnetic lithologies of the Rustenburg Layered Suite complicates the interpretation of the data. The combination of available regional and high resolution airborne magnetic data with published palaeomagnetic data reveals characteristic magnetic signatures associated with the different magnetic lithologies in the Rustenburg Layered Suite. As expected, the ferrogabbros of the Upper Zone cause the highest amplitude magnetic anomalies, but in places subtle features within the Main Zone can also be detected. A marker with strong remanent magnetisation located in the Main Zone close to the contact with the Upper Zone is responsible for very high amplitude negative anomalies in the southern parts of both the eastern and western lobes of the Bushveld Complex. Prominent anomalies are not necessarily related to a specific lithology, but can result from the interaction between anomalies caused by differently magnetised bodies.The magnetic data provided substantial information at different levels of detail, ranging from contacts between zones, and layering within zones, to magnetite pipes dykes and faults that can have an impact on mine planning. Finally, simple modelling of the magnetic data supports the concept of continuous mafic rocks between the western and eastern lobes.

  1. 软模法磁性有序介孔炭的合成与表征%Synthesis and characterization of magnetic ordered mesoporous carbon materials using soft templating method

    Institute of Scientific and Technical Information of China (English)

    王加; 林汉森; 王秀芳

    2012-01-01

    Magnetic ordered mesoporous carbon is synthesized through soft templating method by using triblock-copolymer Pluronic F127 as soft template,resorcinol-formaldehyde (RF) as carbon precursor and ferric nitrate as an iron source. HC1 is used as the catalyst for RF polymerization. The resultant materials are characterized by X-ray diffraction, N2 sorption and vibrating-sample magnetometer measurements. The results show that magnetic ordered mesoporous carbons are obtained when the Fe/R ratio is 0. 025. For those with Fe/R ratios greater than this value,the ordering,the BET surface area,pore volume and pore size decrease. N2 sorption isotherms of all the samples show representative type IV curves with HI hysteresis loops, which indicates a typical mesoporous material. Magnetic hysteresis loops show that the remanent magnetization of Fe/OMC samples increases with the increase of the content of Fe. This research can provide scientific proof for the optimized synthesis and application in magnetic separation for magnetic ordered mesoporous carbons.%以三嵌段共聚物为软模,间苯二酚-甲醛为炭前躯体,硝酸铁为铁源合成了磁性有序介孔炭,用XRD、氮气吸附、磁性测试等方法对样品进行表征.结果表明,当硝酸铁与间苯二酚摩尔比为0.025、0.05及0.10时得到的介孔炭具有有序性,随着铁质量分数的增加,有序性降低,比表面积、孔容都相应减小.基本磁化曲线结果表明,随着铁质量分数的增加,饱和磁化强度随之增加(0.01~0.10 emu/g),材料具有较好的磁性,容易从溶液中分离,表现出良好的分离性能.为磁性有序介孔炭的优化合成及磁性分离应用提供科学依据.

  2. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong; Bahl, Christian R.H.; Abrahamsen, Asger Bech; Bez, Henrique Neves; Link, Joosep; Veinthal, Renno

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m 3 . The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  3. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mural, Zorjana, E-mail: zorjana.mural@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Kollo, Lauri [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Xia, Manlong; Bahl, Christian R.H. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Abrahamsen, Asger Bech [Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Bez, Henrique Neves [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Veinthal, Renno [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2017-05-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m{sup 3}. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  4. Palaeomagnetism and magnetic properties of the Cappadocian ignimbrite succession, central Turkey and Neogene tectonics of the Anatolian collage

    Science.gov (United States)

    Piper, J. D. A.; Gürsoy, H.; Tatar, O.

    2002-10-01

    The Cappadocian ignimbrite succession of central-southern Anatolia comprises at least nine major and two minor calc-alkaline rhyolitic sheets emplaced at 1-2-Ma intervals between 11.2 and 1.1 Ma. It records the last phase of Neotethyan subduction during final emplacement of the Tauride orogen in southern Turkey. This study reports magnetostratigraphy and describes associated rock magnetic properties. Remanence resides in Ti-poor titanomagnetites. Haematisation is locally produced by post-emplacement oxidation but does not contribute significantly to the palaeomagnetic signature although secondary processes within the ignimbrite sheets have produced composite isothermal remanent magnetisation spectra and variable intensities of magnetisation. Weak anisotropy of magnetic susceptibility describes tensors with maximum axes close to bedding and minimum axes perpendicular to this plane. Directions of kmax with weak imbrication mostly suggest flow away from centres of eruption located by gravity and remote sensing. Older ignimbrites (Upper and Lower Göreme, Akdag-Zelve) from the Çardak Centre are all of normal polarity. Later ignimbrites, partly erupted from the Derinkuyu Centre, comprise the Sarımaden (R), Cemilköy (R), Tahar (R), Kızılkaya (R), Incesu (N) and Valibaba-Sofular (R) ignimbrites. The overall (reversed) group mean is D/ I=174/-51° ( N=10 units, R=9.84, α95=6.6°, k=55) and all magnetisation directions from the Upper Göreme (9.0 Ma) onwards are rotated anticlockwise with respect to Eurasian and African palaeofields. This sense of rotation characterises most of central Anatolia and averages 9±5° in this sector. The rotation rate from 8 to 1 Ma BP was ˜1.25°/Ma but it appears to have accelerated during the latter part of the Quaternary to about an order higher than rates determined from GPS. Rotation has resulted from extrusion of fault blocks during tectonic escape of the Anatolian collage to the southwest and followed crustal thickening as the

  5. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  6. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  7. Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.; Sidorova, M.P.

    2004-01-01

    Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high

  8. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  9. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  10. Isothermal dehydration of thin films of water and sugar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heyd, R. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Rampino, A. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Bellich, B.; Elisei, E. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Cesàro, A. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Elettra Sincrotrone Trieste, Area Science Park, I-34149 Trieste (Italy); Saboungi, M.-L. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Univ-UPMC, Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris (France)

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  11. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  12. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Trkov, A.

    2002-01-01

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  13. Relation between Tolman length and isothermal compressibility for simple liquids

    International Nuclear Information System (INIS)

    Wang Xiao-Song; Zhu Ru-Zeng

    2013-01-01

    The Tolman length δ 0 of a liquid with a plane surface has attracted increasing theoretical attention in recent years, but the expression of Tolman length in terms of observable quantities is still not very clear. In 2001, Bartell gave a simple expression of Tolman length δ 0 in terms of isothermal compressibility. However, this expression predicts that Tolman length is always negative, which is contrary to the results of molecular dynamics simulations (MDS) for simple liquids. In this paper, this contradiction is analyzed and the reason for the discrepancy in the sign is found. In addition, we introduce a new expression of Tolman length in terms of isothermal compressibility for simple fluids not near the critical points under some weak restrictions. The Tolman length of simple liquids calculated by using this formula is consistent with that obtained using MDS regarding the sign

  14. Construction of isotherms in solvent extraction of copper

    Directory of Open Access Journals (Sweden)

    Cvetkovski Vladimir B.

    2009-01-01

    Full Text Available The aim of this work is construction of equilibrium isotherms in solvent extraction. Technological parameters have been predicted for treatment of mine water by solvent extraction and electrowining. Two stages of extractions and one stage of stripping have been predicted for copper recovery by analyzing the equilibrium isotherms. The process was performed on mine water with 2,5 g/dm3 Cu2+, 3 g/dm Fe2+, pH 1,8, using 9 vol% LIX 984N in kerosene (organic solvent, with 95 and 98% stages efficiencies, respectively. This course produced an advanced electrolyte solution, suitable for electrowining and cathodic copper recovery, containing 51 g/dm3 Cu2+ and 160g/dm3 H2SO4 from a 30 g/dm3 Cu and 190 g/dm3 H2SO4.

  15. Magnetic properties of lamellar tetrataenite in Toluca iron meteorite

    International Nuclear Information System (INIS)

    Funaki, Minoru; Nagata, Takesi; Danon, J.

    1985-01-01

    Magnetic studies were conducted using lamellar tetrataenite extracted from the Toluca octahedrite by a diluted HCl etching technique. Natural remanent magnetization (NRM) in the lamellae is very stable against AF demagnetization and is quite intense, ranging from 2.58 to 37.42 x10 -2 emu/g. This NRM is completely demagnetized thermally at about 550 0 C. The most characteristic change in magnetic properties on heating to about 550 C 0 is a significant decrease in magnetic coercivity. This observation is consistent with the results obtained from chondrites. The paramagnetic component in lamellar tetrataenite, which is estimated by Moessbauer spectrum analyses, was not detected by conventional magnetic studies. (Author) [pt

  16. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  17. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  18. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  19. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  20. Isothermal α″ formation in β metastable titanium alloys

    International Nuclear Information System (INIS)

    Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.

    2013-01-01

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″

  1. Isothermal α″ formation in β metastable titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)

    2013-11-15

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.

  2. DuPont IsoTherming clean fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Levinski, E. [E.I. DuPont Co., Wilmington, DE (United States)

    2009-07-01

    This poster described a hydroprocessing technology that DuPont has acquired from Process Dynamics, Inc. The IsoTherming clean fuel technology significantly reduces sulphur in motor fuels. The technology provides petroleum refiners the solution for meeting ultra low sulphur diesel requirements, at much lower costs than conventional technologies. IsoTherming hydroprocessing operates in a kinetically limited mode, with no mass transfer limitation. Hydrogen is delivered to the reactor in the liquid phase as soluble hydrogen, allowing for much higher space velocities than conventional hydrotreating reactors. Treated diesel is recycled back to the inlet of the reactor, generating less heat and more hydrogen into the reactor. The process results in a more isothermal reactor operation that allows for better yields, fewer light ends and greater catalyst life. The technology reduces coking, because the process provides enough hydrogen in the solution when cracking reactions take place. As a result, the process yields longer catalyst life. Other advantages for refiners include lower total investment; reduced equipment delivery lead times; reduced maintenance and operating costs; and configuration flexibility. tabs., figs.

  3. Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films.

    Science.gov (United States)

    Churaev; Starke; Adolphs

    2000-01-15

    Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.

  4. Role of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through cold isostatic pressing

    Science.gov (United States)

    Ramudu, M.; Rajkumar, D. M.

    2018-04-01

    The effect of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through a novel method of cold isostatic pressing was investigated. Sintered Sm2Co17 samples were subjected to different aging times in the range of 10-30 h and their respective microstructures were correlated with the magnetic properties obtained. The values of remanant magnetization (Br) were observed to be constant in samples aged from 10-20 h beyond which a gradual decrease in Br values was observed. The values of coercivity (Hc) displayed a sharp increase in samples aged from 10 to 20 h beyond which the coercivity values showed marginal improvement. Hence a good combination of magnetic properties could be achieved in samples aged for 20 h. A maximum energy product of 27 MGOe was achieved in the 20 h aged sample processed through a novel route.

  5. A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers

    Science.gov (United States)

    Schümann, M.; Borin, D. Y.; Huang, S.; Auernhammer, G. K.; Müller, R.; Odenbach, S.

    2017-09-01

    Magnetorheological elastomers are a type of smart hybrid material where elastic properties of a soft elastomer matrix are combined with magnetic properties of magnetic micro particles. This combination leads to a complex interplay of magnetic and elastic phenomena, of which the magnetorheological effect is the best described. In this paper, magnetically hard NdFeB-particles were used to obtain remanent magnetic properties. X-ray microtomography has been utilised to analyse the particle movement induced by magnetic fields. A particle tracking was performed; thus, it was possible to characterise the movement of individual particles. Beyond that, a comprehensive analysis of the orientation of all particles was performed at different states of magnetisation and global particle arrangements. For the first time, this method was successfully applied to a magnetorheological material with a technically relevant amount of magnetic NdFeB-particles. A significant impact of the magnetic field on the rotation and translation of the particles was shown.

  6. Current status and future outlook for bonded neodymium permanent magnets (invited)

    International Nuclear Information System (INIS)

    Croat, J.J.

    1997-01-01

    Bonded neodymium magnets can provide significant size and weight reduction and/or performance enhancement over sintered and, particularly, bonded ferrite permanent magnets and, moreover, provide these benefits at reasonable cost. Primarily for these reasons, these bonded magnets are now used in a wide and growing range of computer peripheral, office automation, and consumer electronic applications and now constitute the fastest growing segment of the permanent magnet market. The current status of these materials will be reviewed. Included is a brief overview of the manufacture of these magnetically isotropic magnets and a discussion of their unique properties and features from the perspective of both bonded magnet producer and user. Major applications are discussed as are some of the factors that will drive the market for these materials in the future. New technical developments, including the status and outlook for anisotropic bonded materials, high remanance isotropic materials and high temperature bonded magnets will also be discussed. copyright 1997 American Institute of Physics

  7. Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Aravena, D.; Corona, R.M. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Goerlitz, D.; Nielsch, K. [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2013-11-15

    The magnetic properties in multisegmented cylindrical nanostructures comprised of nanowire and nanotube segments are investigated numerically as a function of their geometry. In this work we report systematic changes in the coercivity and remanence in these systems. Besides, we have found the ideal conditions for a magnetic configuration with two antiparallel domains that could be used to help to stabilize magnetic nanoparticles inside ferromagnetic multisegmented cylindrical nanoparticles. This magnetic behavior is due to the fact that the tube segment reverses its magnetization before the wire segment, allowing the control of the magnetic domain walls motion between two segments. In this way, these magnetic nanoobjects can be an alternative to store information or even perform logic functions. - Highlights: • Magnetic states of wire/tube were investigated as a function of their geometry. • Multisegmented systems present two well-defined jumps in the hysteresis curve. • It is possible to prepare an antiparallel magnetic configuration. • The step width for the optimum condition reaches 60 mT. • The tube segments reverse their magnetization first than the wire segments.

  8. Switchable field-tuned control of magnetic domain wall pinning along Co microwires by 3D e-beam lithographed structures

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Roldán, C., E-mail: c.blanco@cinn.es [Departamento de Física, Universidad de Oviedo, Avenida Calvo Sotelo s/n, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología CINN (CSIC, Universidad de Oviedo), Avenida de la Vega 4-6, 33940 El Entrego (Spain); Quirós, C.; Rodriguez-Rodriguez, G.; Vélez, M.; Martín, J.I.; Alameda, J.M. [Departamento de Física, Universidad de Oviedo, Avenida Calvo Sotelo s/n, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología CINN (CSIC, Universidad de Oviedo), Avenida de la Vega 4-6, 33940 El Entrego (Spain)

    2016-02-15

    Three-dimensional magnetic circuits composed of Co microwires crossed by elevated Co bridges have been patterned on Si substrate by e-beam lithography and lift-off process. The lithographic procedure includes a double resist procedure that optimizes the shape of the bridge, so that 200 nm air gaps can be routinely achieved in between the wire and bridge elements. Microwire magnetization reversal processes have been analyzed by magneto-optical Kerr effect microscopy with different remanent bridge configurations. When the Co bridge is magnetized along the in-plane direction parallel to the wire axis, its stray field induces a marked pinning effect on domain wall propagation along the wire below it, even without being in contact. Changing the sign of the remanent state of the bridge, domain wall pinning can be selected to occur in either the ascending or descending branches of the wire hysteresis loop. Thus, these wire-bridge 3D circuits provide a simple system for tunable domain wall pinning controllable through the pre-recorded bridge remanent state. - Highlights: • Electron beam lithography is used to fabricate a tridimensional magnetic circuit. • Proposed circuit is made of a Co bridge overcrossing a non-contacted Co microwire. • Domain wall propagation can be controlled by previous magnetization of the system. • Domain wall pinning in the wire depends on the applied magnetic field sign.

  9. Nonlinear chemical sorption isotherms in the assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Walker, J.R.; LeNeveu, D.M.

    1987-01-01

    Radionuclides emplaced in an underground disposal vault can possibly migrate from the vault, and through the geosphere, to enter Man's environment. Chemical sorption is a primary mechanism for retarding this migration. The effects of nonlinear chemical sorption isotherms on radionuclide transport are discussed. A method is given by which nonlinear isotherms can be approximated by the linear sorption isotherm used in the vault submodel. The relevance of nonlinear isotherms to transport in the geosphere is discussed, and it is shown that the linear isotherm model is conservative for deep geologic disposal. 22 refs

  10. Non-destructive evaluation of material degradation in RPV steel by magnetic methods

    International Nuclear Information System (INIS)

    Takahashi, S.; Kikuchi, H.; Kamada, Y.; Ara, K.; Zhang, L.; Liu, T.

    2004-01-01

    The minor hysteresis loops are measured with increasing magnetic field amplitude, H a , step by step and analyzed in connection with the lattice defects such as dislocations in deformed and neutron irradiated A533B steels. We have defined several new magnetic parameters in the minor loops: they are a pseudo coercive force H c *, a pseudo remanence B R *, a magnetic susceptibility at pseudo coercive force χ H *, pseudo hysteresis loss W f *, pseudo remanence work W r *. H c * is the magnetic field where the magnetization becomes zero in the minor loop. Six coefficients sensitive to lattice defects are obtained by the pseudo magnetic properties and they are independent of H a as well as the magnetic field. These coefficients are effective parameters for nondestructive evaluation of degradation before the initiation of cracking. The minor loops have several advantages for the nondestructive evaluation compared with the major loop. The coefficients have much information about lattice defects and the high accuracy. The measurement is available for low magnetic field of 20 Oe and the H a step is not necessarily fine for the detailed information because of the similarity. (orig.)

  11. Study of electronic structure and magnetic properties of epitaxial Co{sub 2}FeAl Heusler Alloy Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Soni, S. [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Dalela, S., E-mail: sdphysics@rediffmail.com [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Sharma, S.S. [Department of Physics, Govt. Women Engineering College, Ajmer (India); Liu, E.K.; Wang, W.H.; Wu, G.H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kumar, M. [Department of Physics, Malviya National Institute of Technology, Jaipur-302017 (India); Garg, K.B. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-07-25

    This work reports the magnetic and electronic characterization of plane magnetized buried Heusler Co{sub 2}FeAl nano thin films of different thickness by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements. . The spectra on both Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence, corresponding to a ferromagnetically-aligned moments on Fe and Co atoms conditioning the peculiar characteristics of the Co{sub 2}FeAl Heusler compound (a half-metallic ferromagnet). The detailed knowledge of the related magnetic and electronic properties of these samples over a wide range of thickness of films are indispensable for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications. - Highlights: • Electronic structure and Magnetic Properties of Epitaxial Co{sub 2}FeAl Heusler Films. • X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). • Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence. • Calculated Orbital, Spin and total magnetic moments of Fe and Co for 30 nm Co{sub 2}FeAl thin film. • The total magnetic moment of Fe at L{sub 2,3} edges increases with the thickness of the Co2FeAl films.

  12. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  13. Core Problem: Does the CV Parent Body Magnetization require differentiation?

    Science.gov (United States)

    O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.

    2016-12-01

    Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.

  14. Long-lived magnetism on chondrite parent bodies

    Science.gov (United States)

    Shah, Jay; Bates, Helena C.; Muxworthy, Adrian R.; Hezel, Dominik C.; Russell, Sara S.; Genge, Matthew J.

    2017-10-01

    We present evidence for both early- and late-stage magnetic activity on the CV and L/LL parent bodies respectively from chondrules in Vigarano and Bjurböle. Using micro-CT scans to re-orientate chondrules to their in-situ positions, we present a new micron-scale protocol for the paleomagnetic conglomerate test. The paleomagnetic conglomerate test determines at 95% confidence, whether clasts within a conglomerate were magnetized before or after agglomeration, i.e., for a chondritic meteorite whether the chondrules carry a pre- or post-accretionary remanent magnetization. We found both meteorites passed the conglomerate test, i.e., the chondrules had randomly orientated magnetizations. Vigarano's heterogeneous magnetization is likely of shock origin, due to the 10 to 20 GPa impacts that brecciated its precursor material on the parent body and transported it to re-accrete as the Vigarano breccia. The magnetization was likely acquired during the break-up of the original body, indicating a CV parent body dynamo was active ∼9 Ma after Solar System formation. Bjurböle's magnetization is due to tetrataenite, which transformed from taenite as the parent body cooled to below 320 °C, when an ambient magnetic field imparted a remanence. We argue either the high intrinsic anisotropy of tetrataenite or brecciation on the parent body manifests as a randomly orientated distribution, and a L/LL parent body dynamo must have been active at least 80 to 140 Ma after peak metamorphism. Primitive chondrites did not originate from entirely primitive, never molten and/or differentiated parent bodies. Primitive chondrite parent bodies consisted of a differentiated interior sustaining a long-lived magnetic dynamo, encrusted by a layer of incrementally accreted primitive meteoritic material. The different ages of carbonaceous and ordinary chondrite parent bodies might indicate a general difference between carbonaceous and ordinary chondrite parent bodies, and/or formation location in the

  15. Magnetic dynamic properties of electron-doped La(0.23)Ca(0.77)MnO3 nanoparticles.

    Science.gov (United States)

    Dolgin, B; Puzniak, R; Mogilyansky, D; Wisniewski, A; Markovich, V; Jung, G

    2013-02-20

    Magnetic properties of basically antiferromagnetic La(0.23)Ca(0.77)MnO(3) particles with average sizes of 12 and 60 nm have been investigated in a wide range of magnetic fields and temperature. Particular attention has been paid to magnetization dynamics through measurements of the temperature dependence of ac-susceptibility at various frequencies, the temperature and field dependence of thermoremanent and isothermoremanent magnetization originating from nanoparticles shells, and the time decay of the remanent magnetization. Experimental results and their analysis reveal the major role in magnetic behaviour of investigated antiferromagnetic nanoparticles played by the glassy component, associated mainly with the formation of the collective state formed by ferromagnetic clusters in frustrated coordination at the surfaces of interacting antiferromagnetic nanoparticles. Magnetic behaviour of nanoparticles has been ascribed to a core-shell scenario. Magnetic transitions have been found to play an important role in determining the dynamic properties of the phase separated state of coexisting different magnetic phases.

  16. Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface.

    Science.gov (United States)

    Mallik, Srijani; Mattauch, Stefan; Dalai, Manas Kumar; Brückel, Thomas; Bedanta, Subhankar

    2018-04-03

    Probing the hybridized magnetic interface between organic semiconductor (OSC) and ferromagnetic (FM) layers has drawn significant attention in recent years because of their potential in spintronic applications. Recent studies demonstrate various aspects of organic spintronics such as magnetoresistance, induced interface moment etc. However, not much work has been performed to investigate the implications of such OSC/FM interfaces on the magnetization reversal and domain structure which are the utmost requirements for any applications. Here, we show that non-magnetic Fullerene can obtain non-negligible magnetic moment at the interface of Fe(15 nm)/C 60 (40 nm) bilayer. This leads to substantial effect on both the magnetic domain structure as well as the magnetization reversal when compared to a single layer of Fe(15 nm). This is corroborated by the polarized neutron reflectivity (PNR) data which indicates presence of hybridization at the interface by the reduction of magnetic moment in Fe. Afterwards, upto 1.9 nm of C 60 near the interface exhibits magnetic moment. From the PNR measurements it was found that the magnetic C 60 layer prefers to be aligned anti-parallel with the Fe layer at the remanant state. The later observation has been confirmed by domain imaging via magneto-optic Kerr microscopy.

  17. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    Science.gov (United States)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  18. A study of the water vapor sorption isotherms of hardened cement pastes: Possible pore structure changes at low relative humidity and the impact of temperature on isotherms

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    cement paste samples and a model material MCM-41. The pronounced impact of temperature on desorption isotherms of cement based materials as reported in literature was not found in this investigation. The results suggest that the differences between the sorption isotherms measured at different...

  19. Effects of rotation on MHD flow past an accelerated isothermal vertical plate with heat and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C′w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.

  20. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q., E-mail: liuweiqiang77@hotmail.co [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Sun, H. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yi, X.F. [Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui 231500 (China); Liu, X.C.; Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhang, J.X. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2010-07-02

    Nd-Fe-B permanent magnets with a small amount of Dysprosium (Dy) nanoparticles doping were prepared by conventional sintered method, and the microstructure and magnetic properties of the magnets were studied. Investigation shows that the coercivity rises gradually, while the remanence decreases simultaneously with increased Dy doping amount. As a result, the magnet with 1.5 wt.% Dy exhibits optimal magnetic properties. Further investigation presumed that Dy is enriched as (Nd, Dy){sub 2}Fe{sub 14}B phase in the surface region of the Nd{sub 2}Fe{sub 14}B matrix grains indicated by the enhancement of the magneto-crystalline anisotropy field of the Nd{sub 2}Fe{sub 14}B phase. As a result, the magnet doped with a small amount of Dy nanoparticles possesses remarkably enhanced coercivity without sacrificing its magnetization noticeably.

  1. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  2. Magnetic properties of {alpha}-Fe and Fe{sub 3}C nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M U; Weissker, U; Wolny, F; Mueller, C; Loeffler, M; Muehl, T; Leonhardt, A; Buechner, B; Klingeler, R, E-mail: m.lutz@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-01-01

    The magnetic properties of single domain {alpha}-Fe and Fe{sub 3}C nanowires encapsulated within Multi Walled Carbon Nanotubes (MWNT) are investigated with a Magnetic Force Microscope (MFM). The wires are formed during the Chemical Vapour Deposition growth process, partially filling the hollow center of the MWNTs. The wires have a diameter variation of 10-60nm and can be several {mu}m long. The phase and crystal orientation of the filling relative to the long tube axis are probed by Transmission Electron Microscopy. The remanent magnetization states of the wires are investigated by MFM imaging. The {alpha}-Fe wires show shape dominated magnetization along the tube axis, whereas the FesC wires show a perpendicular magnetization imposed by magneto-crystalline anisotropy. Switching fields of {alpha}-Fe nanowires are determined by the application of an in-situ magnetic field, revealing a tip triggered magnetization reversal by localized nucleation.

  3. Magnetic behavior of nanocrystalline CoFe2O4

    International Nuclear Information System (INIS)

    Zhang Kai; Holloway, T.; Pradhan, A.K.

    2011-01-01

    Magnetic nanoparticles of CoFe 2 O 4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe 2 O 4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder. - Research highlights: → CoFe 2 O 4 nanoparticles were synthesized by co-precipitation route in a magnetic field. → Smaller nanoparticles present superparamagnetic property above their block temperature. → These nanoparticles show interesting magnetic behavior in the blocking state. → Magnetic behavior is strongly dependent on the annealing temperature.

  4. Experimental Heating of Moravian Cherts and its Implication for Palaeolithic Chipped Stone Assemblages

    Czech Academy of Sciences Publication Activity Database

    Moník, M.; Nerudová, Z.; Schnabl, Petr

    2017-01-01

    Roč. 59, č. 6 (2017), s. 1190-1206 ISSN 0003-813X Institutional support: RVO:67985831 Keywords : lithics * heat treatment * Palaeolithic * magnetic susceptibility * colour measurement * isothermal remanent magnetization Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology Impact factor: 1.470, year: 2016

  5. Inspired by nature: investigating tetrataenite for permanent magnet applications.

    Science.gov (United States)

    Lewis, L H; Mubarok, A; Poirier, E; Bordeaux, N; Manchanda, P; Kashyap, A; Skomski, R; Goldstein, J; Pinkerton, F E; Mishra, R K; Kubic, R C; Barmak, K

    2014-02-12

    Chemically ordered L10-type FeNi, also known as tetrataenite, is under investigation as a rare-earth-free advanced permanent magnet. Correlations between crystal structure, microstructure and magnetic properties of naturally occurring tetrataenite with a slightly Fe-rich composition (~ Fe55Ni44) obtained from the meteorite NWA 6259 are reported and augmented with computationally derived results. The tetrataenite microstructure exhibits three mutually orthogonal crystallographic variants of the L10 structure that reduce its remanence; nonetheless, even in its highly unoptimized state tetrataenite provides a room-temperature coercivity of 95.5 kA m(-1) (1200 Oe), a Curie temperature of at least 830 K and a largely temperature-independent anisotropy that preliminarily point to a theoretical magnetic energy product exceeding (BH)max = 335 kJ m(-3) (42 MG Oe) and approaching those found in today's best rare-earth-based magnets.

  6. Methods in rock magnetism and palaeomagnetism techniques and instrumentation

    CERN Document Server

    Collinson, D W

    1983-01-01

    During the last 30 years the study of the magnetic properties of rocks and minerals has substantially contributed to several fields of science. Perhaps the best known and most significant advances have resulted from the study of palaeomagnetism, which led to quantitative confirmation of continental drift and polar wandering through interpretation of the direction of remanent magnetism observed in rocks of different ages from different continents. Palaeomagnetism has also, through observations of reversals of magnetiz­ ation, ancient secular variation and ancient field intensities provided data relevant to the origin of the geomagnetic field, and other investigations have contributed significantly to large-scale and local geological studies, the dating of archaeological events and artefacts and more recently to lunar and meteoritic studies. Rock and mineral magnetism has proved to be an interesting study in its own right through the complex magnetic properties and interactions observed in the iron-titanium ox...

  7. Micromagnetic modeling of the effects of stress on magnetic properties

    International Nuclear Information System (INIS)

    Zhu, B.; Lo, C. C. H.; Lee, S. J.; Jiles, D. C.

    2001-01-01

    A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau - Lifshitz - Gilbert equation. Magnetization curves of a nickel film were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field. [copyright] 2001 American Institute of Physics

  8. Microbially assisted recording of the Earth's magnetic field in sediment.

    Science.gov (United States)

    Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A; Müller, Sebastian

    2016-02-11

    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles.

  9. Modeling Cavitation in ICE Pistons Made with Isothermal Forging

    Directory of Open Access Journals (Sweden)

    V.V. Astanin

    2014-07-01

    Full Text Available Possible causes for cavitations in parts made with an Al-Si eutectic alloy AK12D (AlSi12 were explored with mathematical and physical modeling with involved acoustic emission. Pores were formed from micro-cracks, which appear during the early stages of a deformation process, with the help of micro-stresses appearing at phase boundaries (Al/Si interface due to thermal expansion. At the design stage of isothermal forgings of such products it is recommended to provide a scheme of the deformed shape, which is under uniform compression, to compensate for the inter-phase stresses.

  10. Lattice Boltzmann method for weakly ionized isothermal plasmas

    International Nuclear Information System (INIS)

    Li Huayu; Ki, Hyungson

    2007-01-01

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values

  11. The oxidation kinetics of zircaloy - 4 under isothermal conditions

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Cardoso, P.E.

    1982-01-01

    The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt

  12. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  13. Isothermal solidification based packaging of biosensors at low temperatures

    International Nuclear Information System (INIS)

    Sharma, R.P.; Khanna, P.K.; Kumar, D.

    2010-01-01

    Thick film Au printed square contact pads are interconnected to Cu substrates at constant pressure and temperature using the isothermal solidification of Bi-In alloy on the joining surfaces. The effect of reaction time on the mechanical strength of the package has been analyzed. Thermal stability of the fabricated specimens have been measured and discussed. The delaminated surfaces examined optically reveal the morphology of the metallization zones on the joining substrates. The scanning electron microscopy of these surfaces is reported in this paper. Tests for thermal shock, pH resistivity and shelf life have been carried out to predict the reliability of the packaging for long term applications.

  14. A self-consistent model of an isothermal tokamak

    Science.gov (United States)

    McNamara, Steven; Lilley, Matthew

    2014-10-01

    Continued progress in liquid lithium coating technologies have made the development of a beam driven tokamak with minimal edge recycling a feasibly possibility. Such devices are characterised by improved confinement due to their inherent stability and the suppression of thermal conduction. Particle and energy confinement become intrinsically linked and the plasma thermal energy content is governed by the injected beam. A self-consistent model of a purely beam fuelled isothermal tokamak is presented, including calculations of the density profile, bulk species temperature ratios and the fusion output. Stability considerations constrain the operating parameters and regions of stable operation are identified and their suitability to potential reactor applications discussed.

  15. Moisture ingress into electronics enclosures under isothermal conditions

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based......The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture...

  16. Isothermal martensitic transformation as an internal-stress-increasing process

    International Nuclear Information System (INIS)

    Liu, Y.; Xie, Z.L.; Haenninen, H.; Humbeeck, J. van; Pietikaeinen, J.

    1995-01-01

    Based on the results that the magnitude of the stabilization of retained austenite increases with increasing the amount of martensite transformed, it has been assumed that the martensitic transformation is accompanied with an increase in internal resisting stress which subsequently results in the stabilization of retained austenite. By simplifying this internal resisting stress to be a type of hydrostatic compressive stress acting on retained austenite due to surrounding martensite plates, a thermodynamical analysis for an isothermal martensitic transformation under applied hydrostatic pressure has been performed. The calculated results, to some extent, show a good agreement with the experimental data. (orig.)

  17. Novel magnetic hydrogen sensing: a case study using antiferromagnetic haematite nanoparticles

    International Nuclear Information System (INIS)

    Punnoose, Alex; Reddy, K M; Thurber, Aaron; Hays, Jason; Engelhard, Mark H

    2007-01-01

    Hydrogen sensing is a critical component of safety to address widespread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic haematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale haematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the haematite sample shows significant mass loss when hydrogen gas is introduced. X-ray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of 'magnetic gas sensing'

  18. Investigation on magnetic properties of orientated nanocomposite Pr2Fe14B/α-Fe permanent magnets by micromagnetic finite-element method

    International Nuclear Information System (INIS)

    He, Shu-li; Zhang, Hong-wei; Rong, Chuan-bing; Chen, Juan; Sun, Ji-rong; Shen, Bao-gen

    2012-01-01

    Demagnetization curves for nanocomposite Pr 2 Fe 14 B/α-Fe permanent magnets with different hard grain alignment are calculated by a micromagnetic finite-element method. The results show that both remanence and coercivity increase with improving hard grains alignment. The demagnetization curves show a single-phase demagnetization behavior for the samples with grain size d of 10 nm and two-phase behavior for the samples with d of 20 and 30 nm. H ex (reflecting the magnetic hardening of α-Fe) and H irr (expressing the irreversible reversal of hard phase) are both enhanced with improving the hard grain alignment. The magnetic reversal in orientated nanocomposite permanent magnets is mainly controlled by inhomogeneous pinning of the nucleated type. - Highlights: ► The magnetic properties of nanocomposite Pr 2 Fe 14 B/α-Fe permanent magnets with different hard grains alignment are investigated by micromagnetic finite-element method. ► The calculated results show that both remanence and coercivity increase with improving hard grains alignment. ► Highly ordered orientation of hard phase is the critical factor to improve the properties of nanocomposites.

  19. Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

    Science.gov (United States)

    Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.

    2018-04-01

    La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.

  20. Magnetic Fields of the Earth and Mars a Comparison and Discussion

    Science.gov (United States)

    Taylor, Patrick T.

    2004-01-01

    In several aspects the magnetic fields of the Earth and Mars are similar but also different. In the past both bodies had planetary magnetic fields but while they Earth's field remains today the Martian ceased to operate, at some unknown time in the past, leaving this planet without a main or core field. This fact resulted in the interaction between the solar and interplanetary magnetic fields with the surfaces of these planets being very different. In addition, Mars has large crustal magnetic anomalies, nearly ten times larger than those on the Earth. Since crustal magnetic anomalies are the product of the thickness of the layer of magnetization, both the magnetizing material and the thickness of the layer of this material must be very different on Mars than Earth. Furthermore, the martian anomalies can only be produced by remanent or fossil magnetization, in contrast with the Earth where both induced and remanent magnetization are producing these anomalies. Crustal magnetic anomalies on the Earth are mainly produced by single-domain, irontitanium oxides, in the form of magnetite being the most common on Mars the main magnetic mineral(s) are unknown. The thickness of the martian magnetized layer in comparison with the Earth remains a major area for research. Determining the paleopole position for the Earth has been done by some of the earliest paleomagnetic researchers. Since we do not have oriented martian rock samples determining the paleopoles for Mars has been done by fitting a magnetization vector to individual magnetic anomalies. Several groups have worked on this problem with somewhat differing results.

  1. Effects of high magnetic field on martensitic transformation behavior and structure in Fe-based alloys

    International Nuclear Information System (INIS)

    Ohtsuka, H.; Wada, H.; Ghosh, G.

    2000-01-01

    Effects of magnetic field on lath-type martensitic transformation behavior and the reverse transformation behavior from lath math martensite to austenite have been investigated in 18Ni maraging steel. It was found that the reverse transformation temperature during heating is increased by magnetic field. Reverse transformation behavior during isothermal holding was also found to be retarded by magnetic field. (orig.)

  2. The magnetic properties of mill scale-derived permanent magnet

    International Nuclear Information System (INIS)

    Woon, H.S.; Hashim, M.M.; Yahya, N.; Zakaria, A.; Lim, K.P.

    2005-01-01

    In the permanent magnet SrO-FeO-Fe 2 O 3 system, there exist several magnetically ordered compounds with a stable phase at room temperature. The most important are the M(SrFe 12 O 19 ), X(SrFe 15 O 23 ) and W(SrFe 18 O 27 ) phases with hexagonal close packed structure. In this project, M(SrFe 12 O 19 ) was prepared using mill scale, a steel-maker byproduct, as raw material. The Malaysia steel industry generates approximately 30,000 metric tons of waste products such as mill scale every year. Transportation and disposal of the byproducts are costly and the environmental regulations are becoming stricter. Hence, local steel mills are to find new ways to recycle the waste as a feedstock for the steel-making process or as a saleable product. The M(SrFe 12 O 19 ) was synthesized using the conventional ceramic process. The formation of the SrFe 12 O 19 was confirmed by X-ray diffraction. The magnetic properties such as the energy product (BH)max, coercive force (iHc) and remanence (Br) were also reported in this paper. (Author)

  3. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  4. Thermal-mechanical and isothermal fatigue of IN 792 CC

    International Nuclear Information System (INIS)

    Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.

    1997-01-01

    The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)

  5. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A

    2016-01-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)

  6. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  7. Isothermal reaction calorimetry as a tool for kinetic analysis

    International Nuclear Information System (INIS)

    Zogg, Andreas; Stoessel, Francis; Fischer, Ulrich; Hungerbuehler, Konrad

    2004-01-01

    Reaction calorimetry has found widespread application for thermal and kinetic analysis of chemical reactions in the context of thermal process safety as well as process development. This paper reviews the most important reaction calorimetric principles (heat-flow, heat-balance, power-compensation, and Peltier principle) and their applications in commercial or scientific devices. The discussion focuses on the different dynamic behavior of the main calorimetric principles during an isothermal reaction measurement. Examples of available reaction calorimeters are further compared considering their detection limit, time constant as well as temperature range. In a second part, different evaluation methods for the isothermally measured calorimetric data are reviewed and discussed. The methods will be compared, focusing especially on the fact that reaction calorimetric data always contains additional informations not directly related to the actual chemical reaction such as heat of mixing, heat of phase-transfer/change processes or simple measurement errors. Depending on the evaluation method applied such disturbances have a significant influence on the calculated reaction enthalpies or rate constants

  8. Mathematical modelling of non-isothermal venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, A. [Isfahan Univ., Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering; Taheri, M.; Fathikakajahi, J. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Chemical Engineering

    2005-06-01

    Venturi scrubbers collect gaseous pollutants and particulate matter from industrial exhaust. This air pollution control device is highly efficient, easy to maintain and has a low initial cost. However, the high pressure drop through the device results in a high running cost. The main mechanism for collecting particulates is the inertial impaction of the particles on the droplets, which occurs due to high velocity between the gas stream and droplets. Droplet acceleration and irreversible drag-force which results from this high relative velocity are responsible for the high pressure drop in this type of scrubber. While several attempts have been made to mathematically model particulate removal in Venturi scrubbers, most models do not consider simultaneous heat and mass transfer. This factor is important because most Venturi scrubbers operate under non-isothermal conditions where the inlet gas is humidified in order to cool it before entering the scrubber. For that reason, the authors developed a more realistic model to determine the effects of heat and mass transfer on the particulate removal efficiency of a non-isothermal Venturi type scrubber. The model considers the effect of droplet size distribution and liquid film flow on the walls. It consists of differential equations for energy, momentum and material exchange. Model results were compared with data from experimental studies and industrial facilities. It was concluded that the removal efficiency of the scrubber is influenced by the inlet humidity temperature of the inlet gas. 26 refs., 1 tab., 10 figs.

  9. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    International Nuclear Information System (INIS)

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-01-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  10. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    Science.gov (United States)

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  11. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  12. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-01-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM 10 –PM 2.5 –PM 1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM 10 . Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM 10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM 1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM 1 , one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM 1 . - Highlights: • Magnetic properties of PM 10 , PM 2.5 and PM 1 defined for a Mediterranean urban site. • Vehicular source of magnetic particles dominates in PM 10 . • Crustal source of magnetic particles dominates in PM 1 . • Magnetic remanence may distinguish between North African and regional dust in PM 1 . - Capsule abstract two sources of magnetic atmospheric particles have been identified in Barcelona, a vehicular source which dominates in PM 10 and a crustal source that dominates in PM 1

  13. Micromagnetics of rare-earth efficient permanent magnets

    Science.gov (United States)

    Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas

    2018-05-01

    The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.

  14. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    Science.gov (United States)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  15. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Trevizoli, Paulo V., E-mail: trevizoli@polo.ufsc.br; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.

  16. Hardness of H13 Tool Steel After Non-isothermal Tempering

    Science.gov (United States)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  17. Microstructural evolution during isothermal aging and strain-induced transformation followed by isothermal aging in Co-Cr-Mo-C alloy: A comparative study

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Hasanabadi, F.; Saghafi, M.

    2010-01-01

    The present study was undertaken to investigate the effects of isothermal aging (at 850 deg. C for 4, 8, 16 and 24 h) and strain-induced transformation (engineering strains of 10% and 20%) followed by isothermal aging (at 850 deg. C for 4, 8 and 16 h) on the microstructural evolution of a Co-28Cr-5Mo-0.3C alloy. The obtained results showed that isothermal aging at 850 deg. C resulted in the formation of lamellar-type carbides at the grain boundaries. Moreover, X-ray diffraction analysis indicated that isothermal aging of solution treated specimens at 850 deg. C for 24 h did not lead to complete fcc phase transformation to hcp one. In contrast with the isothermally aged specimens, applying plastic deformation to the solutionized samples accelerated the completion and saturation of fcc(metastable) → hcp transformation after 8 h aging at 850 deg. C. In addition, the X-ray diffraction results indicated that implementing isothermal aging of the strain-induced specimens at the higher aging time (16 h) caused the formation of (1 1 1) fcc and (2 0 0) fcc diffraction peaks again. Also, the strain-induced specimens followed by isothermal aging showed higher amount of microhardness as compared with the other specimens aged solely.

  18. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    Science.gov (United States)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  19. Fulgurites: a rock magnetic study of mineralogical changes caused by lightning

    Science.gov (United States)

    Begnini, G. S.; Tohver, E.; Schmieder, M.

    2013-05-01

    Fulgurites are natural glass samples produced by lightning strikes on rock or soil substrates. Instantaneous electrical discharges of 10-200 kA are typical, and the temperatures produced by lightning strikes exceed 1700C, the melting temperature of quartz. Paleomagnetic observations of lightning strikes typically include high intensity remanent magnetizations with highly-variable to random magnetic directions. Alternating field demagnetization is commonly used to remove the overprinting effects of Lightning Induced Remanent Magnetization (LIRM), indicating low coercivities of the magnetic carriers. We conducted a rock magnetic analysis of 15 specimens of natural fulgurite from South Africa including hysteresis and thermoremanent heating and cooling experiments using a Variable Field Translational Balance. The analysed specimens demonstrate two distinct ranges of Curie temperature: 440-600C and 770-778C, suggesting the presence of both iron oxides (likely Fe-rich magnetite) and a reduced iron alloy, likely kamacite. High temperature, highly reduced assemblages have been reported from petrological observations of fulgurites. Our rock magnetic observations of a metallic iron phase in the fulgurite samples from a terrestrial, surficial environment demonstrates a mineralogical resemblance to differentiated, iron-rich meteorites. We suggest that LIRMs in lightning-struck localities may include a chemical remagnetization associated with lightning-induced electrolysis or reduction of iron oxides.

  20. Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Dutz, Silvio; Andrae, Wilfried; Hergt, Rudolf; Mueller, Robert; Oestreich, Christiane; Schmidt, Christopher; Toepfer, Jorg; Zeisberger, Matthias; Bellemann, Matthias E.

    2007-01-01

    Magnetic iron oxide nanoparticles with mean diameters in the range from 10 to 30 nm were prepared by modified chemical precipitation routes. The particles were suspended in an aqueous solution by coating of the particles with carboxymethyldextran. A stability against agglomeration was achieved over a period of more than 7 days. In the present investigation, the structural and the magnetic properties of the nanoparticles were investigated. The influence of the dextran shell on the strength of the dipole-dipole interactions between the neighbouring particles was determined by investigation of the remanence behaviour (Henkel plot) of coated as well as of uncoated particles

  1. Large coercivity in nanocrystalline TbMn6Sn6 permanent magnets prepared by mechanical milling

    International Nuclear Information System (INIS)

    Zhang Hongwei; Zhao Tongyun; Zhang Jian; Rong Chuanbing; Zhang Shaoying; Shen Baogen; Li Lu; Zhang Ligang

    2003-01-01

    Isotropic TbMn 6 Sn 6 was prepared by mechanical milling and subsequent annealing. Although the crystalline grain size was a little larger than 15 nm, no remanence enhancement resulting from intergrain exchange coupling was observed. The coercivity μ 0 H c = 0.96 T at 293 K was much larger than that expected from magnetocrystalline anisotropy. The smallest effective anisotropy constant is suggested to be 0.25 MJ m -3 when the coercivity mechanism is controlled by coherent rotation of magnetization in a single-domain grain. The contributions of shape anisotropy and magnetoelastic anisotropy are considered in order to explain the large coercivity in the magnets

  2. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    Science.gov (United States)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  3. Magnetic fields in the early solar system

    International Nuclear Information System (INIS)

    Strangway, D.W.

    1980-01-01

    Most of the terrestrial planets and the meteorites contain records of early magnetic fields. In the Allende meteorite some of the chondrules were magnetized in fields of about 10 Oe. When assembled into the meteorite, they remained randomly oriented but were partially remagnetized in a field of 1 Oe at temperatures of 200-300 0 C. They present dipole moment of Mercury and the weak dipole moment of Mars may be due to the cooling of a crust in the presence of early magnetic fields. The Earth on the other hand, has had an active dynamo for at least 3 Ga and probably longer, although there is no discernible record of earlier fields due to extensive reheating of the magnetic carriers. Venus has no dynamo field and its surface temperature is too high to carry a crustal remanence. The Moon has no dipole, but local islands of magnetization are believed to be the results of breccias cooling in the presence of an early field, possibly in itself a crustal memory. As we learn about the fields of the planets and the magnetic record contained in their samples we may be able to put sharp constraints on the earliest history of planet formation and evolution. (Auth.)

  4. Microstructural Evolution and the Precipitation Behavior in X90 Linepipe Steel During Isothermal Processing

    Science.gov (United States)

    Tian, Y.; Wang, H. T.; Wang, Z. D.; Misra, R. D. K.; Wang, G. D.

    2018-03-01

    Thermomechanical controlled processing of 560-MPa (X90) linepipe steel was simulated in the laboratory using a thermomechanical simulator to study the microstructural evolution and precipitation behavior during isothermal holding. The results indicated that martensite was obtained when the steels were isothermally held for 5 s at 700 °C. Subsequently, granular bainite and acicular ferrite transformation occurred with increased holding time. Different amount of polygonal ferrite formed after isothermally holding for 600-3600 s. Pearlite nucleated after isothermally holding for 3600 s. Precipitation occurred after isothermal holding for 5 s and continuous precipitation occurred at grain boundaries after isothermally holding for 600 s. After isothermally holding for 3600 s, large Nb/Ti carbide precipitated. The presence of MX-type precipitates was confirmed by diffraction pattern. The interphase precipitation (IP) occurred between 5 and 30 s. Maximum hardness was obtained after isothermally holding for 600 s when IP occurred and rapidly decreased to a low value, mainly because polygonal ferrite dominated the microstructure after isothermally holding for 3600 s.

  5. High-resolution rock-magnetic variability in shallow marine sediment: a sensitive paleoclimatic metronome

    Science.gov (United States)

    Arai, Kohsaku; Sakai, Hideo; Konishi, Kenji

    1997-05-01

    An outer shelf deposit in central Japan centered on the Olduvai normal polarity event in the reversed Matuyama chron reveals a close correlation of both the magnetic susceptibility and remanent intensity with the sedimentary cyclicities apparent in lithologies and molluscan assemblages. Two sedimentary cycles are characterized by distinctly similar, but double-peaked magnetic cyclicities. The rock-magnetic variability is primarily attributed to the relative abundance of terrigenous magnetic minerals, and the double peak of the variability is characterized by the concentration of finer-grained magnetic minerals. The concentration is suspected to be controlled by both climatic change and shifting proximity of the shoreline as a function of rise and fall of the sea level due to glacio-eustasy. Rock-magnetic study reveals the record of a 21 ka period of orbital precession cycles within the sedimentary cyclicity attributable to a 41 ka period of orbital obliquity forcing.

  6. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  7. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Nlebedim, I.C. [Ames Laboratory, Ames, IA 50011 (United States); Ucar, Huseyin; Hatter, Christine B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); McCallum, R.W. [Ames Laboratory, Ames, IA 50011 (United States); McCall, Scott K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kramer, M.J. [Ames Laboratory, Ames, IA 50011 (United States); Paranthaman, M. Parans [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  8. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    International Nuclear Information System (INIS)

    Nlebedim, I.C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R.W.; McCall, Scott K.; Kramer, M.J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. - Highlights: • Optimum alignment of anisotropic magnet powders can enable high performance bonded magnets. • The viscoelastic state of polymer binders determines the dominating coercivity mechanism. • The minimum deviation in coercivity and remanence, with magnetic field, can occur at different temperatures. • Melting characteristics of polymer binders and the change in magnetization during alignment can be correlated.

  9. Correlation between isothermal expansion and functional properties change of the Fe81B13Si4C2 amorphous alloy

    Directory of Open Access Journals (Sweden)

    Kalezić-Glišović A.

    2009-01-01

    Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.

  10. Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity

    Science.gov (United States)

    Ashouri, Majid; Behshad Shafii, Mohammad

    2017-11-01

    The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and counterclockwise in the lower half. In addition, strong circulations are observed around the edges of the permanent magnet surface. The strength of the circulations increase monotonically with the magnetic Rayleigh number. The circulations also increase with the permanent magnet size, but eventually, are suppressed for larger sizes. It is found that there is an optimum size for the permanent magnet due to the contrary effects of the increase in magnetic force and the increase in flow resistance by increasing the size. By increasing the magnetic Rayleigh number or isothermal walls temperature ratio, the heat transfer rate increases.

  11. Moisture ingress into electronics enclosures under isothermal conditions

    International Nuclear Information System (INIS)

    Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.

    2016-01-01

    The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. This QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.

  12. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry

    DEFF Research Database (Denmark)

    Søtoft, Lene Fjerbaek; Westh, Peter; Christensen, Knud V.

    2010-01-01

    Isothermal calorimetry (ITC) was used to investigate solvent-free enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by immobilized lipase Novozym 435 at 40 °C. The aim of the study was to determine reaction enthalpy for the enzymatic...... transesterification and to elucidate the mass transfer and energetic processes taking place. Based on the measured enthalpy and composition change in the system, the heat of reaction at 40 °C for the two systems was determined as −9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and −9.3 ± 0.7 k...

  13. Simulation of non-isothermal transient flow in gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)

  14. Relativistic sonic geometry for isothermal accretion in the Kerr metric

    Science.gov (United States)

    Arif Shaikh, Md

    2018-03-01

    We linearly perturb advective isothermal transonic accretion onto rotating astrophysical black holes to study the emergence of the relativistic acoustic spacetime and to investigate how the salient features of this spacetime is influenced by the spin angular momentum of the black hole. We have perturbed three different quantities—the velocity potential, the mass accretion rate and the relativistic Bernoulli’s constant to show that the acoustic metric obtained for these three cases are the same up to a conformal factor. By constructing the required causal structures, it has been demonstrated that the acoustic black holes are formed at the transonic points of the flow and the acoustic white holes are formed at the shock location. The corresponding acoustic surface gravity has been computed in terms of the relevant accretion variables and the background metric elements. We have performed a linear stability analysis of the background stationary flow.

  15. Samarium-cobalt type rare earth permanent magnets

    International Nuclear Information System (INIS)

    Kamat, S.V.

    2014-01-01

    Permanent magnets are one of the oldest and largest applications of magnetic materials and form an integral part of our modern industrial society. They belong to a special class of functional materials and are characterized for remanence (flux output from the magnet), coercivity (resistance to demagnetization) and energy product (material energy density) from the second quadrant of the magnetic hysteresis loop. The reliability, stability, size, weight, cost and performance of many electro-technical devices depend mainly on the properties of permanent magnets used in them. There are three important families of permanent magnets viz., Ferrites, Alnicos and Rare Earth Permanent Magnets (REPMs) with energy product values ranging from 3 to 50 MGOe and among the front ranking high performance REPMs, SmCo 5 , Sm 2 Co 17 type and NdFeB alloys are technologically the most important materials. They are used in a wide range of applications ranging from consumer products to very specialized areas of tele-communications, microelectronics, defence, space, avionics etc. While NdFeB has the highest energy product, Sm-Co based magnets are preferred for most critical applications where temperature stability of magnetic properties is essential because of their significantly higher Curie temperatures. In this presentation some of the key challenges associated with these Sm-Co based rare earth permanent magnets will be highlighted. (author)

  16. New approaches in the design of magnetic tweezers–current magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bessalova, Valentina [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Perov, Nikolai [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); Rodionova, Valeria [Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); National University of Science and Technology ' MISiS' , Leninsky Prospect 4, 119049 Moscow (Russian Federation)

    2016-10-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10{sup −11} A m{sup 2} at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  17. New approaches in the design of magnetic tweezers–current magnetic tweezers

    International Nuclear Information System (INIS)

    Bessalova, Valentina; Perov, Nikolai; Rodionova, Valeria

    2016-01-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10 −11 A m 2 at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  18. A detailed paleomagnetic and rock-magnetic investigation of the Matuyama-Bruhnes geomagnetic reversal recorded in tephra-paleosol sequence of Tlaxcala(Central Mexico

    Directory of Open Access Journals (Sweden)

    Ana Maria Soler-Arechalde

    2015-04-01

    Full Text Available Geomagnetic reversals are global phenomena, for about 50 years the paleomagnetists attempted to acquire as many detailed records as possible using the magnetic memory of sediments and lava flows. Yet, transitional field behavior remains poorly characterized largely because of sporadic aspect of volcanic eruptions. In some specific cases, paleosols such as those developed from alluvial or aeolian sediments, may also record the variations of the Geomagnetic Field across the polarity changes. Here, we report a detailed paleomagnetic and rock-magnetic investigation on some radiometrically dated chromic luvisols located in Central Mexico carrying detrital or chemical remanent magnetization. The research was developed in order i to demonstrate the primary origin of the magnetic remanence and ii to show that paleosoils are good candidates to provide a high resolution record of the behavior of geomagnetic field during reversals. The lower part of the paleosoil sequence shows a clearly defined reverse polarity magnetization followed by geomagnetically unstable transitional field and ended by normal polarity remanence. Our AMS and rock magnetic data suggest that magnetization is acquired during the initial stage of soil formation in context of active volcanic activity since magnetic fabric is essentially sedimentary and reverse and normal polarity paleodirections are almost antipodal. Titanomagnetites are identified as main magnetic carriers of rock-magnetic measurements including thermomagnetics and hysteresis cycles. We propose that the transition recorded in this study correspond to the B-M boundary, considering the K-Ar datings available at the sequence bottom and that the chromic luvisols are potentially good recorders of the paleosecular variation. The identification of the B-M boundary within the studied sequence has fundamental significance for improving the chronological scale of Tlaxcala paleosol-sedimentary sequence and its correlation with the

  19. Water Adsorption Isotherms on Fly Ash from Several Sources.

    Science.gov (United States)

    Navea, Juan G; Richmond, Emily; Stortini, Talia; Greenspan, Jillian

    2017-10-03

    In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al 2 O 3 ·2SiO 2 ), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.

  20. Isothermal equation of state of a lithium fluoride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y.

    1975-01-01

    An isothermal equation of state of a LiF single crystal was determined from length change measurements of the specimen as a function of hydrostatic pressure up to approximately 7 kbars at 28 to 41/sup 0/C. The length change was measured with an accuracy of approximately 500 A by using a Fabry Perot type He--Ne laser interferometer for a 1-m long specimen at temperatures constant to less than 0.002/sup 0/C. Several two- and three-parameter equations of state were used in analyzing the measured pressure-volume data. The computer fit for each equation of state determines not only the value of its parameters but also the standard deviations associated with them and one dependent variable, either pressure or volume. With the parameters determined, the equations of state are extrapolated to approximately 5 megabars in order to see discrepancies. Using the Born model of ionic solids, two equations of state were derived both from a power law potential and from an exponential form for the repulsive energy of alkali metal halides and used to fit the pressure-volume data of a LiF single crystal. They are also extrapolated to approximately 5 megabars. The Birch's two-parameter equation and the Grover, Getting, and Kennedy equation are indistinguishable from the two equations of state derived from the Born model for pressures approximately equal to or less than 800 kbars within +-20 kbars. The above four equations of state also fit closely the Pagannone and Drickamer static compression data, the Christian shock wave data, and the Kormer et al. shock wave data. The isothermal bulk modulus and its first pressure derivative at atmospheric pressure and 28.83/sup 0/C are 664.5 +- 0.5 kbars and 5.40 +- 0.18, respectively, in close agreement with those values ultrasonically measured by R. A. Miller and C. S. Smith. (auth)