WorldWideScience

Sample records for isometric muscle forces

  1. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  2. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    Science.gov (United States)

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the

  3. Firing rate modulation of human motor units in different muscles during isometric contraction with various forces.

    Science.gov (United States)

    Seki, K; Narusawa, M

    1996-05-06

    To examine the factors affecting the control of human motor units, rate coding strategies of the motor units were investigated in upper limb and intrinsic hand muscles during voluntary isometric contraction of steady force levels up to 80% of maximal voluntary contraction. Numerous spike trains from single motor units were recorded from the m. first dorsal interosseous (FDI) and the m. biceps brachii (BB) of eight human subjects by means of tungsten micro-electrodes, and the mean firing rate (MFR) was calculated for each subject and inter-individual comparisons made. The MFRs of the FDI were larger than that of the BB at the higher force level, and substantial differences were not found between these muscles at the lower force level. The slope of the linear regression line of MFRs vs. exerted forces for the FDI was more than twice that for the BB. Therefore, isometric force control of the FDI depends more on the rate coding strategy. The difference in rate coding between the FDI and BB motor units may be determined by factors other than muscle fiber composition, because both muscles are known to possess a similar composition of fiber types. Possible mechanisms underlying these characteristics of rate coding strategy are considered in this report.

  4. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.

    Science.gov (United States)

    Gittings, William; Aggarwal, Harish; Stull, James T; Vandenboom, Rene

    2015-01-01

    The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK(-/-)) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK(-/-)) of prestimulus levels, respectively (data n = 6-8, p muscles.

  5. Relations Between Lower Body Isometric Muscle Force Characteristics and Start Performance in Elite Male Sprint Swimmers

    Directory of Open Access Journals (Sweden)

    Igor Beretić

    2013-12-01

    Full Text Available The aim of the present study was twofold. The first aim was to examine the influence of absolute and relative lower body muscle force on kinematic component which determine the start performance. The second aim was to create multiregressional model which could use as a tool for swimming coaches with the purpose to start performance control and improvement. Twenty seven high-level trained male competitive swimmers all members of the Serbian National Youth and Senior Swimming Team (Age = 21.1 ± 4.3 yrs., Height = 1. 89 ± 0.10 m, Weight = 81.6 ± 8.4 kg, 50m freestyle - long course = 24.36 ± 0.86 s performed two trials of standing leg extensors isometric muscle force testing and three swimming start trials corresponding to 10m distance. The average start time significantly correlated with variables of leg extensors maximum voluntary force (Fmax, r = -0.559, p = 0.002, leg extensors relative muscle voluntary force (Frel, r = -0.727, p < 0.001, leg extensors specific rate of force development (RFD50%, r = -0.338, p = 0.047 and leg extensors relative value of specific rate of force development (RFD50%rel, r = -0.402, p = 0.040. Regression equation for t10m prediction was defined by following variables: maximum voluntary isometric force of leg extensors muscles at absolute and relative level (Fmax and Frel, as well as a specific rate of force development of the same muscle groups (RFD50% and RFD50%rel at absolute and relative level too with 74.4% of explained variance. Contractile abilities indicators of the leg extensors muscles included consideration: Fmax, RFD50%, Frel and RFD50%rel showed significant correlation with swimming start times on 10m. Additionally, the results suggest that swimmers, who possess greater isometric maximum force and specific rate of force development at absolute and relative levels, tend to be able to swim faster on initial 10m swim start perforamnce.

  6. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation

    NARCIS (Netherlands)

    Groot, J.H.; Rozendaal, L.A.; Meskers, C.G.M.; Arwert, H.J.

    2004-01-01

    Objective. To present an isometric method for validation of a shoulder model simulation by means of experimentally obtained electromyography and addressing all muscles active around the shoulder joints. Background. Analysis of muscle force distribution in the shoulder by means of electromyography

  7. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Science.gov (United States)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  8. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

    NARCIS (Netherlands)

    de Ruiter, C J; Jones, D A; Sargeant, A J; de Haan, A

    1999-01-01

    The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different

  9. Reference values for isometric muscle force among workers for the Netherlands: a comparison of reference values

    NARCIS (Netherlands)

    Michiel Reneman; W.P. Krijnen; Dr. C.P. van der Schans; K.W. Douma; Remko Soer

    2014-01-01

    Background: Muscle force is important for daily life and sports and can be measured with a handheld dynamometer. Reference values are employed to quantify a subject’s muscle force. It is not unambiguous whether reference values can be generalized to other populations. Objectives in this study were;

  10. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  11. Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Directory of Open Access Journals (Sweden)

    John P. Wagle

    2017-11-01

    Full Text Available The purpose of the current study was (1 to examine the differences between standing and lying measures of vastus lateralis (VL, muscle thickness (MT, pennation angle (PA, and cross-sectional area (CSA using ultrasonography; and (2 to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD, impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34 agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF, as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p < 0.001, PA (p < 0.001, and CSA (p ≤ 0.05, with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.

  12. Clinical significance of isometric bite force versus electrical activity in temporal and masseter muscles

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L; Han, K

    1989-01-01

    significant with respect to unilateral, but not to bilateral force measurements. Only in the masseter muscle was strength of dynamic contractions during chewing significantly correlated to bite force. With the present method it was demonstrated that unilateral bite force is a simple clinical indicator...

  13. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  14. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  15. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Science.gov (United States)

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  16. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    NARCIS (Netherlands)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to

  17. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    NARCIS (Netherlands)

    Douma, Rob; Regterschot, G.R.H.; Krijnen, Wim; Slager, Geranda; van der Schans, Cees; Zijlstra, W.

    2016-01-01

    Background: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to

  18. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    Science.gov (United States)

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, Ppush-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of hand configuration on muscle force coordination, co-contraction and concomitant intermuscular coupling during maximal isometric flexion of the fingers.

    Science.gov (United States)

    Charissou, Camille; Amarantini, David; Baurès, Robin; Berton, Eric; Vigouroux, Laurent

    2017-11-01

    The mechanisms governing the control of musculoskeletal redundancy remain to be fully understood. The hand is highly redundant, and shows different functional role of extensors according to its configuration for a same functional task of finger flexion. Through intermuscular coherence analysis combined with hand musculoskeletal modelling during maximal isometric hand contractions, our aim was to better understand the neural mechanisms underlying the control of muscle force coordination and agonist-antagonist co-contraction. Thirteen participants performed maximal isometric flexions of the fingers in two configurations: power grip (Power) and finger-pressing on a surface (Press). Hand kinematics and force/moment measurements were used as inputs in a musculoskeletal model of the hand to determine muscular tensions and co-contraction. EMG-EMG coherence analysis was performed between wrist and finger flexors and extensor muscle pairs in alpha, beta and gamma frequency bands. Concomitantly with tailored muscle force coordination and increased co-contraction between Press and Power (mean difference: 48.08%; p force coordination during hand contractions. Our results highlight the functional importance of intermuscular coupling as a mechanism contributing to the control of muscle force synergies and agonist-antagonist co-contraction.

  20. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    Science.gov (United States)

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  1. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  2. Effects of experimental muscle pain on force variability during task-related and three directional isometric force task

    DEFF Research Database (Denmark)

    Mista, Christian Ariel; Graven-Nielsen, Thomas

    2013-01-01

    was measured using sample entropy (SEn). Three-way repeated measures ANOVA with factors level of contraction, pain/control, and time were performed for the CV, the CoP, and the SEn of each component of the force. In the tangential forces, no significant effects were found for the 3D matching tasks. The ANOVA.......05). In the task-related force, no significant effects were found for the CV during the three-dimensional task or for the task-related task. Finally, the ANOVA analysis of sample entropy showed a significant interaction between pain/control and time (P

  3. Normal isometric strength of rotator cuff muscles in adults

    OpenAIRE

    Chezar, A.; Berkovitch, Y.; Haddad, M.; Keren, Y.; Soudry, M.; Rosenberg, N.

    2013-01-01

    Objectives The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for e...

  4. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    Science.gov (United States)

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.

  5. Normal isometric strength of rotatorcuff muscles in adults.

    Science.gov (United States)

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  6. Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force

    International Nuclear Information System (INIS)

    Shibuya, Kenichi; Kuboyama, Naomi; Tanaka, Junya

    2014-01-01

    It is possible to examine bilateral primary motor cortex (M1) activation during a sustained motor task using near-infrared spectroscopy (NIRS), in which it is assumed that increased oxygenation reflects cortical activation. The purpose of this study was to examine bilateral M1 activation in response to graded levels of force production during a unilateral finger task. Ten healthy right-handed male subjects participated in this study. NIRS probes were placed over the cortex to measure M1 activity while the subjects performed the finger task. The subjects performed a 10 s finger task at 20%, 40%, and 60% of the maximal voluntary contraction (MVC). Symmetrical activation was found over both M1 areas at all force levels investigated. In the contralateral M1, there were significant differences in oxygenation between 20% and 60% MVC, as well as between 40% and 60% MVC. In the ipsilateral M1, there were significant differences among all force levels. These results indicate the ipsilateral M1 takes part in muscle force control. (paper)

  7. Cryotherapy, Sensation, and Isometric-Force Variability

    Science.gov (United States)

    Denegar, Craig R.; Buckley, William E.; Newell, Karl M.

    2003-01-01

    Objective: To determine the changes in sensation of pressure, 2-point discrimination, and submaximal isometric-force production variability due to cryotherapy. Design and Setting: Sensation was assessed using a 2 × 2 × 2 × 3 repeated-measures factorial design, with treatment (ice immersion or control), limb (right or left), digit (finger or thumb), and sensation test time (baseline, posttreatment, or postisometric-force trials) as independent variables. Dependent variables were changes in sensation of pressure and 2-point discrimination. Isometric-force variability was tested with a 2 × 2 × 3 repeated-measures factorial design. Treatment condition (ice immersion or control), limb (right or left), and percentage (10, 25, or 40) of maximal voluntary isometric contraction (MVIC) were the independent variables. The dependent variables were the precision or variability (the standard deviation of mean isometric force) and the accuracy or targeting error (the root mean square error) of the isometric force for each percentage of MVIC. Subjects: Fifteen volunteer college students (8 men, 7 women; age = 22 ± 3 years; mass = 72 ± 21.9 kg; height = 183.4 ± 11.6 cm). Measurements: We measured sensation in the distal palmar aspect of the index finger and thumb. Sensation of pressure and 2-point discrimination were measured before treatment (baseline), after treatment (15 minutes of ice immersion or control), and at the completion of isometric testing (final). Variability (standard deviation of mean isometric force) of the submaximal isometric finger forces was measured by having the subjects exert a pinching force with the thumb and index finger for 30 seconds. Subjects performed the pinching task at the 3 submaximal levels of MVIC (10%, 25%, and 40%), with the order of trials assigned randomly. The subjects were given a target representing the submaximal percentage of MVIC and visual feedback of the force produced as they pinched the testing device. The force exerted

  8. Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function.

    Science.gov (United States)

    Schaefer, Laura V; Bittmann, Frank N

    2017-01-01

    In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically - therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s; p  = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% ( p  = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However

  9. Force-Time Entropy of Isometric Impulse.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  10. Age-associated changes in muscle activity during isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K

    2013-04-01

    We investigated the effect of age on the complexity of muscle activity and the variance in the force of isometric contraction. Surface electromyography (sEMG) from biceps brachii muscle and force of contraction were recorded from 96 subjects (20-70 years of age) during isometric contractions. There was a reduction in the complexity of sEMG associated with aging. The relationship of age and complexity was approximated using a bilinear fit, with the average knee point at 45 years. There was an age-associated increase in the coefficient of variation (CoV) of the force of muscle contraction, and this increase was correlated with the decrease in complexity of sEMG (r(2) = 0.76). There was an age-associated increase in CoV and also a reduction in the complexity of sEMG. The correlation between these 2 factors can be explained based on the age-associated increase in motor unit density. Copyright © 2012 Wiley Periodicals, Inc.

  11. The Effects of Active Trigger Point of Upper Trapezius Muscle on Its Electromyography Activity and Maximal Isometric Contraction Force during Scapular Plane Elevation (Scaption

    Directory of Open Access Journals (Sweden)

    Zahra Mohammadi

    2014-01-01

    Full Text Available Objective: Trigger points may result in referral pain of their close areas. Recent evidence suggests that latent trigger points although they are not sensitive enough to cause pain, can interfere with the normal muscle function. These myofascial trigger points are estimated as an electro-physiological phenomenon. However, there are a few studies which investigated the effect of these points on the muscle activity. Muscle activity is a determinant factor in injuries which may cause or worsen shoulder-neck pain. The aim of the study was to evaluate upper trapezius muscle activity and delay time at the presence of active trigger point during scapular plane elevation (scaption. Materials & Methods: In a case-control comparative study in spring 2012, Seventeen women with active trigger points (mean age 26.76 y and 17 healthy women (mean age 26.18 y in bio-mechanic laboratory of University of Social Welfare and Rehabilitation sciences (USWR participated in the study. Using surface EMG, the amplitude of muscle activity and the onset time of upper trapezius during scaption, were recorded and analyzed. Results: The maximum amplitude of the upper trapezius muscle activity (during maximal voluntary isometric contraction of 90°scaption in patients showed significant decrease in comparison with the healthy subjects (P=0.01.Also, the onset time of upper trapezius muscle activation time in the patient group was significantly delayed in comparison to the healthy group (P=0.04. Conclusion: At the presence of trigger points in Upper trapezius muscle, muscle activation pattern changes trigger points can change the amplitude and timing of muscle activity and may consequently lead to abnormal patterns of motion of the shoulder girdle. These findings can be used in the prevention and treatment of shoulder disorders.

  12. Development of isometric force and force control in children

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2004-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  13. Development of isometric force and force control in children.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2003-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  14. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo.

    Science.gov (United States)

    Kubo, Keitaro; Ishigaki, Tomonobu; Ikebukuro, Toshihiro

    2017-08-01

    The purpose of this study was to compare the effects of plyometric and isometric training on tendon properties during ramp and ballistic contractions and muscle stiffness under passive and active conditions. Eleven subjects completed 12 weeks (3 days/week) of a unilateral training program for the plantar flexors. They performed plyometric training on one side (PLY) and isometric training on the other side (ISO). Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Stiffness and hysteresis of tendon structures were measured using ultrasonography during ramp and ballistic contractions. Passive muscle stiffness and tendon hysteresis did not change for PLY or ISO Active muscle stiffness significantly increased for PLY, but not for ISO Tendon stiffness during ramp and ballistic contractions increased significantly for ISO, but not for PLY In addition, tendon elongation values at force production levels beyond 100 N during ballistic contractions increased for PLY These results suggest that plyometric training (but not isometric training) enhances the extensibility of tendon structures during ballistic contractions and active muscle stiffness during fast stretching, and these changes may be related to improved performances during stretch-shortening cycle exercises. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Does combined strength training and local vibration improve isometric maximum force? A pilot study.

    Science.gov (United States)

    Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim

    2017-01-01

    The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.

  16. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    Science.gov (United States)

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  17. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  18. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.

    Science.gov (United States)

    Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D

    2018-01-31

    Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.

  19. Isometric muscle fatigue of the paravertebral and upper extremity muscles after whiplash injury.

    Science.gov (United States)

    Rastovic, Pejana; Gojanovic, Marija Definis; Berberovic, Marina; Pavlovic, Marko; Lesko, Josip; Galic, Gordan; Pandza, Maja

    2017-01-01

    Whiplash-associated disorders (WAD) result from injury of neck structures that most often occur during traffic accidents as a result of rapid acceleration-deceleration. The dominant symptoms manifest in the musculoskeletal system and include increased fatigue. Because of the frequency of whiplash injuries, a simple, cheap and useful diagnostic tool is needed to differentiate whiplash injury from healthy patients or those faking symptoms. To determine muscle fatigue in patients with whiplash injury in six body positions. Analytical cross-sectional study. Emergency center, university hospital. We studied patients with whiplash injury from vehicular traffic accidents who presented to the emergency center within 6 hours of sustaining the injury. We determined whiplash injury grade according to the Quebec Task Force (QTF) classification and measured isometric muscle endurance in six different body positions. Control subjects for each patient were matched by age, gender and anthropomorphic characteristics. Cut-off values were determined to distinguish patients with whiplash injury from controls and for determination of injury grade . QTF grade, time to muscle fatigue in seconds. From September 2013 to September 2016, we enrolled 75 patients with whiplash injury and 75 matching control subjects. In all six positions, the patients with whiplash injury felt muscle fatigue faster than equivalent controls (P whiplash injury grade in all six positions (P whiplash injury and grade. The size of the sample was small. An objective parameter such as electromyography is needed to confirm isometric muscle fatigue.

  20. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres.

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2010-02-01

    It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.

  1. Isokinetic and isometric muscle strength combined with transcutaneous electrical muscle stimulation in primary fibromyalgia syndrome

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Wildschiødtz, Gordon; Danneskiold-Samsøe, B

    1991-01-01

    Twenty women with primary fibromyalgia syndrome and 20 age matched healthy women were investigated. The subjects performed maximum voluntary isokinetic contractions of the right quadriceps in an isokinetic dynamometer. Maximum voluntary isometric contractions of the right quadriceps were performed...... of superimposed twitches was 65% in the patient group and 15% in the control group (p = 0.003). Patients with primary fibromyalgia have a lower maximum voluntary muscle strength than expected. The increased presence of superimposed electrically elicited twitches during maximum voluntary contraction indicates...... submaximal force application in primary fibromyalgia syndrome....

  2. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    Science.gov (United States)

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  3. Impact of Isometric Contraction of Anterior Cervical Muscles on Cervical Lordosis.

    Science.gov (United States)

    Fedorchuk, Curtis A; McCoy, Matthew; Lightstone, Douglas F; Bak, David A; Moser, Jacque; Kubricht, Brett; Packer, John; Walton, Dustin; Binongo, Jose

    2016-09-01

    This study investigates the impact of isometric contraction of anterior cervical muscles on cervical lordosis. 29 volunteers were randomly assigned to an anterior head translation (n=15) or anterior head flexion (n=14) group. Resting neutral lateral cervical x-rays were compared to x-rays of sustained isometric contraction of the anterior cervical muscles producing anterior head translation or anterior head flexion. Paired sample t-tests indicate no significant difference between pre and post anterior head translation or anterior head flexion. Analysis of variance suggests that gender and peak force were not associated with change in cervical lordosis. Chamberlain's to atlas plane line angle difference was significantly associated with cervical lordosis difference during anterior head translation (p=0.01). This study shows no evidence that hypertonicity, as seen in muscle spasms, of the muscles responsible for anterior head translation and anterior head flexion have a significant impact on cervical lordosis.

  4. Isometric hip muscle strength in posttraumatic below-knee amputees

    Directory of Open Access Journals (Sweden)

    Jandrić Slavica

    2007-01-01

    Full Text Available Background/Aim. Traumas and war injuries, next to chronic occlusive artery disease and diabetes mellitus-derived complications, are the most frequent cause of the lower limbs amputation. They affect mostly younger population that need a higher level of activities as compared with the elderly. Medical rehabilitation is very significant for the muscle performance improvement in this population providing their social reintegration. The aim of this study was to investigate the effect of below-knee amputation on the hip isometric muscle strength and effect of rehabilitation on improvement of hip muscle strength in below-knee amputees, secondary to war wounding. Methods. Forty below-knee amputees (after war wounding, average age 35.6±10.6 years, that were included in primary rehabilitation program with prosthetics, were examined. Objective parameters were used to evaluate therapeutical effects. Isometric muscle strength of hip flexors, extensors, abductors and adductors was measured by dynamometer and expressed in Newton (N at admission, control and discharge for each patient. Average length of the treatment was 51 ± 34.1 days. Results. For isometric hip flexors (t = - 1.99346, p < 0.05, extensors (t = -4.629073, p < 0.001, abductors (t = -4.9408, p < 0.001 and adductors (t = -2.00228, p < 0.05, muscle strength was significantly less on the amputated than on nonamputated side. The highest differences in muscle strength between amputated and nonamputated limbs were noted for hip abductors (26.6% and extensors (23.3%. There was significant improvement of mean values of strength for all examined hip muscles after rehabilitation and prosthetics for both legs in comparison to beginning of the therapy. The hip abductor on the amputated side was for 19.4% weaker after rehabilitation in comparison to the nonamputated limb. Conclusion. Decreases of isometric muscle strength in all examined hip muscles were observed, more in the amputated limb. Rehabilitation

  5. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation dissipation theorem

    Science.gov (United States)

    Frank, T. D.; Patanarapeelert, K.; Beek, P. J.

    2008-05-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted.

  7. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted

  8. In-Vivo Measurement of Muscle Tension: Dynamic Properties of the MC Sensor during Isometric Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Srđan Đorđević

    2014-09-01

    Full Text Available Skeletal muscle is the largest tissue structure in our body and plays an essential role for producing motion through integrated action with bones, tendons, ligaments and joints, for stabilizing body position, for generation of heat through cell respiration and for blood glucose disposal. A key function of skeletal muscle is force generation. Non-invasive and selective measurement of muscle contraction force in the field and in clinical settings has always been challenging. The aim of our work has been to develop a sensor that can overcome these difficulties and therefore enable measurement of muscle force during different contraction conditions. In this study, we tested the mechanical properties of a “Muscle Contraction” (MC sensor during isometric muscle contraction in different length/tension conditions. The MC sensor is attached so that it indents the skin overlying a muscle group and detects varying degrees of tension during muscular contraction. We compared MC sensor readings over the biceps brachii (BB muscle to dynamometric measurements of force of elbow flexion, together with recordings of surface EMG signal of BB during isometric contractions at 15° and 90° of elbow flexion. Statistical correlation between MC signal and force was very high at 15° (r = 0.976 and 90° (r = 0.966 across the complete time domain. Normalized SD or σN = σ/max(FMC was used as a measure of linearity of MC signal and elbow flexion force in dynamic conditions. The average was 8.24% for an elbow angle of 90° and 10.01% for an elbow of angle 15°, which indicates high linearity and good dynamic properties of MC sensor signal when compared to elbow flexion force. The next step of testing MC sensor potential will be to measure tension of muscle-tendon complex in conditions when length and tension change simultaneously during human motion.

  9. Impact of pain reported during isometric quadriceps muscle strength testing in people with knee pain: data from the osteoarthritis initiative.

    Science.gov (United States)

    Riddle, Daniel L; Stratford, Paul W

    2011-10-01

    Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. A cross-sectional design was used. Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from -.36 (95% confidence interval=-.41, -.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle

  10. Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles

    OpenAIRE

    Tracy, Brian L.

    2007-01-01

    The visual correction employed during isometric contractions of large proximal muscles contributes variability to the descending command and alters fluctuations in muscle force. This study explored the contribution of visuomotor correction to isometric force fluctuations for the more distal dorsiflexor (DF) and plantarflexor (PF) muscles of the ankle. Twenty-one healthy adults performed steady isometric contractions with the DF and PF muscles both with (VIS) and without (NOVIS) visual feedbac...

  11. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  12. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  13. Forearm muscle oxygenation during sustained isometric contractions in rock climbers

    Directory of Open Access Journals (Sweden)

    Jan Kodejška

    2016-02-01

    Full Text Available Background. Bouldering and lead climbing are divergent disciplines of the sport of rock climbing. Bouldering moves are short and powerful, whilst sport climbing is longer and require a greater degree of endurance. Aim. The aim of this study was to compare forearm muscle oxygenation during sustained isometric contraction between lead climbers (LC and boulderers (BO. Methods. Eight BO and twelve LC completed maximal finger flexor strength test and sustained contractions to exhaustion at 60% of maximum voluntary contraction (MVC. Differences between BO and LC in maximal strength, time to exhaustion, force time integral (FTI, and tissue oxygenation (SmO2 were assessed by t-test for independent samples. Results. LC showed significantly lower level of average tissue oxygenation (BO 38.9% SmO2, s = 7.4; LC 28.7% SmO2, s = 7.1 and maximal tissue deoxygenation (BO 25.6% SmO2, s = 8.2; LC 13.5% SmO2, s = 8.5. LC demonstrated significantly lower finger flexor strength (519 N, s = 72 than BO (621 N, s = 142. LC sustained a longer time of contraction (not significantly (BO 52.2 s, s = 11.5; LC 60.6 s, s = 13 and achieved a similar value of FTI (BO 17421 Ns, s = 4291; LO 17476 Ns, s = 5036 in the endurance test. Conclusions. The results showed lower deoxygenation during sustained contraction in BO than LC despite similar FTI, indicating different local metabolic pathways in both groups.

  14. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  15. Relationship between isometric contraction intensity and muscle hardness assessed by ultrasound strain elastography.

    Science.gov (United States)

    Inami, Takayuki; Tsujimura, Toru; Shimizu, Takuya; Watanabe, Takemasa; Lau, Wing Yin; Nosaka, Kazunori

    2017-05-01

    Ultrasound elastography is used to assess muscle hardness or stiffness; however, no previous studies have validated muscle hardness measures using ultrasound strain elastography (SE). This study investigated the relationship between plantar flexor isometric contraction intensity and gastrocnemius hardness assessed by SE. We hypothesised that the muscle would become harder linearly with an increase in the contraction intensity of the plantar flexors. Fifteen young women (20.1 ± 0.8 years) performed isometric contractions of the ankle plantar flexors at four different intensities (25, 50, 75, 100% of maximal voluntary contraction force: MVC) at 0° plantar flexion. Using SE images, the strain ratio (SR) between the muscle and an acoustic coupler (elastic modulus 22.6 kPa) placed over the skin was calculated (muscle/coupler); pennation angle and muscle thickness were measured for the resting and contracting conditions. SR decreased with increasing contraction intensity from rest (1.28 ± 0.20) to 25% (0.99 ± 0.21), 50% (0.61 ± 0.15), 75% (0.34 ± 0.1) and 100% MVC (0.20 ± 0.05). SR decreased linearly (P < 0.05) with increasing MVC from rest to 75% MVC, but levelled off from 75 and 100% MVC. SR was negatively correlated with pennation angle (r = -0.80, P < 0.01) and muscle thickness ( r= -0.78,  P< 0.01). SR appears to represent muscle hardness changes in response to contraction intensity changes, in the assumption that the gastrocnemius muscle contraction intensity is proportional to the plantar flexion intensity. We concluded that gastrocnemius muscle hardness changes could be validly assessed by SR, and the force-hardness relationship was not linear.

  16. INFLUENCE OF STRENGTH TRAINING PROGRAM ON ISOMETRIC MUSCLE STRENGTH IN YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Dragan Radovanovic

    2007-10-01

    Full Text Available Strength training, or resistance training, is a form of physical conditioning used to increase the ability to resist force. Since muscular strength is required for success in many sports, it is logical to assume that stronger and more powerful young athletes will achieve better results. The aim of the study was to examine the effects of strength training on young athletes. An eight-week strength training program for developing muscle strength was performed in this study. Training protocol was designed specifically for young adolescent’s athletes. The program consisted of exercises for lower and upper body, abdominal and lower back muscles. The programs did not involve the maximal (1-3 repetitions maximum and other very hard intensity exercises that may had negative effect on young athletes. The results showed that strength training program had positive effects on maximal isometric muscle force (Fmax and motor skill. The increase presents the combined influence of strength training and growth.

  17. Screen time viewing behaviors and isometric trunk muscle strength in youth

    DEFF Research Database (Denmark)

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten

    2013-01-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth.......The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth....

  18. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Sale Craig

    2012-06-01

    Full Text Available Abstract Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC. Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg, matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6 or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks supplementation group. Participants completed an isometric knee extension test (IKET to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2% and impulse by 3.7 ± 1.3 kN·s-1 (13.9% following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11 = 2.9, p ≤0.05; impulse: t(11 = 3.1, p ≤ 0.05. There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels.

  19. A component analysis of the generation and release of isometric force in Parkinson's disease.

    OpenAIRE

    Jordan, N; Sagar, H J; Cooper, J A

    1992-01-01

    Paradigms of isometric force control allow study of the generation and release of movement in the absence of complications due to disordered visuomotor coordination. The onset and release of isometric force in Parkinson's disease (PD) was studied, using computerised determinants of latency of response and rate of force generation and release. Components of isometric force control were related to measures of cognitive, affective and clinical motor disability. The effects of treatment were dete...

  20. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    Science.gov (United States)

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  1. Cervical Muscle Strength and Muscle Coactivation During Isometric Contractions in Patients With Migraine: A Cross-Sectional Study.

    Science.gov (United States)

    Florencio, Lidiane Lima; de Oliveira, Anamaria Siriani; Carvalho, Gabriela Ferreira; Tolentino, Gabriella de Almeida; Dach, Fabiola; Bigal, Marcelo Eduardo; Fernández-de-las-Peñas, César; Bevilaqua Grossi, Débora

    2015-01-01

    This cross-sectional study investigated potential differences in cervical musculature in groups of migraine headaches vs. non-headache controls. Differences in cervical muscle strength and antagonist coactivation during maximal isometric voluntary contraction (MIVC) were analyzed between individuals with migraine and non-headache subjects and relationships between force with migraine and neck pain clinical aspects. A customized hand-held dynamometer was used to assess cervical flexion, extension, and bilateral lateral flexion strength in subjects with episodic migraine (n=31), chronic migraine (n = 21) and healthy controls (n = 31). Surface electromyography (EMG) from sternocleidomastoid, anterior scalene, and splenius capitis muscles were recorded during MIVC to evaluate antagonist coactivation. Comparison of main outcomes among groups was conducted with one-way analysis of covariance with the presence of neck pain as covariable. Correlations between peak force and clinical variables were demonstrated by Spearman's coefficient. Chronic migraine subjects exhibited lower cervical extension force (mean diff. from controls: 4.4 N/kg; mean diff from episodic migraine: 3.7 N/kg; P = .006) and spent significantly more time to generate peak force during cervical flexion (mean diff. from controls: 0.5 seconds; P = .025) and left lateral-flexion (mean diff. from controls: 0.4 seconds; mean diff. from episodic migraine: 0.5 seconds; P = .007). Both migraine groups showed significantly higher antagonist muscle coactivity of the splenius capitis muscle (mean diff. from controls: 20%MIVC, P = .03) during cervical flexion relative to healthy controls. Cervical extension peak force was moderately associated with the migraine frequency (rs: -0.30, P = .034), neck pain frequency (rs: -0.26, P = .020), and neck pain intensity (rs: -0.27, P = .012). Patients with chronic migraine exhibit altered muscle performance, took longer to reach peak of

  2. Age-related decreases in motor unit discharge rate and force control during isometric plantar flexion

    DEFF Research Database (Denmark)

    Kallio, J; Søgaard, Karen; Avela, J

    2012-01-01

    Aging is related to multiple changes in muscle physiology and function. Previous findings concerning the effects of aging on motor unit discharge rate (DR) and fluctuations in DR and force are somewhat contradictory. Eight YOUNG and nine OLD physically active males performed isometric ramp (RECR......) and isotonic (ISO) plantar flexions at 10 and 20% of surface EMG at MVC. Motor unit (MU) action potentials were recorded with intramuscular fine-wire electrodes and decomposed with custom build software "Daisy". DR was lower in OLD in RECR-10% (17.9%, p...

  3. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    NARCIS (Netherlands)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the

  4. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia

    DEFF Research Database (Denmark)

    Ge, H-Y; Nie, Hongling; Graven-Nielsen, Thomas

    2012-01-01

    OBJECTIVE: Sustained isometric muscle contraction (fatiguing contraction) recruits segmental and/or extrasegmental descending inhibition in healthy subjects but not in fibromyalgia (FM). We hypothesized that fatiguing contraction may shift descending pain modulation from inhibition towards...

  5. Relationships between Isometric Force-Time Characteristics and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Thomas Dos’Santos

    2017-09-01

    Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.

  6. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary...... surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  7. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  8. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    Science.gov (United States)

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  9. Screen time viewing behaviors and isometric trunk muscle strength in youth.

    Science.gov (United States)

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten; Wedderkopp, Niels; Brage, Søren; Kristensen, Peter Lund; Andersen, Lars Bo; Møller, Niels Christian

    2013-10-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth. A cross-sectional study was carried out including 606 adolescents (14-16 yr old) participating in the Danish European Youth Heart Study, a population-based study with assessments conducted in either 1997/1998 or 2003/2004. Maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain gauge dynamometer, and cardiorespiratory fitness (CRF) was obtained using a maximal cycle ergometer test. TV viewing time, computer use, and other lifestyle behaviors were obtained by self-report. Analyses of association of screen use behaviors with isometric trunk muscle strength were carried out using multivariable adjusted linear regression. The mean (SD) isometric strength was 0.87 (0.16) N·kg-1. TV viewing, computer use, and total screen time use were inversely associated with isometric trunk muscle strength in analyses adjusted for lifestyle and sociodemographic factors. After further adjustment for CRF and waist circumference, associations remained significant for computer use and total screen time, but TV viewing was only marginally associated with muscle strength after these additional adjustments (-0.05 SD (95% confidence interval, -0.11 to 0.005) difference in strength per 1 h·d-1 difference in TV viewing time, P = 0.08). Each 1 h·d-1 difference in total screen time use was associated with -0.09 SD (95% confidence interval, -0.14 to -0.04) lower isometric trunk muscle strength in the fully adjusted model (P = 0.001). There were no indications that the association of screen time use with isometric trunk muscle strength was attenuated among highly fit individuals (P = 0.91 for CRF by screen time interaction). Screen time use was inversely associated with isometric trunk muscle strength independent of CRF and other confounding factors.

  10. Reliability of Ultrasonographic Measurement of Cervical Multifidus Muscle Dimensions during Isometric Contraction of Neck Muscles

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri Arimi

    2012-07-01

    Full Text Available Background and Aim: Cervical multifidus is considered as one of the most important neck stabilizers. Weakness and muscular atrophy of this muscle were seen in patients with chronic neck pain. Ultrasonographic imaging is a non-invasive and feasible technique that commonly used to record such changes and measure muscle dimensions. Therefore, the aim of this study was to evaluate the reliability of ultrasonographic measurement of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles. Materials and Method: Ten subjects (5 patients with chronic neck pain and 5 healthy subjects were recruited in this study. Cervical multifidus muscle’s dimensions were measured at the level of forth cervical vertebrae. Ultrasonographic measurement of cervical multifidus muscle at rest, 50% and 100% of maximal voluntary contraction (MVC were performed by one examiner within 1 week interval. The dimensions of cervical multifidus muscle including cross-sectional area (CSA, anterior posterior dimension (APD, and lateral dimension (LD were measured. Intraclass correlation coefficients (ICC, standard error of measurement (SEM and minimal detectable change (MDC were computed for data analysis.Results: The between days reliability of maximum strength of neck muscles and multifidus muscle dimensions at rest, 50% and 100% of MVC of neck muscles were good to excellent (ICC=0.75-0.99.Conclusion: The results of this study showed that ultrasonographic measuring of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles at the level of C4 in females with chronic neck pain and healthy subjects is a reliable and repeatable method.

  11. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  12. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    International Nuclear Information System (INIS)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77 o /12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127 o range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from

  13. Activation of selected shoulder muscles during unilateral wall and bench press tasks under submaximal isometric effort.

    Science.gov (United States)

    Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S

    2011-07-01

    Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.

  14. Differential contributions of ankle plantarflexors during submaximal isometric muscle action

    DEFF Research Database (Denmark)

    Masood, Tahir; Bojsen-Møller, Jens; Kalliokoski, Kari K

    2014-01-01

    The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve...

  15. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    Science.gov (United States)

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  16. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

    Science.gov (United States)

    Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M

    2012-06-01

    The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P motor units in the tibialis anterior.

  17. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis

    DEFF Research Database (Denmark)

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer

    2016-01-01

    INTRODUCTION: In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. METHODS: Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual...

  18. Deformation and three-dimensional displacement of fibers in isometrically contracting rat plantaris muscles

    NARCIS (Netherlands)

    Savelberg, Hans H.C.M.; Willems, Paul J.B.; Willems, P.; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    In this study, the deformation of different fibers of the rat m. plantaris during isometric contractions at different muscle lengths was considered. Because the m. plantaris has an obviously inhomogeneous architecture, its fibers on the medial side of the muscle belly are judged to be shorter than

  19. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  20. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  1. Neural control of muscle force: indications from a simulation model

    Science.gov (United States)

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  2. Dystonic neck muscles show a shift in relative autospectral power during isometric contractions

    NARCIS (Netherlands)

    De Bruijn, E.; Nijmeijer, S. W. R.; Forbes, P. A.; Koelman, J. H. T. M.; Van Der Helm, F. C. T.; Tijssen, M. A. J.; Happee, R.

    2017-01-01

    Objective: To identify effects of a deviant motor drive in the autospectral power of dystonic muscles during voluntary contraction in cervical dystonia patients. Methods: Submaximal (20%) isometric head-neck tasks were performed with the head fixed, measuring surface EMG of the sternocleidomastoid,

  3. The effects of a 28-Hz vibration on arm muscle activity during isometric exercise

    NARCIS (Netherlands)

    Mischi, M.; Cardinale, M. (Marco)

    2009-01-01

    The aim of this study was to evaluate activation and coactivation of biceps and triceps muscles during isometric exercise performed with and without superimposing a vibration stimulation. Methods: Twelve healthy volunteers (age = 22.7 +/- 2.6 yr) participated in this study. The subjects performed

  4. Isometric muscle strength and mobility capacity in children with cerebral palsy

    NARCIS (Netherlands)

    Dallmeijer, Annet J.; Rameckers, Eugene A.; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A.; Becher, Jules G.

    2017-01-01

    Purpose: To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Method: Participants were 62 children with CP (6-13 years), able to walk with (n=10) or without (n=52) walking aids,

  5. Effects of trunk stability on isometric knee extension muscle strength measurement while sitting.

    Science.gov (United States)

    Hirano, Masahiro; Gomi, Masahiro; Katoh, Munenori

    2016-09-01

    [Purpose] This study aimed to investigate the effect of trunk stability on isometric knee extension muscle strength measurement while sitting by performing simultaneous measurements with a handheld dynamometer (HHD) and an isokinetic dynamometer (IKD) in the same seated condition. [Subjects and Methods] The subjects were 30 healthy volunteers. Isometric knee extension muscle strength was simultaneously measured with a HHD and an IKD by using an IKD-specific chair. The measurement was performed twice. Measurement instrument variables and the number of measurements were examined by using the analysis of variance and correlation tests. [Results] The measurement instrument variables and the number of measurements were not significantly different. The correlation coefficients between the HHD and IKD measurements were ≥0.96. [Conclusion] Isometric knee extension muscle strength measurement using the HHD in the sitting position resulted in a lower value than that using the IKD, presumably because of the effect of trunk stability on the measurement. In the same seated posture with trunk stability, no significant difference in measurement values was observed between the HHD and IKD. The present findings suggest that trunk stability while seated during isometric knee extension muscle strength measurement influenced the HHD measurement.

  6. Reliability of ultrasound thickness measurement of the abdominal muscles during clinical isometric endurance tests.

    Science.gov (United States)

    ShahAli, Shabnam; Arab, Amir Massoud; Talebian, Saeed; Ebrahimi, Esmaeil; Bahmani, Andia; Karimi, Noureddin; Nabavi, Hoda

    2015-07-01

    The study was designed to evaluate the intra-examiner reliability of ultrasound (US) thickness measurement of abdominal muscles activity when supine lying and during two isometric endurance tests in subjects with and without Low back pain (LBP). A total of 19 women (9 with LBP, 10 without LBP) participated in the study. Within-day reliability of the US thickness measurements at supine lying and the two isometric endurance tests were assessed in all subjects. The intra-class correlation coefficient (ICC) was used to assess the relative reliability of thickness measurement. The standard error of measurement (SEM), minimal detectable change (MDC) and the coefficient of variation (CV) were used to evaluate the absolute reliability. Results indicated high ICC scores (0.73-0.99) and also small SEM and MDC scores for within-day reliability assessment. The Bland-Altman plots of agreement in US measurement of the abdominal muscles during the two isometric endurance tests demonstrated that 95% of the observations fall between the limits of agreement for test and retest measurements. Together the results indicate high intra-tester reliability for the US measurement of the thickness of abdominal muscles in all the positions tested. According to the study's findings, US imaging can be used as a reliable method for assessment of abdominal muscles activity in supine lying and the two isometric endurance tests employed, in participants with and without LBP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chronic Effects of Different Rest Intervals Between Sets on Dynamic and Isometric Muscle Strength and Muscle Activity in Trained Older Women.

    Science.gov (United States)

    Jambassi Filho, José Claudio; Gurjão, André Luiz Demantova; Ceccato, Marilia; Prado, Alexandre Konig Garcia; Gallo, Luiza Herminia; Gobbi, Sebastião

    2017-09-01

    This study investigated the chronic effects of different rest intervals (RIs) between sets on dynamic and isometric muscle strength and muscle activity. We used a repeated-measures design (pretraining and posttraining) with independent groups (different RI). Twenty-one resistance-trained older women (66.4 ± 4.4 years) were randomly assigned to either a 1-minute RI group (G-1 min; n = 10) or 3-minute RI group (G-3 min; n = 11). Both groups completed 3 supervised sessions per week during 8 weeks. In each session, participants performed 3 sets of 15 repetitions of leg press exercise, with a load that elicited muscle failure in the third set. Fifteen maximum repetitions, maximal voluntary contraction, peak rate of force development, and integrated electromyography activity of the vastus lateralis and vastus medialis muscles were assessed pretraining and posttraining. There was a significant increase in load of 15 maximum repetitions posttraining for G-3 min only (3.6%; P 0.05). The findings suggest that different RIs between sets did not influence dynamic and isometric muscle strength and muscle activity in resistance-trained older women.

  8. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors.

    Science.gov (United States)

    Jubeau, Marc; Muthalib, Makii; Millet, Guillaume Y; Maffiuletti, Nicola A; Nosaka, Kazunori

    2012-02-01

    This study compared between maximal voluntary (VOL) and electrically stimulated (ES) isometric contractions of the elbow flexors for changes in indirect markers of muscle damage to investigate whether ES would induce greater muscle damage than VOL. Twelve non-resistance-trained men (23-39 years) performed VOL with one arm and ES with the contralateral arm separated by 2 weeks in a randomised, counterbalanced order. Both VOL and ES (frequency 75 Hz, pulse duration 250 μs, maximally tolerated intensity) exercises consisted of 50 maximal isometric contractions (4-s on, 15-s off) of the elbow flexors at a long muscle length (160°). Changes in maximal voluntary isometric contraction torque (MVC), range of motion, muscle soreness, pressure pain threshold and serum creatine kinase (CK) activity were measured before, immediately after and 1, 24, 48, 72 and 96 h following exercise. The average peak torque over the 50 isometric contractions was greater (P < 0.05) for VOL (32.9 ± 9.8 N m) than ES (16.9 ± 6.3 N m). MVC decreased greater and recovered slower (P < 0.05) after ES (15% lower than baseline at 96 h) than VOL (full recovery). Serum CK activity increased (P < 0.05) only after ES, and the muscles became more sore and tender after ES than VOL (P < 0.05). These results showed that ES induced greater muscle damage than VOL despite the lower torque output during ES. It seems likely that higher mechanical stress imposed on the activated muscle fibres, due to the specificity of motor unit recruitment in ES, resulted in greater muscle damage.

  9. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    Science.gov (United States)

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  10. Pelvic floor muscle training decreases hip adductors isometric peak torque in incontinent women: an exploratory study

    Directory of Open Access Journals (Sweden)

    Grasiéla Nascimento Correia

    Full Text Available INTRODUCTION: The pelvic floor muscle (PFM training is the most common treatment for urinary incontinence (UI, however many women performed the contraction of PFM with associated contraction of abdominal, gluteus and hip adductors muscles. OBJECTIVE: To assess the effects of pelvic floor muscle (PFM training on isometric and isokinetic hip adductors peak torque (PT among women suffering from urinary incontinence (UI. MATERIALS AND METHODS: It is a longitudinal and prospective exploratory study. This study included 15 physically active women aged 45 years old and over, who presented complaints of UI. The PFM function (digital evaluation and perineometry, isometric and isokinetic hip adductors PT and one hour pad test were performed before and after treatment. The PFM training was performed in group, one hour once a week for 12 sessions. RESULTS: Significant improvement of PFM function and pressure level (p = 0.003, and significant decrease of hip adductors isometric PT and one-hour pad test, were found post-treatment. Moderate negative correlations between PFM contraction pressure and hip adductors isokinetic PT for dominant side (DS (r = -0.62; p = 0.03 and non-dominant side (NDS (r = -0.64; p = 0.02; and between PFM fast fibers contraction and hip adductors isometric PT for DS (r = -0.60; p = 0.03 and NDS (r = -0.59; p = 0.04 were also found. CONCLUSIONS: The PFM training decreased hip adductors PT and improved PFM functions and UI.

  11. Explosive force production during isometric squats correlates with athletic performance in rugby union players.

    Science.gov (United States)

    Tillin, Neale Anthony; Pain, Matthew Thomas Gerard; Folland, Jonathan

    2013-01-01

    This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = -0.63, P = 0.005; and 20 m, r = -0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 squats (33-67%; 0.001 squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.

  12. Influences of Fascicle Length During Isometric Training on Improvement of Muscle Strength.

    Science.gov (United States)

    Tanaka, Hiroki; Ikezoe, Tome; Umehara, Jun; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Fujita, Kosuke; Araki, Kojiro; Ichihashi, Noriaki

    2016-11-01

    Tanaka, H, Ikezoe, T, Umehara, J, Nakamura, M, Umegaki, H, Kobayashi, T, Nishishita, S, Fujita, K, Araki, K, and Ichihashi, N. Influences of fascicle length during isometric training on improvement of muscle strength. J Strength Cond Res 30(11): 3249-3255, 2016-This study investigated whether low-intensity isometric training would elicit a greater improvement in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an intervention group and a control group. Before (Pre) and after (Post) training, isometric plantarflexion MVCs were measured every 10° through the range of ankle joint position from 20° dorsiflexion to 30° plantarflexion (i.e., 6 ankle angles). Medial gastrocnemius fascicle length was also measured at each position, using B-mode ultrasound under 3 conditions of muscle activation: at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 20° plantarflexion was performed 3 days a week for 4 weeks at 30%MVC using 3 sets of twenty 3-second isometric contractions. Maximum voluntary contraction in the intervention group increased at 0 and 10° plantarflexion (0°; Pre: 81.2 ± 26.5 N·m, Post: 105.0 ± 21.6 N·m, 10°; Pre: 63.0 ± 23.6 N·m, Post: 81.3 ± 20.3 N·m), which was not the angle used in training (20°). However, the fascicle length adopted in training at 20° plantarflexion and 30%MVC was similar to the value at 0 or 10° plantarflexion at MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle.

  13. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    Science.gov (United States)

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  14. Trunk muscle fatigue during a lateral isometric hold test: what are we evaluating?

    Directory of Open Access Journals (Sweden)

    Pagé Isabelle

    2012-04-01

    Full Text Available Abstract Background Side bridge endurance protocols have been suggested to evaluate lateral trunk flexor and/or spine stabilizer muscles. To date, no study has investigated muscle recruitment and fatigability during these protocols. Therefore the purpose of our study was to quantify fatigue parameters in various trunk muscles during a modified side bridge endurance task (i.e. a lateral isometric hold test on a 45° roman chair apparatus and determine which primary trunk muscles get fatigued during this task. It was hypothesized that the ipsilateral external oblique and lumbar erector spinae muscles will exhibit the highest fatigue indices. Methods Twenty-two healthy subjects participated in this study. The experimental session included left and right lateral isometric hold tasks preceded and followed by 3 maximal voluntary contractions in the same position. Surface electromyography (EMG recordings were obtained bilaterally from the external oblique, rectus abdominis, and L2 and L5 erector spinae. Statistical analysis were conducted to compare the right and left maximal voluntary contractions (MVC, surface EMG activities, right vs. left holding times and decay rate of the median frequency as the percent change from the initial value (NMFslope. Results No significant left and right lateral isometric hold tests differences were observed neither for holding times (97.2 ± 21.5 sec and 96.7 ± 24.9 sec respectively nor for pre and post fatigue root mean square during MVCs. However, participants showed significant decreases of MVCs between pre and post fatigue measurements for both the left and right lateral isometric hold tests. Statistical analysis showed that a significantly NMFslope of the ipsilateral external oblique during both conditions, and a NMFslope of the contralateral L5 erector spinae during the left lateral isometric hold test were steeper than those of the other side’s respective muscles. Although some participants

  15. Interactive effect of aging and local muscle heating on renal vasoconstriction during isometric handgrip.

    Science.gov (United States)

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2009-08-01

    The purpose of the study was to determine the interactive effect of aging and forearm muscle heating on renal vascular conductance and muscle sympathetic nerve activity (MSNA) during ischemic isometric handgrip. A tube-lined, water-perfused sleeve was used to heat the forearm in 12 young (27 +/- 1 yr) and 9 older (63 +/- 1 yr) subjects. Ischemic isometric handgrip was performed before and after heating. Muscle temperature (intramuscular thermistor) was 34.3 +/- 0.2 and 38.7 +/- 0.1 degrees C during normothermia and heating, respectively. At rest, heating had no effect on renal blood velocity (Doppler ultrasound) or renal vascular conductance in either group (young, n = 12; older, n = 8). Heating compared with normothermia caused a significantly greater increase in renal vasoconstriction during exercise and postexercise muscle ischemia (PEMI) in both groups. However, the increase in renal vasoconstriction during heating was greater in the older compared with the young subjects (18 +/- 3 vs. 8 +/- 3%). During handgrip, heating elicited greater increases in MSNA responses in the older group (young, n = 12; older, n = 6), whereas no statistical difference was observed between groups during PEMI. In summary, aging augments renal vascular responses to ischemic isometric handgrip during heating of the exercising muscle. The greater renal vasoconstriction was associated with augmented MSNA in the older subjects.

  16. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    Science.gov (United States)

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  17. Relationship Between Force Production During Isometric Squats and Knee Flexion Angles During Landing.

    Science.gov (United States)

    Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2016-06-01

    Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.

  18. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    Directory of Open Access Journals (Sweden)

    Brent J. Raiteri

    2016-07-01

    isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity. Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.

  19. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Science.gov (United States)

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that

  20. Electromyographic, cerebral and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities

    Directory of Open Access Journals (Sweden)

    Yagesh eBhambhani

    2014-06-01

    Full Text Available This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20%, 40% and 60% of maximal voluntary contraction (MVC. Eleven volunteers completed two minutes of intermittent isometric contractions (12/min at an elbow angle of 90° interspersed with three minutes rest between intensities in systematic order. Surface electromyography (EMG was recorded from the right biceps brachii and near infrared spectroscopy (NIRS was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2, deoxyhemoglobin (HHb and total hemoglobin (Hbtot. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20% to 60% MVC (P0.05. MCAv increased from rest to exercise but was not different among intensities (P>0.05. Force output correlated with the root mean square EMG and changes in muscle HbO2 (P0.05 at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a levelling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central n

  1. Predicting muscle forces of individuals with hemiparesis following stroke

    Directory of Open Access Journals (Sweden)

    Maladen Ryan

    2008-02-01

    Full Text Available Abstract Background Functional electrical stimulation (FES has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis. Methods Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces. Results Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80, peak forces (ICCs>0.84, and force-time integrals (ICCs>0.82 for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces. Conclusion Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.

  2. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    Science.gov (United States)

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (Pneuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  3. Optimization measurement of muscle oxygen saturation under isometric studies using FNIRS

    Science.gov (United States)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to investigate hemodynamic response in human muscle. These non-invasive technologies have been widely used to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to quantify the oxygenation level of haemoglobin and myoglobin in human muscle. The goal of this paper is to optimize the measurement of muscle oxygen saturation during isometric exercise using functional near infrared spectroscopy (fNIRS). The experiment was carried out on 15 sedentary healthy male volunteers. All volunteers are required to perform an isometric exercise at three assessment of muscular fatigue's level on flexor digitalis (FDS) muscle in the human forearm using fNIRS. The slopes of the signals have been highlighted to evaluate the muscle oxygen saturation of regional muscle fatigue. As a result, oxygen saturation slope from 10% exercise showed steeper than the first assessment at 30%-50% of fatigues level. The hemodynamic signal response showed significant value (p=0.04) at all three assessment of muscular fatigue's level which produce a p-value (p<0.05) measured by fNIRS. Thus, this highlighted parameter could be used to estimate fatigue's level of human and could open other possibilities to study muscle performance diagnosis.

  4. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans

    DEFF Research Database (Denmark)

    Mackey, Abigail; Bojsen-Moller, Jens; Qvortrup, Klaus

    2008-01-01

    and desmin-negative staining in a small percentage of myofibers in five and four individuals, respectively. z-Line disruption was evident at varying magnitudes in all subjects and displayed a trend toward a positive correlation (r = 0.73, P = 0.0663) with the force produced by stimulation. Increased muscle...

  5. An Estimating Method of Contractile State Changes Come From Continuous Isometric Contraction of Skeletal Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Lee, S.J. [Wonkwang University, Iksan (Korea)

    2003-01-01

    In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes (EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue). (author). 24 refs., 7 figs.

  6. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    Science.gov (United States)

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  7. Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Krix, Martin; Weber, Marc-Andre; Kauczor, Hans-Ulrich; Delorme, Stefan; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: To quantitatively assess local muscle micro-circulation with real-time contrast-enhanced ultrasound (CEUS) during different exercises and compare the results with performed muscle work and global blood flow. Materials and methods: Sixteen low mechanical index CEUS examinations of the right lower leg flexors of healthy volunteers were performed using a continuous infusion of SonoVue (4.8 mL/300 s). Several muscle perfusion parameters were extracted from derived CEUS signal intensity time curves during different isometric exercises (10-50% of maximum individual strength for 20-30 s) and then correlated with the performed muscle work or force, and the whole lower leg blood flow which we measured simultaneously by venous occlusion plethysmography (VOP). Results: The shapes of the CEUS curve during and after exercise differed individually depending on the performed muscle work. The maximum blood volume MAX was observed only after exercise cessation and was significantly correlated with the performed muscle force (r = 0.77, p < 0.0001). The blood volume over exercise time was inversely correlated with the spent muscle work (r = -0.60, p = 0.006). CEUS and VOP measurements correlated only at rest and after the exercise. During exercise, mean CEUS local blood volume decreased (from 3.48 to 2.19 (∼mL)), while mean VOP global blood flow increased (mean, from 3.96 to 7.71 mL/100 mg/min). Conclusion: Real-time low-MI CEUS provides complementary information about the local muscle micro-circulation compared to established blood flow measures. CEUS may be used for a better understanding of muscle perfusion physiology and in the diagnosis of micro-circulation alterations such as in peripheral arterial occlusive disease or diabetic angiopathy.

  8. ANODAL TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) INCREASES ISOMETRIC STRENGTH OF SHOULDER ROTATORS MUSCLES IN HANDBALL PLAYERS.

    Science.gov (United States)

    Hazime, Fuad Ahmad; da Cunha, Ronaldo Alves; Soliaman, Renato Rozenblit; Romancini, Ana Clara Bezerra; Pochini, Alberto de Castro; Ejnisman, Benno; Baptista, Abrahão Fontes

    2017-06-01

    Weakness of the rotator cuff muscles can lead to imbalances in the strength of shoulder external and internal rotators, change the biomechanics of the glenohumeral joint and predispose an athlete to injury. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has demonstrated promising results in a variety of health conditions. However few studies addressed its potential approach in the realm of athletics. The purpose of this study was to investigate if transcranial direct current stimulation (tDCS) technique increases the isometric muscle strength of shoulder external and internal rotators in handball athletes. Randomized, double-blind, placebo-controlled, crossover study. Eight female handball players aged between 17 and 21 years (Mean=19.65; SD=2.55) with 7.1 ± 4.8 years of experience in training, participating in regional and national competitions were recruited. Maximal voluntary isometric contraction (MVIC) of shoulder external and internal rotator muscles was evaluated during and after 30 and 60 minutes post one session of anodal and sham current (2mA; 0.057mA/cm 2 ) with a one-week interval between stimulations. Compared to baseline, MVIC of shoulder external and internal rotators significantly increased after real but not sham tDCS. Between-group differences were observed for external and internal rotator muscles. Maximal voluntary isometric contraction of external rotation increased significantly during tDCS, and 30 and 60 minutes post-tDCS for real tDCS compared to that for sham tDCS. For internal rotation MVIC increased significantly during and 60 minutes post-tDCS. The results indicate that transcranial direct current stimulation temporarily increases maximal isometric contractions of the internal and external rotators of the shoulder in handball players. 2.

  9. Comparison of maximal voluntary isometric contraction and hand-held dynamometry in measuring muscle strength of patients with progressive lower motor neuron syndrome

    NARCIS (Netherlands)

    Visser, J.; Mans, E.; de Visser, M.; van den Berg-Vos, R. M.; Franssen, H.; de Jong, J. M. B. V.; van den Berg, L. H.; Wokke, J. H. J.; de Haan, R. J.

    2003-01-01

    Context. Maximal voluntary isometric contraction, a method quantitatively assessing muscle strength, has proven to be reliable, accurate and sensitive in amyotrophic lateral sclerosis. Hand-held dynamometry is less expensive and more quickly applicable than maximal voluntary isometric contraction.

  10. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition

    OpenAIRE

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-01-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furth...

  11. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    Science.gov (United States)

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land.

    Science.gov (United States)

    Pinto, Stephanie Santana; Liedtke, Giane Veiga; Alberton, Cristine Lima; da Silva, Eduardo Marczwski; Cadore, Eduardo Lusa; Kruel, Luiz Fernando Martins

    2010-11-01

    This study was designed to compare surface electromyographic (sEMG) signal and force production during maximal voluntary isometric contractions (MVCs) in water and on dry land. The reproducibility of sEMG and isometric force measurements between water and dry land environments was also assessed. Nine women performed MVC for elbow flexion and extension, hip flexion, and extension against identical fixed resistance in both environments. The sEMG signal from biceps brachii, triceps brachii, rectus femoris, and biceps femoris was recorded with waterproof adhesives placed over each electrode. The sEMG and force production showed no significant difference between water and dry land, except for HEX (p = 0.035). In addition, intraclass correlation coefficient values were significant and ranged from moderate to high (0.66-0.96) for sEMG and force production between environments. These results showed that the environment did not influence the sEMG and force in MVC.

  13. Effects of age and content of augmented feedback on learning an isometric force-production task

    NARCIS (Netherlands)

    van Dijk, Henk; Mulder, Theo; Hermens, Hermie J.

    2007-01-01

    This study addressed the interaction between age and the informational content of feedback on learning an isometric force-production task. Healthy men and women (30 young adults: 20 to 35 years; 30 older adults: 55 to 70 years) were randomly assigned to a certain type of feedback: knowledge of

  14. Assessing Muscle-Strength Asymmetry via a Unilateral-Stance Isometric Midthigh Pull.

    Science.gov (United States)

    Dos'Santos, Thomas; Thomas, Christopher; Jones, Paul A; Comfort, Paul

    2017-04-01

    To investigate the within-session reliability of bilateral- and unilateral-stance isometric midthigh-pull (IMTP) force-time characteristics including peak force (PF), relative PF, and impulse at time bands (0-100, 0-200, 0-250, and 0-300 milliseconds) and to compare isometric force-time characteristics between right and left and dominant (D) and nondominant (ND) limbs. Professional male rugby league and multisport male college athletes (N = 54; age, 23.4 ± 4.2 y; height, 1.80 ± 0.05 m; mass, 88.9 ± 12.9 kg) performed 3 bilateral IMTP trials and 6 unilateral-stance IMTP trials (3 per leg) on a force plate sampling at 600 Hz. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) demonstrated high within-session reliability for bilateral and unilateral IMTP PF (ICC = .94, CV = 4.7-5.5%). Lower reliability measures and greater variability were observed for bilateral and unilateral IMTP impulse at time bands (ICC = .81-.88, CV = 7.7-11.8%). Paired-sample t tests and Cohen d effect sizes revealed no significant differences for all isometric force-time characteristics between right and left limbs in male college athletes (P >.05, d ≤ 0.32) and professional rugby league players (P > .05, d ≤ 0.11); however, significant differences were found between D and ND limbs in male college athletes (P isometric force-time characteristics between D and ND limbs in male athletes.

  15. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    Science.gov (United States)

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Is a sphygmomanometer a valid and reliable tool to measure the isometric strength of hip muscles? A systematic review.

    Science.gov (United States)

    Toohey, Liam Anthony; De Noronha, Marcos; Taylor, Carolyn; Thomas, James

    2015-02-01

    Muscle strength measurement is a key component of physiotherapists' assessment and is frequently used as an outcome measure. A sphygmomanometer is an instrument commonly used to measure blood pressure that can be potentially used as a tool to assess isometric muscle strength. To systematically review the evidence on the reliability and validity of a sphygmomanometer for measuring isometric strength of hip muscles. A literature search was conducted across four databases. Studies were eligible if they presented data on reliability and/or validity, used a sphygmomanometer to measure isometric muscle strength of the hip region, and were peer reviewed. The individual studies were evaluated for quality using a standardized critical appraisal tool. A total of 644 articles were screened for eligibility, with five articles chosen for inclusion. The use of a sphygmomanometer to objectively assess isometric muscle strength of the hip muscles appears to be reliable with intraclass correlation coefficient values ranging from 0.66 to 0.94 in elderly and young populations. No studies were identified that have assessed the validity of a sphygmomanometer. The sphygmomanometer appears to be reliable for assessment of isometric muscle strength around the hip joint, but further research is warranted to establish its validity.

  17. Strength training does not affect the accuracy of force gradation in an isometric force task in young men.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Smits, R.; Oomen, J.; Duysens, J.E.J.

    2008-01-01

    The aim of this study is to investigate potential differences in fine motor control between strength trained (ST) and non-strength trained (NT) individuals. By use of an isometric force production task, two groups, 20 ST (mean age 25.6, SD 4.9) and 19 NT (mean age 24.1, SD 2.9) male individuals,

  18. Force steadiness, muscle activity, and maximal muscle strength in subjects with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rasmussen, Lars; Aagaard, Per

    2006-01-01

    physically active in spite of shoulder pain and nine healthy matched controls were examined to determine isometric and isokinetic submaximal shoulder-abduction force steadiness at target forces corresponding to 20%, 27.5%, and 35% of the maximal shoulder abductor torque, and maximal shoulder muscle strength......We investigated the effects of the subacromial impingement syndrome (SIS) on shoulder sensory-motor control and maximal shoulder muscle strength. It was hypothesized that both would be impaired due to chronic shoulder pain associated with the syndrome. Nine subjects with unilateral SIS who remained...

  19. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    Science.gov (United States)

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  20. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.

    Science.gov (United States)

    Krueger, Eddy; Popović-Maneski, Lana; Nohama, Percy

    2018-02-01

    A motor neural prosthesis based on surface functional electrical stimulation (sFES) can restore functional movement (e.g., standing, walking) in patients with a spinal cord injury (SCI). sFES generates muscle contractions in antigravity muscles and allows balance-assisted standing. This induced standing has several benefits, such as improved cardiovascular function, decreased incidence of urinary infections, reduced joint contractures, and muscle atrophy. The duration of sFES assisted standing is limited due to the quick onset of muscle fatigue. Currently, there is no method available to reliably estimate real-time muscle fatigue during sFES. Simply monitoring the M-wave changes is not suitable due to the high signal disturbances that arise during multi-channel electrical stimulation. Mechanomyography (MMG) is immune to electrical stimulation artifacts and can be used to detect subtle vibrations on the surface of the skin related to activation of the underlying muscle's motor units (MU). The aim of this study was to develop a method for detecting muscle fatigue brought on by sFES. The method was tested in three different heads of the quadriceps muscle in SCI patients during electrically elicited quasi-isometric contraction. Six spinal cord-injured male volunteers, with no voluntary control of the quadriceps muscle participated in the study. Electrical bursts of voltage-controlled monophasic square pulses at frequencies of 1 kHz (50% duty cycle) at 50 Hz (15% duty cycle) were used to generate thigh muscle contractions that controlled the knee joint in the sagittal plane. The pulse amplitudes were set to position the knee joint at a 5° angle from the horizontal plane and when the knee angle dropped to 20° (e.g., the quadriceps were unable to hold the lower leg in the desired position), the test was terminated. Two data segments lasting 10 s each, at the beginning and end of each test, were analyzed. The muscle contraction was assessed by MMG sensors positioned on

  1. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Directory of Open Access Journals (Sweden)

    Sarmento AO

    2017-06-01

    Full Text Available Adriana de Oliveira Sarmento,1–3 Amilton da Cruz Santos,1,4 Ivani Credidio Trombetta,2,5 Marciano Moacir Dantas,1 Ana Cristina Oliveira Marques,1,4 Leone Severino do Nascimento,1,4 Bruno Teixeira Barbosa,1,2 Marcelo Rodrigues Dos Santos,2 Maria do Amparo Andrade,3 Anna Myrna Jaguaribe-Lima,3,6 Maria do Socorro Brasileiro-Santos1,3,4 1Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil; 2Unit of Cardiovascular Rehabilitation and Exercise Physiology – Heart Institute (InCor/HC-FMUSP, University of São Paulo, São Paulo, Brazil; 3Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil; 4Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil; 5Graduate Program in Medicine, Universidade Nove de Julho (UNINOVE, São Paulo, Brazil; 6Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil Abstract: The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis and muscle blood flow (venous occlusion plethysmography were measured for 10 minutes at rest (baseline and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver. Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac

  2. Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: a randomized controlled study.

    Science.gov (United States)

    Anwer, Shahnawaz; Alghadir, Ahmad

    2014-05-01

    [Purpose] The aim of present study was to investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in knee osteoarthritis. [Subjects and Methods] Outpatients (N=42, 21 per group; age range 40-65 years; 13 men and 29 women) with osteoarthritis of the knee participated in the study. The experimental group performed isometric exercises including isometric quadriceps, straight leg raising, and isometric hip adduction exercise 5 days a week for 5 weeks, whereas the control group did not performed any exercise program. The outcome measures or dependent variables selected for this study were pain intensity, isometric quadriceps strength, and knee function. These variables were measured using the Numerical Rating Scale (NRS), strength gauge device, and reduced WOMAC index, respectively. All the measurements were taken at baseline (week 0) and at the end of the trial at week 5. [Results] In between-group comparisons, the maximum isometric quadriceps strength, reduction in pain intensity, and improvement in function in the isometric exercise group at the end of the 5th week were significantly greater than those of the control group (pisometric quadriceps exercise program showed beneficial effects on quadriceps muscle strength, pain, and functional disability in patients with osteoarthritis of the knee.

  3. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  4. Test-retest reliability of a handheld dynamometer for measurement of isometric cervical muscle strength.

    Science.gov (United States)

    Vannebo, Katrine Tranaas; Iversen, Vegard Moe; Fimland, Marius Steiro; Mork, Paul Jarle

    2018-03-02

    There is a lack of test-retest reliability studies of measurements of cervical muscle strength, taking into account gender and possible learning effects. To investigate test-retest reliability of measurement of maximal isometric cervical muscle strength by handheld dynamometry. Thirty women (age 20-58 years) and 28 men (age 20-60 years) participated in the study. Maximal isometric strength (neck flexion, neck extension, and right/left lateral flexion) was measured on three separate days at least five days apart by one evaluator. Intra-rater consistency tended to improve from day 1-2 measurements to day 2-3 measurements in both women and men. In women, the intra-class correlation coefficients (ICC) for day 2 to day 3 measurements were 0.91 (95% confidence interval [CI], 0.82-0.95) for neck flexion, 0.88 (95% CI, 0.76-0.94) for neck extension, 0.84 (95% CI, 0.68-0.92) for right lateral flexion, and 0.89 (95% CI, 0.78-0.95) for left lateral flexion. The corresponding ICCs among men were 0.86 (95% CI, 0.72-0.93) for neck flexion, 0.93 (95% CI, 0.85-0.97) for neck extension, 0.82 (95% CI, 0.65-0.91) for right lateral flexion and 0.73 (95% CI, 0.50-0.87) for left lateral flexion. This study describes a reliable and easy-to-administer test for assessing maximal isometric cervical muscle strength.

  5. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Science.gov (United States)

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms...... of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  7. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion.

    Directory of Open Access Journals (Sweden)

    Akira Saito

    Full Text Available Although activity of the rectus femoris (RF differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05. The onset of VI activation was 230-240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05. These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.

  8. Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks

    Directory of Open Access Journals (Sweden)

    Wenxiang Cui

    2017-05-01

    Full Text Available This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS, mean power frequency (MPF, the first coefficient of autoregressive model (ARC1, sample entropy (SE and Higuchi’s fractal dimension (HFD, in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS. Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.

  9. Effects of adding whole body vibration to squat training on isometric force/time characteristics.

    Science.gov (United States)

    Lamont, Hugh S; Cramer, Joel T; Bemben, Debra A; Shehab, Randa L; Anderson, Mark A; Bemben, Michael G

    2010-01-01

    Resistance training interventions aimed at increasing lower-body power and rates of force development have produced varying results. Recent studies have suggested that whole-body low-frequency vibration (WBLFV) may elicit an acute postactivation potentiation response, leading to acute improvements in power and force development. Potentially, the use of WBLFV between sets of resistance training rather than during training itself may lead to increased recruitment and synchronization of high-threshold motor units, minimize fatigue potential, and facilitate the chronic adaptation to resistance exercise. The purpose of this study was to determine the effects of applying TriPlaner, WBLFV, prior to and then intermittently between sets of Smith machine squats on short-term adaptations in explosive isometric force expression. Thirty recreationally resistance trained men aged 18-30 were randomly assigned to 1 of 3 groups: resistance training only (SQT, n = 11), resistance plus whole-body vibration (SQTV, n = 13), or active control (CON, n = 6). An isometric squat test was performed prior to and following a 6-week periodized Smith machine squat program. Whole-body low-frequency vibration was applied 180 seconds prior to the first work set (50 Hz, 2-4 mm, 30 seconds) and intermittently (50 Hz, 4-6 mm, 3 x 10 seconds, 60 seconds between exposures) within a 240-second interset rest period. Subjects were instructed to assume a quarter squat posture while positioning their feet directly under their center of mass, which was modified using a handheld goniometer to a knee angle of 135 +/- 5 degrees . Instructions were given to subjects to apply force as fast and as hard as possible for 3.5 seconds. Isometric force (N) and rates of force development (N.s(-1)) were recorded from the onset of contraction (F(0)) to time points corresponding to 30, 50, 80, 100, 150, and 250 milliseconds, as well as the peak isometric rate of force development (PISORFD), and rate of force development to

  10. Changes in forearm muscle temperature alter renal vascular responses to isometric handgrip.

    Science.gov (United States)

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2007-12-01

    The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.

  11. Effects of caffeinated chewing gum on muscle pain during submaximal isometric exercise in individuals with fibromyalgia.

    Science.gov (United States)

    Umeda, Masataka; Kempka, Laura; Weatherby, Amy; Greenlee, Brennan; Mansion, Kimberly

    2016-04-01

    Physical activity is important to manage symptom of fibromyalgia (FM); however, individuals with FM typically experience augmented muscle pain during exercise. This study examined the effects of caffeinated chewing gum on exercise-induced muscle pain in individuals with FM. This study was conducted with a double-blind, placebo-controlled, cross-over design. Twenty-three patients with FM completed a caffeine condition where they consumed a caffeinated chewing gum that contains 100mg of caffeine, and a placebo condition where they consumed a non-caffeinated chewing gum. They completed isometric handgrip exercise at 25% of their maximal strength for 3 min, and muscle pain rating (MPR) was recorded every 30s during exercise. Clinical pain severity was assessed in each condition using a pain questionnaire. The order of the two conditions was randomly determined. MPR increased during exercise, but caffeinated chewing gum did not attenuate the increase in MPR compared to placebo gum. Clinical pain severity was generally associated with the average MPR and the caffeine effects on MPR, calculated as difference in the average MPR between the two conditions. The results suggest that more symptomatic individuals with FM may experience greater exercise-induced muscle pain, but benefit more from caffeinated chewing gum to reduce exercise-induced muscle pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    Directory of Open Access Journals (Sweden)

    Thorsten eRudroff

    2014-05-01

    Full Text Available We used positron emission tomography/computed tomography (PET/CT and [18F]-FDG to test the hypothesis that glucose uptake (GU heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 yrs and six old (77 ± 6 yrs men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD for knee extensors and flexors was greater for the old (35.3 ± 3.3 % than the young (28.6 ± 2.4 % (P = 0.006. Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P= 0.004. In a multiple regression model, knee extensor muscle volume was a predictor (partial r = - 0.87; P = 0.001 of GU heterogeneity for old men (R2 = 0.78; P < 0.001, and MVC force predicted GU heterogeneity for young men (partial r = - 0.95, P < 0.001. The findings demonstrate that glucose uptake is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy.

  13. Isometric and isokinetic muscle strength in patients with fibrositis syndrome. New characteristics for a difficult definable category of patients

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Danneskiold-Samsøe, B

    1987-01-01

    A common complaint among patients with fibrositis syndrome is exhaustion and fatique. It was therefore felt desirable to evaluate the muscle strength of these patients compared with normal subjects. Maximum isometric and isokinetic strength of knee extension was measured in 15 patients and 15...... healthy matched subjects, using an isokinetic dynamometer (Cybex II). Maximum isometric strength at various knee extension angles (90 degrees, 60 degrees and 30 degrees degrees) was significantly (p less than 0.001) lower in the fibrositis group than in controls, a reduction of approximately 58......-66%. Maximum isokinetic strength at various knee extension velocities (30-240 degrees per second) was also significantly (p less than 0.01) lower in the fibrositis group than in controls, the reduction being approximately 41-51%. In conclusion, isometric and isokinetic muscle strength is found to be lower...

  14. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Lara McManus

    2017-11-01

    Full Text Available Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC. A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045. The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04. Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03. MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively, and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04. This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the

  15. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    Science.gov (United States)

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  16. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    Science.gov (United States)

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  17. LONG-LASTING SUPERNORMAL CONDUCTION-VELOCITY AFTER SUSTAINED MAXIMAL ISOMETRIC CONTRACTION IN HUMAN MUSCLE

    NARCIS (Netherlands)

    VANDERHOEVEN, JH; VANWEERDEN, TW; ZWARTS, MJ

    Local muscle fatigue (1 min maximal voluntary contraction) and recovery were studied by means of surface and invasive EMG on elbow flexors to record the changes in muscle fiber conduction velocity (MFCV), median power frequency (MPF), integrated EMG (IEMG), and force. The main finding was a

  18. Influence of Isometric Exercise Training on Quadriceps Muscle Architecture and Strength in Obese Subjects with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Waleed S Mahmoud

    2017-03-01

    Full Text Available Obese individuals have reduced quadriceps muscle strength relative to body mass that may increase the rate of progression of knee osteoarthritis (OA. The purpose of this study was to evaluate the effects of isometric exercise training on quadriceps muscle architecture and strength in obese subjects with knee osteoarthritis. Methods: Fortyfour obese male subjects aged 40–65 years diagnosed with knee osteoarthritis were randomly assigned into group A (n=32 and group B (n=12. Group A subjects performed a 12-week isometric exercise program. Group B subjects did not participate in any exercise program and maintained their ordinary activities for the same period. Both groups received the same conventional physical therapy program including hot packs and therapeutic ultrasonic. Muscle thickness, pennation angles and fascicle length of the vastus lateralis (VL muscle of the affected knee were measured at rest by B-mode ultrasonography. Maximal voluntary isometric knee extension torque (MVIC of the affected knee was measured using an isokinetic dynamometer. Knee pain and function were evaluated using visual analogue pain scale (VAS and Western Ontario and McMaster Universities Arthritis Index (WOMAC. All variables were evaluated before and the end of the intervention period for both groups. Results: at the end of the program, group A subjects showed significant improvements compared with group B subjects regarding MVIC and muscle architecture parameters (p<0.05. Also, there was significant improvement in post-test VAS and WOMAC scores in group A subjects compared to group B subjects (p<0.05. Conclusion: A 12-week quadriceps isometric training program improves knee pain and quadriceps muscle strength and architecture in obese subjects with knee OA. These results indicate that isometric training should be regarded as a proper exercise intervention for obese patients with knee OA.

  19. Effects of one-night sleep deprivation on selective attention and isometric force in adolescent karate athletes.

    Science.gov (United States)

    Ben Cheikh, Ridha; Latiri, Imed; Dogui, Mohamed; Ben Saad, Helmi

    2017-06-01

    Most of the available literature related to aspects of sleep deprivation is primarily focused on memory and learning, and studies regarding its effects on selective attention and/or physical performance are scarce. Moreover, the available literature includes general population or people involved in team sports (e.g. volleyball). However, only few studies were performed on athletes involved in combat sports (e.g. karate). The aim of the present study was to determine the effects of a total one-night sleep deprivation (1NSD) on activation and inhibition processes of selective attention and on maximal isometric force in karate athletes. Twelve young karate athletes (mean age 16.9±0.8 years) were enrolled. The protocol consists of two successive sessions: a normal night's sleep (NNS) and a total 1NSD. After each night, athletes performed selective attention and muscle strength tests during the same following three times (T) of the day: T1NNS or T11NSD: 8-9 a.m.; T2NNS or T21NSD: 12 a.m.-1 p.m.; T3NNS or T31NSD: 4-5 p.m. Activation (simple [SRT] and choice reaction times [CRT]) and inhibition (negative priming) processes were evaluated using Superlab v. 4.5 software (Cedrus Corporation, San Pedro, CA, USA). Maximal force and maximal force time (MFT) of brachial biceps isometric contraction were evaluated (Ergo System®, Globus, Codognè, Italy). A non-parametric test was used to evaluate the sessions (NNS vs. SND for the same time period) and time (T1NNS vs. 1NSD) effects. All athletes completed all tests after a NNS. Twelve, eleven and four athletes completed all tests at T11NSD, T21NSD and T31NSD, respectively. As for sessions effects, no statistically significant difference was found. As for time effects, a significant increase in SRT at T21NSD vs. T1NNS (345±47 vs. 317±33 ms, respectively), a significant increase in MFT at T21NSD vs. T1NNS (2172±260 vs.1885±292 ms, respectively), and no significant changes in CRT and negative priming reaction time or MFT data

  20. Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice

    NARCIS (Netherlands)

    Gorselink, M.; Drost, M.R.; Louw, de J.; Willems, P.J.B.; Rosielle, P.C.J.N.; Janssen, J.D.; Vusse, van der G.J.

    2000-01-01

    An isometric torque sensor for measuring in situ contractions of plantar or dorsal flexors of intact mouse hindlimb has been developed and evaluated. With this device, muscle torque can be accurately measured within the range of -14 mN·m to +14 mN·m. Special attention was paid to fixation of the

  1. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy

    NARCIS (Netherlands)

    Dallmeijer, A.J.; Baker, R.; Dodd, K.; Taylor, N.

    2011-01-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0. yr)

  2. Reliability of isometric lower-extremity muscle strength measurements in children with cerebral palsy: implications for measurement design

    NARCIS (Netherlands)

    Willemse, Lydia; Brehm, Merel A.; Scholtes, Vanessa A.; Jansen, Laura; Woudenberg-Vos, Hester; Dallmeijer, Annet J.

    2013-01-01

    Children with cerebral palsy (CP) typically show muscle weakness of the lower extremities, which can be measured with the use of handheld dynamometry (HHD). The purposes of this study were: (1) to determine test-retest reliability and measurement error of isometric lower-extremity strength

  3. Isometric abdominal wall muscle strength assessment in individuals with incisional hernia: a prospective reliability study

    DEFF Research Database (Denmark)

    Jensen, K. K.; Kjær, Michael; Jorgensen, L. N.

    2016-01-01

    Purpose To determine the reliability of measurements obtained by the Good Strength dynamometer, determining isometric abdominal wall and back muscle strength in patients with ventral incisional hernia (VIH) and healthy volunteers with an intact abdominal wall. Methods Ten patients with VIH and ten...... and extension showed excellent test–retest reliability for both patients with VIH (ICC 0.91 and 0.99) and healthy controls (ICC 0.97 and 0.96). Bland and Altman plots showed that no systematic bias was present for neither truncal flexion nor extension when assessing reliability. For patients with VIH...... and IPAQ was found. Conclusions The Good Strength dynamometer provided a reliable, low-cost measure of truncal flexion and extension in patients with VIH....

  4. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    Directory of Open Access Journals (Sweden)

    Zachary C. Thumser

    2018-04-01

    Full Text Available Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task. Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task. Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback. This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback. Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets to the more naturalistic and intuitive target forces implied by images of objects (implicit targets. With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82. Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces

  5. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    Science.gov (United States)

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized

  6. The Effect of an Isometric Hip Muscle Strength Training Protocol on Valgus Angle During a Drop Vertical Jump in Competitive Female Volleyball Players

    Directory of Open Access Journals (Sweden)

    Kaitlin M. Jackson

    2017-10-01

    Full Text Available Background: Hip muscle weakness is associated with higher peak knee valgus angles (VA during drop vertical jumps (DVJ and linked to ACL injury risk. Objective: To determine if isometric strengthening (IST of the hip extensor, abductor, and external rotator muscle groups would reduce VA exhibited during a DVJ. Methodology:  Fourteen female volleyball players (7 training (TG, 7 control (CG, VA≥9˚ during DVJ participated. Pre- and post-test gluteal, quadriceps and hamstring strength were measured with a digital force gauge. Three-dimensional kinematics were collected during 15 DVJ trials. TG participated in a 6-week IST program that targeted the hip extensor, abductor, and external rotator muscle groups. Two-way mixed ANOVAs compared mean differences of VA and strength. Single-participant analyses examined if athlete-specific adaptations went undetected in the analyses of aggregated data. Results: TG hip extension, abduction, and knee flexion strength increased, respectively, by 20.5%, 27.5% and 23.5% (P<0.05. No group-level changes in VA were detected. Unilateral VA decreased for 5 TG participants, and bilateral VA decreased in 2 TG participants. Conclusions: IST increased isometric hip muscle strength, but its effect on VA is inconclusive based on group-level analyses. Using single-participant designs, future studies should assess IST and/or dynamic resistance/neuromuscular training in a larger sample to determine its effect on ACL injury risk factors.

  7. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

    Science.gov (United States)

    Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model

  8. The influence of lower leg configurations on muscle force variability.

    Science.gov (United States)

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The influence of isometric exercises of the quadriceps muscle on young female patients with anterior knee pain

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2015-10-01

    Full Text Available Introduction: Anterior knee pain is a disease associated with abnormalities in the patellofemoral joint. It is a common reason for seeking advice from an orthopaedist. This problem is characterised by chronic pain in the anterior part of one or both knees. This issue often affects women, especially at a young age. The effect of this ailment is deterioration of the quality of life. This dysfunction significantly reduces abilities, and often prevents the performance of daily activities. Pain usually occurs during physical activity, but may also be accompanied by prolonged immobilisation of the knee joint. In defining the type of patellofemoral instability, orthopaedists use magnetic resonance imaging, arthroscopy, ultrasonography, and X-ray examination. A relatively effective method of treatment of pain in the patellofemoral joint is through isometric exercises of the quadriceps. They increase the strength of the quadriceps femoris muscle and reduce instability in the patellofemoral joint. Aim of the research: To evaluate the effectiveness of isometric exercises of the quadriceps muscle on young female patients with anterior knee pain. Material and methods : The study involved 30 women aged 13–44 years (mean age: 26.8 years, who had been diagnosed with pain in the front of the knee. Results and conclusions: Isometric exercises of the quadriceps muscle are an effective method of reducing anterior knee pain. Isometric exercises have a beneficial influence on improving physical activity, including performing basic activities of daily living. Student’s t distribution showed, that isometric exercises of the quadriceps muscle reduce pain at the front of the knee. Kruskal-Wallis test confirmed a significant reduction of anterior knee pain.

  10. Mapping Muscles Activation to Force Perception during Unloading.

    Directory of Open Access Journals (Sweden)

    Simone Toma

    Full Text Available It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort. Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function" that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.

  11. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke.

    Science.gov (United States)

    Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina

    2015-09-01

    To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.

  12. Protonmotive force in muscle mitochondria

    International Nuclear Information System (INIS)

    Stumpf, D.A.; Haas, R.; Eguren, L.A.; Parks, J.K.; Eilert, R.E.

    1982-01-01

    The protonmotive force (delta p) of muscle mitochondria was measured by estimating the distribution of 14C-labeled TPMP (trimethylphenylphosphonium iodide) and 14C-labeled acetate across the inner membrane of muscle mitochondria. The matrix volume was simultaneously determined using 3H-labeled H2O and 3H-labeled mannitol and repeated drying to distinguish the label in these 2 compounds. Rapid separation of mitochondria from the incubation medium by centrifugation through silicone oil avoids the problems of potential anaerobic conditions associated with conventional centrifugation and large volumes of trapped media associated with filtration. The value for delta p (mean +/- SD) was 192+/- 26 mV in 30 determinations with rat muscle mitochondria during state 4. Measurement of oxygen consumption allowed calculation of membrane conductance (Cm,H+) which was 0.49 +/- 0.18 nmol of H+/min/mg protein/mV. The values for delta p and Cm,H+ are reported for a variety of experimental conditions and are consistent with Mitchell's chemiosmotic theory. Biopsy specimens obtained from human muscle gave state-4 delta p values of 197+/- 30 mV (n .5) and Cm,H+ values of 0.52 +/- 0.12 nmol of H+/min/mg/mV (n . 4). This delta p assay is the first described for coupled mammalian muscle mitochondria and will be useful in assessing membrane function

  13. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models

    OpenAIRE

    Frey Law, Laura A.; Shields, Richard K.

    2005-01-01

    Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessar...

  14. Influence of Whole Body Vibration and Specific Warm-ups on Force during an Isometric Mid-Thigh Pull

    Directory of Open Access Journals (Sweden)

    Vanessa L. Cazás-Moreno

    2015-10-01

    Full Text Available Purpose: The purpose of this study was to investigate the effects of general and specific warm-up protocols on rate of force development (RFD, relative RFD (rRFD, ground reaction force (GRF and relative ground reaction force (rGRF during an isometric mid-thigh pull (IMTP, after WBV exposure. Methods: Fifteen healthy recreationally trained males  (age: 24.1 ± 2.3 yrs, height: 72.9 ± 7.8 cm; mass: 86.9 ± 8.3 completed five protocols: baseline, isometric vibration (iVib, isometric no vibration (iNV, dynamic vibration (dVib and dynamic no vibration (dNV. The baseline was completed without any warm-up prior to the IMTP. The intervention protocols had the same prescription of 4 sets of 30-second bouts of quarter squats (dynamic [DQS] and isometric [IQS] on the WBV platform with or without vibration. Following a one-minute rest period after each protocol, participants completed three maximal IMTPs. Results: Repeated measures ANOVA with a Bonferroni post hoc demonstrated that RFD in dNV (7657.8 ± 2292.5 N/s was significantly greater than iVib (7156.4 ± 2170.0 N/s. However, the other experimental trials for RFD demonstrated no significant differences (p>0.05. There were also no significant differences for rRFD, GRF or rGRF between protocols. Conclusion: These results demonstrate that a dynamic warm-up without WBV elicits greater RFD than an isometric warm-up with WBV prior to a maximal isometric exercise. Further research needs to be investigated utilizing dynamic and isometric warm-ups in conjunction with WBV and power output. Keywords: males, recreationally trained, power

  15. Isometric and Dynamic Control of Neck Muscles : Reflexive contributions and muscle synergies

    NARCIS (Netherlands)

    De Bruijn, E.

    2014-01-01

    It is well established that the central nervous system (CNS) stabilizes the head using reflexive feedback and cocontraction. The major reflexive pathways in the neck are through muscle spindles generating the cervicocollic reflex (CCR) and through the vestibular organ generating the vestibulocollic

  16. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    Science.gov (United States)

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  17. Reorganised force control in elbow pain patients during isometric wrist extension

    DEFF Research Database (Denmark)

    Mista, Christian Ariel; Monterde, Sonia; Inglés, Montserrat

    2018-01-01

    INTRODUCTION: Reorganised force control may be an important adaptation following painful traumas. In this study, force control adaptations were assessed in elbow pain patients. Increasing the contraction demand may overcome pain interference on the motor control and as such act as an internal...... voluntary contraction. Pressure pain thresholds were recorded at the lateral epicondyle and tibialis anterior muscle. Contraction force was recorded using a three-directional force transducer. Participants performed contractions according with visual feedback of the task-related force intensity (main...... direction of wrist extension) and another set of contractions with feedback of the three force directions. Going from the simple to the detailed force feedback will increase the demand of the motor task. Force steadiness in all 3 dimensions and force direction was extracted. RESULTS: Compared with controls...

  18. Improvement of isometric dorsiflexion protocol for assessment of tibialis anterior muscle strength☆

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P.; Kumar, Dinesh

    2015-01-01

    It is important to accurately estimate the electromyogram (EMG)/force relationship of triceps surae (TS) muscle for detecting strength deficit of tibalis anterior (TA) muscle. In literature, the protocol for recording EMG and force of dorsiflexion have been described, and the necessity for immobilizing the ankle has been explained. However, there is a significant variability of the results among researchers even though they report the fixation of the ankle. We have determined that toe extension can cause significant variation in the dorsiflexion force and EMG of TS and this can occur despite following the current guidelines which require immobilizing the ankle. The results also show that there was a large increase in the variability of the force and the RMS of EMG of TS when the toes were not strapped compared with when they were strapped. Thus, with the current guidelines, where there are no instructions regarding the necessity of strapping the toes, the EMG/force relationship of TS could be incorrect and give an inaccurate assessment of the dorsiflexor TA strength. In summary, • Current methodology to estimate the dorsiflexor TA strength with respect to the TS activity, emphasizing on ankle immobilization is insufficient to prevent large variability in the measurements. • Toe extension during dorsiflexion was found to be one source of variability in estimating the TA strength. • It is recommended that guidelines for recording force and EMG from TA and TS muscles should require the strapping of the toes along with the need for immobilizing the ankle. PMID:26150978

  19. Improvement of isometric dorsiflexion protocol for assessment of tibialis anterior muscle strength.

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh

    2015-01-01

    It is important to accurately estimate the electromyogram (EMG)/force relationship of triceps surae (TS) muscle for detecting strength deficit of tibalis anterior (TA) muscle. In literature, the protocol for recording EMG and force of dorsiflexion have been described, and the necessity for immobilizing the ankle has been explained. However, there is a significant variability of the results among researchers even though they report the fixation of the ankle. We have determined that toe extension can cause significant variation in the dorsiflexion force and EMG of TS and this can occur despite following the current guidelines which require immobilizing the ankle. The results also show that there was a large increase in the variability of the force and the RMS of EMG of TS when the toes were not strapped compared with when they were strapped. Thus, with the current guidelines, where there are no instructions regarding the necessity of strapping the toes, the EMG/force relationship of TS could be incorrect and give an inaccurate assessment of the dorsiflexor TA strength. In summary, •Current methodology to estimate the dorsiflexor TA strength with respect to the TS activity, emphasizing on ankle immobilization is insufficient to prevent large variability in the measurements.•Toe extension during dorsiflexion was found to be one source of variability in estimating the TA strength.•It is recommended that guidelines for recording force and EMG from TA and TS muscles should require the strapping of the toes along with the need for immobilizing the ankle.

  20. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B. M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G. S.; Ahn, B.; Ferreira, L. F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  1. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    International Nuclear Information System (INIS)

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-01-01

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  2. Isometric exercise (image)

    Science.gov (United States)

    Isometric exercise works muscles and strengthens bone. Increased muscle mass elevates metabolism, which in turn burns fat. Strength training is also called anaerobic exercise, as opposed to aerobic, because increased oxygen production is not ...

  3. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients.

    Directory of Open Access Journals (Sweden)

    Anett Mau-Moeller

    Full Text Available Knee osteoarthrosis (KOA is commonly associated with a dysfunction of the quadriceps muscle which contributes to alterations in motor performance. The underlying neuromuscular mechanisms of muscle dysfunction are not fully understood. The main objective of this study was to analyze how KOA affects neuromuscular function of the quadriceps muscle during different contraction intensities.The following parameters were assessed in 20 patients and 20 healthy controls: (i joint position sense, i.e. position control (mean absolute error, MAE at 30° and 50° of knee flexion, (ii simple reaction time task performance, (iii isometric maximal voluntary torque (IMVT and root mean square of the EMG signal (RMS-EMG, (iv torque control, i.e. accuracy (MAE, absolute fluctuation (standard deviation, SD, relative fluctuation (coefficient of variation, CV and periodicity (mean frequency, MNF of the torque signal at 20%, 40% and 60% IMVT, (v EMG-torque relationship at 20%, 40% and 60% IMVT and (vi performance fatigability, i.e. time to task failure (TTF at 40% IMVT.Compared to the control group, the KOA group displayed: (i significantly higher MAE of the angle signal at 30° (99.3%; P = 0.027 and 50° (147.9%; P < 0.001, (ii no significant differences in reaction time, (iii significantly lower IMVT (-41.6%; P = 0.001 and tendentially lower RMS-EMG of the rectus femoris (-33.7%; P = 0.054, (iv tendentially higher MAE of the torque signal at 20% IMVT (65.9%; P = 0.068, significantly lower SD of the torque signal at all three torque levels and greater MNF at 60% IMVT (44.8%; P = 0.018, (v significantly increased RMS-EMG of the vastus lateralis at 20% (70.8%; P = 0.003 and 40% IMVT (33.3%; P = 0.034, significantly lower RMS-EMG of the biceps femoris at 20% (-63.6%; P = 0.044 and 40% IMVT (-41.3%; P = 0.028 and tendentially lower at 60% IMVT (-24.3%; P = 0.075 and (vi significantly shorter TTF (-51.1%; P = 0.049.KOA is not only associated with a deterioration of IMVT

  4. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions.

    Science.gov (United States)

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-05-13

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.

  5. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Sridhar P. Arjunan

    2014-01-01

    Full Text Available The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC. Six features were considered in this study: normalised spectral index (NSM5, median frequency, root mean square, waveform length, normalised root mean square (NRMS, and increase in synchronization (IIS index. Analysis of variance (ANOVA and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P0.05.

  6. Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P 0.05).

  7. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Gudrun Schappacher-Tilp

    Full Text Available We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.

  8. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    Science.gov (United States)

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  9. Effect of toe extension on EMG of triceps surae muscles during isometric dorsiflexion.

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh

    2016-12-01

    The protocol for estimating force of contraction by triceps surae (TS) muscles requires the immobilization of the ankle during dorsiflexion and plantar flexion. However, large variability in the results has been observed. To identify the cause of this variability, experiments were conducted where ankle dorsiflexion force and electromyogram (EMG) of the TS were recorded under two conditions: (i) toes were strapped and (ii) toes were unstrapped, with all other conditions such as immobilization of the ankle remaining unchanged. The root mean square (RMS) of the EMG and the force were analyzed and one-tail Student's t-test was performed for significance between the two conditions. The RMS of the EMG from TS muscles was found to be significantly higher (~55%) during dorsiflexion with toes unstrapped compared with when the toes were strapped. The torque corresponding to dorsiflexion was also higher with toes unstrapped. Our study has shown that it is important to strap the toes when measuring the torque at the ankle and EMG of the TS muscles.

  10. An ergonomic modular foot platform for isometric force/torque measurements in poststroke functional assessment: A pilot study

    OpenAIRE

    Stefano Mazzoleni, PhD; Jo Van Vaerenbergh, PhD; Emma Stokes, PhD; Gábor Fazekas, MD, PhD; Paolo Dario, PhD; Eugenio Guglielmelli, PhD

    2012-01-01

    The main goal of this article is to present the design, technical development, and preliminary validation of an innovative mechatronic device for force/torque measurements taken from the human foot using pilot data. The device, formed by a mobile platform equipped with two six-axis force/torque sensors, was used to perform accurate quantitative measurements during isometric exercises, aimed at performing functional assessment tests in poststroke patients undergoing a rehabilitation treatment....

  11. Isometric abdominal wall muscle strength assessment in individuals with incisional hernia: a prospective reliability study.

    Science.gov (United States)

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2016-12-01

    To determine the reliability of measurements obtained by the Good Strength dynamometer, determining isometric abdominal wall and back muscle strength in patients with ventral incisional hernia (VIH) and healthy volunteers with an intact abdominal wall. Ten patients with VIH and ten healthy volunteers with an intact abdominal wall were each examined twice with a 1 week interval. Examination included the assessment of truncal flexion and extension as measured with the Good Strength dynamometer, the completion of the International Physical Activity Questionnaire (IPAQ) and the self-assessment of truncal strength on a visual analogue scale (SATS). The test-retest reliability of truncal flexion and extension was assessed by interclass correlation coefficient (ICC), and Bland and Altman graphs. Finally, correlations between truncal strength, and IPAQ and SATS were examined. Truncal flexion and extension showed excellent test-retest reliability for both patients with VIH (ICC 0.91 and 0.99) and healthy controls (ICC 0.97 and 0.96). Bland and Altman plots showed that no systematic bias was present for neither truncal flexion nor extension when assessing reliability. For patients with VIH, no significant correlations between objective measures of truncal strength and IPAQ or SATS were found. For healthy controls, both truncal flexion (τ 0.58, p = 0.025) and extension (τ 0.58, p = 0.025) correlated significantly with SATS, while no other significant correlation between truncal strength measures and IPAQ was found. The Good Strength dynamometer provided a reliable, low-cost measure of truncal flexion and extension in patients with VIH.

  12. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  13. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    Lactic acid accumulation is generally believed to be involved in muscle fatigue. However, one study reported that in rat soleus muscle (in vitro), with force depressed by high external K+ concentrations a subsequent incubation with lactic acid restores force and thereby protects against fatigue...

  14. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    Science.gov (United States)

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  15. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    Science.gov (United States)

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison between electrically evoked and voluntary isometric contractions for biceps brachii muscle oxidative metabolism using near-infrared spectroscopy.

    Science.gov (United States)

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Nosaka, Kazunori

    2009-09-01

    This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, DeltaTOI) and total haemoglobin concentration (DeltatHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased approximately 30% of pre-exercise MVC. During the 30 contractions at 30% MVC, DeltaTOI decrease was significantly (P < 0.05) greater and DeltatHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (approximately 40% of VOL) was significantly (P < 0.05) lower than VOL, DeltaTOI was similar and tHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity.

  17. The effect of short-term isometric muscle contraction and the Valsalva maneuver on systemic and pulmonary hemodynamics in patients with severe heart failure

    Czech Academy of Sciences Publication Activity Database

    Souček, M.; Fráňa, P.; Kára, J.; Sitar, J.; Halámek, Josef; Jurák, Pavel; Řiháček, I.; Špinarová, L.; Oral, I.

    2009-01-01

    Roč. 32, č. 6 (2009), E32-E39 ISSN 0160-9289 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : leg muscle * muscle isometric contraction Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.602, year: 2009

  18. Longitudinal, lateral and transverse axes of forearm muscles influence the crosstalk in the mechanomyographic signals during isometric wrist postures.

    Science.gov (United States)

    Islam, Md Anamul; Sundaraj, Kenneth; Ahmad, R Badlishah; Sundaraj, Sebastian; Ahamed, Nizam Uddin; Ali, Md Asraf

    2014-01-01

    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity. The aim of the present study was two-fold: i) to quantify the level of crosstalk in the mechanomyographic (MMG) signals from the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the extensor digitorum (ED), extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU) muscles during isometric wrist flexion (WF) and extension (WE), radial (RD) and ulnar (UD) deviations; and ii) to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures. Twenty, healthy right-handed men (mean ± SD: age = 26.7±3.83 y; height = 174.47±6.3 cm; mass = 72.79±14.36 kg) participated in this study. During each wrist posture, the MMG signals propagated through the axes of the muscles were detected using three separate tri-axial accelerometers. The x-axis, y-axis, and z-axis of the sensor were placed in the Lo, La, and Tr directions with respect to muscle fibers. The peak cross-correlations were used to quantify the proportion of crosstalk between the different muscle groups. The average level of crosstalk in the MMG signals generated by the muscle groups ranged from: 34.28-69.69% for the Lo axis, 27.32-52.55% for the La axis and 11.38-25.55% for the Tr axis for all participants and their wrist postures. The Tr axes between the muscle groups showed significantly smaller crosstalk values for all wrist postures [F (2, 38) = 14-63, pmovement research, especially for the examination of muscle mechanics during various types of the wrist postures.

  19. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...

  20. Multi-muscle FES force control of the human arm for arbitrary goals.

    Science.gov (United States)

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  1. Effects of Isometric Hand-Grip Muscle Contraction on Young Adults' Free Recall and Recognition Memory

    Science.gov (United States)

    Tomporowski, Phillip D.; Albrecht, Chelesa; Pendleton, Daniel M.

    2017-01-01

    Purpose: The purpose of this study was to determine if physical arousal produced by isometric hand-dynamometer contraction performed during word-list learning affects young adults' free recall or recognition memory. Method: Twenty-four young adults (12 female; M[subscript age] = 22 years) were presented with 4 20-item word lists. Moderate arousal…

  2. Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation

    NARCIS (Netherlands)

    Denier van der Gon, J.J.; Haar Romenij, ter B.M.; Zuylen, Van E.J.

    1985-01-01

    The behaviour of motor units in the m. biceps brachii (long head), in the m. brachialis and in the m. supinator during slow isometric contraction and relaxation was studied when subjects were performing different motor tasks. These tasks were: flexion of the elbow joint, supination of the forearm

  3. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    Science.gov (United States)

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  4. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    Science.gov (United States)

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  6. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Science.gov (United States)

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  7. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    Full Text Available Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM and Lateralis (VL. Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role.Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum.For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat.There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement

  8. Hand-grip isometric strength in judo

    Directory of Open Access Journals (Sweden)

    Juan G Bonitch-Góngora

    2014-02-01

    Full Text Available The grip is an important technical and tactical aspect through which the judokas dominate the adversary, hindering the application of appropriate techniques and favoring their own attack. The judokas must have high levels of isometric force and endurance to this type of force on the gripping muscles of the forearms, as one of the key aspects for success. This article reviews the grip muscular strength and endurance profiles of judokas of different groups (gender, age and competitive level. In general, the peak isometric strength of elite judokas has not changed in the last 40 years and is similar to that reached by non-elite judokas or even registered in large populations. This indicate that the evaluation of the isometric hand grip endurance may be a more relevant parameter than the peak isometric force in judokas, as during the bouts the grip must be maintained for relatively long periods of time and the maximum force cannot be maintained for long. However there are few studies on the ability to resist successive isometric handgrip stress in judokas.

  9. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    Science.gov (United States)

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling

  10. Change in muscle fascicle length influences the recruitment and discharge rate of motor units during isometric contractions.

    Science.gov (United States)

    Pasquet, Benjamin; Carpentier, Alain; Duchateau, Jacques

    2005-11-01

    This study examines the effect of fascicle length change on motor-unit recruitment and discharge rate in the human tibialis anterior (TA) during isometric contractions of various intensities. The torque produced during dorsiflexion and the surface and intramuscular electromyograms (EMGs) from the TA were recorded in eight subjects. The behavior of the same motor unit (n = 59) was compared at two ankle joint angles (+10 and -10 degrees around the ankle neutral position). Muscle fascicle length of the TA was measured noninvasively using ultrasonography recordings. When the ankle angle was moved from 10 degrees plantarflexion to 10 degrees dorsiflexion, the torque produced during maximal voluntary contraction (MVC) was significantly reduced [35.2 +/- 3.3 vs. 44.3 +/- 4.2 (SD) Nm; P Motor units were activated at a lower recruitment threshold for short compared with long muscle fascicle length, either when expressed in absolute values (2.1 +/- 2.5 vs. 3.6 +/- 3.7 Nm; P motor-unit recruitment were observed at a given absolute or relative torque when muscle fascicles were shortened. However, the data indicate that increased rate coding was mainly present at low torque level (recruitment of additional motor units played a dominant role at higher torque level and decreased compliance (10-35% MVC). Taken together, the results suggest that the central command is modulated by the afferent proprioceptive information during submaximal contractions performed at different muscle fascicle lengths.

  11. Longitudinal, lateral and transverse axes of forearm muscles influence the crosstalk in the mechanomyographic signals during isometric wrist postures.

    Directory of Open Access Journals (Sweden)

    Md Anamul Islam

    Full Text Available In mechanomyography (MMG, crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.The aim of the present study was two-fold: i to quantify the level of crosstalk in the mechanomyographic (MMG signals from the longitudinal (Lo, lateral (La and transverse (Tr axes of the extensor digitorum (ED, extensor carpi ulnaris (ECU and flexor carpi ulnaris (FCU muscles during isometric wrist flexion (WF and extension (WE, radial (RD and ulnar (UD deviations; and ii to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures.Twenty, healthy right-handed men (mean ± SD: age = 26.7±3.83 y; height = 174.47±6.3 cm; mass = 72.79±14.36 kg participated in this study. During each wrist posture, the MMG signals propagated through the axes of the muscles were detected using three separate tri-axial accelerometers. The x-axis, y-axis, and z-axis of the sensor were placed in the Lo, La, and Tr directions with respect to muscle fibers. The peak cross-correlations were used to quantify the proportion of crosstalk between the different muscle groups.The average level of crosstalk in the MMG signals generated by the muscle groups ranged from: 34.28-69.69% for the Lo axis, 27.32-52.55% for the La axis and 11.38-25.55% for the Tr axis for all participants and their wrist postures. The Tr axes between the muscle groups showed significantly smaller crosstalk values for all wrist postures [F (2, 38 = 14-63, p<0.05, η2 = 0.416-0.769].The results may be applied in the field of human movement research, especially for the examination of muscle mechanics during various types of the wrist postures.

  12. Finite element model of intermuscular pressure during isometric contraction of skeletal muscle

    NARCIS (Netherlands)

    Jenkyn, T.R.; Koopman, B.; Huijing, P.A.J.B.M.; Lieber, R.L.; Kaufman, K.R.

    2002-01-01

    The measurement of in vivo intramuscular pressure (IMP) has recently become practical and IMP appears well correlated with muscle tension. A numerical model of skeletal muscle was developed to examine the mechanisms producing IMP. Unipennate muscle is modelled as a two-dimensional material continuum

  13. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    Science.gov (United States)

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  14. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    Science.gov (United States)

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  15. Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors

    DEFF Research Database (Denmark)

    Kawczyński, Adam; Samani, Afshin; Mroczek, Dariusz

    2015-01-01

    endurance contraction consisting of bilateral arm abduction at 90°. The normalized mutual information (NMI) was computed between muscle pairs as an index indicating functional connectivity. Results: The NMIs increased significantly during endurance test for 10 of the 15 muscle pairs (P ... : We concluded that the increases in NMIs highlighted functional changes in the interplay between core and shoulder muscles during an endurance contraction in elite judokas....

  16. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  17. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  18. Whole-body isometric force/torque measurements for functional assessment in neuro-rehabilitation: platform design, development and verification

    Directory of Open Access Journals (Sweden)

    Cavallo Giuseppe

    2009-10-01

    Full Text Available Abstract Background One of the main scientific and technological challenges of rehabilitation bioengineering is the development of innovative methodologies, based on the use of appropriate technological devices, for an objective assessment of patients undergoing a rehabilitation treatment. Such tools should be as fast and cheap to use as clinical scales, which are currently the daily instruments most widely used in the routine clinical practice. Methods A human-centered approach was used in the design and development of a mechanical structure equipped with eight force/torque sensors that record quantitative data during the initiation of a predefined set of Activities of Daily Living (ADL tasks, in isometric conditions. Results Preliminary results validated the appropriateness, acceptability and functionality of the proposed platform, that has become now a tool used for clinical research in three clinical centres. Conclusion This paper presented the design and development of an innovative platform for whole-body force and torque measurements on human subjects. The platform has been designed to perform accurate quantitative measurements in isometric conditions with the specific aim to address the needs for functional assessment tests of patients undergoing a rehabilitation treatment as a consequence of a stroke. The versatility of the system also enlightens several other interesting possible areas of application for therapy in neurorehabilitation, for research in basic neuroscience, and more.

  19. Voluntary drive-dependent changes in vastus lateralis motor unit firing rates during a sustained isometric contraction at 50% of maximum knee extension force.

    NARCIS (Netherlands)

    de Ruiter, C.J.; Elzinga, M.J.; Verdijk, PW; van Mechelen, W.; de Haan, A.

    2004-01-01

    The purpose of the present study was to relate the expected inter-subject variability in voluntary drive of the knee extensor muscles during a sustained isometric contraction to the changes in firing rates of single motor units. Voluntary activation, as established with super-imposed electrical

  20. Relationship Between Erectores Spinae Voltage and Back-Lift Strength for Isometric, Concentric, and Eccentric Contractions

    Science.gov (United States)

    Ashton, T. Edwin J.; Singh, Mohan

    1975-01-01

    This study determined the maximal mean values for concentric and eccentric back-lift strength as well as isometric, and examined and compared the relationships between the mean peak voltage of the erectores spinae muscle(s) and maximal force exerted for the three types of muscle contractions. (RC)

  1. Lumbar extensor muscle force control is associated with disability in people with chronic low back pain.

    Science.gov (United States)

    Pranata, Adrian; Perraton, Luke; El-Ansary, Doa; Clark, Ross; Fortin, Karine; Dettmann, Tim; Brandham, Robert; Bryant, Adam

    2017-07-01

    The ability to control lumbar extensor force output is necessary for daily activities. However, it is unknown whether this ability is impaired in chronic low back pain patients. Similarly, it is unknown whether lumbar extensor force control is related to the disability levels of chronic low back pain patients. Thirty-three chronic low back pain and 20 healthy people performed lumbar extension force-matching task where they increased and decreased their force output to match a variable target force within 20%-50% maximal voluntary isometric contraction. Force control was quantified as the root-mean-square-error between participants' force output and target force across the entire, during the increasing and decreasing portions of the force curve. Within- and between-group differences in force-matching error and the relationship between back pain group's force-matching results and their Oswestry Disability Index scores were assessed using ANCOVA and linear regression respectively. Back pain group demonstrated more overall force-matching error (mean difference=1.60 [0.78, 2.43], Pback pain group demonstrated more force-matching error while increasing than decreasing force output (mean difference=1.74, Pback pain group (R 2 =0.19, P=0.006). Lumbar extensor muscle force control is compromised in chronic low back pain patients. Force-matching error predicts disability, confirming the validity of our force control protocol for chronic low back pain patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. Copyright © 2016 the American Physiological Society.

  3. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women.

    Science.gov (United States)

    Francis, Peter; Toomey, Clodagh; Mc Cormack, William; Lyons, Mark; Jakeman, Philip

    2017-07-01

    Muscle quality is defined as strength per unit muscle mass. The aim of this study was to measure the maximal voluntary isometric torque of the knee extensor and flexor muscle groups in healthy older women and to develop an index of muscle quality based on the combined knee extensor and flexor torque per unit lean tissue mass (LTM) of the upper leg. One hundred and thirty-six healthy 50- to 70-year-old women completed an initial measurement of isometric peak torque of the knee extensors and flexors (Con-Trex MJ; CMV AG, Dubendorf, Switzerland) that was repeated 7 days later. Subsequently, 131 women returned for whole- and regional-body composition analysis (iDXA ™ ; GE Healthcare, Chalfont St Giles, Buckinghamshire, UK). Isometric peak torque demonstrated excellent within-assessment reliability for both the knee extensors and flexors (ICC range: 0·991-1·000). Test-retest reliability was lower (ICC range: 0·777-0·828) with an observed mean increase of 5% in peak torque [6·2 (17·2) N m] on the second day of assessment (Ptorque (-12·2%; P = 0·001) was double that of the relative, non-significant, median difference in upper leg LTM (-5·3%; P = 0·102) between those in the 5th and 6th decade. The majority of difference in peak isometric torque came from the knee extensors (15·1 N m, Ptorque normalized for upper leg LTM (muscle quality) was 8% lower between decades (P = 0·029). These findings suggest strength per unit tissue may provide a better indication of age-related differences in muscle quality prior to change in LTM. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  4. The Efficacy of Wrestling-Style Compression Suits to Improve Maximum Isometric Force and Movement Velocity in Well-Trained Male Rugby Athletes

    Directory of Open Access Journals (Sweden)

    Daniel T. McMaster

    2017-11-01

    Full Text Available Purpose: The prevalence of compression garment (CG use is increasing with athletes striving to take advantage of the purported benefits to recovery and performance. Here, we investigated the effect of CG on muscle force and movement velocity performance in athletes.Methods: Ten well-trained male rugby athletes wore a wrestling-style CG suit applying 13–31 mmHg of compressive pressure during a training circuit in a repeated-measures crossover design. Force and velocity data were collected during a 5-s isometric mid-thigh pull (IMTP and repeated countermovement jump (CMJ, respectively; and time to complete a 5-m horizontal loaded sled push was also measured.Results: IMTP peak force was enhanced in the CG condition by 139 ± 142 N (effect size [ES] = 0.36. Differences in CMJ peak velocity (ES = 0.08 and loaded sled-push sprint time between the conditions were trivial (ES = −0.01. A qualitative assessment of the effects of CG wear suggested that the likelihood of harm was unlikely in the CMJ and sled push, while a beneficial effect in the CMJ was possible, but not likely. Half of the athletes perceived a functional benefit in the IMTP and CMJ exercises.Conclusion: Consistent with other literature, there was no substantial effect of wearing a CG suit on CMJ and sprint performance. The improvement in peak force generation capability in an IMTP may be of benefit to rugby athletes involved in scrummaging or lineout lifting. The mechanism behind the improved force transmission is unclear, but may involve alterations in neuromuscular recruitment and proprioceptive feedback.

  5. The Efficacy of Wrestling-Style Compression Suits to Improve Maximum Isometric Force and Movement Velocity in Well-Trained Male Rugby Athletes.

    Science.gov (United States)

    McMaster, Daniel T; Beaven, Christopher M; Mayo, Brad; Gill, Nicholas; Hébert-Losier, Kim

    2017-01-01

    Purpose: The prevalence of compression garment (CG) use is increasing with athletes striving to take advantage of the purported benefits to recovery and performance. Here, we investigated the effect of CG on muscle force and movement velocity performance in athletes. Methods: Ten well-trained male rugby athletes wore a wrestling-style CG suit applying 13-31 mmHg of compressive pressure during a training circuit in a repeated-measures crossover design. Force and velocity data were collected during a 5-s isometric mid-thigh pull (IMTP) and repeated countermovement jump (CMJ), respectively; and time to complete a 5-m horizontal loaded sled push was also measured. Results: IMTP peak force was enhanced in the CG condition by 139 ± 142 N (effect size [ES] = 0.36). Differences in CMJ peak velocity (ES = 0.08) and loaded sled-push sprint time between the conditions were trivial (ES = -0.01). A qualitative assessment of the effects of CG wear suggested that the likelihood of harm was unlikely in the CMJ and sled push, while a beneficial effect in the CMJ was possible, but not likely. Half of the athletes perceived a functional benefit in the IMTP and CMJ exercises. Conclusion: Consistent with other literature, there was no substantial effect of wearing a CG suit on CMJ and sprint performance. The improvement in peak force generation capability in an IMTP may be of benefit to rugby athletes involved in scrummaging or lineout lifting. The mechanism behind the improved force transmission is unclear, but may involve alterations in neuromuscular recruitment and proprioceptive feedback.

  6. IS PAIN IN ONE KNEE ASSOCIATED WITH ISOMETRIC MUSCLE STRENGTH IN THE CONTRALATERAL LIMB? - DATA FROM THE OSTEOARTHRITIS INITIATIVE (OAI)

    Science.gov (United States)

    Steidle, E.; Wirth, W.; Glass, N.; Ruhdorfer, A.; Cotofana, S.; Eckstein, F.; Segal, N. A.

    2014-01-01

    Objective Knee pain and muscle weakness confer risk for knee osteoarthritis incidence and progression. The purpose of this study was to determine whether unilateral knee pain influences contralateral thigh muscle strength. Design Of 4796 Osteoarthritis Initiative participants, 224 (mean±SD age 63.9±8.9 years) cases could be matched to a control. Cases were defined as having unilateral knee pain (numerical rating scale (NRS)≥4/10; ≥infrequent pain) and one pain-free knee (NRS 0–1; ≤infrequent pain; WOMAC≤1). Controls were defined as having bilaterally pain-free knees (NRS 0–1; ≤infrequent pain; WOMAC≤1). Maximal isometric muscle strength [N] was compared between limbs in participants with unilateral pain (cases), and between pain-free limbs of cases and controls. Results Knee extensor/flexor strength in pain-free limbs of cases was lower than in bilaterally pain-free controls (−5.5%/–8.4%; p=0.043/p=0.022). Within cases, maximum extensor/flexor strength was significantly lower in the painful than in the pain-free limb (−6.4%/4.1%; pstrength in limbs without knee pain is associated with the pain status of the contralateral knee. The strength difference between unilateral pain-free cases and matched bilateral pain-free controls was similar to that between limbs in persons with unilateral knee pain. Lower strength due to contralateral knee pain might be centrally mediated. PMID:25768069

  7. Isometric pre-conditioning blunts exercise-induced muscle damage but does not attenuate changes in running economy following downhill running.

    Science.gov (United States)

    Lima, Leonardo C R; Bassan, Natália M; Cardozo, Adalgiso C; Gonçalves, Mauro; Greco, Camila C; Denadai, Benedito S

    2018-05-08

    Running economy (RE) is impaired following unaccustomed eccentric-biased exercises that induce muscle damage. It is also known that muscle damage is reduced when maximal voluntary isometric contractions (MVIC) are performed at a long muscle length 2-4 days prior to maximal eccentric exercise with the same muscle, a phenomenon that can be described as isometric pre-conditioning (IPC). We tested the hypothesis that IPC could attenuate muscle damage and changes in RE following downhill running. Thirty untrained men were randomly assigned into experimental or control groups and ran downhill on a treadmill (-15%) for 30 min. Participants in the experimental group completed 10 MVIC in a leg press machine two days prior to downhill running, while participants in the control group did not perform IPC. The magnitude of changes in muscle soreness determined 48 h after downhill running was greater for the control group (122 ± 28 mm) than for the experimental group (92 ± 38 mm). Isometric peak torque recovered faster in the experimental group compared with the control group (3 days vs. no full recovery, respectively). No significant effect of IPC was found for countermovement jump height, serum creatine kinase activity or any parameters associated with RE. These results supported the hypothesis that IPC attenuates changes in markers of muscle damage. The hypothesis that IPC attenuates changes in RE was not supported by our data. It appears that the mechanisms involved in changes in markers of muscle damage and parameters associated with RE following downhill running are not completely shared. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  9. Complex myograph allows the examination of complex muscle contractions for the assessment of muscle force, shortening, velocity, and work in vivo

    Directory of Open Access Journals (Sweden)

    Ruhschulte Hainer

    2008-07-01

    Full Text Available Abstract Background The devices used for in vivo examination of muscle contractions assess only pure force contractions and the so-called isokinetic contractions. In isokinetic experiments, the extremity and its muscle are artificially moved with constant velocity by the measuring device, while a tetanic contraction is induced in the muscle, either by electrical stimulation or by maximal voluntary activation. With these systems, experiments cannot be performed at pre-defined, constant muscle length, single contractions cannot be evaluated individually and the separate examination of the isometric and the isotonic components of single contractions is not possible. Methods The myograph presented in our study has two newly developed technical units, i.e. a. a counterforce unit which can load the muscle with an adjustable, but constant force and b. a length-adjusting unit which allows for both the stretching and the contraction length to be infinitely adjustable independently of one another. The two units support the examination of complex types of contraction and store the counterforce and length-adjusting settings, so that these conditions may be accurately reapplied in later sessions. Results The measurement examples presented show that the muscle can be brought to every possible pre-stretching length and that single isotonic or complex isometric-isotonic contractions may be performed at every length. The applied forces act during different phases of contraction, resulting into different pre- and after-loads that can be kept constant – uninfluenced by the contraction. Maximal values for force, shortening, velocity and work may be obtained for individual muscles. This offers the possibility to obtain information on the muscle status and to monitor its changes under non-invasive measurement conditions. Conclusion With the Complex Myograph, the whole spectrum of a muscle's mechanical characteristics may be assessed.

  10. Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions

    DEFF Research Database (Denmark)

    Kallio, Jouni; Søgaard, Karen; Avela, Janne

    2013-01-01

    Understanding the detailed control of human locomotion and balance can be improved, when individual motor units can be isolated and their firing rates followed in natural movement of large, fuctionally important muscles. For this reason the present study investigated the motor unit discharge rate...

  11. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    Science.gov (United States)

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.

  12. Effect of vibration during fatiguing resistance exercise on subsequent muscle activity during maximal voluntary isometric contractions.

    Science.gov (United States)

    McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D

    2004-11-01

    This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.

  13. Isometric muscle training of the spine musculature in patients with spinal bony metastases under radiation therapy

    International Nuclear Information System (INIS)

    Rief, Harald; Jensen, Alexandra D; Bruckner, Thomas; Herfarth, Klaus; Debus, Jürgen

    2011-01-01

    Osseous metastatic involvement of the spinal column affects many patients with a primary tumour disease of all entities. The consequences are pain both at rest and under exertion, impairments in going about day-to-day activities, diminished performance, the risk of pathological fractures, and neurological deficits. Palliative percutaneous radiotherapy is one of the therapeutical options available in this connection. The aim of this explorative study is to investigate the feasibility of muscle-training exercises and to evaluate the progression- and fracture-free survival time and the improvement of bone density, as well as to assess other clinical parameters such as pain, quality of life, and fatigue as secondary endpoints. This study is a prospective, randomized, monocentre, controlled explorative intervention study in the parallel-group design to determine the multidimensional effects of a course of exercises at first under physiotherapeutic instruction and subsequently performed by the patients independently for strengthening the paravertebral muscles of patients with metastases of the vertebral column parallel to their percutaneous radiotherapy. On the days of radiation treatment the patients in the control group shall be given physical treatment in the form of respiratory therapy and the so-called 'hot roll'. The patients will be randomized into one of the two groups: differentiated muscle training or physiotherapy with thirty patients in each group. The aim of the study is to evaluate the feasibility of the training programme described here. Progression-free and fracture-free survival, improved response to radiotherapy by means of bone density, and clinical parameters such as pain, quality of life, and fatigue constitute secondary study objectives. ClinicalTrials.gov: http://www.clinicaltrials.gov/ct2/show/NCT01409720

  14. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty.

    Science.gov (United States)

    Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A

    2013-12-01

    Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Central and peripheral fatigue development in the shoulder muscle with obesity during an isometric endurance task.

    Science.gov (United States)

    Pajoutan, Mojdeh; Ghesmaty Sangachin, Mahboobeh; Cavuoto, Lora A

    2017-07-21

    Fatigue increases the likelihood of developing work-related musculoskeletal disorders and injury. Due to the physiological and neuromuscular changes that accompany obesity, it may alter the fatigue development mechanism and exacerbate injury risk. The upper extremities have the highest incidence rates for work-related musculoskeletal disorders. Therefore, the goals of this study were to investigate the effect of obesity on central vs. peripheral fatigue as well as on the physical signs of fatigue on the middle deltoid muscle. A measure of central activation ratio was used to quantify central fatigue by considering the increment in the torque output by superimposed twitch relative to its corresponding maximum voluntary contraction. For this purpose, electrical stimulation was delivered at the middle deltoid muscles of 22 non-obese (18 obese (30 motor units (p = 0.001) with fatigue was observed for individuals who are obese. Contrary to the effect of obesity on central fatigue, a trend toward reduced peripheral fatigue (p = 0.06) was observed for the obese group compared to the non-obese group. On average, a 14% higher rate of torque loss per second was observed among individuals with obesity in comparison to non-obese participants. The observed greater contribution of central fatigue during the sustained endurance tasks suggests that among young healthy obese individuals, the faster fatigue development with obesity, commonly reported in the literature, is most likely due to the central elements rather than the peripheral factors. This finding has implications for fatigue prevention programs during sustained exertions and can help to develop training, work, and rest schedules considering obesity.

  16. Dynamical signatures of isometric force control as a function of age, expertise, and task constraints.

    Science.gov (United States)

    Vieluf, Solveig; Sleimen-Malkoun, Rita; Voelcker-Rehage, Claudia; Jirsa, Viktor; Reuter, Eva-Maria; Godde, Ben; Temprado, Jean-Jacques; Huys, Raoul

    2017-07-01

    From the conceptual and methodological framework of the dynamical systems approach, force control results from complex interactions of various subsystems yielding observable behavioral fluctuations, which comprise both deterministic (predictable) and stochastic (noise-like) dynamical components. Here, we investigated these components contributing to the observed variability in force control in groups of participants differing in age and expertise level. To this aim, young (18-25 yr) as well as late middle-aged (55-65 yr) novices and experts (precision mechanics) performed a force maintenance and a force modulation task. Results showed that whereas the amplitude of force variability did not differ across groups in the maintenance tasks, in the modulation task it was higher for late middle-aged novices than for experts and higher for both these groups than for young participants. Within both tasks and for all groups, stochastic fluctuations were lowest where the deterministic influence was smallest. However, although all groups showed similar dynamics underlying force control in the maintenance task, a group effect was found for deterministic and stochastic fluctuations in the modulation task. The latter findings imply that both components were involved in the observed group differences in the variability of force fluctuations in the modulation task. These findings suggest that between groups the general characteristics of the dynamics do not differ in either task and that force control is more affected by age than by expertise. However, expertise seems to counteract some of the age effects. NEW & NOTEWORTHY Stochastic and deterministic dynamical components contribute to force production. Dynamical signatures differ between force maintenance and cyclic force modulation tasks but hardly between age and expertise groups. Differences in both stochastic and deterministic components are associated with group differences in behavioral variability, and observed behavioral

  17. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.

    Science.gov (United States)

    Winter, Samantha L; Challis, John H

    2010-02-21

    The force-length relationship is one of the most important mechanical characteristics of skeletal muscle in humans and animals. For a physiologically realistic joint range of motion and therefore range of muscle fibre lengths only part of the force-length curve may be used in vivo, i.e. only a section of the force-length curve is expressed. A generalised model of a mono-articular muscle-tendon complex was used to examine the effect of various muscle architecture parameters on the expressed section of the force-length relationship for a 90 degrees joint range of motion. The parameters investigated were: the ratio of tendon resting length to muscle fibre optimum length (L(TR):L(F.OPT)) (varied from 0.5 to 11.5), the ratio of muscle fibre optimum length to average moment arm (L(F.OPT):r) (varied from 0.5 to 5), the normalised tendon strain at maximum isometric force (c) (varied from 0 to 0.08), the muscle fibre pennation angle (theta) (varied from 0 degrees to 45 degrees) and the joint angle at which the optimum muscle fibre length occurred (phi). The range of values chosen for each parameter was based on values reported in the literature for five human mono-articular muscles with different functional roles. The ratios L(TR):L(F.OPT) and L(F.OPT):r were important in determining the amount of variability in the expressed section of the force-length relationship. The modelled muscle operated over only one limb at intermediate values of these two ratios (L(TR):L(F.OPT)=5; L(F.OPT):r=3), whether this was the ascending or descending limb was determined by the precise values of the other parameters. It was concluded that inter-individual variability in the expressed section of the force-length relationship is possible, particularly for muscles with intermediate values of L(TR):L(F.OPT) and L(F.OPT):r such as the brachialis and vastus lateralis. Understanding the potential for inter-individual variability in the expressed section is important when using muscle models to

  18. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  19. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  20. How the condition of occlusal support affects the back muscle force and masticatory muscle activity?

    OpenAIRE

    石岡, 克; 河野, 正司; Ishioka, Masaru; Kohno, Shoji

    2002-01-01

    This study was conducted to determine how the condition of occlusal support affects the back muscle force and masticatory muscle activity. Two groups of subjects were enlisted: sport-trained group and normal group. While electrodes of the electromyography (EMG) were attached to the surface of the masticatory muscles, each subject's back muscle force was recorded during upper body stretching using a back muscle force-measuring device. The task was performed under four different occlusal suppor...

  1. Baseline and longitudinal change in isometric muscle strength prior to radiographic progression in osteoarthritic and pre-osteoarthritic knees--data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Eckstein, F; Hitzl, W; Duryea, J; Kent Kwoh, C; Wirth, W

    2013-05-01

    To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). Of 4,796 Osteoarthritis Initiative participants, 2,835 knees with Kellgren Lawrence grade (KLG) 0-3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope analysis of covariance (ANCOVA) models were used to determine differences in strength between "progressor" and "non-progressor" knees, after adjusting for age, body mass index, and pain. 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year 2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year 2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Baseline and Longitudinal Change in Isometric Muscle Strength Prior to Radiographic Progression in Osteoarthritic and Pre-Osteoarthritic Knees- Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Eckstein, Felix; Hitzl, Wolfgang; Duryea, Jeff; Kwoh, C. Kent; Wirth, Wolfgang

    2013-01-01

    OBJECTIVE To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). METHODS Of 4796 Osteoarthritis Initiative participants, 2835 knees with Kellgren Lawrence grade (KLG) 0–3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope ANCOVA models were used to determine differences in strength between “progressor” and “non- progressor” knees, after adjusting for age, body mass index, and pain. RESULTS 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. CONCLUSION This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. PMID:23473978

  3. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    Science.gov (United States)

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p strength was significantly higher during condition 3 than during condition 1 (p isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Changes in muscle strength and morphology after muscle unloading in Special Forces missions

    DEFF Research Database (Denmark)

    Thorlund, J B; Jakobsen, O; Madsen, T

    2011-01-01

    The purpose of the present study was to determine the changes in maximal muscle strength, rapid force capacity, jumping performance and muscle morphology following a Special Forces military operation involving 8 days of muscle unloading. Nine male Special Forces soldiers were tested before (pre) ...

  5. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure.

    Science.gov (United States)

    Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard

    2016-05-03

    Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Extramuscular myofascial force transmission within the rat anterior tibial compartment: Proximodistal differences in muscle force

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Baan, G.C.

    2001-01-01

    Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles

  7. Contribution of the Cerebellum in Cue-Dependent Force Changes During an Isometric Precision Grip Task.

    Science.gov (United States)

    Kutz, Dieter F; Schmid, Barbara C; Meindl, Tobias; Timmann, Dagmar; Kolb, Florian P

    2016-08-01

    The "raspberry task" represents a precision grip task that requires continuous adjustment of grip forces and pull forces. During this task, subjects use a specialised grip rod and have to increase the pull force linearly while the rod is locked. The positions of the fingers are unrestrained and freely selectable. From the finger positions and the geometry of the grip rod, a physical lever was derived which is a comprehensive measurement of the subject's grip behaviour. In this study, the involvement of the cerebellum in establishing cued force changes (CFC) was examined. The auditory stimulus was associated with a motor behaviour that has to be readjusted during an ongoing movement that already started. Moreover, cerebellar involvement on grip behaviour was examined. The results show that patients presenting with degenerating cerebellar disease (CBL) were able to elicit CFC and were additionally able to optimise grip behaviour by minimising the lever. Comparison of the results of CBL with a control group of healthy subjects showed, however, that the CFC incidence was significantly lower and the reduction of the lever was less in CBL. Hence, the cerebellum is involved not only in the classical conditioning of reflexes but also in the association of sensory stimuli with complex changes in motor behaviour. Furthermore, the cerebellum is involved in the optimisation of grip behaviour during ongoing movements. Recent studies lead to the assumption that the cerebello-reticulo-spinal pathway might be important for the reduced optimisation of grip behaviour in CBL.

  8. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.

    Science.gov (United States)

    Frey Law, Laura A; Shields, Richard K

    2006-03-01

    Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.

  9. Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2018-04-01

    This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.

  10. Training-induced changes in muscle CSA,muscle strength, EMG and rate of force development in elderly subjects after long-term unilateral disuse

    DEFF Research Database (Denmark)

    Suetta, Charlotte; Aagaard, Per; Rosted, Anne

    2004-01-01

    , maximal isometric strength, RFD, and muscle activation in elderly men and women recovering from long-term muscle disuse and subsequent hip surgery. The improvement in both muscle mass and neural function is likely to have important functional implications for elderly individuals........ Thirty subjects completed the trial. In the strength-training group, significant increases were observed in maximal isometric muscle strength (24%, P impulse (27-32%, P

  11. The effect of signal acquisition and processing choices on ApEn values: towards a "gold standard" for distinguishing effort levels from isometric force records.

    Science.gov (United States)

    Forrest, Sarah M; Challis, John H; Winter, Samantha L

    2014-06-01

    Approximate entropy (ApEn) is frequently used to identify changes in the complexity of isometric force records with ageing and disease. Different signal acquisition and processing parameters have been used, making comparison or confirmation of results difficult. This study determined the effect of sampling and parameter choices by examining changes in ApEn values across a range of submaximal isometric contractions of the first dorsal interosseus. Reducing the sample rate by decimation changed both the value and pattern of ApEn values dramatically. The pattern of ApEn values across the range of effort levels was not sensitive to the filter cut-off frequency, or the criterion used to extract the section of data for analysis. The complexity increased with increasing effort levels using a fixed 'r' value (which accounts for measurement noise) but decreased with increasing effort level when 'r' was set to 0.1 of the standard deviation of force. It is recommended isometric force records are sampled at frequencies >200Hz, template length ('m') is set to 2, and 'r' set to measurement system noise or 0.1SD depending on physiological process to be distinguished. It is demonstrated that changes in ApEn across effort levels are related to changes in force gradation strategy. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure.

    Science.gov (United States)

    Tayashiki, Kota; Hirata, Kosuke; Ishida, Kiraku; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-06-01

    Muscle size of the hamstring and gluteus maximus (GM) as well as intra-abdominal pressure (IAP) are considered as factors affecting the torque development during hip extension. This study examined the associations of torque development during maximal voluntary isometric hip extension with IAP and muscle size of the hamstring and GM. Anatomical cross-sectional area (ACSA) of the hamstring and thickness of GM were determined in 20 healthy young males using an ultrasonography apparatus (Experiment 1). Torque and IAP were simultaneously measured while subjects performed maximal voluntary isometric hip extension. The IAP was measured using a pressure transducer placed in the rectum and determined at the time at which the developed torque reached to the maximal. In Experiment 2, torque and IAP were measured during maximal voluntary isometric hip flexion in 18 healthy young males. The maximal hip extension torque was significantly correlated with the IAP (r = 0.504, P = 0.024), not with the ACSA of the hamstring (r = 0.307, P = 0.188) or the thickness of GM (r = 0.405, P = 0.076). The relationship was still significant even when the ACSA of the hamstring and the thickness of GM were adjusted statistically (r = 0.486, P = 0.041). The maximal hip flexion torque was not significantly correlated with the IAP (r = -0.118, P = 0.642). The current results suggest that IAP can contribute independently of the muscle size of the agonists to maximal voluntary hip extension torque.

  13. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  14. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  15. [Evaluation of isometric force in lower limbs and body composition in preterm infants].

    Science.gov (United States)

    Mata Zubillaga, D; Rodríguez Fernández, C; Rodríguez Fernández, L M; de Paz Fernández, J A; Arboleda Franco, S; Alonso Patiño, F

    2015-10-01

    Strength is a physical quality with a clear influence on quality of life. It is determined by the structure of the musculoskeletal system, and depends on the muscular structure. It has been described that prematurity conditions both qualities. The aims of this study are to determine whether prematurity is associated with strength or body composition and evaluate the relationship between prematurity, strength and muscle mass. Case-control study. Participants were premature 7-to-11 year-old children and full-term birth controls. Strength was measured by a strength gauge and body composition from DEXA (duel-energy X-ray absorptiometry) scans. A total of 89 subjects were included and divided into three groups: 30 prematures with birth-weight ≤ 1500g, 29 prematures with birth-weight 1500-2000g, and 30 controls. Weight and BMI z-score was lower in the premature group. No differences were found in muscular mass or strength between groups. A ratio was established between strength and weight or muscular mass. It was observed that it was possible for them to move four times their weight, without finding any differences between groups or a relationship with birth-weight. Between 7 and 11 years of age, children who were premature have lower weight and BMI than the rest of the children. However, there were no differences in body composition or strength between preterm children and controls. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  16. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    Science.gov (United States)

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Influence of aging on isometric muscle strength, fat-free mass and electromyographic signal power of the upper and lower limbs in women

    Science.gov (United States)

    Amaral, Josária F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, José M.

    2014-01-01

    Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.7±3.5 years; middle age (MA) n=15, 58.6±4.2 years; and older adults (OA). n=15, 72.0±4.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and pisometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705

  18. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure.

    OpenAIRE

    Buller, N P; Jones, D; Poole-Wilson, P A

    1991-01-01

    Skeletal muscle function was measured as force production and fatigue in both the quadriceps (a large locomotive muscle) and adductor pollicis (a small intrinsic hand muscle) in five healthy volunteers, five patients with mild chronic heart failure, and five patients with severe chronic heart failure. The quadriceps of patients with chronic heart failure had a reduced muscle cross sectional area, a reduced maximum isometric force production, and an increased tendency to fatigue. Isometric for...

  19. The Comparison of Ankle Muscles Isometric Strength and Foot Eversion in Male Individuals with Patellofemoral Pain Syndrome and Healthy Peers: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    V. Mazloum

    2017-01-01

    Full Text Available Introduction: Proximal and distal factors to the knee joint can be assumed as etiology of patellofemoral pain syndrome (PFPS. Some distal factors include excessive foot pronation and medial tibia torsion. The purpose of this study was to compare ankle musculature strength and rearfoot eversion in individuals with and without PFPS. Methods: Forty males (20 healthy and 20 patients voluntarily participated in this case-control study. Isometric ankle dorsiflexor and invertor muscles strength, rearfoot eversion range of motion (ROM, and Navicular depression were respectively evaluated by handheld dynamometer, goniometry, and Navicular Drop Test by a single examiner for both groups. To analyze the measurements, Independent Samples t test for parametric data and Mann-Whitney U test for nonparametric data at P0.05. Furthermore, no significant differences were observed between patients with PFPS and healthy counterparts regarding rearfoot eversion and Navicular depression (P>0.05. Conclusion: It can be deduced that isometric ankle dorsiflexor and invertor muscles strength, rearfoot eversion ROM, and foot pronation are not difference in patients with PFPS and healthy persons. 

  20. RELATIONSHIP BETWEEN ISOMETRIC THIGH MUSCLE STRENGTH AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES (MCIDS) IN KNEE FUNCTION IN OSTEOARTHRITIS – DATA FROM THE OSTEOARTHRITIS INITIATIVE

    Science.gov (United States)

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2014-01-01

    Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012

  1. Relationship between isometric thigh muscle strength and minimum clinically important differences in knee function in osteoarthritis: data from the osteoarthritis initiative.

    Science.gov (United States)

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2015-04-01

    To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.

  2. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    Science.gov (United States)

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  3. The Effect of Antagonist Muscle Sensory Input on Force Regulation.

    Directory of Open Access Journals (Sweden)

    Tanya Onushko

    Full Text Available The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years, healthy subjects performed constant isometric knee flexion contractions (agonist at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%, subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40% between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical are likely involved.

  4. Muscle Fatigue in the Three Heads of the Triceps Brachii During a Controlled Forceful Hand Grip Task with Full Elbow Extension Using Surface Electromyography.

    Science.gov (United States)

    Ali, Asraf; Sundaraj, Kenneth; Badlishah Ahmad, R; Ahamed, Nizam Uddin; Islam, Anamul; Sundaraj, Sebastian

    2015-06-27

    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.

  5. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women.

    Directory of Open Access Journals (Sweden)

    Amanda C Amorim

    Full Text Available Pelvic floor muscle (PFM force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs while performing three different tasks: (a isolated PFM contraction; (b PFM contraction combined with hip adduction (30% and 50% maximum hip force; and (c PFM contraction combined with hip abduction (30% and 50% maximum hip force. Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction for all variables: Maximum force (N, instant of maximum-force occurrence (s, mean force in an 8-second window (N, and PFM force loss (N.s. We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05. PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.

  6. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    2018-05-01

    Full Text Available Estimating muscle force by surface electromyography (sEMG is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs in two steps: (1 learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2 extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  7. Are skeletal muscles independent actuators? Force transmission from soleus muscle in the cat

    NARCIS (Netherlands)

    Maas, H.; Sandercock, T.G.

    2008-01-01

    It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from

  8. Towards evidence based strength training: a comparison of muscle forces during deadlifts, goodmornings and split squats.

    Science.gov (United States)

    Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2017-01-01

    To ensure an efficient and targeted adaptation with low injury risk during strength exercises, knowledge of the participant specific internal loading conditions is essential. The goal of this study was to calculate the lower limb muscles forces during the strength exercises deadlifts, goodmornings and splits squats by means of musculoskeletal simulation. 11 participants were assessed performing 10 different variations of split squats by varying the step length as well as the maximal frontal tibia angle, and 13 participants were measured performing deadlift and goodmorning exercises. Using individualised musculoskeletal models, forces of the Quadriceps ( four parts), Hamstrings (four parts) and m. gluteus maximus (three parts) were computed. Deadlifts resulted highest loading for the Quadriceps, especially for the vasti (18-34 N/kg), but not for the rectus femoris (8-10 N/kg), which exhibited its greatest loading during split squats (13-27 N/kg) in the rear limb. Hamstrings were loaded isometrically during goodmornings but dynamically during deadlifts. For the m. gluteus maximus , the highest loading was observed during split squats in the front limb (up to 25 N/kg), while deadlifts produced increasingly, large loading over large ranges of motion in hip and knee. Acting muscle forces vary between exercises, execution form and joint angle. For all examined muscles, deadlifts produced considerable loading over large ranges of motion, while split squats seem to be highly dependent upon exercise variation. This study provides key information to design strength-training programs with respect to loading conditions and ranges of motion of lower extremity muscles.

  9. Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids.

    Science.gov (United States)

    Dong, Shufang; Lu, Ke-Qian; Sun, Jian Qiao; Rudolph, Katherine

    2006-03-01

    In rehabilitation from neuromuscular trauma or injury, strengthening exercises are often prescribed by physical therapists to recover as much function as possible. Strengthening equipment used in clinical settings range from low-cost devices, such as sandbag weights or elastic bands to large and expensive isotonic and isokinetic devices. The low-cost devices are incapable of measuring strength gains and apply resistance based on the lowest level of torque that is produced by a muscle group. Resistance that varies with joint angle can be achieved with isokinetic devices in which angular velocity is held constant and variable torque is generated when the patient attempts to move faster than the device but are ineffective if a patient cannot generate torque rapidly. In this paper, we report the development of a versatile rehabilitation device that can be used to strengthen different muscle groups based on the torque generating capability of the muscle that changes with joint angle. The device is low cost, is smaller than other commercially available machines, and can be programmed to apply resistance that is unique to a particular patient and that will optimize strengthening. The core of the device, a damper with smart magnetorheological fluids, provides passive exercise force. A digital adaptive control is capable of regulating exercise force precisely following the muscle strengthening profile prescribed by a physical therapist. The device could be programmed with artificial intelligence to dynamically adjust the target force profile to optimize rehabilitation effects. The device provides both isometric and isokinetic strength training and can be developed into a small, low-cost device that may be capable of providing optimal strengthening in the home.

  10. Isometric parameters in the monitoring of maximal strength, power, and hypertrophic resistance-training.

    Science.gov (United States)

    Peltonen, Heikki; Walker, Simon; Lähitie, Anuliisa; Häkkinen, Keijo; Avela, Janne

    2018-02-01

    This study monitored strength-training adaptations via isometric parameters throughout 2 × 10 weeks of hypertrophic (HYP I-II) or 10 weeks maximum strength (MS) followed by 10 weeks power (P) training with untrained controls. Trainees performed bilateral isometric leg press tests analyzed for peak force (maximal voluntary contraction (MVC)) and rate of force development (RFD) every 3.5 weeks. These parameters were compared with dynamic performance, voluntary and electrically induced isometric contractions, muscle activity, and cross-sectional area (CSA) in the laboratory before and after 10 and 20 weeks. RFD increased similarly during the first 7 weeks (HYP I, 44% ± 53%; MS, 48% ± 55%, P strength/power training, while MVC cannot distinguish between strength or muscle mass changes. Monitoring RFD provided important information regarding plateaus in RFD improvement, which were observed in dynamic explosive performances after HYP II compared with P.

  11. Time-resolved X-ray diffraction studies of frog skeletal muscle isometrically twitched by two successive stimuli using synchrotron radiation

    International Nuclear Information System (INIS)

    Tanaka, Hidehiro; Kobayashi, Takakazu; Wakabayashi, Katsuzo

    1986-01-01

    In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 0 C by two successive stimuli at an interval during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1,0 and 1,1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections, the delay between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contr0116e to tension development after their arrival in the vicinity of the thin filaments during contraction. (Auth.)

  12. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    Science.gov (United States)

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  13. Proton Density Fat-Fraction of Rotator Cuff Muscles Is Associated With Isometric Strength 10 Years After Rotator Cuff Repair: A Quantitative Magnetic Resonance Imaging Study of the Shoulder.

    Science.gov (United States)

    Karampinos, Dimitrios C; Holwein, Christian; Buchmann, Stefan; Baum, Thomas; Ruschke, Stefan; Gersing, Alexandra S; Sutter, Reto; Imhoff, Andreas B; Rummeny, Ernst J; Jungmann, Pia M

    2017-07-01

    Quantitative muscle fat-fraction magnetic resonance (MR) imaging techniques correlate with semiquantitative Goutallier scores with failure after rotator cuff (RC) repair. To investigate the relationship of proton density fat fraction (PDFF) of the RC muscles with semiquantitative MR scores, cartilage T2 relaxation times, and clinical isometric strength measurements in patients 10 years after unilateral RC repair. Cross-sectional study; Level of evidence, 3. Bilateral shoulder MR imaging was performed in 13 patients (11 male, 2 female; age, 72 ± 8 years) 10.9 ± 0.4 years after unilateral autologous periosteal flap augmented RC repair (total shoulders assessed, N = 26). Goutallier classification, muscle atrophy, RC tendon integrity, and cartilage defects were determined based on morphological MR sequences. A paracoronal 2D multi-slice multi-echo sequence was used for quantitative cartilage T2 mapping. A chemical shift-encoding-based water-fat separation technique (based on a 6-echo 3D spoiled gradient echo sequence) was used for quantification of the PDFF of RC muscles. Isometric shoulder abduction strength was measured clinically. Mean and SD, Pearson correlation, and partial Spearman correlation were calculated. There were 6 RC full-thickness retears in ipsilateral shoulders and 6 RC full-thickness tears in contralateral shoulders. Isometric shoulder abduction strength was not significantly different between ipsilateral and contralateral shoulders (50 ± 24 N vs 54 ± 24 N; P = .159). The mean PDFF of RC muscles was 11.7% ± 10.4% (ipsilateral, 14.2% ± 8.5%; contralateral, 9.2% ± 7.8%; P = .002). High supraspinatus PDFF correlated significantly with higher Goutallier scores ( R = 0.75, P isometric muscle strength ( R = -0.49, P = .011). This correlation remained significant after adjustment for muscle area measurements and tendon rupture ( R = -0.41, P = .048). More severe cartilage defects at the humerus were significantly associated with higher supraspinatus

  14. Identification of mastication organ muscle forces in the biocybernetic perspective.

    Science.gov (United States)

    Kijak, Edward; Margielewicz, Jerzy; Gąska, Damian; Lietz-Kijak, Danuta; Więckiewicz, Włodzimierz

    2015-01-01

    PURPOSE OF THE PAPER: This paper is an attempt to mathematically describe the mastication organ muscle functioning, taking into consideration the impact of the central nervous system. To conduct model tests, three types of craniums were prepared: short, normal, and long. The necessary numeric data, required to prepare the final calculation models of different craniofacial types, were used to identify muscle and occlusion forces generated by muscles in the area of incisors and molars. The mandible in model tests was treated as a nondeformable stiff form. The formal basis for the formulated research problem was reached using the laws and principles of mechanics and control theory. The proposed method treats muscles as "black boxes," whose properties automatically adapt to the nature of the occlusion load. The identified values of occlusion forces referred to measurements made in clinical conditions. The conducted verification demonstrated a very good consistency of model and clinical tests' results. The proposed method is an alternative approach to the so far applied methods of muscle force identification. Identification of muscle forces without taking into account the impact of the nervous system does not fully reflect the conditions of mastication organ muscle functioning.

  15. Isokinetic and Isometric Muscle Strength in a Healthy Population – with Special Reference to Age and Gender

    DEFF Research Database (Denmark)

    Danneskiold-Samsøe, B; Bartels, E M; Bülow, P M

    2009-01-01

    decreases in a linear fashion from the age of 25 years down to between 54% and 89% at the age of 75 years, and seems not highly dependent on any other parameter than age. For women, the muscle strength is dependent on weight and is only related to age from around 40 years of age. The decrease in muscle...

  16. Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix

    2014-08-01

    Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

  17. Local muscle metabolic demand induced by neuromuscular electrical stimulation and voluntary contractions at different force levels: a NIRS study

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    2016-06-01

    Full Text Available Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES has been consistently documented to be greater than voluntary contractions (VOL at the same force level (10-50% maximal voluntary contraction-MVC. However, we have shown using a near-infrared spectroscopy (NIRS technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC and VOL at 30% MVC (VOL-30%MVC and MVC (VOL-MVC level in 8 healthy men (23-33-y. Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.

  18. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-06-13

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.

  19. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    Science.gov (United States)

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  20. Chronic massive rotator cuff tear in rats: in vivo evaluation of muscle force and three-dimensional histologic analysis.

    Science.gov (United States)

    Ditsios, Konstantinos; Boutsiadis, Achilleas; Kapoukranidou, Dorothea; Chatzisotiriou, Athanasios; Kalpidis, Ioannis; Albani, Maria; Christodoulou, Anastasios

    2014-12-01

    Massive rotator cuff tear repair is frequently complicated by unsatisfactory clinical results due to possible tendon retraction, muscle atrophy, and fatty degeneration. The objective of this study was the development of a chronic massive tear in a rat model and the evaluation of the muscle force in vivo and of the histologic changes in a 3- dimensional manner. To simulate massive rotator cuff tears, both the supraspinatus (SS) and the infraspinatus (IS) tendons were surgically detached from the right humerus of 15 male adult Sprague-Dawley rats. Twelve weeks postoperatively, all animals underwent isometric tension recordings of both the SS and IS muscles. Histologic analysis and image deconvolution processing were performed to estimate the presence and the distribution of atrophy in 3 dimensions. An overall 30% and 35% reduction in muscle force of the SS and IS muscles, respectively, was observed compared with the left uninjured shoulder (P muscle groups. These results show that functional impairment of SS and IS muscles after chronic massive tendon tears could be attributed to the decrease in muscle force production during their repair on the greater tuberosity and, second, to the comparatively greater degeneration of their dorsal part. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P contraction, subjects dropping in force showed lower ATP economy compared with those maintaining the force (3.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P contraction could be due to an increase in the ATP economy of contracting muscle fibers offsetting the effects of increased temperature and low ATP economy...

  2. The nervous system does not compensate for an acute change in the balance of passive force between synergist muscles.

    Science.gov (United States)

    Lacourpaille, Lilian; Nordez, Antoine; Hug, François

    2017-10-01

    It is unclear how muscle activation strategies adapt to differential acute changes in the biomechanical characteristics between synergist muscles. This issue is fundamental to understanding the control of almost every joint in the body. The aim of this human experiment was to determine whether the relative activation of the heads of the triceps surae [gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus (SOL)] compensates for differential changes in passive force between these muscles. Twenty-four participants performed isometric ankle plantarflexion at 20 N m and 20% of the active torque measured during a maximal contraction, at three ankle angles (30 deg of plantarflexion, 0 and 25 deg of dorsiflexion; knee fully extended). Myoelectric activity (electromyography, EMG) provided an index of neural drive. Muscle shear modulus (elastography) provided an index of muscle force. Passive dorsiflexion induced a much larger increase in passive shear modulus for GM (+657.6±257.7%) than for GL (+488.7±257.9%) and SOL (+106.6±93.0%). However, the neural drive during submaximal tasks did not compensate for this change in the balance of the passive force. Instead, when considering the contraction at 20% MVC, GL root mean square (RMS) EMG was reduced at both 0 deg (-39.4±34.5%) and 25 deg dorsiflexion (-20.6±58.6%) compared with 30 deg plantarflexion, while GM and SOL RMS EMG did not change. As a result, the GM/GL ratio of shear modulus was higher at 0 deg and 25 deg dorsiflexion than at 30 deg plantarflexion, indicating that the greater the dorsiflexion angle, the stronger the bias of force to GM compared with GL. The magnitude of this change in force balance varied greatly between participants. © 2017. Published by The Company of Biologists Ltd.

  3. Effects of combined and classic training on different isometric rate of force development parameters of leg extensors in female volleyball players: Discriminative analysis approach

    Directory of Open Access Journals (Sweden)

    Rajić Branislav

    2013-01-01

    Full Text Available Background: The aim of this study is to verify the effects of the combined and classic training of different isometric rates of force development (RFD parameters of legs. Materials and Methods: Three groups of female athletes was tested: Experimental group (N = 12, classically trained group (N = 11, and control group (N = 20 of athletes. The isometric "standing leg extension" and "Rise on Toes" tests were conducted to evaluate the maximal force, time necessary time to reach it and the RFD analyzed at 100 ms, 180 ms, 250 ms from the onset, and 50-100% of its maximal result. Results: The maximal RFD of legs and calves are dominant explosive parameters. Special training enhanced the RFD of calves of GROUP SPEC at 100 ms (P = 0.05, at 180 ms (P = 0.039, at 250 ms (P = 0.039, at 50% of the F max (P = 0.031 and the F max (P = 0.05. Domination of GROUP SPEC toward GROUP CLASS and GROUP CONTROL is in case of legs at 100 ms (P = 0.04; at 180 ms (P = 0.04; at 250 ms (P = 0.00; at 50% of the F max (P = 0.01 and at the F max (P = 0.00; in case of calves at 100 ms (P = 0.07; 180 ms (P = 0.001; at 250 ms (P = 0.00; at 50% of the F max (P = 0.00 and at F max (P = 0.000. Conclusion: Dominant explosive factors are maximal RFD of leg extensors and calves, and legs at 250ms. Specific training enhanced explosiveness of calves of GROUP SPEC general and partial domination of GROUP SPEC by 87% over GROUP CLASS , and 35% over GROUP CONTROL .

  4. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.

    Science.gov (United States)

    Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2004-01-01

    This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate

  5. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    Science.gov (United States)

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt.

  6. Modelling of Muscle Force Distributions During Barefoot and Shod Running

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%. Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman’s ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.

  7. Reliability of surface electromyography activity of gluteal and hamstring muscles during sub-maximal and maximal voluntary isometric contractions.

    Science.gov (United States)

    Bussey, Melanie D; Aldabe, Daniela; Adhia, Divya; Mani, Ramakrishnan

    2018-04-01

    Normalizing to a reference signal is essential when analysing and comparing electromyography signals across or within individuals. However, studies have shown that MVC testing may not be as reliable in persons with acute and chronic pain. The purpose of this study was to compare the test-retest reliability of the muscle activity in the biceps femoris and gluteus maximus between a novel sub-MVC and standard MVC protocols. This study utilized a single individual repeated measures design with 12 participants performing multiple trials of both the sub-MVC and MVC tasks on two separate days. The participant position in the prone leg raise task was standardised with an ultrasonic sensor to improve task precession between trials/days. Day-to-day and trial-to-trial reliability of the maximal muscle activity was examined using ICC and SEM. Day-to-day and trial-to-trial reliability of the EMG activity in the BF and GM were high (0.70-0.89) to very high (≥0.90) for both test procedures. %SEM was <5-10% for both tests on a given day but higher in the day-to-day comparisons. The lower amplitude of the sub-MVC is a likely contributor to increased %SEM (8-13%) in the day-to-day comparison. The findings show that the sub-MVC modified prone double leg raise results in GM and BF EMG measures similar in reliability and precision to the standard MVC tasks. Therefore, the modified prone double leg raise may be a useful substitute for traditional MVC testing for normalizing EMG signals of the BF and GM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acute effects of maximal isometric muscle action of the elbow extensors on contralateral dynamic task of the elbow flexors: a pilot study

    Directory of Open Access Journals (Sweden)

    Cauê V La Scala Teixeira

    2017-12-01

    Full Text Available ABSTRACT Aim the aim was to investigate the influence of a maximal isometric muscle action of the elbow extensors on the contralateral dynamic task of the elbow flexors. Methods Seventeen recreationally trained men (23.3 ± 4.9 yrs, BMI: 24.8 ± 2.2 Kg/m² underwent two randomized different testing sessions separated by one week. In the control session (CON all subjects performed a maximum number of repetitions test (RMs at 75%1RM using the right elbow flexors. The experimental session (EXP was similar to the CON; however, all subjects were instructed to perform RMs at 75%1RM by using the right elbow flexors and maintaining the maximal voluntary contraction of the left elbow extensors during the test. RMs, rating of perceived exertion (RPE, and training volume (TV were measured and compared between sessions. Results The EXP showed a significant 10.4% increase on the RMs (13.8 vs. 12.5, p < 0.001, d = 0.44 and 12.1% increase in TV (238.0 vs. 212.4 kg, p < 0.001, d = 0.43 than CON. No differences were observed for RPE between sessions. Conclusion The maximum voluntary contraction of the left elbow extensors increased the RMs of the contralateral elbow flexors, reflecting a higher TV, and no differences in the RPE. Our results suggest that the investigated method may be a viable and practical alternative to increase the acute strength performance of elbow flexors when using submaximal loads.

  9. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation

    International Nuclear Information System (INIS)

    Wakabayashi, K.; Tanaka, H.; Amemiya, Y.; Fujishima, A.; Kobayashi, T.; Hamanaka, T.; Sugi, H.; Mitsui, T.

    1985-01-01

    Time-resolved x-ray diffraction studies have been made on the 5.9- and 5.1-nm actin layer lines from frog skeletal muscles during an isometric tetanus at 6 degrees C, using synchrotron radiation. The integrated intensities of these actin layer lines were found to increase during a tetanus by 30-50% for the 5.9-nm reflection and approximately 70% for the 5.1-nm reflection of the resting values. The intensity increase of both reflections was greater than that taking place in the transition from rest to rigor state. The intensity change of the 5.9-nm reflection preceded those of the myosin 42.9-nm off-meridional reflection and of the equatorial reflections, as well as the isometric tension development. The intensity profile of the 5.9-nm layer line during contraction was found to be different from that observed in the rigor state

  10. Muscle response to pneumatic hand tool torque reaction forces.

    Science.gov (United States)

    Radwin, R G; VanBergeijk, E; Armstrong, T J

    1989-06-01

    Surface electromyography was used for studying the effects of torque reaction force acting against the hand, on forearm muscle activity and grip force for five subjects operating right angle, air shut-off nutrunners. Four tools having increasing spindle torque were operated using short and long torque reaction times. Nutrunner spindle torque ranged between 30 Nm and 100 Nm. Short torque reaction time was considered 0.5 s while long torque reaction time was 2 s. Peak horizontal force was the greatest component of the reaction force acting against the hand and accounted for more than 97% of the peak resultant hand force. Peak hand force increased from 89 N for the smallest tool to 202 N for the largest tool. Forearm muscle rms EMG, scaled for grip force, indicated average flexor activity during the Torque-reaction phase was more than four times greater than the Pre-start and Post Shut-off phases, and two times greater than the Run-down phase. Flexor EMG activity during the Torque-reaction phase increased for increasing tool peak spindle torque. Average flexor rms EMG activity, scaled for grip force, during the Torque-reaction phase increased from 372 N for the 30 Nm nutrunner to 449 N for the 100 Nm nutrunner. Flexor rms EMG activity averaged during the Torque-reaction phase and scaled for grip force was 390 N for long torque reaction times and increased to 440 N for short torque reaction times. Flexor rms EMG integrated over the torque reaction phase was 839 Ns for long torque reaction times and decreased to 312 Ns for short torque reaction times. The average latency between tool spindle torque onset and peak initial flexor rms EMG for long torque reaction times was 294 ms which decreased to 161 ms for short torque reaction times. The average latency between peak tool spindle torque, just prior to tool shut-off, and peak final rms EMG for long torque reaction times was 97 ms for flexors and 188 ms for extensors, which decreased for short torque reaction times to 47

  11. Eight-week vibration training of the elbow flexors by force modulation : effects on dynamic and isometric strength

    NARCIS (Netherlands)

    Xu, L.; Cardinale, M.; Rabotti, C.; Beju, B.; Mischi, M.

    2016-01-01

    Vibration exercise (VE) has been suggested as an effective method to improve strength and power capabilities. However, the underlying mechanisms in response to VE are still unclear. A pulley-like VE system, characterized by sinusoidal force applications has been developed and tested for proof of

  12. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  13. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    Science.gov (United States)

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two

  14. Changes in muscle force-length properties affect the early rise of force in vivo

    DEFF Research Database (Denmark)

    Blazevich, Anthony J; Cannavan, Dale; Horne, Sara

    2009-01-01

    Changes in contractile rate of force development (RFD), measured within a short time interval from contraction initiation, were measured after a period of strength training that led to increases in muscle fascicle length but no measurable change in neuromuscular activity. The relationship between...

  15. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  16. Intermuscular interaction via myofascial force transmission: Effects of tibialis anterior and extensor digitorum longus length on force transmission from rat extensor digitorum longus muscle

    NARCIS (Netherlands)

    Maas, Huub; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    Force transmission in rat anterior crural compartment, containing tibialis anterior (TA), extensor hallucis longus (EHL) and extensor digitorum longus (EDL) muscles, was investigated. These muscles together with the muscles of the peroneal compartment were excited maximally. Force was measured at

  17. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    length, passive stiffness and passive force of spastic GA were decreased whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However......, the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate......The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO) and plantaris (PL) were assessed in anesthetized spastic...

  18. A Phenomenological Model and Validation of Shortening Induced Force Depression during Muscle Contractions

    Science.gov (United States)

    McGowan, C.P.; Neptune, R.R.; Herzog, W.

    2009-01-01

    History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585

  19. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  20. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Science.gov (United States)

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  1. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces

    NARCIS (Netherlands)

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2015-01-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization

  2. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  3. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  4. Effect of age and gender on the surface electromyogram during various levels of isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar; Kumar, Dinesh; Kalra, Chandan; Burne, John; Bastos, Teodiano

    2011-01-01

    This study reports the effects of age and gender on the surface electromyogram while performing isometric contraction. Experiments were conducted with two age groups--Young (Age: 20-29) and Old (Age: 60-69) where they performed sustained isometric contractions at various force levels (50%, 75%, 100% of maximum voluntary contraction). Traditional features such as root mean square (RMS) and median frequency (MDF) were computed from the recorded sEMG. The result indicates that the MDF of sEMG was not significantly affected by age, but was impacted by gender in both age groups. Also there was a significant change in the RMS of sEMG with age and gender at all levels of contraction. The results also indicate a large inter-subject variation. This study will provide an understanding of the underlying physiological effects of muscle contraction and muscle fatigue in different cohorts.

  5. Changes in maximum muscle strength and rapid muscle force characteristics after long-term special support and reconnaissance missions

    DEFF Research Database (Denmark)

    Christensen, Peter Astrup; Jacobsen, Jacob Ole; Thorlund, Jonas B

    2008-01-01

    PURPOSE: The purpose of the present study was to examine the impact of 8 days of immobilization during a Special Support and Reconnaissance mission (SSR) on muscle mass, contraction dynamics, maximum jump height/power, and body composition. METHODS: Unilateral maximal voluntary contraction, rate...... of force development, and maximal jump height were tested to assess muscle strength/power along with whole-body impedance analysis before and after SSR. RESULTS: Body weight, fat-free mass, and total body water decreased (4-5%) after SSR, along with impairments in maximal jump height (-8%) and knee...... extensor maximal voluntary contraction (-10%). Furthermore, rate of force development was severely affected (-15-30%). CONCLUSIONS: Eight days of immobilization during a covert SSR mission by Special Forces soldiers led to substantial decrements in maximal muscle force and especially in rapid muscle force...

  6. Effect of Constraint Loading on the Lower Limb Muscle Forces in Weightless Treadmill Exercise

    Directory of Open Access Journals (Sweden)

    Ning Guo

    2018-01-01

    Full Text Available Long exposure to the microgravity will lead to muscle atrophy and bone loss. Treadmill exercise could mitigate the musculoskeletal decline. But muscle atrophy remains inevitable. The constraint loading applied on astronauts could affect the muscle force and its atrophy severity. However, the quantitative correlation between constraint loading mode and muscle forces remains unclear. This study aimed to characterize the influence of constraint loading mode on the lower limb muscle forces in weightless treadmill exercise. The muscle forces in the full gait cycle were calculated with the inverse dynamic model of human musculoskeletal system. The calculated muscle forces at gravity were validated with the EMG data. Muscle forces increased at weightlessness compared with those at the earth’s gravity. The increasing percentage from high to low is as follows: biceps femoris, gastrocnemius, soleus, vastus, and rectus femoris, which was in agreement with the muscle atrophy observed in astronauts. The constraint loading mode had an impact on the muscle forces in treadmill exercise and thus could be manipulated to enhance the effect of the muscle training in spaceflight. The findings could provide biomechanical basis for the optimization of treadmill constraint system and training program and improve the countermeasure efficiency in spaceflight.

  7. Contractile Force of Human Extraocular Muscle: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Guo

    2016-01-01

    Full Text Available Aim. The length-contractile force relationships of six human extraocular muscles (EOMs in primary innervations should be determined during eye movement modeling and surgery of clinical EOMs. This study aims to investigate these relationships. Method. The proposal is based on the assumption that six EOMs have similar constitutive relationships, with the eye suspended in the primary position. The constitutive relationships of EOMs are obtained by optimizing from previous experimental data and the theory of mechanical equilibrium using traditional model. Further, simulate the existing experiment of resistance force, and then compare the simulated results with the existing experimental results. Finally, the mechanical constitutive relationships of EOMs are obtained. Results. The results show that the simulated resistance forces from the other four EOMs except for the horizontal recti well agree with previous experimental results. Conclusion. The mechanical constitutive relationships of six EOMs in primary innervations are obtained, and the rationality of the constitutive relationships is verified. Whereafter, the active stress-strain relationships of the six EOMs in the primary innervations are obtained. The research results can improve the eye movement model to predict the surgical amounts of EOMs before EOM surgery more precisely.

  8. The characteristics of a pneumatic muscle

    Directory of Open Access Journals (Sweden)

    Pietrala Dawid

    2017-01-01

    Full Text Available The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics. It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics. It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics. The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

  9. The characteristics of a pneumatic muscle

    Science.gov (United States)

    Pietrala, Dawid

    The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics). It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics). The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

  10. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    Science.gov (United States)

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P  0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.

  11. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    Science.gov (United States)

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training

  12. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    Science.gov (United States)

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing).The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only).In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation).IN ORDER TO INCREASE THE VALIDITY OF TRUNK STRENGTH TESTING THE LETTER SHOULD INCLUDE: specific warm-up, good pelvic fixation and visual feedback.

  13. Anterior cruciate ligament tear induces a sustained loss of muscle fiber force production.

    Science.gov (United States)

    Gumucio, Jonathan P; Sugg, Kristoffer B; Enselman, Elizabeth R Sibilsky; Konja, Alexis C; Eckhardt, Logan R; Bedi, Asheesh; Mendias, Christopher L

    2018-01-18

    Patients with anterior cruciate ligament (ACL) tears have persistent quadriceps strength deficits that are thought to be due to altered neurophysiological function. Our goal was to determine the changes in muscle fiber contractility independent of the ability of motor neurons to activate fibers. We obtained quadriceps biopsies of patients undergoing ACL reconstruction, and additional biopsies 1, 2, and 6 months after surgery. Muscles fiber contractility was assessed in vitro, along with whole muscle strength testing. Compared with controls, patients had a 30% reduction in normalized muscle fiber force at the time of surgery. One month later, the force deficit was 41%, and at 6 months the deficit was 23%. Whole muscle strength testing demonstrated similar trends. While neurophysiological dysfunction contributes to whole muscle weakness, there is also a reduction in the force generating capacity of individual muscle cells independent of alpha motor neuron activation. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  14. Myofascial force transmission causes interaction between adjacent muscles and connective tissue: Effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Baan, G.C.

    2001-01-01

    Muscles within the anterior tibial compartment (extensor digitorum longus: EDL. tibialis anterior: TA, and extensor hallucis longus muscles: EHL) and within the peroneal compartment were excited simultaneously and maximally. The ankle joint was fixed kept at 90°. For EDL length force characteristics

  15. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres

    Science.gov (United States)

    Vandenboom, R; Claflin, D R; Julian, F J

    1998-01-01

    The effect of rapid shortening on rate of force regeneration (dF/dtR) was examined in single, intact frog (Rana temporaria) skeletal muscle fibres (3·0 °C). Step releases leading to unloaded shortening were applied after 500 ms of stimulation, during the plateau of an isometric tetanus. Initial mean sarcomere length ranged from 2·05 to 2·35 μm; force regeneration after shortening was at 2·00 μm.Values for dF/dtR following a 25 nm half-sarcomere−1 release were 3·17 ± 0·17 (mean ± s.e.m., n= 8) times greater than the initial rate of rise of force before release (dF/dtI). As release size was increased from 25 to 175 nm half-sarcomere−1, the relationship between release size and dF/dtR decreased sharply before attaining a plateau value that was 1·34 ± 0·09 times greater than dF/dtI. Despite wide variations in dF/dtR, the velocity of unloaded shortening remained constant (2·92 ± 0·08 μm half-sarcomere−1 s−1; n= 8) for the different release amplitudes used in this study.To investigate its role in the attenuation of dF/dtR with increased shortening, the effects of rapid ramp (constant velocity) shortening on intracellular free Ca2+ concentration ([Ca2+]i) were monitored using the Ca2+-sensitive fluorescent dye furaptra. Compared with an isometric contraction, rapid fibre shortening was associated with a transient increase in [Ca2+]i while force regeneration after shortening was associated with a transient reduction in [Ca2+]i. The greatest reductions in [Ca2+]i were associated with the largest amplitude ramps.Cross-bridge-mediated modifications of the Ca2+ affinity of troponin C (TnC) may explain the fluctuations in [Ca2+]i observed during and after ramps. Associated fluctuations in TnC Ca2+ occupancy could play a role in the reduction of dF/dtR with increasing release size. PMID:9679172

  16. Low-Back Biomechanics and Static Stability During Isometric Pushing

    Science.gov (United States)

    Granata, Kevin P.; Bennett, Bradford C.

    2006-01-01

    Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction of the applied load, and trunk moment were influenced (p pushing task, and foot position. A biomechanical model was used to analyze the posture and hand force data gathered from the pushing exertions. Model results indicate that pushing exertions provide significantly (p pushing exertions. If one maintains stability by means of cocontraction, additional spinal load is thereby created, increasing the risk of overload injury. Thus it is important to consider muscle cocontraction when evaluating the biomechanics of pushing exertions. Potential applications of this research include improved assessment of biomechanical risk factors for the design of industrial pushing tasks. PMID:16435695

  17. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    Science.gov (United States)

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P force and power are

  18. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    Science.gov (United States)

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Intrarater Reliability of Muscle Strength and Hamstring to Quadriceps Strength Imbalance Ratios During Concentric, Isometric, and Eccentric Maximal Voluntary Contractions Using the Isoforce Dynamometer.

    Science.gov (United States)

    Mau-Moeller, Anett; Gube, Martin; Felser, Sabine; Feldhege, Frank; Weippert, Matthias; Husmann, Florian; Tischer, Thomas; Bader, Rainer; Bruhn, Sven; Behrens, Martin

    2017-08-17

    To determine intrasession and intersession reliability of strength measurements and hamstrings to quadriceps strength imbalance ratios (H/Q ratios) using the new isoforce dynamometer. Repeated measures. Exercise science laboratory. Thirty healthy subjects (15 females, 15 males, 27.8 years). Coefficient of variation (CV) and intraclass correlation coefficients (ICC) were calculated for (1) strength parameters, that is peak torque, mean work, and mean power for concentric and eccentric maximal voluntary contractions; isometric maximal voluntary torque (IMVT); rate of torque development (RTD), and (2) H/Q ratios, that is conventional concentric, eccentric, and isometric H/Q ratios (Hcon/Qcon at 60 deg/s, 120 deg/s, and 180 deg/s, Hecc/Qecc at -60 deg/s and Hiso/Qiso) and functional eccentric antagonist to concentric agonist H/Q ratios (Hecc/Qcon and Hcon/Qecc). High reliability: CV 0.90; moderate reliability: CV between 10% and 20%, ICC between 0.80 and 0.90; low reliability: CV >20%, ICC Strength parameters: (a) high intrasession reliability for concentric, eccentric, and isometric measurements, (b) moderate-to-high intersession reliability for concentric and eccentric measurements and IMVT, and (c) moderate-to-high intrasession reliability but low intersession reliability for RTD. (2) H/Q ratios: (a) moderate-to-high intrasession reliability for conventional ratios, (b) high intrasession reliability for functional ratios, (c) higher intersession reliability for Hcon/Qcon and Hiso/Qiso (moderate to high) than Hecc/Qecc (low to moderate), and (d) higher intersession reliability for conventional H/Q ratios (low to high) than functional H/Q ratios (low to moderate). The results have confirmed the reliability of strength parameters and the most frequently used H/Q ratios.

  20. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle

    DEFF Research Database (Denmark)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per

    2018-01-01

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports re......, which may aid to clarify the thinking of coaches and sports scientists in this area....

  1. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement.

    Directory of Open Access Journals (Sweden)

    Robert Rasnick

    Full Text Available Total knee replacement (TKR is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05. No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups.

  2. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  3. Task complexity and maximal isometric strength gains through motor learning

    Science.gov (United States)

    McGuire, Jessica; Green, Lara A.; Gabriel, David A.

    2014-01-01

    Abstract This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. PMID:25428951

  4. Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.

    Science.gov (United States)

    Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno

    2012-12-01

    The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P Strength training resulted in a significant decrease (by ~7 %; P Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.

  5. An Approach for Simulation of the Muscle Force Modeling It by Summation of Motor Unit Contraction Forces

    Directory of Open Access Journals (Sweden)

    Rositsa Raikova

    2013-01-01

    Full Text Available Muscle force is due to the cumulative effect of repetitively contracting motor units (MUs. To simulate the contribution of each MU to whole muscle force, an approach implemented in a novel computer program is proposed. The individual contraction of an MU (the twitch is modeled by a 6-parameter analytical function previously proposed; the force of one MU is a sum of its contractions due to an applied stimulation pattern, and the muscle force is the sum of the active MUs. The number of MUs, the number of slow, fast-fatigue-resistant, and fast-fatigable MUs, and their six parameters as well as a file with stimulation patterns for each MU are inputs for the developed software. Different muscles and different firing patterns can be simulated changing the input data. The functionality of the program is illustrated with a model consisting of 30 MUs of rat medial gastrocnemius muscle. The twitches of these MUs were experimentally measured and modeled. The forces of the MUs and of the whole muscle were simulated using different stimulation patterns that included different regular, irregular, synchronous, and asynchronous firing patterns of MUs. The size principle of MUs for recruitment and derecruitment was also demonstrated using different stimulation paradigms.

  6. Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women

    DEFF Research Database (Denmark)

    Suetta, C; Aagaard, P; Magnusson, S P

    2007-01-01

    quadriceps muscle cross-sectional area (LCSA), contractile rate of force development (RFD, Delta force/Delta time), impulse (integral force dt), muscle activation deficit (interpolated twitch technique), maximal neuromuscular activity [electromyogram (EMG)], and antagonist muscle coactivation in elderly men......%), contractile RFD (W: 17-26%; M: 15-24%), impulse (W: 10-19%, M: 19-20%), maximal EMG amplitude (W: 22-25%, M: 22-28%), and an increased muscle activation deficit (-18%) compared with UN. Furthermore, women were less strong (AF: 40%; UN: 39%), had less muscle mass (AF: 33%; UN: 34%), and had a lower RFD (AF: 38......-50%; UN: 41-48%) compared with men. Similarly, maximum EMG amplitude was smaller for both agonists (AF: 51-63%; UN: 35-61%) and antagonist (AF: 49-64%; UN: 36-56%) muscles in women compared with men. However, when MVC and RFD were normalized to LCSA, there were no differences between genders. The present...

  7. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  8. A three-dimensional computerized isometric strength measurement system.

    Science.gov (United States)

    Black, Nancy L; Das, Biman

    2007-05-01

    The three-dimensional Computerized Isometric Strength Measurement System (CISMS) reliably and accurately measures isometric pull and push strengths in work spaces of paraplegic populations while anticipating comparative studies with other populations. The main elements of the system were: an extendable arm, a vertical supporting track, a rotating platform, a force transducer, stability sensors and a computerized data collection interface. The CISMS with minor modification was successfully used to measure isometric push-up and pull-down strengths of paraplegics and isometric push, pull, push-up and pull-down strength in work spaces for seated and standing able-bodied populations. The instrument has satisfied criteria of versatility, safety and comfort, ease of operation, and durability. Results are accurate within 2N for aligned forces. Costing approximately $1,500 (US) including computer, the system is affordable and accurate for aligned isometric strength measurements.

  9. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    Science.gov (United States)

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  10. Force Per Active Area and Muscle Injury during Electrically Stimulated Contractions

    OpenAIRE

    BLACK, CHRISTOPHER D.; MCCULLY, KEVIN K.

    2008-01-01

    Multiple mechanical factors have been implicated in the initiation of exercise-induced muscle injury. Although high absolute force levels are associated with greater injury, the importance of high force per active area independent of absolute force remains to be determined, especially in humans.

  11. Criterion and Construct Validity of an Isometric Midthigh-Pull Dynamometer for Assessing Whole-Body Strength in Professional Rugby League Players.

    Science.gov (United States)

    Dobbin, Nick; Hunwicks, Richard; Jones, Ben; Till, Kevin; Highton, Jamie; Twist, Craig

    2018-02-01

    To examine the criterion and construct validity of an isometric midthigh-pull dynamometer to assess whole-body strength in professional rugby league players. Fifty-six male rugby league players (33 senior and 23 youth players) performed 4 isometric midthigh-pull efforts (ie, 2 on the dynamometer and 2 on the force platform) in a randomized and counterbalanced order. Isometric peak force was underestimated (P  .05) between the predicted and peak force from the force platform and an adjusted R 2 (79.6%) that represented shrinkage of 0.4% relative to the cross-validation model (80%). Peak force was greater for the senior than the youth professionals using the dynamometer (2261.2 ± 222 cf 1725.1 ± 298.0 N, respectively; P isometric midthigh pull assessed using a dynamometer underestimates criterion peak force but is capable of distinguishing muscle-function characteristics between professional rugby league players of different standards.

  12. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  13. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.

    Science.gov (United States)

    Vilimek, Miloslav

    2014-01-01

    This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

  14. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape

    Science.gov (United States)

    Taylor, Andrea B.; Vinyard, Christopher J.

    2009-01-01

    Cebus apella is renowned for its dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between the tufted capuchin (C. apella; n = 12 ) and two “untufted” capuchins (C. capuchinus, n = 3; C. albifrons, n = 5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that C. apella exhibits architectural properties of their jaw muscles that facilitate relatively large forces, including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P0). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter, whole masseter, and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P0. As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in C. apella primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear

  15. The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength.

    Science.gov (United States)

    Bellar, David; LeBlanc, Nina R; Campbell, Brian

    2015-01-01

    Ergogenic aides are widely used by fitness enthusiasts and athletes to increase performance. Alpha glycerylphosphorylcholine (A-GPC) has demonstrated some initial promise in changing explosive performance. The purpose of the present investigation was to determine if 6 days of supplementation with A-GPC would augment isometric force production compared to a placebo. Thirteen college-aged males (Means ± SD; Age: 21.9 ± 2.2 years, Height: 180.3 ± 7.7 cm, Weight: 87.6 ± 15.6 kg; VO2 max: 40.08 ± 7.23 ml O2*Kg(-1)*min(-1), Body Fat: 17.5 ± 4.6%) gave written informed consent to participate in the study. The study was a double blind, placebo controlled, cross-over design. The participants reported to the lab for an initial visit where they were familiarized with the isometric mid thigh pull in a custom squat cage on a force platform and upper body isometric test against a high frequency load cell, and baseline measurements were taken for both. The participant then consumed either 600 mg per day of A-GPC or placebo and at the end of 6 days performed isometric mid thigh pulls and an upper body isometric test. A one-week washout period was used before the participants' baseline was re-measured and crossed over to the other treatment. The A-GPC treatment resulted in significantly greater isometric mid thigh pull peak force change from baseline (t = 1.76, p = 0.044) compared with placebo (A-GPC: 98.8. ± 236.9 N vs Placebo: -39.0 ± 170.9 N). For the upper body test the A-GPC treatment trended towards greater change from baseline force production (A-GPC: 50.9 ± 67.2 N Placebo: -14.9 ± 114.9 N) but failed to obtain statistical significance (t = 1.16, p = 0.127). A-GPC is effective at increasing lower body force production after 6 days of supplementation. Sport performance coaches can consider adding A-GPC to the diet of speed and power athletes to enhance muscle performance.

  16. Estimation of tensile force in the hamstring muscles during overground sprinting.

    Science.gov (United States)

    Ono, T; Higashihara, A; Shinohara, J; Hirose, N; Fukubayashi, T

    2015-02-01

    The purpose of this study was to identify the period of the gait cycle during which the hamstring muscles were likely injured by estimating the magnitude of tensile force in each muscle during overground sprinting. We conducted three-dimensional motion analysis of 12 male athletes performing overground sprinting at their maximal speed and calculated the hamstring muscle-tendon length and joint angles of the right limb throughout a gait cycle during which the ground reaction force was measured. Electromyographic activity during sprinting was recorded for the biceps femoris long head, semitendinosus, and semimembranosus muscles of ipsilateral limb. We estimated the magnitude of tensile force in each muscle by using the length change occurred in the musculotendon and normalized electromyographic activity value. The study found a quick increase of estimated tensile force in the biceps femoris long head during the early stance phase of the gait cycle during which the increased hip flexion angle and ground reaction force occurred at the same time. This study provides quantitative data of tensile force in the hamstring muscles suggesting that the biceps femoris long head muscle is susceptible to a strain injury during the early stance phase of the sprinting gait cycle. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Relationship between isometric and dynamic strength in recreationally trained men.

    Science.gov (United States)

    McGuigan, Michael R; Newton, Michael J; Winchester, Jason B; Nelson, Arnold G

    2010-09-01

    The purpose of this investigation was to examine the relationships between measures of maximal isometric force (peak force [PF]), rate of force development (RFD), vertical jump performance (VJ) and 1-repetition maximum (1RM) strength in recreationally trained men. The subjects in this study were 26 men ([mean +/- SD]: age 22 +/- 1 years; height 175 +/- 7 cm; mass 90 +/- 10 kg). They were tested for PF using the isometric midthigh pull exercise. The 1RM for the squat and bench press exercise were determined as a measure of dynamic strength. Explosive strength was measured as RFD from the isometric force-time curve. Correlations between the variables were calculated using Pearson product moment correlation coefficient. There was a nearly perfect correlation between measures of PF and 1RM squat (r = 0.97, p isometric maximum strength determined during the isometric midthigh pull test correlated well with 1RM and VJ testing. However, RFD measured during the same test did not appear to correlate as well with other measures. The isometric midthigh pull provides an efficient method for assessing strength in recreationally trained individuals. Practitioners wishing to obtain performance data related to maximum strength may wish to consider isometric testing as a less time intensive method of testing.

  18. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    Science.gov (United States)

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  19. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    Science.gov (United States)

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (pknee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  20. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    Science.gov (United States)

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  1. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    Science.gov (United States)

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p fatigue condition changed fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue.

  2. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1991-01-01

    textabstractA method for measuring several quick-releases during one contraction of a pig urinary bladder smooth muscle preparation was developed. The force recovery following quick release in this muscle type was studied by fitting a multiexponential model to 926 responses measured during the first

  3. Functional ability and muscle force in healthy children and ambulant Duchenne muscular dystrophy patients

    NARCIS (Netherlands)

    Beenakker, EAC; Maurits, NM; Fock, JM; Brouwer, OF; van der Hoeven, JH

    2005-01-01

    Neuromuscular disorders are characterised by progressive muscle weakness, which in time causes functional impairment. To quantify the extent of disease progression, muscle force and functional ability can be measured. Which of these parameters changes most depends on the disease stage. In a previous

  4. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission

    DEFF Research Database (Denmark)

    Jespersen, J. G.; Mikkelsen, Ulla Ramer; Nedergaard, A.

    2015-01-01

    In military operations, declined physical capacity can endanger the life of soldiers. During special support and reconnaissance (SSR) missions, Special Forces soldiers sustain 1-2 weeks full-body horizontal immobilization, which impairs muscle strength and performance. Adequate muscle mass and st...

  5. Reliability and Validity of the Hip Stability Isometric Test (HipSIT): A New Method to Assess Hip Posterolateral Muscle Strength.

    Science.gov (United States)

    Almeida, Gabriel Peixoto Leão; das Neves Rodrigues, Helena Larissa; de Freitas, Bruno Wesley; de Paula Lima, Pedro Olavo

    2017-12-01

    Study Design Cross-sectional study. Background The Hip Stability Isometric Test (HipSIT) evaluates the strength of the hip posterolateral stabilizers in a position that favors greater activation of the gluteus maximus and gluteus medius and lower activation of the tensor fascia lata. Objectives To check the validity and reliability of the HipSIT and to evaluate the HipSIT in women with patellofemoral pain (PFP). Methods The HipSIT was evaluated with a handheld dynamometer. During testing, the participants were sidelying, with their legs positioned at 45° of hip flexion and 90° of knee flexion. Participants were instructed to raise the knee of the upper leg while keeping the upper and lower heels in contact. To establish reliability and validity, 49 women were tested with the HipSIT by 2 different evaluators on day 1, and then again 7 days later. The strength of the hip extensors, abductors, and external rotators was also evaluated. Twenty women with unilateral PFP were also evaluated. Results The HipSIT has excellent intrarater and interrater reliability. The standard error of measurement was 0.01 kgf/kg, and the minimal detectable change was 0.036 kgf/kg. The HipSIT showed good validity in isolated hip abduction, external rotation, and extension (Pstrength deficits in women with PFP. J Orthop Sports Phys Ther 2017;47(12):906-913. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7274.

  6. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis.

    Science.gov (United States)

    Nuñez Sanchez, Francisco J; Sáez de Villarreal, Eduardo

    2017-11-01

    Núñez Sanchez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11): 3177-3186, 2017-Several studies have confirmed the efficacy of flywheel paradigm training for improving or benefiting muscle volume and force. A meta-analysis of 13 studies with a total of 18 effect sizes was performed to analyse the role of various factors on the effectiveness of flywheel paradigm training. The following inclusion criteria were employed for the analysis: (a) randomized studies; (b) high validity and reliability instruments; (c) published in a high quality peer-reviewed journal; (d) healthy participants; (e) studies where the eccentric programme were described; and (f) studies where increases in muscle volume and force were measured before and after training. Increases in muscle volume and force were noted through the use of flywheel systems during short periods of training. The increase in muscle mass appears was not influenced by the existence of eccentric overload during the exercise. The increase in force was significantly higher with the existence of eccentric overload during the exercise. The responses identified in this analysis are essential and should be considered by strength and conditioning professionals regarding the most appropriate dose response trends for flywheel paradigm systems to optimize the increase in muscle volume and force.

  7. Gear Shifting of Quadriceps during Isometric Knee Extension Disclosed Using Ultrasonography.

    Science.gov (United States)

    Zhang, Shu; Huang, Weijian; Zeng, Yu; Shi, Wenxiu; Diao, Xianfen; Wei, Xiguang; Ling, Shan

    2018-01-01

    Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps contraction may have several forward gear ratios relative to femur.

  8. Early and late rate of force development: differential adaptive responses to resistance training?

    DEFF Research Database (Denmark)

    Andersen, L L; Andersen, Jesper Løvind; Zebis, M K

    2010-01-01

    The objective of this study is to investigate the potentially opposing influence of qualitative and quantitative muscular adaptations in response to high-intensity resistance training on contractile rate of force development (RFD) in the early (200 ms) of rising muscle force. Fifteen healthy young......-intensity resistance training due to differential influences of qualitative and quantitative muscular adaptations on early and later phases of rising muscle force....... males participated in a 14-week resistance training intervention for the lower body and 10 matched subjects participated as controls. Maximal muscle strength (MVC) and RFD were measured during maximal voluntary isometric contraction of the quadriceps femoris muscle. Muscle biopsies were obtained from...

  9. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  10. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  11. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  12. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  13. Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment.

    Science.gov (United States)

    Sato, Masanori; Ikeda, Kazushi; Kanno, Shota; Ito, Akira; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-01-01

    Artificial skeletal muscle tissues composed of cells are expected to be used for applications of regenerative medicine and drug screening. Generally, however, the physical forces generated by tissue-engineered skeletal muscle are lower than those of skeletal muscle tissues found in the body. Local hyperthermia is used for many diseases including muscle injuries. It was recently reported that mild heat treatment improved skeletal muscle functions. In this study, we investigated the effects of mild heat treatment on the tissue-engineered skeletal muscle tissues in vitro. We used magnetite cationic liposomes to label C2C12 myoblast cells magnetically, and constructed densely packed artificial skeletal muscle tissues by using magnetic force. Cell culture at 39°C promoted the differentiation of myoblast cells into myotubes. Moreover, the mild and transient heat treatment improved the contractile properties of artificial skeletal muscle tissue constructs. These findings indicate that the culture method using heat treatment is a useful approach to enhance functions of artificial skeletal muscle tissue.

  14. The effects of gastrocnemius-soleus muscle forces on ankle biomechanics during triple arthrodesis

    DEFF Research Database (Denmark)

    Hejazi, Shima; Rouhi, Gholamreza; Rasmussen, John

    2017-01-01

    This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major a...

  15. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  16. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  17. The correlation between surface electromyography and bite force of mastication muscles in Asian young adults.

    Science.gov (United States)

    Yen, Cheng-I; Mao, Shih-Hsuan; Chen, Chih-Hao; Chen, Chien-Tzung; Lee, Ming-Yih

    2015-05-01

    Mastication function is related to mandible movement, muscle strength, and bite force. No standard device for measuring bite force has been developed. A linear relationship between electromyographic activity and bite force has been reported by several investigators, but data on the reliability of this relationship remain limited in Asian young adults. The purpose of this study was to develop a clinically applicable, reliable, quantitative, and noninvasive system to measure the kinetic mastication function and observe the correlation between surface electromyography (sEMG) and bite force. The study group consisted of 41 young healthy adults (24 men and 17 women). Surface electromyography was used to evaluate bilateral temporalis and masseter muscle activities, and an occlusal bite force system was used concurrently to measure the bite force during maximal voluntary biting. Bilateral symmetry was compared, and the correlation between EMG and bite force was calculated. The sEMG signals were 107.7±55.0 μV and 106.0±56.0 μV (P=0.699) on right and left temporalis muscles and 183.7±86.2 μV and 194.8±94.3 μV (P=0.121) on right and left masseter muscles, respectively. The bite force was 5.0±3.2 kg on the right side and 5.7±4.0 kg on the left side (P=0.974). A positive correlation between sEMG and bite force was observed. The correlation coefficient between the temporalis muscle and bite force was 0.512, and that between the masseter muscle and bite force was 0.360. No significant difference between the bilateral electromyographic activities of the temporalis and masseter muscles and bilateral bite force was observed in young healthy adults in Taiwan. A positive correlation between sEMG signals and bite force was noted. By combining sEMG and bite force, we developed a clinically applicable, quantitative, reliable, and noninvasive system for evaluating mastication function by using characteristics of biofeedback.

  18. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy.

    Science.gov (United States)

    Rio, Ebonie; Kidgell, Dawson; Purdam, Craig; Gaida, Jamie; Moseley, G Lorimer; Pearce, Alan J; Cook, Jill

    2015-10-01

    Few interventions reduce patellar tendinopathy (PT) pain in the short term. Eccentric exercises are painful and have limited effectiveness during the competitive season. Isometric and isotonic muscle contractions may have an immediate effect on PT pain. This single-blinded, randomised cross-over study compared immediate and 45 min effects following a bout of isometric and isotonic muscle contractions. Outcome measures were PT pain during the single-leg decline squat (SLDS, 0-10), quadriceps strength on maximal voluntary isometric contraction (MVIC), and measures of corticospinal excitability and inhibition. Data were analysed using a split-plot in time-repeated measures analysis of variance (ANOVA). 6 volleyball players with PT participated. Condition effects were detected with greater pain relief immediately from isometric contractions: isometric contractions reduced SLDS (mean±SD) from 7.0±2.04 to 0.17±0.41, and isotonic contractions reduced SLDS (mean±SD) from 6.33±2.80 to 3.75±3.28 (peffect on inhibition (pre 30.26±3.89, post 31.92±4.67; p=0.004). Condition by time analysis showed pain reduction was sustained at 45 min postisometric but not isotonic condition (ptendon pain immediately for at least 45 min postintervention and increased MVIC. The reduction in pain was paralleled by a reduction in cortical inhibition, providing insight into potential mechanisms. Isometric contractions can be completed without pain for people with PT. The clinical implications are that isometric muscle contractions may be used to reduce pain in people with PT without a reduction in muscle strength. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    Science.gov (United States)

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal

  20. Eccentric Contraction-Induced Muscle Injury: Reproducible, Quantitative, Physiological Models to Impair Skeletal Muscle's Capacity to Generate Force.

    Science.gov (United States)

    Call, Jarrod A; Lowe, Dawn A

    2016-01-01

    In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury.

  1. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.

    Science.gov (United States)

    Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P

    2017-10-01

    The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.

  2. The role of extracellular matrix in lateral transmission of force in skeletal muscle

    Science.gov (United States)

    Gao, Yingxin

    This dissertation describes the role of extracellular matrix (ECM) in the lateral transmission of force. It consists of an experimental studies of the ECM and mathematical modeling of lateral transmission of force. The effect of aging on the structural and mechanical properties of the epimysium of muscle of the rats were examined. No statistically significant differences were found in the ultrastructure, or the thickness of the epimysium. However, from the tensile stress-strain tests, it was found that the epimysium of muscles from old rats was much stiffer than that of the young rats. Based on these observations. It was concluded that the differences in the mechanical properties of the epimysium of the muscles from the old compared with young rats were not associated with the arrangement and size of collagen fibers in the epimysium. Consequently, other methods will be required to identify the structural bases of the mechanical differences. The stress-strain relationships for the epimysiums of the skeletal muscles from both the young and old rats were found to be nonlinear. A mathematical model was developed that showed that the nonlinear behavior results from the waviness and the reorientation of the collagen fibers in the epimysium. The ECM plays an important role in lateral transmission of force in skeletal muscle by providing shear stress between the muscle fibers or fascicles. A mathematical model was developed to investigate the mechanisms of lateral transmission. It was a modification of the shear lag theory for chopped fiber composite materials used in engineering applications. The modified shear lag theory includes an activation strain to account for muscle contraction and a myofibrils-endomysium interfaces that accounts for the molecular lateral linkages. The model was used to simulate the classic experiments of Street. It was demonstrated that lateral transmission of force in the skeletal muscle is affected by the mechanical and structural properties of

  3. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle.

    Science.gov (United States)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per; González-Badillo, Juan José

    2017-12-20

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports requiring high-speed actions. The assessment of RFD has been used for strength diagnosis, to monitor the effects of training interventions in both healthy populations and patients, discriminate high-level athletes from those of lower levels, evaluate the impairment in mechanical muscle function after acute bouts of eccentric muscle actions and estimate the degree of fatigue and recovery after acute exhausting exercise. Notably, the evaluation of RFD in human skeletal muscle is a complex task as influenced by numerous distinct methodological factors including mode of contraction, type of instruction, method used to quantify RFD, devices used for force/torque recording and ambient temperature. Another important aspect is our limited understanding of the mechanisms underpinning rapid muscle force production. Therefore, this review is primarily focused on (i) describing the main mechanical characteristics of RFD; (ii) analysing various physiological factors that influence RFD; and (iii) presenting and discussing central biomechanical and methodological factors affecting the measurement of RFD. The intention of this review is to provide more methodological and analytical coherency on the RFD concept, which may aid to clarify the thinking of coaches and sports scientists in this area. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  4. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  5. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    Science.gov (United States)

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the

  6. The Reliability of Isometer 2 Device in Measuring of Cervical Flexor and Extensor Muscles Strength

    Directory of Open Access Journals (Sweden)

    Asghar Reza Soltan-Zadeh

    2006-07-01

    Full Text Available Objective: The strength of a group of muscles can be measured by muscle strength test, employing a force measuring instrument. In order to monitor the effectiveness of a therapeutic or training programs we need a reliable technique which is also accurate in repeated measurements. The purpose of this study was to examine the reliability of an isometric neck muscle force measurement device.  Materials & Methods: Thirty seven healthy non athlete subjects (18 males and 19 females, aged 18-25 participated in this analytical study. The maximal isometric contractions of the neck extensor and flexor muscles were measured in different times and different days and by two different testers. A new sensitive “load cell” was applied to our previously designed neck muscle force measurement apparatus. Results: The results of the inter-trail, test retest, and inter rater reliability (0.86 < ICC < 0.98 , 2.2< Sw <5.1 N indicated that the neck muscle force measurements were highly repeatable and less variable between measurements. There were no statistically significant differences in neck muscle force measurements, between times, between days and between retsters. Maximum isometric contractions were significantly higher in males than in the females (p < 0.001. Women’s neck muscle strengths were 30.8% and 46.1% of men in cervical extension and cervical flexion. Conclusion: In this study we used a new model (Isometer 2 of our previous apparatus (Isometer. The isometric strength of neck flexor and extensor muscles which was measured by Isometer 2 appeared to be a reliable and useful method for measuring the force of the neck extensor and flexor muscles.

  7. Interstitial muscle lactate, pyruvate and potassium dynamics in the trapezius muscle during repetitive low-force arm movements, measured with microdialysis

    DEFF Research Database (Denmark)

    Rosendal, L; Blangsted, A K; Kristiansen, J

    2004-01-01

    Local muscle metabolic responses to repetitive low-force contractions and to intense static contractions were studied by microdialysis in humans.......Local muscle metabolic responses to repetitive low-force contractions and to intense static contractions were studied by microdialysis in humans....

  8. Lack of the serum- and glucocorticoid-inducible kinase SGK1 improves muscle force characteristics and attenuates fibrosis in dystrophic mdx mouse muscle

    DEFF Research Database (Denmark)

    Steinberger, Martin; Föller, Michael; Vogelgesang, Silke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a human genetic disease characterized by fibrosis and severe muscle weakness. Currently, there is no effective treatment available to prevent progressive fibrosis in skeletal muscles. The serum- and glucocorticoid-inducible kinase SGK1 regulates a variety...... of physiological functions and participates in fibrosis stimulation. Here, we investigated whether SGK1 influences structure, function and/or fibrosis of the muscles from the mdx mouse, an animal model for DMD. As expected, mdx muscles showed the typical pathological features of muscular dystrophy including fiber...... size variations, central nuclei of muscle fibers, fibrosis in the diaphragm, and force reduction by 30–50 %. Muscles from sgk1 -/- mice were histologically overall intact and specific force was only slightly reduced compared to wild-type muscles. Surprisingly, soleus and diaphragm muscles of mdx/sgk1...

  9. Changes in gluteal muscle forces with alteration of footstrike pattern during running.

    Science.gov (United States)

    Vannatta, Charles Nathan; Kernozek, Thomas W; Gheidi, Naghmeh

    2017-10-01

    Gait retraining is a common form of treatment for running related injuries. Proximal factors at the hip have been postulated as having a role in the development of running related injuries. How altering footstrike affects hip muscles forces and kinematics has not been described. Thus, we aimed to quantify differences in hip muscle forces and hip kinematics that may occur when healthy runners are instructed to alter their foot strike pattern from their habitual rear-foot strike to a forefoot strike. This may gain insight on the potential etiology and treatment methods of running related lower extremity injury. Twenty-five healthy female runners completed a minimum of 10 running trials in a controlled laboratory setting under rear-foot strike and instructed forefoot strike conditions. Kinetic and kinematic data were used in an inverse dynamic based static optimization to estimate individual muscle forces during running. Within subject differences were investigated using a repeated measures multi-variate analysis of variance. Peak gluteus medius and minimus and hamstring forces were reduced while peak gluteus maximus force was increased when running with an instructed forefoot strike pattern. Peak hip adduction, hip internal rotation, and heel-COM distance were also reduced. Therefore, instructing habitual rearfoot strike runners to run with a forefoot strike pattern resulted in changes in peak gluteal and hamstring muscle forces and hip kinematics. These changes may be beneficial to the development and treatment of running related lower extremity injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    Science.gov (United States)

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle

    NARCIS (Netherlands)

    de Ruiter, C.J.; Elzinga, M.J.; Verdijk, P.W.L.; van Mechelen, W.; de Haan, A.

    2005-01-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n=9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50%

  12. Gender comparison of psychophysical forces, cardiopulmonary, and muscle metabolic responses during a simulated cart pushing task.

    Science.gov (United States)

    Maikala, Rammohan V; Ciriello, Vincent M; Dempsey, Patrick G; O'Brien, Niall V

    2010-10-01

    The purpose was to compare psychophysiological responses between healthy male and female workers during dynamic pushing. Using a psychophysical approach, 27 participants chose an acceptable force that they could push over a 7.6m distance at a frequency of 1 push per min on a treadmill. On a separate day, cardiopulmonary (e.g., whole-body oxygen uptake, heart rate, ventilation volume) and muscle metabolic measurements (change in muscle blood volume [ΔtHb] and Tissue Oxygenation Index [TOI]) from the right and left gastrocnemius muscles were collected simultaneously while participants pushed the previously chosen acceptable force on the treadmill at a similar frequency and distance for 2h. Results showed no significant difference between men and women for integrated force exerted on the instrumented treadmill handle and cardiopulmonary responses. In contrast, women demonstrated 45.7% lower ΔtHb but 3.6% higher TOI in the gastrocnemius region as compared to men, suggesting a lower hemoglobin concentration in women and high venous oxygen saturation during pushing. When ΔtHb and TOI were corrected for both body mass and pushing force, the disparity in gender was retained, implying an increased muscle oxygen saturation per force development in women than men during pushing. In the left gastrocnemius region, ΔtHb was 60% lower and TOI was 5.7% higher in women than men, suggesting an uneven muscle loading during pushing. Overall, the gender similarity in cardiopulmonary responses versus disparity in muscle metabolic responses suggest the importance of evaluating human performance during physical work at both whole-body and localized muscle levels. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise

    DEFF Research Database (Denmark)

    Rosendal, Lars; Søgaard, Karen; Kjaer, Michael

    2005-01-01

    Interleukin (IL)-6, which is released from muscle tissue during intense exercise, possesses important metabolic and probably anti-inflammatory properties. To evaluate the IL-6 response to low-intensity exercise, we conducted two studies: 1) a control study with insertion of microdialysis catheters...... in muscle and determination of interstitial muscle IL-6 response over 2 h of rest and 2) an exercise study to investigate the IL-6 response to 20 min of repetitive low-force exercise. In both studies, a microdialysis catheter (cutoff: 3,000 kDa) was inserted into the upper trapezius muscle of six male...... subjects, and the catheters were perfused with Ringer-acetate at 5 microl/min. Venous plasma samples were taken in the exercise study. The insertion of microdialysis catheters into muscle resulted in an increase in IL-6 from 8 +/- 0 to 359 +/- 171 and 484 +/- 202 pg/ml after 65 and 110 min, respectively (P...

  14. Postactivation potentiation biases maximal isometric strength assessment.

    Science.gov (United States)

    Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Oliveira, Thiago Pires; Assumpção, Claudio de Oliveira; Greco, Camila Coelho; Cardozo, Adalgiso Croscato; Denadai, Benedito Sérgio

    2014-01-01

    Postactivation potentiation (PAP) is known to enhance force production. Maximal isometric strength assessment protocols usually consist of two or more maximal voluntary isometric contractions (MVCs). The objective of this study was to determine if PAP would influence isometric strength assessment. Healthy male volunteers (n = 23) performed two five-second MVCs separated by a 180-seconds interval. Changes in isometric peak torque (IPT), time to achieve it (tPTI), contractile impulse (CI), root mean square of the electromyographic signal during PTI (RMS), and rate of torque development (RTD), in different intervals, were measured. Significant increases in IPT (240.6 ± 55.7 N·m versus 248.9 ± 55.1 N·m), RTD (746 ± 152 N·m·s(-1) versus 727 ± 158 N·m·s(-1)), and RMS (59.1 ± 12.2% RMSMAX  versus 54.8 ± 9.4% RMSMAX) were found on the second MVC. tPTI decreased significantly on the second MVC (2373 ± 1200 ms versus 2784 ± 1226 ms). We conclude that a first MVC leads to PAP that elicits significant enhancements in strength-related variables of a second MVC performed 180 seconds later. If disconsidered, this phenomenon might bias maximal isometric strength assessment, overestimating some of these variables.

  15. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy.

    Science.gov (United States)

    Marabita, Manuela; Baraldo, Martina; Solagna, Francesca; Ceelen, Judith Johanna Maria; Sartori, Roberta; Nolte, Hendrik; Nemazanyy, Ivan; Pyronnet, Stéphane; Kruger, Marcus; Pende, Mario; Blaauw, Bert

    2016-10-04

    Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Dynamics of force and muscle stimulation in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken

  17. Dependence of Force Produced by Polypyrrole Based Artificial Muscles on Ionic Species Involved

    DEFF Research Database (Denmark)

    Careem, M.A.; Vidanapathirana, K.P.; Skaarup, Steen

    2004-01-01

    Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization electrol......Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization...

  18. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.

    Science.gov (United States)

    Dupan, Sigrid S G; Stegeman, Dick F; Maas, Huub

    2018-06-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks. Twelve participants performed single finger flexion presses at 20% of maximum voluntary contraction, while simultaneously the electromyographic activity of several intrinsic and extrinsic muscles associated with all four fingers was recorded using 8 electrode pairs in the hand and two 30-electrode grids on the lower arm. The forces exerted by each of the fingers, in both flexion and extension direction, were recorded with individual force sensors. This study shows distinct activation patterns in intrinsic and extrinsic hand muscles. Intrinsic muscles exhibited individuation, where the agonistic and antagonistic muscles associated with the instructed fingers showed the highest activation. This activation in both agonistic and antagonistic muscles appears to facilitate finger stabilisation during the isometric force task. Extrinsic muscles show an activation independent from instructed finger in both agonistic and antagonistic muscles, which appears to be associated with stabilisation of the wrist, with an additional finger-dependent modulation only present in the agonistic extrinsic muscles. These results indicate distinct muscle patterns in intrinsic and extrinsic hand muscles during single finger isometric force pressing. We conclude that the finger specific activation of intrinsic muscles is not sufficient to fully counteract enslaving caused by the broad activation of the extrinsic muscles. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Changes in power and force generation during coupled eccentric-concentric versus concentric muscle contraction with training and aging

    DEFF Research Database (Denmark)

    Caserotti, Paolo; Aagaard, Per; Puggaard, Lis

    2008-01-01

    Age-related decline in maximal concentric muscle power is associated with frailty and functional impairments in the elderly. Compared to concentric contraction, mechanical muscle output is generally enhanced when muscles are rapidly pre-stretched (eccentric contraction), albeit less pronounced...... with increasing age. Exercise has been recommended to prevent loss of muscle power and function and recent guidelines indicate training program for increasing muscle power highly relevant for elderly subjects. This study examined the differences in muscle power, force and movement pattern during concentric......) and JH increased in training group (P age-related decline in muscle power and functional performance observed in the control subjects, while substantial gains...

  20. Expanded Air Force Physical Fitness Battery: Muscle Strength, Muscle Endurance, and Flexibility Considered. Workshop Proceedings

    National Research Council Canada - National Science Library

    Palmer, Barbara

    1997-01-01

    This Proceedings document summarizes the discussion that took place during the Expanded Physical Fitness Workshop, sponsored by the US Air Force Office for Prevention and Health Services Assessment...

  1. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    Science.gov (United States)

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P fast rate constant of relaxation in soleus muscle (P fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  2. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    Science.gov (United States)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  3. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kazuhiro eMatsui

    2014-06-01

    Full Text Available Functional electrical stimulation (FES is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly nonlinearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define theelectrical agonist-antagonist muscle ratio (EAA ratio and electrical agonist-antagonist muscle activity (EAA activity in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  4. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    Science.gov (United States)

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  5. Synchronous monitoring of muscle dynamics and electromyogram

    Science.gov (United States)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  6. Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts

    NARCIS (Netherlands)

    van der Velden, J.; Klein, L. J.; Zaremba, R.; Boontje, N. M.; Huybregts, M. A.; Stooker, W.; Eijsman, L.; de Jong, J. W.; Visser, C. A.; Visser, F. C.; Stienen, G. J.

    2001-01-01

    During ischemia, the intracellular calcium and inorganic phosphate (P(i)) concentrations rise and pH falls. We investigated the effects of these changes on force development in donor and failing human hearts to determine if altered contractile protein composition during heart failure changes the

  7. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting.

    Science.gov (United States)

    Toro-Ibacache, Viviana; Zapata Muñoz, Víctor; O'Higgins, Paul

    2016-01-01

    The human skull is gracile when compared to many Middle Pleistocene hominins. It has been argued that it is less able to generate and withstand high masticatory forces, and that the morphology of the lower portion of the modern human face correlates most strongly with dietary characteristics. This study uses geometric morphometrics and finite element analysis (FEA) to assess the relationship between skull morphology, muscle force and cranial deformations arising from biting, which is relevant in understanding how skull morphology relates to mastication. The three-dimensional skull anatomies of 20 individuals were reconstructed from medical computed tomograms. Maximal contractile muscle forces were estimated from muscular anatomical cross-sectional areas (CSAs). Fifty-nine landmarks were used to represent skull morphology. A partial least squares analysis was performed to assess the association between skull shape and muscle force, and FEA was used to compare the deformation (strains) generated during incisor and molar bites in two individuals representing extremes of morphological variation in the sample. The results showed that only the proportion of total muscle CSA accounted for by the temporalis appears associated with skull morphology, albeit weekly. However, individuals with a large temporalis tend to possess a relatively wider face, a narrower, more vertically oriented maxilla and a lower positioning of the coronoid process. The FEAs showed that, despite differences in morphology, biting results in similar modes of deformation for both crania, but with localised lower magnitudes of strains arising in the individual with the narrowest, most vertically oriented maxilla. Our results suggest that the morphology of the maxilla modulates the transmission of forces generated during mastication to the rest of the cranium by deforming less in individuals with the ability to generate proportionately larger temporalis muscle forces. Copyright © 2015 Elsevier GmbH. All

  8. The twitch interpolation technique for study of fatigue of human quadriceps muscle

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Mehlsen, J

    1995-01-01

    The aim of the study was to examine if the twitch interpolation technique could be used to objectively measure fatigue in the quadriceps muscle in subjects performing submaximally. The 'true' maximum isometric quadriceps torque was determined in 21 healthy subject using the twitch interpolation...... technique. Then an endurance test was performed in which the subjects made repeated isometric contractions at 50% of the 'true' maximum torque for 4 s, separated by 6 s rest periods. During the test, the force response to single electrical stimulation (twitch amplitude) was measured at 50% and 25......). In conclusion, the twitch technique can be used for objectively measuring fatigue of the quadriceps muscle....

  9. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2016-01-01

    The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.

  10. Biting Force and Muscle Activity in Implant-Supported Single Mandibular Overdentures Opposing Fixed Maxillary Dentition.

    Science.gov (United States)

    Al-Magaleh, Wafaʼa R; Abbas, Nadia A; Amer, Ashraf A; Abdelkader, Ann A; Bahgat, Basma

    2016-04-01

    This study aimed to investigate the relation between biting force and masticatory muscle activity in patients treated by 3 modalities of single mandibular dentures. Forty implants were placed in 10 patients with completely edentulous mandibles. The study was divided into 3 treatment stages. Initially, each patient received a conventional mandibular complete denture. At the second stage, 4 mandibular implants were placed and the denture was refitted to their abutments. Third stage comprised connecting the denture to the implants through ball attachments. During each treatment stage, maximum biting force and muscle activity were measured during maximum clenching and chewing of soft and hard food. Biting force demonstrated a statistically significant increase by time for the 3 treatment stages. The highest muscle activity was recorded for the conventional denture followed by the implant-supported overdenture without attachment, whereas the lowest values were recorded for the implant-supported overdenture with attachment. Biting force was related mainly to the quality of denture support. Muscle activity was higher in patients with conventional denture than with implant-supported prostheses (with or without attachments).

  11. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation

    Science.gov (United States)

    Vandenboom, Rene; Hannon, James D; Sieck, Gary C

    2002-01-01

    We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dtR). The influence of isotonic force on +dF/dtR was assessed by imposing uniform amplitude (2.55 to 2.15 μm sarcomere−1) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 ± 0.11 μm half-sarcomere−1 s−1) to 0.30 of maximum unloaded shortening velocity (Vu), thereby modulating isotonic force from 0 to 0.34 Fo, respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dtR increased by 81 ± 6% (P < 0.05) as fibre shortening speed was reduced from 1.00 Vu. The +dF/dtR after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence Vu (mean: 2.84 ± 0.10 μm half-sarcomere−1 s−1, P < 0.05). We conclude that isotonic force modulates +dF/dtR independent of change in Vu, an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate. PMID:12205189

  12. Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer.

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA transducer has been developed for measuring the minute forces generated during isometric contractions (1.0-10.0 microN) of single smooth muscle cells from the pig urinary bladder and the human uterus. In addition to its high sensitivity, resolution and stability (100 mV microN-1, and

  13. Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Wei, J.; Dong, C.; Chen, B.

    2017-04-01

    We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.

  14. Pneumatic strength assessment device: design and isometric measurement.

    Science.gov (United States)

    Paulus, David C; Reiser, Raoul F; Troxell, Wade O

    2004-01-01

    In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.

  15. Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Morten Munkvik

    Full Text Available During isometric contractions, slow twitch soleus muscles (SOL from rats with chronic heart failure (chf are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf if left ventricle end diastolic pressure was >15 mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off at 30 Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (F(max and the concentrations of ATP and CrP were not different in the two groups. During stimulation, F(max and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue.

  16. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

    Directory of Open Access Journals (Sweden)

    Marta Nocella

    Full Text Available Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii the second phase is due to the delayed reduction of Ca(2+ release and /or reduction of the Ca(2+ sensitivity of the myofibrils due to high [Pi]i.

  17. The multiple roles of titin in muscle contraction and force production.

    Science.gov (United States)

    Herzog, Walter

    2018-01-20

    Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin-myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a "third contractile" filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.

  18. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  19. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Science.gov (United States)

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or

  20. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Directory of Open Access Journals (Sweden)

    Tobias Siebert

    Full Text Available The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle and geometric (three-dimensional architecture, n = 3 per muscle muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle. Maximum shortening velocity (normalized to optimal fiber length of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components, enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic

  1. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  2. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.

    Science.gov (United States)

    de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A

    2005-08-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (Pexercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (Pexercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.

  3. Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

    Science.gov (United States)

    Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C

    2010-12-01

    We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.

  4. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    Science.gov (United States)

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    Science.gov (United States)

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  6. Muscle as a collagen fiber reinforced composite material: force transmission in muscle and whole limbs

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.

    1999-01-01

    Even though no direct physiologic evidence proving that myo-tendinous junctions at the end of myofibers are sites of force transmission is available, these locations are accepted to support this function, because its specialized morphology resembles that of load-bearing membranes in structure and

  7. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty.

    Science.gov (United States)

    Liou, William; Yang, Yang; Petersen-Fitts, Graysen R; Lombardo, Daniel J; Stine, Sasha; Sabesan, Vani J

    2017-04-01

    Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimize performance in rotator cuff-deficient shoulders. These advancements are not without tradeoffs and can have negative biomechanical effects. The objective of this study was to develop an integrated finite element analysis-kinematic model to compare the muscle forces and joint reaction forces (JRFs) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the well-validated OpenSim shoulder model. Static optimizations then allowed for calculation of the individual muscle forces, moment arms, and JRFs relative to net joint moments. Three-dimensional computer models of 3 RSA designs-humeral lateralized design (HLD), glenoid lateralized design, and Grammont design-were integrated, and parametric studies were performed. Overall, there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal rotation and external rotation. The JRFs in abduction and flexion decreased similarly for all RSA designs compared with the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in mechanical differences most prominently seen in the deltoid muscle and overall JRFs. Further research using this novel integrated model can help guide continued optimization of RSA design and clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Does pain in the masseter and anterior temporal muscles influence maximal bite force?

    Science.gov (United States)

    Goiato, Marcelo Coelho; Zuim, Paulo Renato Junqueira; Moreno, Amália; Dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas; de Caxias, Fernanda Pereira; Turcio, Karina Helga Leal

    2017-11-01

    The aim of this study was to evaluate changes in pain and muscle force, and the relationship between them, in patients with muscle pain and bruxism, prior to and after treatment. Thirty women with bruxism and myofascial pain (Ia) were included in this study. Sleep bruxism diagnosis was made based on clinical diagnostic criteria, and awake bruxism diagnosis was made by patient questionnaires and the presence of tooth wear. The diagnosis of myofascial pain was established according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC-TMD). Dentulous or partially edentulous patients (rehabilitated with conventional fixed prostheses) were included in the study according to the inclusion and exclusion criteria. The pain treatment protocol included occlusal splints, patient education, and physiotherapy for 30days. Bite force was measured using a dynamometer at the central incisor and the first molar regions on both sides. The exams were performed at baseline, after 7days, and 30days after treatment. The Wilcoxon test was used to compare patient pain level response among the periods analyzed in the study. Bite force data were submitted to two-way repeated-measures ANOVA, followed by the Tukey HSD test (pforce. Results revealed that there was a statistical difference in pain level over time for both muscles and sides (pforce exhibited significantly higher values after 30days of treatment, when compared with the baseline (pforce only for the temporal muscle in all periods analyzed (pforce. Pain level decreased and bite force increased in the molar region after treatment. No strong correlation or dispersion in the relationship between pain levels and bite force was seen in women with myofascial pain and bruxism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    Science.gov (United States)

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Power

    Full Text Available Despite an age-related loss of voluntary isometric and concentric strength, muscle strength is well maintained during lengthening muscle actions (i.e., eccentric strength in old age. Additionally, in younger adults during lengthening of an activated skeletal muscle, the force level observed following the stretch is greater than the isometric force at the same muscle length. This feature is termed residual force enhancement (RFE and is believed to be a combination of active and passive components of the contractile apparatus. The purpose of this study was to provide an initial assessment of RFE in older adults and utilize aging as a muscle model to explore RFE in a system in which isometric force production is compromised, but structural mechanisms of eccentric strength are well-maintained. Therefore, we hypothesised that older adults will experience greater RFE compared with young adults. Following a reference maximal voluntary isometric contraction (MVC of the dorsiflexors in 10 young (26.1 ± 2.7 y and 10 old (76.0 ± 6.5 y men, an active stretch was performed at 15°/s over a 30° ankle joint excursion ending at the same muscle length as the reference MVCs (40° of plantar flexion. Any additional torque compared with the reference MVC therefore represented RFE. In older men RFE was ~2.5 times greater compared to young. The passive component of force enhancement contributed ~37% and ~20% to total force enhancement, in old and young respectively. The positive association (R(2 = 0.57 between maintained eccentric strength in old age and RFE indicates age-related mechanisms responsible for the maintenance of eccentric strength likely contributed to the observed elevated RFE. Additionally, as indicated by the greater passive force enhancement, these mechanisms may be related to increased muscle series elastic stiffness in old age.

  11. EFFECT OF ISOMETRIC QUADRICEPS STRENGTHENING EXERCISE AT MULTIPLE ANGLES IN KNEE JOINT AMONG NORMAL ADULTS

    Directory of Open Access Journals (Sweden)

    JibiPaul

    2014-04-01

    Full Text Available Introduction: Strengthening exercises have been routinely used in persons with orthopaedic problems and athletes to increase force production or minimize muscle imbalance and joint injuries.Many studies have reported that isometric contractions can rapidly increases strength in quadriceps muscle. Objective: Objective of the study was to find out the effect of isometric strengthening exercise on strength of quadriceps at 45 and 90 degree of knee joint and also to compare the effect of strengthening exercise on strength of quadriceps at multiple angles of knee joint among control and experimental group. Methodology: This was a ccomparative experimental study with forty female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 20 subjects in each group. Isometric strengthening exercise and squatting exercise were given as intervention program for eight weeks respectively for experimental and control group. Pre and post data of quadriceps muscle strength measured were collected separately at 45 and 90 degree of knee joint using goniometry during resisted extension of knee in multi gym. Result: In experimental group Pre –Post statistical analysis found significant effect in increase of quadriceps strength at 45 and 90 degree with P<0.0001.****In control group quadriceps pre-post statistical analysis found no significant effect in increase of quadriceps strength at 45 and 90 degree with P<0.083NS and P<0.055 NS respectively. Comparative study between experimental and control groups for quadriceps strength at 90 degree of knee joint found significant effect in increase of quadriceps strength with P< 0.001.*** Comparative study between experimental and control groups for quadriceps strength at 45 degree of knee joint found significant effect in increase of

  12. The number and choice of muscles impact the results of muscle synergy analyses

    Directory of Open Access Journals (Sweden)

    Katherine Muterspaugh Steele

    2013-08-01

    Full Text Available One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small

  13. Ultrastructure of clots during isometric contraction

    OpenAIRE

    1982-01-01

    We explored the retraction or contraction of platelet-fibrin clots under isometric conditions. In the presence of micromolar calcium clots of normal platelet-rich plasma developed tension at an initial rate of 0.1 to 0.2 g/min per cm2 (initial cross-sectional area). Electron microscopy of clots fixed after attaining a force of 1.6 g/cm2 revealed platelets with elongated bodies and pseudopods in close apposition to fibrin strands which were oriented in cablelike fashion in the direction of ten...

  14. MC Sensor—A Novel Method for Measurement of Muscle Tension

    Directory of Open Access Journals (Sweden)

    Sašo Tomažič

    2011-09-01

    Full Text Available This paper presents a new muscle contraction (MC sensor. This MC sensor is based on a novel principle whereby muscle tension is measured during muscle contractions. During the measurement, the sensor is fixed on the skin surface above the muscle, while the sensor tip applies pressure and causes an indentation of the skin and intermediate layer directly above the muscle and muscle itself. The force on the sensor tip is then measured. This force is roughly proportional to the tension of the muscle. The measurement is non-invasive and selective. Selectivity of MC measurement refers to the specific muscle or part of the muscle that is being measured and is limited by the size of the sensor tip. The sensor is relatively small and light so that the measurements can be performed while the measured subject performs different activities. Test measurements with this MC sensor on the biceps brachii muscle under isometric conditions (elbow angle 90° showed a high individual linear correlation between the isometric force and MC signal amplitudes (0.97 ≤ r ≤ 1. The measurements also revealed a strong correlation between the MC and electromyogram (EMG signals as well as good dynamic behaviour by the MC sensor. We believe that this MC sensor, when fully tested, will be a useful device for muscle mechanic diagnostics and that it will be complementary to existing methods.

  15. Effect of brief daily resistance training on rapid force development in painful neck and shoulder muscles

    DEFF Research Database (Denmark)

    Jay, Kenneth; Schraefel, Mc; Andersen, Christoffer H

    2013-01-01

    OBJECTIVE: To determine the effect of small daily amounts of progressive resistance training on rapid force development of painful neck/shoulder muscles. METHODS: 198 generally healthy adults with frequent neck/shoulder muscle pain (mean: age 43.1 years, computer use 93% of work time, 88% women......, duration of pain 186 day during the previous year) were randomly allocated to 2- or 12 min of daily progressive resistance training with elastic tubing or to a control group receiving weekly information on general health. A blinded assessor took measures at baseline and at 10-week follow-up; participants.......05) for both training groups. Maximal muscle strength increased only ~5-6% [mean and 95% confidence interval for 2- and 12-min groups to control, respectively: 2.5 Nm (0.05-0.73) and 2.2 Nm (0.01-0.70)]. No significant differences between the 2- and 12-min groups were evident. A weak but significant...

  16. The influence of muscle forces on the stress distribution in the lumbar spine

    DEFF Research Database (Denmark)

    Wong, C; Rasmussen, J; Simonsen, Erik B.

    2011-01-01

    muscles. Results: In general the von Mises stress was larger by 30 %, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly...... larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.......Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become...

  17. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  18. Proof of Concept: Model Based Bionic Muscle with Hyperbolic Force-Velocity Relation

    Directory of Open Access Journals (Sweden)

    D. F. B. Haeufle

    2012-01-01

    Full Text Available Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE, a parallel damper element (PDE, and a serial element (SE exhibits operating points with hyperbolic force-velocity dependency. In this paper, a technical proof of this concept was presented. AE and PDE were implemented as electric motors, SE as a mechanical spring. The force-velocity relation of this artificial CE was determined in quick release experiments. The CE exhibited hyperbolic force-velocity dependency. This proof of concept can be seen as a well-founded starting point for the development of Hill-type artificial muscles.

  19. Voluntary activation of the trapezius muscle in cases with neck/shoulder pain compared to healthy controls

    DEFF Research Database (Denmark)

    Bech, Katrine Tholstrup; Larsen, Camilla Marie; Sjøgaard, Gisela

    2017-01-01

    Subjects reporting neck/shoulder pain have been shown to generate less force during maximal voluntary isometric contractions (MVC) of the shoulder muscles compared to healthy controls. This has been suggested to be caused by a pain-related decrease in voluntary activation (VA) rather than lack of...

  20. Investigation of the Effect of Neck Muscle Active Force on Whiplash Injury of the Cervical Spine

    Directory of Open Access Journals (Sweden)

    Yu Yan

    2018-01-01

    Full Text Available The objective of the present study is to investigate the influence of neck muscle activation on whiplash neck injury of the occupants of a passenger vehicle under different severities of frontal and rear-end impact collisions. The finite element (FE model has been used as a versatile tool to simulate and understand the whiplash injury mechanism for occupant injury prevention. However, whiplash injuries and injury mechanisms have rarely been investigated in connection with neck active muscle forces, which restricts the complete reappearance and understanding of the injury mechanism. In this manuscript, a mixed FE human model in a sitting posture with an active head-neck was developed. The response of the cervical spine under frontal and rear-end collision conditions was then studied using the FE model with and without neck muscle activation. The effect of the neck muscle activation on the whiplash injury was studied based on the results of the FE simulations. The results indicated that the neck active force influenced the head-neck dynamic response and whiplash injury during a collision, especially in a low-speed collision.

  1. The effects of femoral neck cut, cable tension, and muscles forces on the greater trochanter fixation.

    Science.gov (United States)

    Petit, Yvan; Cloutier, Luc P; Duke, Kajsa; Laflamme, G Yves

    2012-04-01

    Greater trochanter (GT) stabilization techniques following a fracture or an osteotomy are still showing high levels of postoperative complications. Understanding the effect of femoral neck cut placement, cable tension and muscles forces on GT fragment displacements could help surgeons optimize their techniques. A 3D finite element model has been developed to evaluate, through a statistical experimental design, the impact of the above variables on the GT fragment gap and sliding displacements. Muscles forces were simulating typical daily activities. Stresses were also investigated. The femoral neck cut placement had the most significant effect on the fragment displacement. Lowering it by 5 mm increased the gap and sliding fragment displacements by 288 and 128 %, respectively. Excessive cable tightening provided no significant reduction in fragment displacement. Muscle activities increased the gap and the sliding displacements for all muscle configurations. The maximum total displacement of 0.41 mm was present with a 10 mm femoral neck cut, a cable tension of 178 N, and stair climbing. Caution must be used not to over tighten the cables as the potential damage caused by the increased stress is more significant than any reduction in fragment displacement. Furthermore, preservation of the contact area is important for GT stabilization.

  2. Unfolding transitions in myosin give rise to the double-hyperbolic force-velocity relation in muscle

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    This work presents an extension to a recent model of muscle contraction that was based on entropic elasticity (Nielsen 2002 J. Theor Biol. 219 99-119). By using entropic elasticity as the origin of muscle force, various possibilities emerge that can account for the presence of the double......-hyperbolic force-velocity relation in muscle that was observed by Edman (1988 J. Physiol. 404 301-21). In the present work, it will be argued that a slight change (elongation) of the contour length of the entropic springs involved in their high-force regions is sufficient to produce such a double...

  3. Opposite effect of ATP on contraction force of tonic and phasic skeletal muscles in frogs.

    Science.gov (United States)

    Grishin, S N; Kamaliev, R R; Teplov, A Yu; Ziganshin, A U

    2011-07-01

    Experiments in vitro showed that ATP and adenosine equally suppressed contractions of frog m. sartorius, which belongs to the phasic type muscles. Adenosine receptors antagonist 8-SPT abolished the effect of adenosine, but did not change the effect of ATP. This fact proves the independence of signaling pathways of these purines. ATP produced an opposite effect on the tonic muscle m. cruralis and increased the force of its contraction. Adenosine produced an inhibitory effect on the force of m. cruralis contration. In this case, 8-SPT also eliminated the effect of adenosine, but did not change the effect of ATP. The potentiating effect of ATP was blocked by suramin, a nonselective antagonist of P2 receptors, which attests to their involvement into the effects of this purine. The opposite effects of purinergic regulation reflect fundamental differences in functional organization of phasic and tonic muscular systems. It was hypothesized that the increase in contraction force under the effect of ATP is a mechanism providing maitenance of the contracted state of tonic muscle without appreciable metabolic costs.

  4. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Science.gov (United States)

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  5. Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine.

    Science.gov (United States)

    Pienaar, Andries W; Barnard, Justhinus G

    2017-04-01

    This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB ® ) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years, ±18.58) participated in this study. The validity of PAB ® was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to compare air pressure force (mb) to electromyography (EMG) in microvolt (μV) and to measure the reliability of PAB ® . A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB ® force (mb) and EMG activity (μV) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB ® test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB ® device is reliable and valid.

  6. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    Science.gov (United States)

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep

  7. Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.

    Science.gov (United States)

    Lindsay, Angus; Schmiechen, Alexandra; Chamberlain, Christopher M; Ervasti, James M; Lowe, Dawn A

    2018-05-23

    Macrophage infiltration is a hallmark of dystrophin-deficient muscle. We tested the hypothesis that Duchenne muscular dystrophy (DMD) patients would have elevated levels of the macrophage synthesized pterins, neopterin and 7,8-dihydroneopterin compared to unaffected age-matched controls. Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients and 7,8-dihydroneopterin/creatinine was associated with patient age and ambulation. 7,8-dihydroneopterin correction with specific gravity was also elevated in DMD patients. Because 7,8-dihydroneopterin is an antioxidant, we then identified a potential role for 7,8-dihydroneopterin in disease pathology. We assessed whether 7,8-dihydroneopterin could 1) protect against isometric force loss in wildtype skeletal muscle exposed to various pro-oxidants, and 2) protect wildtype and mdx muscle from eccentric contraction-induced force drop which has an oxidative component. Force drop was elicited in isolated Extensor Digitorum Longus (EDL) muscles by 10 eccentric contractions and recovery of force following the contractions was measured in the presence of exogenous 7,8-dihydroneopterin. 7,8-dihydroneopterin attenuated isometric force loss by wildtype EDL muscles when challenged by H 2 O 2 and HOCl, but exacerbated force loss when challenged by SIN-1 (NO · , O 2 · , ONOO - ). 7,8-dihydroneopterin attenuated eccentric contraction-induced force drop in mdx muscle. Isometric force by EDL muscles of mdx mice also recovered to a greater degree following eccentric contractions in the presence of 7,8-dihydroneopterin. The results corroborate macrophage activation in DMD patients, provide a potential protective role for 7,8-dihydroneopterin in the susceptibility of dystrophic muscle to eccentric contractions and indicate oxidative stress contributes to eccentric contraction-induced force drop in mdx skeletal muscle. This article is protected by copyright. All rights reserved. This article is protected by

  8. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    Science.gov (United States)

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  9. EEG signatures of arm isometric exertions in preparation, planning and execution.

    Science.gov (United States)

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  10. Back muscle strength, lifting, and stooped working postures.

    Science.gov (United States)

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  11. Facial dimensions, bite force and masticatory muscle thickness in preschool children with functional posterior crossbite

    Directory of Open Access Journals (Sweden)

    Paula Midori Castelo

    2008-03-01

    Full Text Available Posterior crossbite may affect craniofacial growth and development. Thus, this study aimed to associate facial dimensions (by standardized frontal photographs to masseter and anterior portion of the temporal muscle thickness (by ultrasonography and maximal bilateral bite force in 49 children with deciduous and early mixed dentitions. They were distributed in four groups: deciduous-normal occlusion (DNO, n = 15, deciduous-crossbite (DCB, n = 10, mixed-normal occlusion (MNO, n = 13 and mixed-crossbite (MCB, n = 11. Anterior facial height (AFH, bizygomatic width (FWB, and intergonial width (FWI were determined and associated with muscle thickness and bite force, applying Pearson’s coefficients and multiple logistic regression, with age, gender, body weight and height as the covariates. FWB and FWI were correlated positively with the masseter thickness, whereas AFH/FWB and AFH/FWI ratios had negative correlation, except in the DNO group. The correlation between AFH/FWB and bite force in the MCB group was significantly negative. A higher AFH/FWB in MNO and MCB led to a significantly higher probability for functional crossbite development. In the studied sample, it was observed that children in the early mixed dentition with a long-face trend showed lower bite force and higher probability to present functional posterior crossbite, without significant influence of the covariates.

  12. The energetic benefits of tendon springs in running: is the reduction of muscle work important?

    Science.gov (United States)

    Holt, Natalie C; Roberts, Thomas J; Askew, Graham N

    2014-12-15

    The distal muscle-tendon units of cursorial species are commonly composed of short muscle fibres and long, compliant tendons. It is assumed that the ability of these tendons to store and return mechanical energy over the course of a stride, thus avoiding the cyclic absorption and regeneration of mechanical energy by active muscle, offers some metabolic energy savings during running. However, this assumption has not been tested directly. We used muscle ergometry and myothermic measurements to determine the cost of force production in muscles acting isometrically, as they could if mechanical energy was stored and returned by tendon, and undergoing active stretch-shorten cycles, as they would if mechanical energy was absorbed and regenerated by muscle. We found no detectable difference in the cost of force production in isometric cycles compared with stretch-shorten cycles. This result suggests that replacing muscle stretch-shorten work with tendon elastic energy storage and recovery does not reduce the cost of force production. This calls into question the assumption that reduction of muscle work drove the evolution of long distal tendons. We propose that the energetic benefits of tendons are derived primarily from their effect on muscle and limb architecture rather than their ability to reduce the cyclic work of muscle. © 2014. Published by The Company of Biologists Ltd.

  13. Contraction mode itself does not determine the level of mTORC1 activity in rat skeletal muscle.

    Science.gov (United States)

    Ato, Satoru; Makanae, Yuhei; Kido, Kohei; Fujita, Satoshi

    2016-10-01

    Resistance training with eccentric contraction has been shown to augment muscle hypertrophy more than other contraction modes do (i.e., concentric and isometric contraction). However, the molecular mechanisms involved remain unclear. The purpose of this study was to investigate the effect of muscle contraction mode on mammalian target of rapamycin complex 1 (mTORC1) signaling using a standardized force-time integral (load (weight) × contraction time). Male Sprague-Dawley rats were randomly assigned to three groups: eccentric contraction, concentric contraction, and isometric contraction. The right gastrocnemius muscle was exercised via percutaneous electrical stimulation-induced maximal contraction. In experiment 1, different modes of muscle contraction were exerted using the same number of reps in all groups, while in experiment 2, muscle contractions were exerted using a standardized force-time integral. Muscle samples were obtained immediately and 3 h after exercise. Phosphorylation of molecules associated with mTORC1 activity was assessed using western blot analysis. In experiment 1, the force-time integral was significantly different among contraction modes with a higher force-time integral for eccentric contraction compared to that for other contraction modes (P contraction compared to that for isometric contraction (P contraction than for other modes of contraction (P contraction was higher than isometric contraction (P contraction modes 3 h after exercise. Our results suggest that mTORC1 activity is not determined by differences in muscle contraction mode itself. Instead, mTORC1 activity is determined by differences in the force-time integral during muscle contraction. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Effects of in vivo-like activation frequency on the length-dependent force generation of skeletal muscle fibre bundles

    NARCIS (Netherlands)

    Zuurbier, C. J.; Lee-de Groot, M. B.; van der Laarse, W. J.; Huijing, P. A.

    1998-01-01

    It is known that a range of firing frequencies can be observed during in vivo muscle activity, yet information is lacking as to how different in vivo-like frequencies may affect force generation of skeletal muscle. This study examined the effects of constant (CSF, constant within one contraction)

  15. Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery

    NARCIS (Netherlands)

    Yucesoy, C.A.; Huijing, P.A.J.B.M.

    2007-01-01

    The specific aim of this paper is to review the effects of epimuscular myofascial force transmission on muscular mechanics and present some new results on finite element modeling of non-isolated aponeurotomized muscle in order to discuss the dependency of mechanics of spastic muscle, as well as

  16. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  17. Biceps brachii muscle oxygenation in electrical muscle stimulation.

    Science.gov (United States)

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

  18. Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Dong, Chenling; Chen, Bin

    2015-07-01

    It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.

  19. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Directory of Open Access Journals (Sweden)

    Bolliger Marc

    2008-10-01

    Full Text Available Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Methods Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Conclusion Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  20. Bilateral movements increase sustained extensor force in the paretic arm.

    Science.gov (United States)

    Kang, Nyeonju; Cauraugh, James H

    2018-04-01

    Muscle weakness in the extensors poststroke is a common motor impairment. Unfortunately, research is unclear on whether bilateral movements increase extensor force production in the paretic arm. This study investigated sustained force production while stroke individuals maximally extended their wrist and fingers on their paretic arm. Specifically, we determined isometric force production in three conditions: (a) unilateral paretic arm, (b) unilateral nonparetic arm, and (c) bilateral (both arms executing the same movement simultaneously). Seventeen chronic stroke patients produced isometric sustained force by executing wrist and fingers extension in unilateral and bilateral contraction conditions. Mean force, force variability (coefficient of variation), and signal-to-noise ratio were calculated for each contraction condition. Analysis of two-way (Arm × Type of Condition: 2 × 2; Paretic or Nonparetic Arm × Unilateral or Bilateral Conditions) within-subjects ANOVAs revealed that the bilateral condition increased sustained force in the paretic arm, but reduced sustained force in the nonparetic arm. Further, although the paretic arm exhibited more force variability and less signal-to-noise ratio than the nonparetic arm during a unilateral condition, there were no differences when participants simultaneously executed isometric contractions with both arms. Our unique findings indicate that bilateral contractions transiently increased extensor force in the paretic arm. Implications for Rehabilitation Bilateral movements increased isometric wrsit extensor force in paretic arms and redcued force in nonparetic arms versus unilateral movements. Both paretic and nonparetic arms produced similar force variability and signal-to-noise ratio during bilateral movements. Increased sustained force in the paretic arm during the bilateral condition indicates that rehabilitation protocols based on bilateral movements may be beneficial for functional recovery.

  1. Familiarization, validity and smallest detectable difference of the isometric squat test in evaluating maximal strength.

    Science.gov (United States)

    Drake, David; Kennedy, Rodney; Wallace, Eric

    2018-02-06

    Isometric multi-joint tests are considered reliable and have strong relationships with 1RM performance. However, limited evidence is available for the isometric squat in terms of effects of familiarization and reliability. This study aimed to assess, the effect of familiarization, stability reliability, determine the smallest detectible difference, and the correlation of the isometric squat test with 1RM squat performance. Thirty-six strength-trained participants volunteered to take part in this study. Following three familiarization sessions, test-retest reliability was evaluated with a 48-hour window between each time point. Isometric squat peak, net and relative force were assessed. Results showed three familiarizations were required, isometric squat had a high level of stability reliability and smallest detectible difference of 11% for peak and relative force. Isometric strength at a knee angle of ninety degrees had a strong significant relationship with 1RM squat performance. In conclusion, the isometric squat is a valid test to assess multi-joint strength and can discriminate between strong and weak 1RM squat performance. Changes greater than 11% in peak and relative isometric squat performance should be considered as meaningful in participants who are familiar with the test.

  2. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments.

    Science.gov (United States)

    Mondal, Subrata; Ghosh, Rajesh

    2017-09-01

    The goal of this study is to develop a realistic three dimensional FE model of intact ankle joint. Three dimensional FE model of the intact ankle joint was developed using computed tomography data sets. The effect of muscle force, ligaments and proper material property distribution of bone on stress distribution across the intact ankle joint was studied separately. Present study indicates bone material property, ligaments and muscle force have influence on stress distribution across the ankle joint. Proper bone material, ligaments and muscle must be considered in the computational model for pre-clinical analysis of ankle prosthesis.

  3. Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards.

    Science.gov (United States)

    Kim, Jeong Ho; Aulck, Lovenoor; Bartha, Michael C; Harper, Christy A; Johnson, Peter W

    2014-11-01

    The present study investigated whether there were physical exposure and typing productivity differences between a virtual keyboard with no tactile feedback and two conventional keyboards where key travel and tactile feedback are provided by mechanical switches under the keys. The key size and layout were same across all the keyboards. Typing forces; finger and shoulder muscle activity; self-reported comfort; and typing productivity were measured from 19 subjects while typing on a virtual (0 mm key travel), notebook (1.8 mm key travel), and desktop keyboard (4 mm key travel). When typing on the virtual keyboard, subjects typed with less force (p's typing forces and finger muscle activity came at the expense of a 60% reduction in typing productivity (p typing sessions or when typing productivity is at a premium, conventional keyboards with tactile feedback may be more suitable interface. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Acute effect of static stretching on muscle force in older women

    Directory of Open Access Journals (Sweden)

    André Luiz Demantova Gurjão

    2010-04-01

    Full Text Available The objective of this study was to investigate the acute effect of static stretching on the peak rate of force development (PRFD and maximum voluntary contraction (MVC in older women. Ten women (68.5 ± 7.0 years; 70.9 ± 8.1 kg; 159.4 ± 6.0 cm; body mass index: 28.0 ± 3.8 kg/m2 were studied. MVC and PRFD were determined by leg press exercise before and after the control or stretching condition (three sets of 30 seconds of static stretching of the quadriceps on two different days (interval of 24 hours. PRFD was determined as the steepest slope of the curve, calculated within regular windows of 20 milliseconds (∆force/∆time for the first 200 milliseconds after the onset of contraction. MVC was determined as the highest value recorded in each set. Only one condition was tested on each day and the order of application of each condition was determined randomly. The stretching intensity was evaluated by the muscle pain threshold. Four post-condition assessments (post-treatment, 10, 20, and 30 minutes were performed to monitor muscle strength. ANCOVA 2x5, followed by the Scheffé post-hoc test, showed no significant interactions between conditions vs. times (P > 0.05 for PRFD or MVC. In conclusion, acute bouts of static stretching of the quadriceps femoris do not affect the ability of rapid and maximum muscle force production in older women.

  5. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle

    DEFF Research Database (Denmark)

    Fredsted, A; Gissel, H; Ortenblad, N

    2012-01-01

    of salbutamol on force recovery were prevented by blocking the Na(+),K(+)- pumps with ouabain or by blocking glycolysis with 2-deoxyglucose. Dibutyryl cAMP (1 mM) or theophylline (1 mM) also improved force recovery remarkably. In anoxic muscles, salbutamol decreased intracellular Na(+), increased (86)Rb uptake...

  6. The role of intrinsic muscle properties for stable hopping-stability is achieved by the force-velocity relation

    International Nuclear Information System (INIS)

    Haeufle, D F B; Grimmer, S; Seyfarth, A

    2010-01-01

    A reductionist approach was presented to investigate which level of detail of the physiological muscle is required for stable locomotion. Periodic movements of a simplified one-dimensional hopping model with a Hill-type muscle (one contractile element, neither serial nor parallel elastic elements) were analyzed. Force-length and force-velocity relations of the muscle were varied in three levels of approximation (constant, linear and Hill-shaped nonlinear) resulting in nine different hopping models of different complexity. Stability of these models was evaluated by return map analysis and the performance by the maximum hopping height. The simplest model (constant force-length and constant force-velocity relations) outperformed all others in the maximum hopping height but was unstable. Stable hopping was achieved with linear and Hill-shaped nonlinear characteristic of the force-velocity relation. The characteristics of the force-length relation marginally influenced hopping stability. The results of this approach indicate that the intrinsic properties of the contractile element are responsible for stabilization of periodic movements. This connotes that (a) complex movements like legged locomotion could benefit from stabilizing effects of muscle properties, and (b) technical systems could benefit from the emerging stability when implementing biological characteristics into artificial muscles.

  7. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Science.gov (United States)

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  8. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction.

    Science.gov (United States)

    Pascoe, Michael A; Holmes, Matthew R; Enoka, Roger M

    2011-02-01

    The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.

  9. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  10. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    Science.gov (United States)

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  11. The fascicular anatomy and peak force capabilities of the sternocleidomastoid muscle.

    Science.gov (United States)

    Kennedy, Ewan; Albert, Michael; Nicholson, Helen

    2017-06-01

    The fascicular morphology of the sternocleidomastoid (SCM) is not well described in modern anatomical texts, and the biomechanical forces it exerts on individual cervical motion segments are not known. The purpose of this study is to investigate the fascicular anatomy and peak force capabilities of the SCM combining traditional dissection and modern imaging. This study is comprised of three parts: Dissection, magnetic resonance imaging (MRI) and biomechanical modelling. Dissection was performed on six embalmed cadavers: three males of age 73-74 years and three females of age 63-93 years. The fascicular arrangement and morphologic data were recorded. MRIs were performed on six young, healthy volunteers: three males of age 24-37 and three females of age 26-28. In vivo volumes of the SCM were calculated using the Cavalieri method. Modelling of the SCM was performed on five sets of computed tomography (CT) scans. This mapped the fascicular arrangement of the SCM with relation to the cervical motion segments, and used volume data from the MRIs to calculate realistic peak force capabilities. Dissection showed the SCM has four parts; sterno-mastoid, sterno-occipital, cleido-mastoid and cleido-occipital portions. Force modelling shows that peak torque capacity of the SCM is higher at lower cervical levels, and minimal at higher levels. Peak shear forces are higher in the lower cervical spine, while compression is consistent throughout. The four-part SCM is capable of producing forces that vary across the cervical motion segments. The implications of these findings are discussed with reference to models of neck muscle function and dysfunction.

  12. Physics of muscle contraction

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called ‘descending limb’ of the isometric tetanus.

  13. Physics of muscle contraction.

    Science.gov (United States)

    Caruel, M; Truskinovsky, L

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called 'descending limb' of the isometric tetanus.

  14. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    Science.gov (United States)

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability

  15. Relationship of moderate and low isometric lumbar extension through architectural and muscular activity variables: a cross sectional study

    International Nuclear Information System (INIS)

    Cuesta-Vargas, Antonio I; Gonzalez-Sanchez, Manuel

    2013-01-01

    No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity

  16. Report on Adaptive Force, a specific neuromuscular function

    Directory of Open Access Journals (Sweden)

    Marko Hoff

    2015-08-01

    Full Text Available In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1 What is the peculiarity of this neuromuscular function, introduced as AF? 2 Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3 It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects’ option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso, the maximal isometric Adaptive Force (AFisomax and the maximal eccentric Adaptive Force (AFeccmax. Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities.

  17. The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion.

    Science.gov (United States)

    Raikova, Rositsa; Aladjov, Hristo

    2003-06-01

    A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality.

  18. Reliability of isometric subtalar pronator and supinator strength testing.

    Science.gov (United States)

    Hagen, Marco; Lahner, Matthias; Winhuysen, Martin; Maiwald, Christian

    2015-01-01

    Due to the specific anatomy of the subtalar joint with its oblique axis, isometric pronator and supinator strength is not well documented. The purpose of this study was to determine intra- and between-session reliability of pronator and supinator strength and lower leg muscle activity measurements during maximum voluntary isometric contractions (MVIC). Pronator and supinator peak torques (PT), with and without supplementary visual muscle strength biofeedback (FB), and muscular activities of peroneus longus (PL) and tibialis anterior (TA) were assessed twice 3 days apart by the same examiner in 21 healthy young male adults (mean age: 27.6 years; SD = 3.9). Limits of agreement (LoA) and minimum detectable change (MDC) were evaluated. By applying FB, reliability of both pronator and supinator PT was improved: LoA were reduced from 32% to 26% and from 20% to 18% and MDC from 20% to 15% and from 16% to 12% in supinator and pronator PT, respectively. Learning effects in pronator and supinator PT (p isometric subtalar pronator and supinator strength testing is reliable in healthy subjects. LoA of 18% and 26% have to be exceeded for pronator and supinator PT, respectively, to detect relevant effects in repeated measures.

  19. Temporal summation of heat pain modulated by isometric exercise.

    Science.gov (United States)

    Koltyn, K F; Knauf, M T; Brellenthin, A G

    2013-08-01

    Little is known about the effects of isometric exercise on temporal summation of heat pain. Thus, the purposes of study 1 and study 2 were to examine the influence of exhaustive and non-exhaustive isometric exercise on temporal summation of heat pain in men and women. Forty-four men and 44 women (mean age = 20 years) completed an informed consent document and a packet of questionnaires. Ten heat pulses were applied to the thenar eminence of the dominant hand using a standardized temporal summation protocol. Participants rated the intensity of the heat pulses using a 0-100 pain rating scale before and following isometric exercise consisting of squeezing a hand dynamometer at 40% of maximal voluntary contraction (MVC) to exhaustion (exhaustive exercise, study 1) and at 25% MVC for 3 min (non-exhaustive exercise, study 2). Muscle pain and perceived exertion were rated every 30 s during exercise using validated rating scales. The data were analysed with repeated measures analysis of variance. The results indicated there were no sex differences (p > 0.05) in time to exhaustion (study 1), muscle pain or perceived exertion (studies 1 and 2). There was a significant reduction (p heat pain in men and women. © 2012 European Federation of International Association for the Study of Pain Chapters.

  20. Mouse preferential incising force orientation changes during jaw closing muscle hyperalgesia and is sex dependent.

    Science.gov (United States)

    Widmer, C G; Morris-Wiman, J

    2016-12-01

    Mouse incising is controlled by a central pattern generator and this activity can change in the presence of pain. The incising frequency and maximum force generation decreases with pain. In this study, we used repetitive acidic injections in the left masseter muscle of male and female mice to determine differences between baseline and jaw muscle pain conditions and the effect of sex on preferential incising direction. A within subject design was used to evaluate data previously acquired using multi-axis force data (X, Y and Z) from the 4th baseline recording day and day 7 post-injection (day of maximal pain response) for each mouse of each sex. A total of 34 female and male (age 3-9months) CD-1 mice were evaluated. After mathematically rotating the X and Y axes to align the Y axis to be parallel to the wire struts of the cage top, data were analyzed to determine incising direction preference during baseline (non-pain) and pain (day 7) conditions and between sex. Radar plots of X-Y, X-Z and Y-Z axes depicted the average direction of incising preference between baseline and pain conditions for each sex. Statistical differences among groups were tested using a mixed model ANOVA. Similar to previous findings, female mice had a more robust difference in incising direction preference when comparing male and female pain conditions and this was most evident in the X-Z axes. The incising frequencies most commonly affected were 5.3, 6.2 and 7.6Hz. Male mice varied little in their incising direction preference between the baseline and pain conditions. In addition, statistical comparison of ratios of the percent of time spent incising in the Z versus X axes for each incising frequency found that the incising preference was not different when comparing 5.3 and 7.6Hz frequencies. Finally, female mice used a novel approach to minimize pain while incising by rotating their head and body nearly 180 degrees while males did not use this strategy as frequently. The preferred incising

  1. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.

    Directory of Open Access Journals (Sweden)

    Ing-Shiou Hwang

    Full Text Available Discharge patterns from a population of motor units (MUs were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF. In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.