WorldWideScience

Sample records for isometric force depression

  1. Cryotherapy, Sensation, and Isometric-Force Variability

    Science.gov (United States)

    Denegar, Craig R.; Buckley, William E.; Newell, Karl M.

    2003-01-01

    Objective: To determine the changes in sensation of pressure, 2-point discrimination, and submaximal isometric-force production variability due to cryotherapy. Design and Setting: Sensation was assessed using a 2 × 2 × 2 × 3 repeated-measures factorial design, with treatment (ice immersion or control), limb (right or left), digit (finger or thumb), and sensation test time (baseline, posttreatment, or postisometric-force trials) as independent variables. Dependent variables were changes in sensation of pressure and 2-point discrimination. Isometric-force variability was tested with a 2 × 2 × 3 repeated-measures factorial design. Treatment condition (ice immersion or control), limb (right or left), and percentage (10, 25, or 40) of maximal voluntary isometric contraction (MVIC) were the independent variables. The dependent variables were the precision or variability (the standard deviation of mean isometric force) and the accuracy or targeting error (the root mean square error) of the isometric force for each percentage of MVIC. Subjects: Fifteen volunteer college students (8 men, 7 women; age = 22 ± 3 years; mass = 72 ± 21.9 kg; height = 183.4 ± 11.6 cm). Measurements: We measured sensation in the distal palmar aspect of the index finger and thumb. Sensation of pressure and 2-point discrimination were measured before treatment (baseline), after treatment (15 minutes of ice immersion or control), and at the completion of isometric testing (final). Variability (standard deviation of mean isometric force) of the submaximal isometric finger forces was measured by having the subjects exert a pinching force with the thumb and index finger for 30 seconds. Subjects performed the pinching task at the 3 submaximal levels of MVIC (10%, 25%, and 40%), with the order of trials assigned randomly. The subjects were given a target representing the submaximal percentage of MVIC and visual feedback of the force produced as they pinched the testing device. The force exerted

  2. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation dissipation theorem

    Science.gov (United States)

    Frank, T. D.; Patanarapeelert, K.; Beek, P. J.

    2008-05-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted.

  3. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted

  4. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  5. A component analysis of the generation and release of isometric force in Parkinson's disease.

    OpenAIRE

    Jordan, N; Sagar, H J; Cooper, J A

    1992-01-01

    Paradigms of isometric force control allow study of the generation and release of movement in the absence of complications due to disordered visuomotor coordination. The onset and release of isometric force in Parkinson's disease (PD) was studied, using computerised determinants of latency of response and rate of force generation and release. Components of isometric force control were related to measures of cognitive, affective and clinical motor disability. The effects of treatment were dete...

  6. Does combined strength training and local vibration improve isometric maximum force? A pilot study.

    Science.gov (United States)

    Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim

    2017-01-01

    The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.

  7. Development of isometric force and force control in children

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2004-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  8. Development of isometric force and force control in children.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2003-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  9. Explosive force production during isometric squats correlates with athletic performance in rugby union players.

    Science.gov (United States)

    Tillin, Neale Anthony; Pain, Matthew Thomas Gerard; Folland, Jonathan

    2013-01-01

    This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = -0.63, P = 0.005; and 20 m, r = -0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 squats (33-67%; 0.001 squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.

  10. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    NARCIS (Netherlands)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the

  11. Force-Time Entropy of Isometric Impulse.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  12. Relationship Between Force Production During Isometric Squats and Knee Flexion Angles During Landing.

    Science.gov (United States)

    Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2016-06-01

    Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.

  13. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.

    Science.gov (United States)

    Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D

    2018-01-31

    Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.

  14. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  15. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.

    Science.gov (United States)

    Gittings, William; Aggarwal, Harish; Stull, James T; Vandenboom, Rene

    2015-01-01

    The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK(-/-)) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK(-/-)) of prestimulus levels, respectively (data n = 6-8, p muscles.

  16. Effects of adding whole body vibration to squat training on isometric force/time characteristics.

    Science.gov (United States)

    Lamont, Hugh S; Cramer, Joel T; Bemben, Debra A; Shehab, Randa L; Anderson, Mark A; Bemben, Michael G

    2010-01-01

    Resistance training interventions aimed at increasing lower-body power and rates of force development have produced varying results. Recent studies have suggested that whole-body low-frequency vibration (WBLFV) may elicit an acute postactivation potentiation response, leading to acute improvements in power and force development. Potentially, the use of WBLFV between sets of resistance training rather than during training itself may lead to increased recruitment and synchronization of high-threshold motor units, minimize fatigue potential, and facilitate the chronic adaptation to resistance exercise. The purpose of this study was to determine the effects of applying TriPlaner, WBLFV, prior to and then intermittently between sets of Smith machine squats on short-term adaptations in explosive isometric force expression. Thirty recreationally resistance trained men aged 18-30 were randomly assigned to 1 of 3 groups: resistance training only (SQT, n = 11), resistance plus whole-body vibration (SQTV, n = 13), or active control (CON, n = 6). An isometric squat test was performed prior to and following a 6-week periodized Smith machine squat program. Whole-body low-frequency vibration was applied 180 seconds prior to the first work set (50 Hz, 2-4 mm, 30 seconds) and intermittently (50 Hz, 4-6 mm, 3 x 10 seconds, 60 seconds between exposures) within a 240-second interset rest period. Subjects were instructed to assume a quarter squat posture while positioning their feet directly under their center of mass, which was modified using a handheld goniometer to a knee angle of 135 +/- 5 degrees . Instructions were given to subjects to apply force as fast and as hard as possible for 3.5 seconds. Isometric force (N) and rates of force development (N.s(-1)) were recorded from the onset of contraction (F(0)) to time points corresponding to 30, 50, 80, 100, 150, and 250 milliseconds, as well as the peak isometric rate of force development (PISORFD), and rate of force development to

  17. Influence of Whole Body Vibration and Specific Warm-ups on Force during an Isometric Mid-Thigh Pull

    Directory of Open Access Journals (Sweden)

    Vanessa L. Cazás-Moreno

    2015-10-01

    Full Text Available Purpose: The purpose of this study was to investigate the effects of general and specific warm-up protocols on rate of force development (RFD, relative RFD (rRFD, ground reaction force (GRF and relative ground reaction force (rGRF during an isometric mid-thigh pull (IMTP, after WBV exposure. Methods: Fifteen healthy recreationally trained males  (age: 24.1 ± 2.3 yrs, height: 72.9 ± 7.8 cm; mass: 86.9 ± 8.3 completed five protocols: baseline, isometric vibration (iVib, isometric no vibration (iNV, dynamic vibration (dVib and dynamic no vibration (dNV. The baseline was completed without any warm-up prior to the IMTP. The intervention protocols had the same prescription of 4 sets of 30-second bouts of quarter squats (dynamic [DQS] and isometric [IQS] on the WBV platform with or without vibration. Following a one-minute rest period after each protocol, participants completed three maximal IMTPs. Results: Repeated measures ANOVA with a Bonferroni post hoc demonstrated that RFD in dNV (7657.8 ± 2292.5 N/s was significantly greater than iVib (7156.4 ± 2170.0 N/s. However, the other experimental trials for RFD demonstrated no significant differences (p>0.05. There were also no significant differences for rRFD, GRF or rGRF between protocols. Conclusion: These results demonstrate that a dynamic warm-up without WBV elicits greater RFD than an isometric warm-up with WBV prior to a maximal isometric exercise. Further research needs to be investigated utilizing dynamic and isometric warm-ups in conjunction with WBV and power output. Keywords: males, recreationally trained, power

  18. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    Science.gov (United States)

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the

  19. Hand-grip isometric strength in judo

    Directory of Open Access Journals (Sweden)

    Juan G Bonitch-Góngora

    2014-02-01

    Full Text Available The grip is an important technical and tactical aspect through which the judokas dominate the adversary, hindering the application of appropriate techniques and favoring their own attack. The judokas must have high levels of isometric force and endurance to this type of force on the gripping muscles of the forearms, as one of the key aspects for success. This article reviews the grip muscular strength and endurance profiles of judokas of different groups (gender, age and competitive level. In general, the peak isometric strength of elite judokas has not changed in the last 40 years and is similar to that reached by non-elite judokas or even registered in large populations. This indicate that the evaluation of the isometric hand grip endurance may be a more relevant parameter than the peak isometric force in judokas, as during the bouts the grip must be maintained for relatively long periods of time and the maximum force cannot be maintained for long. However there are few studies on the ability to resist successive isometric handgrip stress in judokas.

  20. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    Science.gov (United States)

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  1. Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land.

    Science.gov (United States)

    Pinto, Stephanie Santana; Liedtke, Giane Veiga; Alberton, Cristine Lima; da Silva, Eduardo Marczwski; Cadore, Eduardo Lusa; Kruel, Luiz Fernando Martins

    2010-11-01

    This study was designed to compare surface electromyographic (sEMG) signal and force production during maximal voluntary isometric contractions (MVCs) in water and on dry land. The reproducibility of sEMG and isometric force measurements between water and dry land environments was also assessed. Nine women performed MVC for elbow flexion and extension, hip flexion, and extension against identical fixed resistance in both environments. The sEMG signal from biceps brachii, triceps brachii, rectus femoris, and biceps femoris was recorded with waterproof adhesives placed over each electrode. The sEMG and force production showed no significant difference between water and dry land, except for HEX (p = 0.035). In addition, intraclass correlation coefficient values were significant and ranged from moderate to high (0.66-0.96) for sEMG and force production between environments. These results showed that the environment did not influence the sEMG and force in MVC.

  2. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  3. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    Science.gov (United States)

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  4. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    Directory of Open Access Journals (Sweden)

    Zachary C. Thumser

    2018-04-01

    Full Text Available Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task. Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task. Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback. This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback. Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets to the more naturalistic and intuitive target forces implied by images of objects (implicit targets. With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82. Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces

  5. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    Science.gov (United States)

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized

  6. Strength training does not affect the accuracy of force gradation in an isometric force task in young men.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Smits, R.; Oomen, J.; Duysens, J.E.J.

    2008-01-01

    The aim of this study is to investigate potential differences in fine motor control between strength trained (ST) and non-strength trained (NT) individuals. By use of an isometric force production task, two groups, 20 ST (mean age 25.6, SD 4.9) and 19 NT (mean age 24.1, SD 2.9) male individuals,

  7. Relationships between Isometric Force-Time Characteristics and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Thomas Dos’Santos

    2017-09-01

    Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.

  8. Relations Between Lower Body Isometric Muscle Force Characteristics and Start Performance in Elite Male Sprint Swimmers

    Directory of Open Access Journals (Sweden)

    Igor Beretić

    2013-12-01

    Full Text Available The aim of the present study was twofold. The first aim was to examine the influence of absolute and relative lower body muscle force on kinematic component which determine the start performance. The second aim was to create multiregressional model which could use as a tool for swimming coaches with the purpose to start performance control and improvement. Twenty seven high-level trained male competitive swimmers all members of the Serbian National Youth and Senior Swimming Team (Age = 21.1 ± 4.3 yrs., Height = 1. 89 ± 0.10 m, Weight = 81.6 ± 8.4 kg, 50m freestyle - long course = 24.36 ± 0.86 s performed two trials of standing leg extensors isometric muscle force testing and three swimming start trials corresponding to 10m distance. The average start time significantly correlated with variables of leg extensors maximum voluntary force (Fmax, r = -0.559, p = 0.002, leg extensors relative muscle voluntary force (Frel, r = -0.727, p < 0.001, leg extensors specific rate of force development (RFD50%, r = -0.338, p = 0.047 and leg extensors relative value of specific rate of force development (RFD50%rel, r = -0.402, p = 0.040. Regression equation for t10m prediction was defined by following variables: maximum voluntary isometric force of leg extensors muscles at absolute and relative level (Fmax and Frel, as well as a specific rate of force development of the same muscle groups (RFD50% and RFD50%rel at absolute and relative level too with 74.4% of explained variance. Contractile abilities indicators of the leg extensors muscles included consideration: Fmax, RFD50%, Frel and RFD50%rel showed significant correlation with swimming start times on 10m. Additionally, the results suggest that swimmers, who possess greater isometric maximum force and specific rate of force development at absolute and relative levels, tend to be able to swim faster on initial 10m swim start perforamnce.

  9. Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Directory of Open Access Journals (Sweden)

    John P. Wagle

    2017-11-01

    Full Text Available The purpose of the current study was (1 to examine the differences between standing and lying measures of vastus lateralis (VL, muscle thickness (MT, pennation angle (PA, and cross-sectional area (CSA using ultrasonography; and (2 to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD, impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34 agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF, as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p < 0.001, PA (p < 0.001, and CSA (p ≤ 0.05, with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.

  10. Relationship between isometric and dynamic strength in recreationally trained men.

    Science.gov (United States)

    McGuigan, Michael R; Newton, Michael J; Winchester, Jason B; Nelson, Arnold G

    2010-09-01

    The purpose of this investigation was to examine the relationships between measures of maximal isometric force (peak force [PF]), rate of force development (RFD), vertical jump performance (VJ) and 1-repetition maximum (1RM) strength in recreationally trained men. The subjects in this study were 26 men ([mean +/- SD]: age 22 +/- 1 years; height 175 +/- 7 cm; mass 90 +/- 10 kg). They were tested for PF using the isometric midthigh pull exercise. The 1RM for the squat and bench press exercise were determined as a measure of dynamic strength. Explosive strength was measured as RFD from the isometric force-time curve. Correlations between the variables were calculated using Pearson product moment correlation coefficient. There was a nearly perfect correlation between measures of PF and 1RM squat (r = 0.97, p isometric maximum strength determined during the isometric midthigh pull test correlated well with 1RM and VJ testing. However, RFD measured during the same test did not appear to correlate as well with other measures. The isometric midthigh pull provides an efficient method for assessing strength in recreationally trained individuals. Practitioners wishing to obtain performance data related to maximum strength may wish to consider isometric testing as a less time intensive method of testing.

  11. Firing rate modulation of human motor units in different muscles during isometric contraction with various forces.

    Science.gov (United States)

    Seki, K; Narusawa, M

    1996-05-06

    To examine the factors affecting the control of human motor units, rate coding strategies of the motor units were investigated in upper limb and intrinsic hand muscles during voluntary isometric contraction of steady force levels up to 80% of maximal voluntary contraction. Numerous spike trains from single motor units were recorded from the m. first dorsal interosseous (FDI) and the m. biceps brachii (BB) of eight human subjects by means of tungsten micro-electrodes, and the mean firing rate (MFR) was calculated for each subject and inter-individual comparisons made. The MFRs of the FDI were larger than that of the BB at the higher force level, and substantial differences were not found between these muscles at the lower force level. The slope of the linear regression line of MFRs vs. exerted forces for the FDI was more than twice that for the BB. Therefore, isometric force control of the FDI depends more on the rate coding strategy. The difference in rate coding between the FDI and BB motor units may be determined by factors other than muscle fiber composition, because both muscles are known to possess a similar composition of fiber types. Possible mechanisms underlying these characteristics of rate coding strategy are considered in this report.

  12. Effects of age and content of augmented feedback on learning an isometric force-production task

    NARCIS (Netherlands)

    van Dijk, Henk; Mulder, Theo; Hermens, Hermie J.

    2007-01-01

    This study addressed the interaction between age and the informational content of feedback on learning an isometric force-production task. Healthy men and women (30 young adults: 20 to 35 years; 30 older adults: 55 to 70 years) were randomly assigned to a certain type of feedback: knowledge of

  13. A three-dimensional computerized isometric strength measurement system.

    Science.gov (United States)

    Black, Nancy L; Das, Biman

    2007-05-01

    The three-dimensional Computerized Isometric Strength Measurement System (CISMS) reliably and accurately measures isometric pull and push strengths in work spaces of paraplegic populations while anticipating comparative studies with other populations. The main elements of the system were: an extendable arm, a vertical supporting track, a rotating platform, a force transducer, stability sensors and a computerized data collection interface. The CISMS with minor modification was successfully used to measure isometric push-up and pull-down strengths of paraplegics and isometric push, pull, push-up and pull-down strength in work spaces for seated and standing able-bodied populations. The instrument has satisfied criteria of versatility, safety and comfort, ease of operation, and durability. Results are accurate within 2N for aligned forces. Costing approximately $1,500 (US) including computer, the system is affordable and accurate for aligned isometric strength measurements.

  14. Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function.

    Science.gov (United States)

    Schaefer, Laura V; Bittmann, Frank N

    2017-01-01

    In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically - therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s; p  = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% ( p  = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However

  15. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation

    NARCIS (Netherlands)

    Groot, J.H.; Rozendaal, L.A.; Meskers, C.G.M.; Arwert, H.J.

    2004-01-01

    Objective. To present an isometric method for validation of a shoulder model simulation by means of experimentally obtained electromyography and addressing all muscles active around the shoulder joints. Background. Analysis of muscle force distribution in the shoulder by means of electromyography

  16. An ergonomic modular foot platform for isometric force/torque measurements in poststroke functional assessment: A pilot study

    OpenAIRE

    Stefano Mazzoleni, PhD; Jo Van Vaerenbergh, PhD; Emma Stokes, PhD; Gábor Fazekas, MD, PhD; Paolo Dario, PhD; Eugenio Guglielmelli, PhD

    2012-01-01

    The main goal of this article is to present the design, technical development, and preliminary validation of an innovative mechatronic device for force/torque measurements taken from the human foot using pilot data. The device, formed by a mobile platform equipped with two six-axis force/torque sensors, was used to perform accurate quantitative measurements during isometric exercises, aimed at performing functional assessment tests in poststroke patients undergoing a rehabilitation treatment....

  17. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    Science.gov (United States)

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, Ppush-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    Science.gov (United States)

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling

  19. Effects of hand configuration on muscle force coordination, co-contraction and concomitant intermuscular coupling during maximal isometric flexion of the fingers.

    Science.gov (United States)

    Charissou, Camille; Amarantini, David; Baurès, Robin; Berton, Eric; Vigouroux, Laurent

    2017-11-01

    The mechanisms governing the control of musculoskeletal redundancy remain to be fully understood. The hand is highly redundant, and shows different functional role of extensors according to its configuration for a same functional task of finger flexion. Through intermuscular coherence analysis combined with hand musculoskeletal modelling during maximal isometric hand contractions, our aim was to better understand the neural mechanisms underlying the control of muscle force coordination and agonist-antagonist co-contraction. Thirteen participants performed maximal isometric flexions of the fingers in two configurations: power grip (Power) and finger-pressing on a surface (Press). Hand kinematics and force/moment measurements were used as inputs in a musculoskeletal model of the hand to determine muscular tensions and co-contraction. EMG-EMG coherence analysis was performed between wrist and finger flexors and extensor muscle pairs in alpha, beta and gamma frequency bands. Concomitantly with tailored muscle force coordination and increased co-contraction between Press and Power (mean difference: 48.08%; p force coordination during hand contractions. Our results highlight the functional importance of intermuscular coupling as a mechanism contributing to the control of muscle force synergies and agonist-antagonist co-contraction.

  20. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Science.gov (United States)

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  1. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    Science.gov (United States)

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training

  2. The effect of signal acquisition and processing choices on ApEn values: towards a "gold standard" for distinguishing effort levels from isometric force records.

    Science.gov (United States)

    Forrest, Sarah M; Challis, John H; Winter, Samantha L

    2014-06-01

    Approximate entropy (ApEn) is frequently used to identify changes in the complexity of isometric force records with ageing and disease. Different signal acquisition and processing parameters have been used, making comparison or confirmation of results difficult. This study determined the effect of sampling and parameter choices by examining changes in ApEn values across a range of submaximal isometric contractions of the first dorsal interosseus. Reducing the sample rate by decimation changed both the value and pattern of ApEn values dramatically. The pattern of ApEn values across the range of effort levels was not sensitive to the filter cut-off frequency, or the criterion used to extract the section of data for analysis. The complexity increased with increasing effort levels using a fixed 'r' value (which accounts for measurement noise) but decreased with increasing effort level when 'r' was set to 0.1 of the standard deviation of force. It is recommended isometric force records are sampled at frequencies >200Hz, template length ('m') is set to 2, and 'r' set to measurement system noise or 0.1SD depending on physiological process to be distinguished. It is demonstrated that changes in ApEn across effort levels are related to changes in force gradation strategy. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

    NARCIS (Netherlands)

    de Ruiter, C J; Jones, D A; Sargeant, A J; de Haan, A

    1999-01-01

    The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different

  4. Assessing Muscle-Strength Asymmetry via a Unilateral-Stance Isometric Midthigh Pull.

    Science.gov (United States)

    Dos'Santos, Thomas; Thomas, Christopher; Jones, Paul A; Comfort, Paul

    2017-04-01

    To investigate the within-session reliability of bilateral- and unilateral-stance isometric midthigh-pull (IMTP) force-time characteristics including peak force (PF), relative PF, and impulse at time bands (0-100, 0-200, 0-250, and 0-300 milliseconds) and to compare isometric force-time characteristics between right and left and dominant (D) and nondominant (ND) limbs. Professional male rugby league and multisport male college athletes (N = 54; age, 23.4 ± 4.2 y; height, 1.80 ± 0.05 m; mass, 88.9 ± 12.9 kg) performed 3 bilateral IMTP trials and 6 unilateral-stance IMTP trials (3 per leg) on a force plate sampling at 600 Hz. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) demonstrated high within-session reliability for bilateral and unilateral IMTP PF (ICC = .94, CV = 4.7-5.5%). Lower reliability measures and greater variability were observed for bilateral and unilateral IMTP impulse at time bands (ICC = .81-.88, CV = 7.7-11.8%). Paired-sample t tests and Cohen d effect sizes revealed no significant differences for all isometric force-time characteristics between right and left limbs in male college athletes (P >.05, d ≤ 0.32) and professional rugby league players (P > .05, d ≤ 0.11); however, significant differences were found between D and ND limbs in male college athletes (P isometric force-time characteristics between D and ND limbs in male athletes.

  5. The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength.

    Science.gov (United States)

    Bellar, David; LeBlanc, Nina R; Campbell, Brian

    2015-01-01

    Ergogenic aides are widely used by fitness enthusiasts and athletes to increase performance. Alpha glycerylphosphorylcholine (A-GPC) has demonstrated some initial promise in changing explosive performance. The purpose of the present investigation was to determine if 6 days of supplementation with A-GPC would augment isometric force production compared to a placebo. Thirteen college-aged males (Means ± SD; Age: 21.9 ± 2.2 years, Height: 180.3 ± 7.7 cm, Weight: 87.6 ± 15.6 kg; VO2 max: 40.08 ± 7.23 ml O2*Kg(-1)*min(-1), Body Fat: 17.5 ± 4.6%) gave written informed consent to participate in the study. The study was a double blind, placebo controlled, cross-over design. The participants reported to the lab for an initial visit where they were familiarized with the isometric mid thigh pull in a custom squat cage on a force platform and upper body isometric test against a high frequency load cell, and baseline measurements were taken for both. The participant then consumed either 600 mg per day of A-GPC or placebo and at the end of 6 days performed isometric mid thigh pulls and an upper body isometric test. A one-week washout period was used before the participants' baseline was re-measured and crossed over to the other treatment. The A-GPC treatment resulted in significantly greater isometric mid thigh pull peak force change from baseline (t = 1.76, p = 0.044) compared with placebo (A-GPC: 98.8. ± 236.9 N vs Placebo: -39.0 ± 170.9 N). For the upper body test the A-GPC treatment trended towards greater change from baseline force production (A-GPC: 50.9 ± 67.2 N Placebo: -14.9 ± 114.9 N) but failed to obtain statistical significance (t = 1.16, p = 0.127). A-GPC is effective at increasing lower body force production after 6 days of supplementation. Sport performance coaches can consider adding A-GPC to the diet of speed and power athletes to enhance muscle performance.

  6. Age-related decreases in motor unit discharge rate and force control during isometric plantar flexion

    DEFF Research Database (Denmark)

    Kallio, J; Søgaard, Karen; Avela, J

    2012-01-01

    Aging is related to multiple changes in muscle physiology and function. Previous findings concerning the effects of aging on motor unit discharge rate (DR) and fluctuations in DR and force are somewhat contradictory. Eight YOUNG and nine OLD physically active males performed isometric ramp (RECR......) and isotonic (ISO) plantar flexions at 10 and 20% of surface EMG at MVC. Motor unit (MU) action potentials were recorded with intramuscular fine-wire electrodes and decomposed with custom build software "Daisy". DR was lower in OLD in RECR-10% (17.9%, p...

  7. The use of the isometric squat as a measure of strength and explosiveness.

    Science.gov (United States)

    Bazyler, Caleb D; Beckham, George K; Sato, Kimitake

    2015-05-01

    The isometric squat has been used to detect changes in kinetic variables as a result of training; however, controversy exists in its application to dynamic multijoint tasks. Thus, the purpose of this study was to further examine the relationship between isometric squat kinetic variables and isoinertial strength measures. Subjects (17 men, 1-repetition maximum [1RM]: 148.2 ± 23.4 kg) performed squats 2 d · wk(-1) for 12 weeks and were tested on 1RM squat, 1RM partial squat, and isometric squat at 90° and 120° of knee flexion. Test-retest reliability was very good for all isometric measures (intraclass correlation coefficients > 0.90); however, rate of force development 250 milliseconds at 90° and 120° seemed to have a higher systematic error (relative technical error of measurement = 8.12%, 9.44%). Pearson product-moment correlations indicated strong relationships between isometric peak force at 90° (IPF 90°) and 1RM squat (r = 0.86), and IPF 120° and 1RM partial squat (r = 0.79). Impulse 250 milliseconds (IMP) at 90° and 120° exhibited moderate to strong correlations with 1RM squat (r = 0.70, 0.58) and partial squat (r = 0.73, 0.62), respectively. Rate of force development at 90° and 120° exhibited weak to moderate correlations with 1RM squat (r = 0.55, 0.43) and partial squat (r = 0.32, 0.42), respectively. These findings demonstrate a degree of joint angle specificity to dynamic tasks for rapid and peak isometric force production. In conclusion, an isometric squat performed at 90° and 120° is a reliable testing measure that can provide a strong indication of changes in strength and explosiveness during training.

  8. Normal isometric strength of rotatorcuff muscles in adults.

    Science.gov (United States)

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  9. Familiarization, validity and smallest detectable difference of the isometric squat test in evaluating maximal strength.

    Science.gov (United States)

    Drake, David; Kennedy, Rodney; Wallace, Eric

    2018-02-06

    Isometric multi-joint tests are considered reliable and have strong relationships with 1RM performance. However, limited evidence is available for the isometric squat in terms of effects of familiarization and reliability. This study aimed to assess, the effect of familiarization, stability reliability, determine the smallest detectible difference, and the correlation of the isometric squat test with 1RM squat performance. Thirty-six strength-trained participants volunteered to take part in this study. Following three familiarization sessions, test-retest reliability was evaluated with a 48-hour window between each time point. Isometric squat peak, net and relative force were assessed. Results showed three familiarizations were required, isometric squat had a high level of stability reliability and smallest detectible difference of 11% for peak and relative force. Isometric strength at a knee angle of ninety degrees had a strong significant relationship with 1RM squat performance. In conclusion, the isometric squat is a valid test to assess multi-joint strength and can discriminate between strong and weak 1RM squat performance. Changes greater than 11% in peak and relative isometric squat performance should be considered as meaningful in participants who are familiar with the test.

  10. Effects of one-night sleep deprivation on selective attention and isometric force in adolescent karate athletes.

    Science.gov (United States)

    Ben Cheikh, Ridha; Latiri, Imed; Dogui, Mohamed; Ben Saad, Helmi

    2017-06-01

    Most of the available literature related to aspects of sleep deprivation is primarily focused on memory and learning, and studies regarding its effects on selective attention and/or physical performance are scarce. Moreover, the available literature includes general population or people involved in team sports (e.g. volleyball). However, only few studies were performed on athletes involved in combat sports (e.g. karate). The aim of the present study was to determine the effects of a total one-night sleep deprivation (1NSD) on activation and inhibition processes of selective attention and on maximal isometric force in karate athletes. Twelve young karate athletes (mean age 16.9±0.8 years) were enrolled. The protocol consists of two successive sessions: a normal night's sleep (NNS) and a total 1NSD. After each night, athletes performed selective attention and muscle strength tests during the same following three times (T) of the day: T1NNS or T11NSD: 8-9 a.m.; T2NNS or T21NSD: 12 a.m.-1 p.m.; T3NNS or T31NSD: 4-5 p.m. Activation (simple [SRT] and choice reaction times [CRT]) and inhibition (negative priming) processes were evaluated using Superlab v. 4.5 software (Cedrus Corporation, San Pedro, CA, USA). Maximal force and maximal force time (MFT) of brachial biceps isometric contraction were evaluated (Ergo System®, Globus, Codognè, Italy). A non-parametric test was used to evaluate the sessions (NNS vs. SND for the same time period) and time (T1NNS vs. 1NSD) effects. All athletes completed all tests after a NNS. Twelve, eleven and four athletes completed all tests at T11NSD, T21NSD and T31NSD, respectively. As for sessions effects, no statistically significant difference was found. As for time effects, a significant increase in SRT at T21NSD vs. T1NNS (345±47 vs. 317±33 ms, respectively), a significant increase in MFT at T21NSD vs. T1NNS (2172±260 vs.1885±292 ms, respectively), and no significant changes in CRT and negative priming reaction time or MFT data

  11. Whole-body isometric force/torque measurements for functional assessment in neuro-rehabilitation: platform design, development and verification

    Directory of Open Access Journals (Sweden)

    Cavallo Giuseppe

    2009-10-01

    Full Text Available Abstract Background One of the main scientific and technological challenges of rehabilitation bioengineering is the development of innovative methodologies, based on the use of appropriate technological devices, for an objective assessment of patients undergoing a rehabilitation treatment. Such tools should be as fast and cheap to use as clinical scales, which are currently the daily instruments most widely used in the routine clinical practice. Methods A human-centered approach was used in the design and development of a mechanical structure equipped with eight force/torque sensors that record quantitative data during the initiation of a predefined set of Activities of Daily Living (ADL tasks, in isometric conditions. Results Preliminary results validated the appropriateness, acceptability and functionality of the proposed platform, that has become now a tool used for clinical research in three clinical centres. Conclusion This paper presented the design and development of an innovative platform for whole-body force and torque measurements on human subjects. The platform has been designed to perform accurate quantitative measurements in isometric conditions with the specific aim to address the needs for functional assessment tests of patients undergoing a rehabilitation treatment as a consequence of a stroke. The versatility of the system also enlightens several other interesting possible areas of application for therapy in neurorehabilitation, for research in basic neuroscience, and more.

  12. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    Science.gov (United States)

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  13. Validation and Reliability of a Novel Test of Upper Body Isometric Strength.

    Science.gov (United States)

    Bellar, David; Marcus, Lena; Judge, Lawrence W

    2015-09-29

    The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4%) volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a "push-up" style position while tethered (stainless steel chain) to a load cell (high frequency) anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98) suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001) with all predictor variables attaining significance in the model (pIsometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001). Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment.

  14. Postactivation potentiation biases maximal isometric strength assessment.

    Science.gov (United States)

    Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Oliveira, Thiago Pires; Assumpção, Claudio de Oliveira; Greco, Camila Coelho; Cardozo, Adalgiso Croscato; Denadai, Benedito Sérgio

    2014-01-01

    Postactivation potentiation (PAP) is known to enhance force production. Maximal isometric strength assessment protocols usually consist of two or more maximal voluntary isometric contractions (MVCs). The objective of this study was to determine if PAP would influence isometric strength assessment. Healthy male volunteers (n = 23) performed two five-second MVCs separated by a 180-seconds interval. Changes in isometric peak torque (IPT), time to achieve it (tPTI), contractile impulse (CI), root mean square of the electromyographic signal during PTI (RMS), and rate of torque development (RTD), in different intervals, were measured. Significant increases in IPT (240.6 ± 55.7 N·m versus 248.9 ± 55.1 N·m), RTD (746 ± 152 N·m·s(-1) versus 727 ± 158 N·m·s(-1)), and RMS (59.1 ± 12.2% RMSMAX  versus 54.8 ± 9.4% RMSMAX) were found on the second MVC. tPTI decreased significantly on the second MVC (2373 ± 1200 ms versus 2784 ± 1226 ms). We conclude that a first MVC leads to PAP that elicits significant enhancements in strength-related variables of a second MVC performed 180 seconds later. If disconsidered, this phenomenon might bias maximal isometric strength assessment, overestimating some of these variables.

  15. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  16. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    Science.gov (United States)

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  17. Validation and Reliability of a Novel Test of Upper Body Isometric Strength

    Directory of Open Access Journals (Sweden)

    Bellar David

    2015-09-01

    Full Text Available The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4% volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a “push-up” style position while tethered (stainless steel chain to a load cell (high frequency anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98 suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001 with all predictor variables attaining significance in the model (p<0.05. Isometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001. Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment.

  18. Validation and Reliability of a Novel Test of Upper Body Isometric Strength

    Science.gov (United States)

    Bellar, David; Marcus, Lena; Judge, Lawrence W.

    2015-01-01

    The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4%) volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a “push-up” style position while tethered (stainless steel chain) to a load cell (high frequency) anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98) suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001) with all predictor variables attaining significance in the model (p<0.05). Isometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001). Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment. PMID:26557203

  19. Criterion and Construct Validity of an Isometric Midthigh-Pull Dynamometer for Assessing Whole-Body Strength in Professional Rugby League Players.

    Science.gov (United States)

    Dobbin, Nick; Hunwicks, Richard; Jones, Ben; Till, Kevin; Highton, Jamie; Twist, Craig

    2018-02-01

    To examine the criterion and construct validity of an isometric midthigh-pull dynamometer to assess whole-body strength in professional rugby league players. Fifty-six male rugby league players (33 senior and 23 youth players) performed 4 isometric midthigh-pull efforts (ie, 2 on the dynamometer and 2 on the force platform) in a randomized and counterbalanced order. Isometric peak force was underestimated (P  .05) between the predicted and peak force from the force platform and an adjusted R 2 (79.6%) that represented shrinkage of 0.4% relative to the cross-validation model (80%). Peak force was greater for the senior than the youth professionals using the dynamometer (2261.2 ± 222 cf 1725.1 ± 298.0 N, respectively; P isometric midthigh pull assessed using a dynamometer underestimates criterion peak force but is capable of distinguishing muscle-function characteristics between professional rugby league players of different standards.

  20. Age-associated changes in muscle activity during isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K

    2013-04-01

    We investigated the effect of age on the complexity of muscle activity and the variance in the force of isometric contraction. Surface electromyography (sEMG) from biceps brachii muscle and force of contraction were recorded from 96 subjects (20-70 years of age) during isometric contractions. There was a reduction in the complexity of sEMG associated with aging. The relationship of age and complexity was approximated using a bilinear fit, with the average knee point at 45 years. There was an age-associated increase in the coefficient of variation (CoV) of the force of muscle contraction, and this increase was correlated with the decrease in complexity of sEMG (r(2) = 0.76). There was an age-associated increase in CoV and also a reduction in the complexity of sEMG. The correlation between these 2 factors can be explained based on the age-associated increase in motor unit density. Copyright © 2012 Wiley Periodicals, Inc.

  1. Cervical isometric strength and range of motion of elite rugby union players: a cohort study.

    Science.gov (United States)

    Hamilton, David F; Gatherer, Don

    2014-01-01

    Head and neck injury is relatively common in Rugby Union. Despite this, strength and range-of-motion characteristics of the cervical spine are poorly characterised. The aim of this study was to provide data on the strength and range-of-motion of the cervical spine of professional rugby players to guide clinical rehabilitation. A cohort study was performed evaluating 27 players from a single UK professional rugby club. Cervical isometric strength and range-of-motion were assessed in 3 planes of reference. Anthropometric data was collected and multivariate regression modelling performed with a view to predicting cervical isometric strength. Largest forces were generated in extension, with broadly equal isometric side flexion forces at around 90% of extension values. The forwards generated significantly more force than the backline in all parameters bar flexion. The forwards had substantially reduced cervical range-of-motion and larger body mass, with differences observed in height, weight, neck circumference and chest circumference (p isometric extension (adjusted R(2) = 30.34). Rehabilitative training programs aim to restore individuals to pre-injury status. This work provides reference ranges for the strength and range of motion of the cervical spine of current elite level rugby players.

  2. A Phenomenological Model and Validation of Shortening Induced Force Depression during Muscle Contractions

    Science.gov (United States)

    McGowan, C.P.; Neptune, R.R.; Herzog, W.

    2009-01-01

    History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585

  3. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    Science.gov (United States)

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  4. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors?

    Science.gov (United States)

    Corr, David T; Herzog, Walter

    2016-03-21

    Force depression (FD), the reduction of isometric force following active shortening, is a phenomenon of skeletal muscle that has received significant attention in biomechanical and physiological literature, yet the mechanisms underlying FD remain unknown. Recent experiments identified a slower rate of force redevelopment with increasing amounts of steady-state FD, suggesting that FD may be caused, at least in part, by a decrease in cross-bridge binding rate (Corr and Herzog, 2005; Koppes et al., 2014). Herein, we develop a cross-bridge based model of FD in which the binding rate function, f, decreases with the mechanical work performed during shortening. This modification incorporates a direct relationship between steady-state FD and muscle mechanical work (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008), and is consistent with a proposed mechanism attributing FD to stress-induced inhibition of cross-bridge attachments (Herzog, 1998; Maréchal and Plaghki, 1979). Thus, for an increase in mechanical work, the model should predict a slower force redevelopment (decreased attachment rate) to a more depressed steady-state force (fewer attached cross-bridges), and a reduction in contractile element stiffness (Ford et al., 1981). We hypothesized that since this modification affects the cross-bridge kinetics, a corresponding model would be able to account for both transient and steady-state FD behaviors. Comparisons to prior experiments (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008) show that both steady-state and transient aspects of FD, as well as the relationship of FD with respect to speed and amplitude of shortening, are well captured by this model. Thus, this relatively simple cross-bridge based model of FD lends support to a mechanism involving the inhibition of cross-bridge binding, and indicates that cross-bridge kinetics may play a critical role in FD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Isometric parameters in the monitoring of maximal strength, power, and hypertrophic resistance-training.

    Science.gov (United States)

    Peltonen, Heikki; Walker, Simon; Lähitie, Anuliisa; Häkkinen, Keijo; Avela, Janne

    2018-02-01

    This study monitored strength-training adaptations via isometric parameters throughout 2 × 10 weeks of hypertrophic (HYP I-II) or 10 weeks maximum strength (MS) followed by 10 weeks power (P) training with untrained controls. Trainees performed bilateral isometric leg press tests analyzed for peak force (maximal voluntary contraction (MVC)) and rate of force development (RFD) every 3.5 weeks. These parameters were compared with dynamic performance, voluntary and electrically induced isometric contractions, muscle activity, and cross-sectional area (CSA) in the laboratory before and after 10 and 20 weeks. RFD increased similarly during the first 7 weeks (HYP I, 44% ± 53%; MS, 48% ± 55%, P strength/power training, while MVC cannot distinguish between strength or muscle mass changes. Monitoring RFD provided important information regarding plateaus in RFD improvement, which were observed in dynamic explosive performances after HYP II compared with P.

  6. An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance.

    Science.gov (United States)

    Thomas, Christopher; Jones, Paul A; Rothwell, James; Chiang, Chieh Y; Comfort, Paul

    2015-08-01

    Research has demonstrated a clear relationship between dynamic strength and vertical jump (VJ) performance; however, the relationship of isometric strength and VJ performance has been studied less extensively. The aim of this study was to determine the relationship between isometric strength and performance during the squat jump (SJ) and countermovement jump (CMJ). Twenty-two male collegiate athletes (mean ± SD; age = 21.3 ± 2.9 years; height = 175.63 ± 8.23 cm; body mass = 78.06 ± 10.77 kg) performed isometric midthigh pulls (IMTPs) to assess isometric peak force (IPF), maximum rate of force development, and impulse (IMP) (I100, I200, and I300). Force-time data, collected during the VJs, were used to calculate peak velocity, peak force (PF), peak power (PP), and jump height. Absolute IMTP measures of IMP showed the strongest correlations with VJ PF (r = 0.43-0.64; p ≤ 0.05) and VJ PP (r = 0.38-0.60; p ≤ 0.05). No statistical difference was observed in CMJ height (0.33 ± 0.05 m vs. 0.36 ± 0.05 m; p = 0.19; ES = -0.29) and SJ height performance (0.29 ± 0.06 m vs. 0.33 ± 0.05 m; p = 0.14; ES = -0.34) when comparing stronger to weaker athletes. The results of this study illustrate that absolute IPF and IMP are related to VJ PF and PP but not VJ height. Because stronger athletes did not jump higher than weaker athletes, dynamic strength tests may be more practical methods of assessing the relationships between relative strength levels and dynamic performance in collegiate athletes.

  7. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo.

    Science.gov (United States)

    Kubo, Keitaro; Ishigaki, Tomonobu; Ikebukuro, Toshihiro

    2017-08-01

    The purpose of this study was to compare the effects of plyometric and isometric training on tendon properties during ramp and ballistic contractions and muscle stiffness under passive and active conditions. Eleven subjects completed 12 weeks (3 days/week) of a unilateral training program for the plantar flexors. They performed plyometric training on one side (PLY) and isometric training on the other side (ISO). Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Stiffness and hysteresis of tendon structures were measured using ultrasonography during ramp and ballistic contractions. Passive muscle stiffness and tendon hysteresis did not change for PLY or ISO Active muscle stiffness significantly increased for PLY, but not for ISO Tendon stiffness during ramp and ballistic contractions increased significantly for ISO, but not for PLY In addition, tendon elongation values at force production levels beyond 100 N during ballistic contractions increased for PLY These results suggest that plyometric training (but not isometric training) enhances the extensibility of tendon structures during ballistic contractions and active muscle stiffness during fast stretching, and these changes may be related to improved performances during stretch-shortening cycle exercises. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    Science.gov (United States)

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing).The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only).In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation).IN ORDER TO INCREASE THE VALIDITY OF TRUNK STRENGTH TESTING THE LETTER SHOULD INCLUDE: specific warm-up, good pelvic fixation and visual feedback.

  9. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  10. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Science.gov (United States)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  11. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  12. Combined isometric and vibration training does not enhance strength beyond that of isometric training alone.

    Science.gov (United States)

    Fisher, J; Van-Dongen, M; Sutherland, R

    2015-09-01

    Research considering combined vibration and strength training is extensive yet results are equivocal. However, to date there appears no research which has considered the combination of both direct vibration and whole-body vibration when used in an isometric deadlift position. The aim of this study was to compare groups performing isometric training with and without direct and whole-body vibration. Twenty four participants (19-24 years) were randomly divided into: isometric training with vibration (ST+VT: N.=8), isometric training without vibration (ST: N.=8), and control (CON: N.=8). Within the training groups participants trained twice per week, for 6 weeks, performing 6-sets of maximal isometric deadlift contractions, increasing in duration from 30 seconds to 40 seconds (weeks 1-6). Hip and knee angle was maintained at 60° and 110°, respectively for both testing and training. Training sessions for ST+VT were identical to ST with the addition of a direct vibratory stimulus through hand-held straps and whole-body vibration via standing on vibration a platform. The amplitude remained constant (2 mm) throughout the intervention whilst the frequency increased from 35Hz to 50Hz. Pre- and post-test isometric strength was measured using an isometric deadlift dynamometer. Results revealed significant increases in isometric strength for both ST+VT (Pstrength training.

  13. A standardized approach to study human variability in isometric thermogenesis during low-intensity physical activity

    Directory of Open Access Journals (Sweden)

    Delphine eSarafian

    2013-07-01

    Full Text Available Limitations of current methods: The assessment of human variability in various compartments of daily energy expenditure (EE under standardized conditions is well defined at rest (as basal metabolic rate and thermic effect of feeding, and currently under validation for assessing the energy cost of low-intensity dynamic work. However, because physical activities of daily life consist of a combination of both dynamic and isometric work, there is also a need to develop standardized tests for assessing human variability in the energy cost of low-intensity isometric work.Experimental objectives: Development of an approach to study human variability in isometric thermogenesis by incorporating a protocol of intermittent leg press exercise of varying low-intensity isometric loads with measurements of EE by indirect calorimetry. Results: EE was measured in the seated position with the subject at rest or while intermittently pressing both legs against a press-platform at 5 low-intensity isometric loads (+5, +10, + 15, +20 and +25 kg force, each consisting of a succession of 8 cycles of press (30 s and rest (30 s. EE, integrated over each 8-min period of the intermittent leg press exercise, was found to increase linearly across the 5 isometric loads with a correlation coefficient (r > 0.9 for each individual. The slope of this EE-Load relationship, which provides the energy cost of this standardized isometric exercise expressed per kg force applied intermittently (30 s in every min, was found to show good repeatability when assessed in subjects who repeated the same experimental protocol on 3 separate days: its low intra-individual coefficient of variation (CV of ~ 10% contrasted with its much higher inter-individual CV of 35%; the latter being mass-independent but partly explained by height. Conclusion: This standardized approach to study isometric thermogenesis opens up a new avenue for research in EE phenotyping and metabolic predisposition to obesity

  14. Gear Shifting of Quadriceps during Isometric Knee Extension Disclosed Using Ultrasonography.

    Science.gov (United States)

    Zhang, Shu; Huang, Weijian; Zeng, Yu; Shi, Wenxiu; Diao, Xianfen; Wei, Xiguang; Ling, Shan

    2018-01-01

    Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps contraction may have several forward gear ratios relative to femur.

  15. Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.

    Science.gov (United States)

    Carlyle, Jennilee K; Mochizuki, George

    2018-02-01

    Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ultrastructure of clots during isometric contraction

    OpenAIRE

    1982-01-01

    We explored the retraction or contraction of platelet-fibrin clots under isometric conditions. In the presence of micromolar calcium clots of normal platelet-rich plasma developed tension at an initial rate of 0.1 to 0.2 g/min per cm2 (initial cross-sectional area). Electron microscopy of clots fixed after attaining a force of 1.6 g/cm2 revealed platelets with elongated bodies and pseudopods in close apposition to fibrin strands which were oriented in cablelike fashion in the direction of ten...

  17. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  18. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  19. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Sale Craig

    2012-06-01

    Full Text Available Abstract Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC. Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg, matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6 or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks supplementation group. Participants completed an isometric knee extension test (IKET to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2% and impulse by 3.7 ± 1.3 kN·s-1 (13.9% following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11 = 2.9, p ≤0.05; impulse: t(11 = 3.1, p ≤ 0.05. There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels.

  20. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  1. Impact of pain reported during isometric quadriceps muscle strength testing in people with knee pain: data from the osteoarthritis initiative.

    Science.gov (United States)

    Riddle, Daniel L; Stratford, Paul W

    2011-10-01

    Muscle force testing is one of the more common categories of diagnostic tests used in clinical practice. Clinicians have little evidence to guide interpretations of muscle force tests when pain is elicited during testing. The purpose of this study was to examine the construct validity of isometric quadriceps muscle strength tests by determining whether the relationship between maximal isometric quadriceps muscle strength and functional status was influenced by pain during isometric testing. A cross-sectional design was used. Data from the Osteoarthritis Initiative were used to identify 1,344 people with unilateral knee pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale scores of 1 or higher on the involved side. Measurements of maximal isometric quadriceps strength and ratings of pain during isometric testing were collected. Outcome variables were WOMAC physical function subscale, 20-m walk test, 400-m walk test, and a repeated chair stand test. Multiple regression models were used to determine whether pain during testing modified or confounded the relationship between strength and functional status. Pearson r correlations among the isometric quadriceps strength measures and the 4 outcome measures ranged from -.36 (95% confidence interval=-.41, -.31) for repeated chair stands to .36 (95% confidence interval=.31, .41) for the 20-m walk test. In the final analyses, neither effect modification nor confounding was found for the repeated chair stand test, the 20-m walk test, the 400-m walk test, or the WOMAC physical function subscale. Moderate or severe pain during testing was weakly associated with reduced strength, but mild pain was not. The disease spectrum was skewed toward mild or moderate symptoms, and the pain measurement scale used during muscle force testing was not ideal. Given that the spectrum of the sample was skewed toward mild or moderate symptoms and disease, the data suggest that isometric quadriceps muscle

  2. Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.

    Science.gov (United States)

    Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno

    2012-12-01

    The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P Strength training resulted in a significant decrease (by ~7 %; P Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.

  3. Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles

    OpenAIRE

    Tracy, Brian L.

    2007-01-01

    The visual correction employed during isometric contractions of large proximal muscles contributes variability to the descending command and alters fluctuations in muscle force. This study explored the contribution of visuomotor correction to isometric force fluctuations for the more distal dorsiflexor (DF) and plantarflexor (PF) muscles of the ankle. Twenty-one healthy adults performed steady isometric contractions with the DF and PF muscles both with (VIS) and without (NOVIS) visual feedbac...

  4. Low-Budget Instrumentation of a Conventional Leg Press to Measure Reliable Isometric-Strength Capacity.

    Science.gov (United States)

    Baur, Heiner; Groppa, Alessia Severina; Limacher, Regula; Radlinger, Lorenz

    2016-02-02

    Maximum strength and rate of force development (RFD) are 2 important strength characteristics for everyday tasks and athletic performance. Measurements of both parameters must be reliable. Expensive isokinetic devices with isometric modes are often used. The possibility of cost-effective measurements in a practical setting would facilitate quality control. The purpose of this study was to assess the reliability of measurements of maximum isometric strength (Fmax) and RFD on a conventional leg press. Sixteen subjects (23 ± 2 y, 1.68 ± 0.05 m, 59 ± 5 kg) were tested twice within 1 session. After warm-up, subjects performed 2 times 5 trials eliciting maximum voluntary isometric contractions on an instrumented leg press (1- and 2-legged randomized). Fmax (N) and RFD (N/s) were extracted from force-time curves. Reliability was determined for Fmax and RFD by calculating the intraclass correlation coefficient (ICC), the test-retest variability (TRV), and the bias and limits of agreement. Reliability measures revealed good to excellent ICCs of .80-.93. TRV showed mean differences between measurement sessions of 0.4-6.9%. The systematic error was low compared with the absolute mean values (Fmax 5-6%, RFD 1-4%). The implementation of a force transducer into a conventional leg press provides a viable procedure to assess Fmax and RFD. Both performance parameters can be assessed with good to excellent reliability allowing quality control of interventions.

  5. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.

    Science.gov (United States)

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M

    2017-08-01

    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  6. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  7. Task complexity and maximal isometric strength gains through motor learning

    Science.gov (United States)

    McGuire, Jessica; Green, Lara A.; Gabriel, David A.

    2014-01-01

    Abstract This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. PMID:25428951

  8. Dynamic Variability of Isometric Action Tremor in Precision Pinching

    Directory of Open Access Journals (Sweden)

    Tim Eakin

    2012-01-01

    Full Text Available Evolutionary development of isometric force impulse frequencies, power, and the directional concordance of changes in oscillatory tremor during performance of a two-digit force regulation task was examined. Analyses compared a patient group having tremor confounding volitional force regulation with a control group having no neuropathological diagnosis. Dependent variables for tremor varied temporally and spatially, both within individual trials and across trials, across individuals, across groups, and between digits. Particularly striking findings were magnitude increases during approaches to cue markers and shifts in the concordance phase from pinching toward rigid sway patterns as the magnitude increased. Magnitudes were significantly different among trace line segments of the task and were characterized by differences in relative force required and by the task progress with respect to cue markers for beginning, reversing force change direction, or task termination. The main systematic differences occurred during cue marker approach and were independent of trial sequence order.

  9. Normal isometric strength of rotator cuff muscles in adults

    OpenAIRE

    Chezar, A.; Berkovitch, Y.; Haddad, M.; Keren, Y.; Soudry, M.; Rosenberg, N.

    2013-01-01

    Objectives The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for e...

  10. Isometric arm strength and subjective rating of upper limb fatigue in two-handed carrying tasks.

    Science.gov (United States)

    Li, Kai Way; Chiu, Wen-Sheng

    2015-01-01

    Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks.

  11. Bilateral movements increase sustained extensor force in the paretic arm.

    Science.gov (United States)

    Kang, Nyeonju; Cauraugh, James H

    2018-04-01

    Muscle weakness in the extensors poststroke is a common motor impairment. Unfortunately, research is unclear on whether bilateral movements increase extensor force production in the paretic arm. This study investigated sustained force production while stroke individuals maximally extended their wrist and fingers on their paretic arm. Specifically, we determined isometric force production in three conditions: (a) unilateral paretic arm, (b) unilateral nonparetic arm, and (c) bilateral (both arms executing the same movement simultaneously). Seventeen chronic stroke patients produced isometric sustained force by executing wrist and fingers extension in unilateral and bilateral contraction conditions. Mean force, force variability (coefficient of variation), and signal-to-noise ratio were calculated for each contraction condition. Analysis of two-way (Arm × Type of Condition: 2 × 2; Paretic or Nonparetic Arm × Unilateral or Bilateral Conditions) within-subjects ANOVAs revealed that the bilateral condition increased sustained force in the paretic arm, but reduced sustained force in the nonparetic arm. Further, although the paretic arm exhibited more force variability and less signal-to-noise ratio than the nonparetic arm during a unilateral condition, there were no differences when participants simultaneously executed isometric contractions with both arms. Our unique findings indicate that bilateral contractions transiently increased extensor force in the paretic arm. Implications for Rehabilitation Bilateral movements increased isometric wrsit extensor force in paretic arms and redcued force in nonparetic arms versus unilateral movements. Both paretic and nonparetic arms produced similar force variability and signal-to-noise ratio during bilateral movements. Increased sustained force in the paretic arm during the bilateral condition indicates that rehabilitation protocols based on bilateral movements may be beneficial for functional recovery.

  12. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    Science.gov (United States)

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  13. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    Science.gov (United States)

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.

  14. Relationship Between Erectores Spinae Voltage and Back-Lift Strength for Isometric, Concentric, and Eccentric Contractions

    Science.gov (United States)

    Ashton, T. Edwin J.; Singh, Mohan

    1975-01-01

    This study determined the maximal mean values for concentric and eccentric back-lift strength as well as isometric, and examined and compared the relationships between the mean peak voltage of the erectores spinae muscle(s) and maximal force exerted for the three types of muscle contractions. (RC)

  15. Impact of Isometric Contraction of Anterior Cervical Muscles on Cervical Lordosis.

    Science.gov (United States)

    Fedorchuk, Curtis A; McCoy, Matthew; Lightstone, Douglas F; Bak, David A; Moser, Jacque; Kubricht, Brett; Packer, John; Walton, Dustin; Binongo, Jose

    2016-09-01

    This study investigates the impact of isometric contraction of anterior cervical muscles on cervical lordosis. 29 volunteers were randomly assigned to an anterior head translation (n=15) or anterior head flexion (n=14) group. Resting neutral lateral cervical x-rays were compared to x-rays of sustained isometric contraction of the anterior cervical muscles producing anterior head translation or anterior head flexion. Paired sample t-tests indicate no significant difference between pre and post anterior head translation or anterior head flexion. Analysis of variance suggests that gender and peak force were not associated with change in cervical lordosis. Chamberlain's to atlas plane line angle difference was significantly associated with cervical lordosis difference during anterior head translation (p=0.01). This study shows no evidence that hypertonicity, as seen in muscle spasms, of the muscles responsible for anterior head translation and anterior head flexion have a significant impact on cervical lordosis.

  16. The Efficacy of Wrestling-Style Compression Suits to Improve Maximum Isometric Force and Movement Velocity in Well-Trained Male Rugby Athletes.

    Science.gov (United States)

    McMaster, Daniel T; Beaven, Christopher M; Mayo, Brad; Gill, Nicholas; Hébert-Losier, Kim

    2017-01-01

    Purpose: The prevalence of compression garment (CG) use is increasing with athletes striving to take advantage of the purported benefits to recovery and performance. Here, we investigated the effect of CG on muscle force and movement velocity performance in athletes. Methods: Ten well-trained male rugby athletes wore a wrestling-style CG suit applying 13-31 mmHg of compressive pressure during a training circuit in a repeated-measures crossover design. Force and velocity data were collected during a 5-s isometric mid-thigh pull (IMTP) and repeated countermovement jump (CMJ), respectively; and time to complete a 5-m horizontal loaded sled push was also measured. Results: IMTP peak force was enhanced in the CG condition by 139 ± 142 N (effect size [ES] = 0.36). Differences in CMJ peak velocity (ES = 0.08) and loaded sled-push sprint time between the conditions were trivial (ES = -0.01). A qualitative assessment of the effects of CG wear suggested that the likelihood of harm was unlikely in the CMJ and sled push, while a beneficial effect in the CMJ was possible, but not likely. Half of the athletes perceived a functional benefit in the IMTP and CMJ exercises. Conclusion: Consistent with other literature, there was no substantial effect of wearing a CG suit on CMJ and sprint performance. The improvement in peak force generation capability in an IMTP may be of benefit to rugby athletes involved in scrummaging or lineout lifting. The mechanism behind the improved force transmission is unclear, but may involve alterations in neuromuscular recruitment and proprioceptive feedback.

  17. Glenohumeral range of motion (ROM) and isometric strength of professional team handball athletes, part III: changes over the playing season.

    Science.gov (United States)

    Fieseler, Georg; Jungermann, Philipp; Koke, Alexander; Irlenbusch, Lars; Delank, Karl-Stefan; Schwesig, René

    2015-12-01

    The aim of our study was to investigate the relation of workload on range of motion and isometric strength of team handball athletes' shoulders over a competitive season. 31 Professional male handball athletes underwent clinical shoulder examinations. Athletes were examined subsequently during the complete playing season (week 0, 6, 22 and 40) to determine bilateral isometric shoulder rotational strength and active range of motion (ROM). In addition, relative (intraclass correlation coefficients (ICC) and absolute (standard error of measurement) reliability were calculated. Intraobserver reliability was excellent (ICC 0.76-0.98) for isometric strength and flexibility measurements. Internal rotation (IR) and total arc ROM in the throwing shoulder (TS) decreased significantly (p handball players' shoulders changed significantly from the beginning to the end of a season. More specifically, the repetitive forces accumulated during the competitive season resulted in altered GIRD, ERG and isometric strength of the dominant glenohumeral joint.

  18. Isometric exercise (image)

    Science.gov (United States)

    Isometric exercise works muscles and strengthens bone. Increased muscle mass elevates metabolism, which in turn burns fat. Strength training is also called anaerobic exercise, as opposed to aerobic, because increased oxygen production is not ...

  19. Cervical Muscle Strength and Muscle Coactivation During Isometric Contractions in Patients With Migraine: A Cross-Sectional Study.

    Science.gov (United States)

    Florencio, Lidiane Lima; de Oliveira, Anamaria Siriani; Carvalho, Gabriela Ferreira; Tolentino, Gabriella de Almeida; Dach, Fabiola; Bigal, Marcelo Eduardo; Fernández-de-las-Peñas, César; Bevilaqua Grossi, Débora

    2015-01-01

    This cross-sectional study investigated potential differences in cervical musculature in groups of migraine headaches vs. non-headache controls. Differences in cervical muscle strength and antagonist coactivation during maximal isometric voluntary contraction (MIVC) were analyzed between individuals with migraine and non-headache subjects and relationships between force with migraine and neck pain clinical aspects. A customized hand-held dynamometer was used to assess cervical flexion, extension, and bilateral lateral flexion strength in subjects with episodic migraine (n=31), chronic migraine (n = 21) and healthy controls (n = 31). Surface electromyography (EMG) from sternocleidomastoid, anterior scalene, and splenius capitis muscles were recorded during MIVC to evaluate antagonist coactivation. Comparison of main outcomes among groups was conducted with one-way analysis of covariance with the presence of neck pain as covariable. Correlations between peak force and clinical variables were demonstrated by Spearman's coefficient. Chronic migraine subjects exhibited lower cervical extension force (mean diff. from controls: 4.4 N/kg; mean diff from episodic migraine: 3.7 N/kg; P = .006) and spent significantly more time to generate peak force during cervical flexion (mean diff. from controls: 0.5 seconds; P = .025) and left lateral-flexion (mean diff. from controls: 0.4 seconds; mean diff. from episodic migraine: 0.5 seconds; P = .007). Both migraine groups showed significantly higher antagonist muscle coactivity of the splenius capitis muscle (mean diff. from controls: 20%MIVC, P = .03) during cervical flexion relative to healthy controls. Cervical extension peak force was moderately associated with the migraine frequency (rs: -0.30, P = .034), neck pain frequency (rs: -0.26, P = .020), and neck pain intensity (rs: -0.27, P = .012). Patients with chronic migraine exhibit altered muscle performance, took longer to reach peak of

  20. Effects of combined and classic training on different isometric rate of force development parameters of leg extensors in female volleyball players: Discriminative analysis approach

    Directory of Open Access Journals (Sweden)

    Rajić Branislav

    2013-01-01

    Full Text Available Background: The aim of this study is to verify the effects of the combined and classic training of different isometric rates of force development (RFD parameters of legs. Materials and Methods: Three groups of female athletes was tested: Experimental group (N = 12, classically trained group (N = 11, and control group (N = 20 of athletes. The isometric "standing leg extension" and "Rise on Toes" tests were conducted to evaluate the maximal force, time necessary time to reach it and the RFD analyzed at 100 ms, 180 ms, 250 ms from the onset, and 50-100% of its maximal result. Results: The maximal RFD of legs and calves are dominant explosive parameters. Special training enhanced the RFD of calves of GROUP SPEC at 100 ms (P = 0.05, at 180 ms (P = 0.039, at 250 ms (P = 0.039, at 50% of the F max (P = 0.031 and the F max (P = 0.05. Domination of GROUP SPEC toward GROUP CLASS and GROUP CONTROL is in case of legs at 100 ms (P = 0.04; at 180 ms (P = 0.04; at 250 ms (P = 0.00; at 50% of the F max (P = 0.01 and at the F max (P = 0.00; in case of calves at 100 ms (P = 0.07; 180 ms (P = 0.001; at 250 ms (P = 0.00; at 50% of the F max (P = 0.00 and at F max (P = 0.000. Conclusion: Dominant explosive factors are maximal RFD of leg extensors and calves, and legs at 250ms. Specific training enhanced explosiveness of calves of GROUP SPEC general and partial domination of GROUP SPEC by 87% over GROUP CLASS , and 35% over GROUP CONTROL .

  1. The Efficacy of Wrestling-Style Compression Suits to Improve Maximum Isometric Force and Movement Velocity in Well-Trained Male Rugby Athletes

    Directory of Open Access Journals (Sweden)

    Daniel T. McMaster

    2017-11-01

    Full Text Available Purpose: The prevalence of compression garment (CG use is increasing with athletes striving to take advantage of the purported benefits to recovery and performance. Here, we investigated the effect of CG on muscle force and movement velocity performance in athletes.Methods: Ten well-trained male rugby athletes wore a wrestling-style CG suit applying 13–31 mmHg of compressive pressure during a training circuit in a repeated-measures crossover design. Force and velocity data were collected during a 5-s isometric mid-thigh pull (IMTP and repeated countermovement jump (CMJ, respectively; and time to complete a 5-m horizontal loaded sled push was also measured.Results: IMTP peak force was enhanced in the CG condition by 139 ± 142 N (effect size [ES] = 0.36. Differences in CMJ peak velocity (ES = 0.08 and loaded sled-push sprint time between the conditions were trivial (ES = −0.01. A qualitative assessment of the effects of CG wear suggested that the likelihood of harm was unlikely in the CMJ and sled push, while a beneficial effect in the CMJ was possible, but not likely. Half of the athletes perceived a functional benefit in the IMTP and CMJ exercises.Conclusion: Consistent with other literature, there was no substantial effect of wearing a CG suit on CMJ and sprint performance. The improvement in peak force generation capability in an IMTP may be of benefit to rugby athletes involved in scrummaging or lineout lifting. The mechanism behind the improved force transmission is unclear, but may involve alterations in neuromuscular recruitment and proprioceptive feedback.

  2. Major depression, fibromyalgia and labour force participation: A population-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Patten Scott B

    2006-01-01

    Full Text Available Abstract Background Previous studies have documented an elevated frequency of depressive symptoms and disorders in fibromyalgia, but have not examined the association between this comorbidity and occupational status. The purpose of this study was to describe these epidemiological associations using a national probability sample. Methods Data from iteration 1.1 of the Canadian Community Health Survey (CCHS were used. The CCHS 1.1 was a large-scale national general health survey. The prevalence of major depression in subjects reporting that they had been diagnosed with fibromyalgia by a health professional was estimated, and then stratified by demographic variables. Logistic regression models predicting labour force participation were also examined. Results The annual prevalence of major depression was three times higher in subjects with fibromyalgia: 22.2% (95% CI 19.4 – 24.9, than in those without this condition: 7.2% (95% CI 7.0 – 7.4. The association persisted despite stratification for demographic variables. Logistic regression models predicting labour force participation indicated that both conditions had an independent (negative effect on labour force participation. Conclusion Fibromyalgia and major depression commonly co-occur and may be related to each other at a pathophysiological level. However, each syndrome is independently and negatively associated with labour force participation. A strength of this study is that it was conducted in a large probability sample from the general population. The main limitations are its cross-sectional nature, and its reliance on self-reported diagnoses of fibromyalgia.

  3. Isometric Reflection Vectors and Characterizations of Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Donghai Ji

    2014-01-01

    Full Text Available A known characterization of Hilbert spaces via isometric reflection vectors is based on the following implication: if the set of isometric reflection vectors in the unit sphere SX of a Banach space X has nonempty interior in SX, then X is a Hilbert space. Applying a recent result based on well-known theorem of Kronecker from number theory, we improve this by substantial reduction of the set of isometric reflection vectors needed in the hypothesis.

  4. Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine.

    Science.gov (United States)

    Pienaar, Andries W; Barnard, Justhinus G

    2017-04-01

    This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB ® ) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years, ±18.58) participated in this study. The validity of PAB ® was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to compare air pressure force (mb) to electromyography (EMG) in microvolt (μV) and to measure the reliability of PAB ® . A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB ® force (mb) and EMG activity (μV) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB ® test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB ® device is reliable and valid.

  5. EEG signatures of arm isometric exertions in preparation, planning and execution.

    Science.gov (United States)

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  6. Force and Directional Force Modulation Effects on Accuracy and Variability in Low-Level Pinch Force Tracking.

    Science.gov (United States)

    Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence

    2018-01-01

    The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.

  7. Report on Adaptive Force, a specific neuromuscular function

    Directory of Open Access Journals (Sweden)

    Marko Hoff

    2015-08-01

    Full Text Available In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1 What is the peculiarity of this neuromuscular function, introduced as AF? 2 Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3 It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects’ option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso, the maximal isometric Adaptive Force (AFisomax and the maximal eccentric Adaptive Force (AFeccmax. Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities.

  8. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Directory of Open Access Journals (Sweden)

    Bolliger Marc

    2008-10-01

    Full Text Available Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Methods Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Conclusion Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  9. Isometric immersions and embeddings of locally Euclidean metrics in R2

    International Nuclear Information System (INIS)

    Sabitov, I Kh

    1999-01-01

    This paper deals with the problem of isometric immersions and embeddings of two-dimensional locally Euclidean metrics in the Euclidean plane. We find explicit formulae for the immersions of metrics defined on a simply connected domain and a number of sufficient conditions for the existence of isometric embeddings. In the case when the domain is multiply connected we find necessary conditions for the existence of isometric immersions and classify the cases when the metric admits no isometric immersion in the Euclidean plane

  10. In-Vivo Measurement of Muscle Tension: Dynamic Properties of the MC Sensor during Isometric Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Srđan Đorđević

    2014-09-01

    Full Text Available Skeletal muscle is the largest tissue structure in our body and plays an essential role for producing motion through integrated action with bones, tendons, ligaments and joints, for stabilizing body position, for generation of heat through cell respiration and for blood glucose disposal. A key function of skeletal muscle is force generation. Non-invasive and selective measurement of muscle contraction force in the field and in clinical settings has always been challenging. The aim of our work has been to develop a sensor that can overcome these difficulties and therefore enable measurement of muscle force during different contraction conditions. In this study, we tested the mechanical properties of a “Muscle Contraction” (MC sensor during isometric muscle contraction in different length/tension conditions. The MC sensor is attached so that it indents the skin overlying a muscle group and detects varying degrees of tension during muscular contraction. We compared MC sensor readings over the biceps brachii (BB muscle to dynamometric measurements of force of elbow flexion, together with recordings of surface EMG signal of BB during isometric contractions at 15° and 90° of elbow flexion. Statistical correlation between MC signal and force was very high at 15° (r = 0.976 and 90° (r = 0.966 across the complete time domain. Normalized SD or σN = σ/max(FMC was used as a measure of linearity of MC signal and elbow flexion force in dynamic conditions. The average was 8.24% for an elbow angle of 90° and 10.01% for an elbow of angle 15°, which indicates high linearity and good dynamic properties of MC sensor signal when compared to elbow flexion force. The next step of testing MC sensor potential will be to measure tension of muscle-tendon complex in conditions when length and tension change simultaneously during human motion.

  11. Effect of age and gender on the surface electromyogram during various levels of isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar; Kumar, Dinesh; Kalra, Chandan; Burne, John; Bastos, Teodiano

    2011-01-01

    This study reports the effects of age and gender on the surface electromyogram while performing isometric contraction. Experiments were conducted with two age groups--Young (Age: 20-29) and Old (Age: 60-69) where they performed sustained isometric contractions at various force levels (50%, 75%, 100% of maximum voluntary contraction). Traditional features such as root mean square (RMS) and median frequency (MDF) were computed from the recorded sEMG. The result indicates that the MDF of sEMG was not significantly affected by age, but was impacted by gender in both age groups. Also there was a significant change in the RMS of sEMG with age and gender at all levels of contraction. The results also indicate a large inter-subject variation. This study will provide an understanding of the underlying physiological effects of muscle contraction and muscle fatigue in different cohorts.

  12. Low-Back Biomechanics and Static Stability During Isometric Pushing

    Science.gov (United States)

    Granata, Kevin P.; Bennett, Bradford C.

    2006-01-01

    Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction of the applied load, and trunk moment were influenced (p pushing task, and foot position. A biomechanical model was used to analyze the posture and hand force data gathered from the pushing exertions. Model results indicate that pushing exertions provide significantly (p pushing exertions. If one maintains stability by means of cocontraction, additional spinal load is thereby created, increasing the risk of overload injury. Thus it is important to consider muscle cocontraction when evaluating the biomechanics of pushing exertions. Potential applications of this research include improved assessment of biomechanical risk factors for the design of industrial pushing tasks. PMID:16435695

  13. Predicting muscle forces of individuals with hemiparesis following stroke

    Directory of Open Access Journals (Sweden)

    Maladen Ryan

    2008-02-01

    Full Text Available Abstract Background Functional electrical stimulation (FES has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis. Methods Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces. Results Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80, peak forces (ICCs>0.84, and force-time integrals (ICCs>0.82 for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces. Conclusion Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.

  14. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    Science.gov (United States)

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  15. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: test-retest reliability.

    Science.gov (United States)

    Comfort, Paul; Jones, Paul A; McMahon, John J; Newton, Robert

    2015-01-01

    The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666-.739, P .819, P kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.

  16. Isometric deformations of planar quadrilaterals with constant index

    International Nuclear Information System (INIS)

    Zaputryaeva, E S

    2014-01-01

    We consider isometric deformations (motions) of polygons (so-called carpenter's rule problem) in the case of self-intersecting polygons with the additional condition that the index of the polygon is preserved by the motion. We provide general information about isometric deformations of planar polygons and give a complete solution of the carpenter's problem for quadrilaterals. Bibliography: 17 titles

  17. The Comparison of Ankle Muscles Isometric Strength and Foot Eversion in Male Individuals with Patellofemoral Pain Syndrome and Healthy Peers: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    V. Mazloum

    2017-01-01

    Full Text Available Introduction: Proximal and distal factors to the knee joint can be assumed as etiology of patellofemoral pain syndrome (PFPS. Some distal factors include excessive foot pronation and medial tibia torsion. The purpose of this study was to compare ankle musculature strength and rearfoot eversion in individuals with and without PFPS. Methods: Forty males (20 healthy and 20 patients voluntarily participated in this case-control study. Isometric ankle dorsiflexor and invertor muscles strength, rearfoot eversion range of motion (ROM, and Navicular depression were respectively evaluated by handheld dynamometer, goniometry, and Navicular Drop Test by a single examiner for both groups. To analyze the measurements, Independent Samples t test for parametric data and Mann-Whitney U test for nonparametric data at P0.05. Furthermore, no significant differences were observed between patients with PFPS and healthy counterparts regarding rearfoot eversion and Navicular depression (P>0.05. Conclusion: It can be deduced that isometric ankle dorsiflexor and invertor muscles strength, rearfoot eversion ROM, and foot pronation are not difference in patients with PFPS and healthy persons. 

  18. Isometric and swallowing tongue strength in healthy adults.

    Science.gov (United States)

    Todd, J Tee; Lintzenich, Catherine Rees; Butler, Susan G

    2013-10-01

    The tongue contributes to a safe swallow. It facilitates bolus control during mastication, maintains a bolus in the oral cavity to prevent premature entry of the bolus into the hypopharynx, and helps generate pressure in the hypopharynx during swallowing. This study examined isometric tongue strength and tongue pressure measured during swallowing in healthy young and older adults. Prospective group design. One hundred twenty-six healthy individuals who were recruited as part of a larger study on swallowing participated in this study. Participants were divided into three age groups: 20 to 40 years, 41 to 60 years, and ≥61 years. A KayPentax Digital Swallowing Workstation with an air-filled bulb array was placed on the tongue of each participant (anterior to posterior). Participants completed three isometric tongue presses and three swallows. Repeated measures analyses of variance revealed a significant main effect of age (P = .01) and gender by tongue bulb location interaction (P = .02) for isometric tongue strength. That is, older adults had lower isometric tongue strength than young adults, and females had a greater difference between anterior and posterior tongue strength than males. Tongue strength during swallowing yielded significantly greater anterior versus posterior tongue pressure. This study comprises one of the largest in terms of number of healthy participants reported to date and confirms previous findings that isometric tongue strength decreases with age. Furthermore, given young and older adults generate similar swallowing pressures, swallowing is a submaximal strength activity, yet older adults have less functional reserve. 4. Copyright © 2013 The American Laryngological, Rhinological, and Otological Society, Inc.

  19. Dynamic balance ability in young elite soccer players: implication of isometric strength.

    Science.gov (United States)

    Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim

    2018-04-01

    Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.

  20. Maximal isometric strength of the cervical musculature in 100 healthy volunteers

    DEFF Research Database (Denmark)

    Jordan, A; Mehlsen, J; Bülow, P M

    1999-01-01

    A descriptive study involving maximal isometric strength measurements of the cervical musculature.......A descriptive study involving maximal isometric strength measurements of the cervical musculature....

  1. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy.

    Science.gov (United States)

    Rio, Ebonie; Kidgell, Dawson; Purdam, Craig; Gaida, Jamie; Moseley, G Lorimer; Pearce, Alan J; Cook, Jill

    2015-10-01

    Few interventions reduce patellar tendinopathy (PT) pain in the short term. Eccentric exercises are painful and have limited effectiveness during the competitive season. Isometric and isotonic muscle contractions may have an immediate effect on PT pain. This single-blinded, randomised cross-over study compared immediate and 45 min effects following a bout of isometric and isotonic muscle contractions. Outcome measures were PT pain during the single-leg decline squat (SLDS, 0-10), quadriceps strength on maximal voluntary isometric contraction (MVIC), and measures of corticospinal excitability and inhibition. Data were analysed using a split-plot in time-repeated measures analysis of variance (ANOVA). 6 volleyball players with PT participated. Condition effects were detected with greater pain relief immediately from isometric contractions: isometric contractions reduced SLDS (mean±SD) from 7.0±2.04 to 0.17±0.41, and isotonic contractions reduced SLDS (mean±SD) from 6.33±2.80 to 3.75±3.28 (peffect on inhibition (pre 30.26±3.89, post 31.92±4.67; p=0.004). Condition by time analysis showed pain reduction was sustained at 45 min postisometric but not isotonic condition (ptendon pain immediately for at least 45 min postintervention and increased MVIC. The reduction in pain was paralleled by a reduction in cortical inhibition, providing insight into potential mechanisms. Isometric contractions can be completed without pain for people with PT. The clinical implications are that isometric muscle contractions may be used to reduce pain in people with PT without a reduction in muscle strength. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Screen time viewing behaviors and isometric trunk muscle strength in youth.

    Science.gov (United States)

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten; Wedderkopp, Niels; Brage, Søren; Kristensen, Peter Lund; Andersen, Lars Bo; Møller, Niels Christian

    2013-10-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth. A cross-sectional study was carried out including 606 adolescents (14-16 yr old) participating in the Danish European Youth Heart Study, a population-based study with assessments conducted in either 1997/1998 or 2003/2004. Maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain gauge dynamometer, and cardiorespiratory fitness (CRF) was obtained using a maximal cycle ergometer test. TV viewing time, computer use, and other lifestyle behaviors were obtained by self-report. Analyses of association of screen use behaviors with isometric trunk muscle strength were carried out using multivariable adjusted linear regression. The mean (SD) isometric strength was 0.87 (0.16) N·kg-1. TV viewing, computer use, and total screen time use were inversely associated with isometric trunk muscle strength in analyses adjusted for lifestyle and sociodemographic factors. After further adjustment for CRF and waist circumference, associations remained significant for computer use and total screen time, but TV viewing was only marginally associated with muscle strength after these additional adjustments (-0.05 SD (95% confidence interval, -0.11 to 0.005) difference in strength per 1 h·d-1 difference in TV viewing time, P = 0.08). Each 1 h·d-1 difference in total screen time use was associated with -0.09 SD (95% confidence interval, -0.14 to -0.04) lower isometric trunk muscle strength in the fully adjusted model (P = 0.001). There were no indications that the association of screen time use with isometric trunk muscle strength was attenuated among highly fit individuals (P = 0.91 for CRF by screen time interaction). Screen time use was inversely associated with isometric trunk muscle strength independent of CRF and other confounding factors.

  3. Reorganised force control in elbow pain patients during isometric wrist extension

    DEFF Research Database (Denmark)

    Mista, Christian Ariel; Monterde, Sonia; Inglés, Montserrat

    2018-01-01

    INTRODUCTION: Reorganised force control may be an important adaptation following painful traumas. In this study, force control adaptations were assessed in elbow pain patients. Increasing the contraction demand may overcome pain interference on the motor control and as such act as an internal...... voluntary contraction. Pressure pain thresholds were recorded at the lateral epicondyle and tibialis anterior muscle. Contraction force was recorded using a three-directional force transducer. Participants performed contractions according with visual feedback of the task-related force intensity (main...... direction of wrist extension) and another set of contractions with feedback of the three force directions. Going from the simple to the detailed force feedback will increase the demand of the motor task. Force steadiness in all 3 dimensions and force direction was extracted. RESULTS: Compared with controls...

  4. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    Science.gov (United States)

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  5. Isometric multipliers of a vector valued Beurling algebra on a ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 127; Issue 1. Isometric multipliers of a vector valued Beurling algebra on a discrete semigroup. Research Article Volume 127 Issue 1 February 2017 pp 109- ... Keywords. Weighted semigroup; multipliers of a semigroup; Beurling algebra; isometric multipliers.

  6. Manifestations of shoulder fatigue in prolonged activities involving low-force contractions

    NARCIS (Netherlands)

    Looze, M.P. de; Bosch, T.; Dieën, J. van

    2009-01-01

    Shoulder fatigue has been suggested to be a useful risk indicator for shoulder disorders in repetitive, low-force work tasks. In contrast to high-force or purely isometric tasks, it is unclear whether measurable fatigue develops in realistic low-force work. The question addressed in this review was:

  7. Neuromuscular adaptations associated with knee joint angle-specific force change.

    Science.gov (United States)

    Noorkõiv, Marika; Nosaka, Kazunori; Blazevich, Anthony J

    2014-08-01

    Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.

  8. Isometric elbow extensors strength in supine- and prone-lying positions.

    Science.gov (United States)

    Abdelzaher, Ibrahim E; Ababneh, Anas F; Alzyoud, Jehad M

    2013-01-01

    The purpose of this study was to compare isometric strength of elbow extensors measured in supine- and prone-lying positions at elbow flexion angles of 45 and 90 degrees. Twenty-two male subjects under single-blind procedures participated in the study. Each subject participated in both supine-lying and prone-lying measuring protocols. Calibrated cable tensiometer was used to measure isometric strength of the right elbow extensors and a biofeedback electromyography was used to assure no substitution movements from shoulder girdle muscles. The mean values of isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees were 11.1  ±  4.2 kg and 13.1  ±  4.6 kg, while those measured from prone-lying position were 9.9  ±  3.6 kg and 12  ±  4.2 kg, respectively. There is statistical significant difference between the isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees compared to that measured from prone-lying position (p  isometric strength of elbow extensors since supine-lying starting position is better than prone-lying starting position.

  9. Correct, fake and absent pre-information does not affect the occurrence and magnitude of the bilateral force deficit.

    Science.gov (United States)

    Donath, Lars; Siebert, Tobias; Faude, Oliver; Puta, Christian

    2014-05-01

    The present study examined whether different pre-information conditions could lead to a volitional modulation of the occurrence and magnitude of the bilateral force deficit (BFD) during isometric leg press. Twenty trained male adults (age: 24.5 ± 1.7 years; weight: 77.5 ± 7.1 kg; height: 1.81 ± 0.05 m) were examined on three days within a week. Isometric leg press was performed on a negatively inclined leg press slide. Each participant completed three maximal isometric strength test sessions with different pre-information conditions given in a graphical chart: no pre-information (NPI; first day), false pre-information (FPI; bilateral force > sum of unilateral forces; second or third day) and correct pre-information (CPI; bilateral force false, correct) x 2 (FUL, FBL) rANOVA revealed a high significant main effect of Force (F = 61.82, p information (no, false, correct). Cognition-based volitional influences on the BFD on supra-spinal level seem negligible. Key pointsBFD is reliable occurring phenomenonAvailable theoretical knowledge does not affect the BFDAlternating sport should include alternating strength exercises.

  10. Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Power

    Full Text Available Despite an age-related loss of voluntary isometric and concentric strength, muscle strength is well maintained during lengthening muscle actions (i.e., eccentric strength in old age. Additionally, in younger adults during lengthening of an activated skeletal muscle, the force level observed following the stretch is greater than the isometric force at the same muscle length. This feature is termed residual force enhancement (RFE and is believed to be a combination of active and passive components of the contractile apparatus. The purpose of this study was to provide an initial assessment of RFE in older adults and utilize aging as a muscle model to explore RFE in a system in which isometric force production is compromised, but structural mechanisms of eccentric strength are well-maintained. Therefore, we hypothesised that older adults will experience greater RFE compared with young adults. Following a reference maximal voluntary isometric contraction (MVC of the dorsiflexors in 10 young (26.1 ± 2.7 y and 10 old (76.0 ± 6.5 y men, an active stretch was performed at 15°/s over a 30° ankle joint excursion ending at the same muscle length as the reference MVCs (40° of plantar flexion. Any additional torque compared with the reference MVC therefore represented RFE. In older men RFE was ~2.5 times greater compared to young. The passive component of force enhancement contributed ~37% and ~20% to total force enhancement, in old and young respectively. The positive association (R(2 = 0.57 between maintained eccentric strength in old age and RFE indicates age-related mechanisms responsible for the maintenance of eccentric strength likely contributed to the observed elevated RFE. Additionally, as indicated by the greater passive force enhancement, these mechanisms may be related to increased muscle series elastic stiffness in old age.

  11. Reliability and validity of two isometric squat tests.

    Science.gov (United States)

    Blazevich, Anthony J; Gill, Nicholas; Newton, Robert U

    2002-05-01

    The purpose of the present study was first to examine the reliability of isometric squat (IS) and isometric forward hack squat (IFHS) tests to determine if repeated measures on the same subjects yielded reliable results. The second purpose was to examine the relation between isometric and dynamic measures of strength to assess validity. Fourteen male subjects performed maximal IS and IFHS tests on 2 occasions and 1 repetition maximum (1-RM) free-weight squat and forward hack squat (FHS) tests on 1 occasion. The 2 tests were found to be highly reliable (intraclass correlation coefficient [ICC](IS) = 0.97 and ICC(IFHS) = 1.00). There was a strong relation between average IS and 1-RM squat performance, and between IFHS and 1-RM FHS performance (r(squat) = 0.77, r(FHS) = 0.76; p squat and FHS test performances (r squat and FHS test performance can be attributed to differences in the movement patterns of the tests

  12. The effect of local skin cooling before a sustained, submaximal isometric contraction on fatigue and isometric quadriceps femoris performance: A randomized controlled trial.

    Science.gov (United States)

    Hohenauer, Erich; Cescon, Corrado; Deliens, Tom; Clarys, Peter; Clijsen, Ron

    2017-04-01

    The central- and peripheral mechanisms by which heat strain limits physical performance are not fully elucidated. Nevertheless, pre-cooling is often used in an attempt to improve subsequent performance. This study compared the effects of pre-cooling vs. a pre-thermoneutral application on central- and peripheral fatigue during 60% of isometric maximum voluntary contraction (MVC) of the right quadriceps femoris muscle. Furthermore, the effects between a pre-cooling and a pre-thermoneutral application on isometric MVC of the right quadriceps femoris muscle and subjective ratings of perceived exertion (RPE) were investigated. In this randomized controlled trial, 18 healthy adults voluntarily participated. The participants received either a cold (experimental) application (+8°C) or a thermoneutral (control) application (+32°C) for 20min on their right thigh (one cuff). After the application, central (fractal dimension - FD) and peripheral (muscle fiber conduction velocity - CV) fatigue was estimated using sEMG parameters during 60% of isometric MVC. Surface EMG signals were detected from the vastus medialis and lateralis using bidimensional arrays. Immediately after the submaximal contraction, isometric MVC and RPE were assessed. Participants receiving the cold application were able to maintain a 60% isometric MVC significantly longer when compared to the thermoneutral group (mean time: 78 vs. 46s; p=0.04). The thermoneutral application had no significant impact on central fatigue (p>0.05) compared to the cold application (p=0.03). However, signs of peripheral fatigue were significantly higher in the cold group compared to the thermoneutral group (p=0.008). Pre-cooling had no effect on isometric MVC of the right quadriceps muscle and ratings of perceived exertion. Pre-cooling attenuated central fatigue and led to significantly longer submaximal contraction times compared to the pre-thermoneutral application. These findings support the use of pre-cooling procedures

  13. Association Between Maximal Bench Press Strength and Isometric Handgrip Strength Among Breast Cancer Survivors.

    Science.gov (United States)

    Rogers, Benjamin H; Brown, Justin C; Gater, David R; Schmitz, Kathryn H

    2017-02-01

    To characterize the relationship between 1-repetition maximum (1-RM) bench press strength and isometric handgrip strength among breast cancer survivors. Cross-sectional study. Laboratory. Community-dwelling breast cancer survivors (N=295). Not applicable. 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer, with 3 maximal contractions of the left and right hands. All measures were conducted by staff with training in clinical exercise testing. Among 295 breast cancer survivors, 1-RM bench press strength was 18.2±6.1kg (range, 2.2-43.0kg), and isometric handgrip strength was 23.5±5.8kg (range, 9.0-43.0kg). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=.399; Pisometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7kg (95% limits of agreement, -8.2 to 17.6kg). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=.31; Pstrength (R 2 =.23). Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among breast cancer survivors. 1-RM bench press strength and isometric handgrip strength quantify distinct components of muscular strength. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Screen time viewing behaviors and isometric trunk muscle strength in youth

    DEFF Research Database (Denmark)

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten

    2013-01-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth.......The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth....

  16. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    Science.gov (United States)

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. GENDER DIFFERENCES IN THE CARDIOVASCULAR AUTONOMIC RESPONSE DURING ISOMETRIC HANDGRIP EXERCISE

    Directory of Open Access Journals (Sweden)

    Rajasekhar

    2015-09-01

    Full Text Available Physical exercise can be regarded as a period of increased sympathetic activity with simultaneous parasympathetic withdrawal. Many circulatory changes occur during exercise due to mass sympathetic discharge. The exercise cap acity among gender may differ due to substantial anatomical, physiological, and morphological differences. AIMS & OBJECTIVES: To evaluate the gender difference in the cardiovascular response during isometric hand grip exercise. MATERIALS AND METHOD S: 30 healthy young adult male & 30 female students aged between 18 - 24 years who had no prior endurance training were asked to perform Isometric handgrip contractions using an isometric handgrip apparatus. The heart rate was calculated using BIOPAC MP30. Blood p ressure measurements were obtained using a sphygmomanometer. RESULTS & CONCLUSION: The results of the present study showed significant increase in the blood pressure values in men during isometric exercise compared to women which may be because of increase d catecholamine release to acute stress among men

  18. Isometric Mid-Thigh Pull Correlates With Strength, Sprint, and Agility Performance in Collegiate Rugby Union Players.

    Science.gov (United States)

    Wang, Ran; Hoffman, Jay R; Tanigawa, Satoru; Miramonti, Amelia A; La Monica, Michael B; Beyer, Kyle S; Church, David D; Fukuda, David H; Stout, Jeffrey R

    2016-11-01

    Wang, R, Hoffman, JR, Tanigawa, S, Miramonti, AA, La Monica, MB, Beyer, KS, Church, DD, Fukuda, DH, and Stout, JR. Isometric mid-thigh pull correlates with strength, sprint, and agility performance in collegiate rugby union players. J Strength Cond Res 30(11): 3051-3056, 2016-The purpose of this investigation was to examine the relationships between isometric mid-thigh pull (IMTP) force and strength, sprint, and agility performance in collegiate rugby union players. Fifteen members of a champion-level university's club rugby union team (mean ± SD: 20.67 ± 1.23 years, 1.78 ± 0.06 m, and 86.51 ± 14.18 kg) participated in this investigation. One repetition maximum (1RM) squat, IMTP, speed (40 m sprint), and agility (proagility test and T-test) were performed during 3 separate testing sessions. Rate of force development (RFD) and force output at 30, 50, 90, 100, 150, 200, and 250 milliseconds of IMTP, as well as the peak value were determined. Pearson product-moment correlation analysis was used to examine the relationships between these measures. Performance in the 1RM squat was significantly correlated to the RFD between 90 and 250 milliseconds from the start of contraction (r's ranging from 0.595 to 0.748), and peak force (r = 0.866, p ≤ 0.05). One repetition maximum squat was also correlated to force outputs between 90 and 250 milliseconds (r's ranging from 0.757 to 0.816, p ≤ 0.05). Sprint time over the first 5 m in the 40 m sprint was significantly (p ≤ 0.05) correlated with peak RFD (r = -0.539) and RFD between 30 and 50 milliseconds (r's = -0.570 and -0.527, respectively). Time for the proagility test was correlated with peak RFD (r = -0.523, p ≤ 0.05) and RFD between 30 and 100 milliseconds (r's ranging from -0.518 to -0.528, p's strength, agility, and sprint performance. Future studies should examine IMTP as a potential tool to monitor athletic performance during the daily training of rugby union players.

  19. Strength Development: Using Functional Isometrics in an Isotonic Strength Training Program.

    Science.gov (United States)

    Jackson, Allen; And Others

    1985-01-01

    A study was made to determine if a combination of functional isometrics and standard isotonic training would be superior to a standard isotonic program in an instructional setting. The results provide support for functional isometrics as an enhancement where achievement of maximum strength is the goal. (Author/MT)

  20. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

    Science.gov (United States)

    Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M

    2012-06-01

    The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P motor units in the tibialis anterior.

  1. Isokinetic and isometric muscle strength combined with transcutaneous electrical muscle stimulation in primary fibromyalgia syndrome

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Wildschiødtz, Gordon; Danneskiold-Samsøe, B

    1991-01-01

    Twenty women with primary fibromyalgia syndrome and 20 age matched healthy women were investigated. The subjects performed maximum voluntary isokinetic contractions of the right quadriceps in an isokinetic dynamometer. Maximum voluntary isometric contractions of the right quadriceps were performed...... of superimposed twitches was 65% in the patient group and 15% in the control group (p = 0.003). Patients with primary fibromyalgia have a lower maximum voluntary muscle strength than expected. The increased presence of superimposed electrically elicited twitches during maximum voluntary contraction indicates...... submaximal force application in primary fibromyalgia syndrome....

  2. INFLUENCE OF STRENGTH TRAINING PROGRAM ON ISOMETRIC MUSCLE STRENGTH IN YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Dragan Radovanovic

    2007-10-01

    Full Text Available Strength training, or resistance training, is a form of physical conditioning used to increase the ability to resist force. Since muscular strength is required for success in many sports, it is logical to assume that stronger and more powerful young athletes will achieve better results. The aim of the study was to examine the effects of strength training on young athletes. An eight-week strength training program for developing muscle strength was performed in this study. Training protocol was designed specifically for young adolescent’s athletes. The program consisted of exercises for lower and upper body, abdominal and lower back muscles. The programs did not involve the maximal (1-3 repetitions maximum and other very hard intensity exercises that may had negative effect on young athletes. The results showed that strength training program had positive effects on maximal isometric muscle force (Fmax and motor skill. The increase presents the combined influence of strength training and growth.

  3. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    Science.gov (United States)

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  4. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  5. Effects of sense of coherence on depressive symptoms after employment in the Japan Self-Defense Force among male young adults.

    Science.gov (United States)

    Kobayashi, Tohru

    2017-01-01

    Objective The present study aimed to explore the effects of sense of coherence (SOC) on depressive symptoms after employment in the Japan Self-Defense Force among male young adults.Methods In April 2013, 953 new male members of the Japan Ground Self-Defense Force (JGSDF; age range: 18-24 years) participated in this study. Depressive symptoms were assessed using the 20-item version of the Center for Epidemiologic Studies Depression scale (CES-D), which defines a score of 16 or greater as indicating the presence of depressive symptoms. The SOC score was assessed using a 13-item version (SOC-13), in which a score of 59 or greater is as assigned to the high score group. A second survey was conducted two months later, in June of 2013. For the analysis, we selected participants without depressive symptoms at the baseline survey. The association between SOC scores at baseline and the onset of depressive symptoms was examined using a logistic regression analysis.Results The final analysis was conducted on data on 389 new male members of the JGSDF. The logistic regression analysis showed a significant reduction in the onset of depressive symptoms among the group with high SOC scores (odds ratios: 0.59, 95% confidence interval=0.35-0.98) as compared with that observed in the group with low SOC scores.Conclusions The present study clarified that SOC among male young adults has a buffering effect on the risk of developing depressive symptoms after employment in the Japan Self-Defense Force. Our results may be useful for improving the mental health of new employees.

  6. The Association between Maximal Bench Press Strength and Isometric Handgrip Strength among Breast Cancer Survivors

    Science.gov (United States)

    Rogers, Benjamin H.; Brown, Justin C.; Gater, David R.; Schmitz, Kathryn H.

    2016-01-01

    Objective One-repetition maximum (1-RM) bench press strength is considered the gold standard to quantify upper-body muscular strength. Isometric handgrip strength is frequently used as a surrogate for 1-RM bench press strength among breast cancer (BrCa) survivors. The relationship between 1-RM bench press strength and isometric handgrip strength, however, has not been characterized among BrCa survivors. Design Cross-sectional study. Setting Laboratory. Participants Community-dwelling BrCa survivors. Interventions Not applicable. Main Outcome Measure 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer with three maximal contractions of left and right hands. All measures were conducted by staff with training in clinical exercise testing. Results Among 295 BrCa survivors, 1-RM bench press strength was 18.2±6.1 kg (range: 2.2-43.0) and isometric handgrip strength was 23.5±5.8 kg (range: 9.0-43.0). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=0.399; Pisometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7 kg (95% limits of agreement: −8.2 to 17.6). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=0.31; Pstrength (R2=0.23). Conclusions Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among BrCa survivors. 1-RM bench press and isometric handgrip strength quantify distinct components of muscular strength. PMID:27543047

  7. Isometric and isokinetic hip strength and agonist/antagonist ratios in symptomatic femoroacetabular impingement.

    Science.gov (United States)

    Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L

    2016-09-01

    This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Electromyographic, cerebral and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities

    Directory of Open Access Journals (Sweden)

    Yagesh eBhambhani

    2014-06-01

    Full Text Available This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20%, 40% and 60% of maximal voluntary contraction (MVC. Eleven volunteers completed two minutes of intermittent isometric contractions (12/min at an elbow angle of 90° interspersed with three minutes rest between intensities in systematic order. Surface electromyography (EMG was recorded from the right biceps brachii and near infrared spectroscopy (NIRS was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2, deoxyhemoglobin (HHb and total hemoglobin (Hbtot. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20% to 60% MVC (P0.05. MCAv increased from rest to exercise but was not different among intensities (P>0.05. Force output correlated with the root mean square EMG and changes in muscle HbO2 (P0.05 at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a levelling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central n

  9. Effectiveness of various isometric exercises at improving bone strength in cortical regions prone to distal tibial stress fractures.

    Science.gov (United States)

    Florio, C S

    2018-06-01

    A computational model was used to compare the local bone strengthening effectiveness of various isometric exercises that may reduce the likelihood of distal tibial stress fractures. The developed model predicts local endosteal and periosteal cortical accretion and resorption based on relative local and global measures of the tibial stress state and its surface variation. Using a multisegment 3-dimensional leg model, tibia shape adaptations due to 33 combinations of hip, knee, and ankle joint angles and the direction of a single or sequential series of generated isometric resultant forces were predicted. The maximum stress at a common fracture-prone region in each optimized geometry was compared under likely stress fracture-inducing midstance jogging conditions. No direct correlations were found between stress reductions over an initially uniform circular hollow cylindrical geometry under these critical design conditions and the exercise-based sets of active muscles, joint angles, or individual muscle force and local stress magnitudes. Additionally, typically favorable increases in cross-sectional geometric measures did not guarantee stress decreases at these locations. Instead, tibial stress distributions under the exercise conditions best predicted strengthening ability. Exercises producing larger anterior distal stresses created optimized tibia shapes that better resisted the high midstance jogging bending stresses. Bent leg configurations generating anteriorly directed or inferiorly directed resultant forces created favorable adaptations. None of the studied loads produced by a straight leg was significantly advantageous. These predictions and the insight gained can provide preliminary guidance in the screening and development of targeted bone strengthening techniques for those susceptible to distal tibial stress fractures. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Isometric hip muscle strength in posttraumatic below-knee amputees

    Directory of Open Access Journals (Sweden)

    Jandrić Slavica

    2007-01-01

    Full Text Available Background/Aim. Traumas and war injuries, next to chronic occlusive artery disease and diabetes mellitus-derived complications, are the most frequent cause of the lower limbs amputation. They affect mostly younger population that need a higher level of activities as compared with the elderly. Medical rehabilitation is very significant for the muscle performance improvement in this population providing their social reintegration. The aim of this study was to investigate the effect of below-knee amputation on the hip isometric muscle strength and effect of rehabilitation on improvement of hip muscle strength in below-knee amputees, secondary to war wounding. Methods. Forty below-knee amputees (after war wounding, average age 35.6±10.6 years, that were included in primary rehabilitation program with prosthetics, were examined. Objective parameters were used to evaluate therapeutical effects. Isometric muscle strength of hip flexors, extensors, abductors and adductors was measured by dynamometer and expressed in Newton (N at admission, control and discharge for each patient. Average length of the treatment was 51 ± 34.1 days. Results. For isometric hip flexors (t = - 1.99346, p < 0.05, extensors (t = -4.629073, p < 0.001, abductors (t = -4.9408, p < 0.001 and adductors (t = -2.00228, p < 0.05, muscle strength was significantly less on the amputated than on nonamputated side. The highest differences in muscle strength between amputated and nonamputated limbs were noted for hip abductors (26.6% and extensors (23.3%. There was significant improvement of mean values of strength for all examined hip muscles after rehabilitation and prosthetics for both legs in comparison to beginning of the therapy. The hip abductor on the amputated side was for 19.4% weaker after rehabilitation in comparison to the nonamputated limb. Conclusion. Decreases of isometric muscle strength in all examined hip muscles were observed, more in the amputated limb. Rehabilitation

  11. Measuring system and method of determining the Adaptive Force

    Directory of Open Access Journals (Sweden)

    Laura Schaefer

    2017-07-01

    Full Text Available The term Adaptive Force (AF describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables – in contrast to the isokinetic systems – a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96. The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000. Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987. The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.

  12. Effects of fatiguing isometric and isokinetic ankle exercises on postural control while standing on firm and compliant surfaces.

    Science.gov (United States)

    Bisson, Etienne J; Remaud, Anthony; Boyas, Sébastien; Lajoie, Yves; Bilodeau, Martin

    2012-06-14

    Fatiguing exercises used across studies to induce alterations in postural control are diverse and may explain the different findings reported. This study aimed to compare the effects of two types of fatiguing plantarflexion exercises on postural control on a firm and a compliant surface. Ten healthy young men (29 ± 4 years) were asked to stand as steadily as possible for 30 s, blindfolded with feet together, on a firm and a compliant surface before and immediately after an isometric and an isokinetic fatiguing exercise. Maximal force reduction due to fatigue was found significant but similar between exercises. No significant difference was found between the fatiguing exercises on all Center of Pressure (CoP) parameters. Both fatiguing exercises induced increases in CoP excursion area, CoP variability and CoP velocity in both planes (antero-posterior, mediolateral) on the compliant surface. On the firm surface, both fatiguing exercises only induced increases in CoP variability and CoP velocity in the fatigued plane (antero-posterior). Isometric and isokinetic fatiguing exercises, when producing a similar level of force reduction, induce similar decreases in postural control. The effects of fatigue on postural control in healthy young men are more pronounced when standing on a compliant surface, i.e. when proprioceptive information at the ankle is altered.

  13. Relationship between isometric contraction intensity and muscle hardness assessed by ultrasound strain elastography.

    Science.gov (United States)

    Inami, Takayuki; Tsujimura, Toru; Shimizu, Takuya; Watanabe, Takemasa; Lau, Wing Yin; Nosaka, Kazunori

    2017-05-01

    Ultrasound elastography is used to assess muscle hardness or stiffness; however, no previous studies have validated muscle hardness measures using ultrasound strain elastography (SE). This study investigated the relationship between plantar flexor isometric contraction intensity and gastrocnemius hardness assessed by SE. We hypothesised that the muscle would become harder linearly with an increase in the contraction intensity of the plantar flexors. Fifteen young women (20.1 ± 0.8 years) performed isometric contractions of the ankle plantar flexors at four different intensities (25, 50, 75, 100% of maximal voluntary contraction force: MVC) at 0° plantar flexion. Using SE images, the strain ratio (SR) between the muscle and an acoustic coupler (elastic modulus 22.6 kPa) placed over the skin was calculated (muscle/coupler); pennation angle and muscle thickness were measured for the resting and contracting conditions. SR decreased with increasing contraction intensity from rest (1.28 ± 0.20) to 25% (0.99 ± 0.21), 50% (0.61 ± 0.15), 75% (0.34 ± 0.1) and 100% MVC (0.20 ± 0.05). SR decreased linearly (P < 0.05) with increasing MVC from rest to 75% MVC, but levelled off from 75 and 100% MVC. SR was negatively correlated with pennation angle (r = -0.80, P < 0.01) and muscle thickness ( r= -0.78,  P< 0.01). SR appears to represent muscle hardness changes in response to contraction intensity changes, in the assumption that the gastrocnemius muscle contraction intensity is proportional to the plantar flexion intensity. We concluded that gastrocnemius muscle hardness changes could be validly assessed by SR, and the force-hardness relationship was not linear.

  14. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    Full Text Available Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N

  15. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    Science.gov (United States)

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  16. Pneumatic strength assessment device: design and isometric measurement.

    Science.gov (United States)

    Paulus, David C; Reiser, Raoul F; Troxell, Wade O

    2004-01-01

    In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.

  17. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    Science.gov (United States)

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  18. Neural control of muscle force: indications from a simulation model

    Science.gov (United States)

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  19. [A comparative study on behaviors of two depression models in rats induced by chronic forced swimming stress].

    Science.gov (United States)

    Han, Ming-Fei; Gao, Dong; Sun, Xue-Li

    2010-01-01

    To compare the behaviors of rats with depressions induced by chronic forced swimming stress under two different conditions. Eighteen male rats were randomly divided into 3 groups, with 6 rats in each group. The rats in the control group (C group) were not forced into swimming, while the rats in the stress groups (S1 and S2) were forced to swim for 14 consecutive days. The rats in S1 group and S2 group swam for five minutes every morning, in water with (23 +/- 1) degree C, and (10 +/- 0.5) degree C in temperature, respectively. The weight gain, food intake, open-field test and saccharin solution test were observed on the seventh day and fourteenth day. On the seventh day following chronic swim stress, the rats in the S2 group had significant lower ratio in weight gain and food intake than the controls (P forced swimming. On the fourteenth day, the rats in the S1 group still had lower ratio in weight gain, but had higher ratio in food intake and preference for saccharin solution, and greater number of crossing than the controls. Chronic forced swimming at a lower temperature could induce depression better than at a higher temperature.

  20. Isometric Mid-Thigh Pull Performance Is Associated With Athletic Performance And Sprinting Kinetics In Division I Men And Women's Basketball Players.

    Science.gov (United States)

    Townsend, Jeremy R; Bender, David; Vantrease, William; Hudy, John; Huet, Kevin; Williamson, Cassie; Bechke, Emily; Serafini, Paul; Mangine, Gerald T

    2017-07-31

    To examine the relationships between isometric mid-thigh pull (IMTP) force, athletic performance measures, and sprint kinetics in Division I men's and women's basketball players. Twenty-three (male = 8, female = 15) division 1 basketball players completed a maximal 20-m sprint trial while tethered to a device which provided kinetic feedback (peak and average sprinting power, velocity and force). Additionally, one repetition-maximal (1RM) front squat, 1RM hang clean, vertical jump height, and agility (pro-agility and lane agility) tests were performed. Rate of force development (RFD) at 50ms, 100ms, 150ms, 200ms and 250ms of IMTP, as well as peak force (PF) were also collected. Pearson product-moment correlation analysis was used to examine the relationships between these measures. Significant (p training.

  1. Voluntary drive-dependent changes in vastus lateralis motor unit firing rates during a sustained isometric contraction at 50% of maximum knee extension force.

    NARCIS (Netherlands)

    de Ruiter, C.J.; Elzinga, M.J.; Verdijk, PW; van Mechelen, W.; de Haan, A.

    2004-01-01

    The purpose of the present study was to relate the expected inter-subject variability in voluntary drive of the knee extensor muscles during a sustained isometric contraction to the changes in firing rates of single motor units. Voluntary activation, as established with super-imposed electrical

  2. Multi-muscle FES force control of the human arm for arbitrary goals.

    Science.gov (United States)

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  3. The Effect of Isometric Massage on Global Grip Strength after Conservative Treatment of Distal Radial Fractures. Pilot Study.

    Science.gov (United States)

    Ratajczak, Karina; Płomiński, Janusz

    2015-01-01

    The most common fracture of the distal end of the radius is Colles' fracture. Treatment modalities available for use in hand rehabilitation after injury include massage. The aim of this study was to evaluate the effect of isometric massage on the recovery of hand function in patients with Colles fractures. For this purpose, the strength of the finger flexors was assessed as an objective criterion for the evaluation of hand function. The study involved 40 patients, randomly divided into Group A of 20 patients and Group B of 20 patients. All patients received physical therapy and exercised individually with a physiotherapist. Isometric massage was additionally used in Group A. Global grip strength was assessed using a pneumatic force meter on the first and last day of therapy. Statistical analysis was performed using STATISTICA. Statistical significance was defined as a P value of less than 0.05. In both groups, global grip strength increased significantly after the therapy. There was no statistically significant difference between the groups. The men and women in both groups equally improved grip strength. A statistically significant difference was demonstrated between younger and older patients, with younger patients achieving greater gains in global grip strength in both groups. The incorporation of isometric massage in the rehabilitation plan of patients after a distal radial fracture did not significantly contribute to faster recovery of hand function or improve their quality of life.

  4. EFFECT OF ISOMETRIC QUADRICEPS STRENGTHENING EXERCISE AT MULTIPLE ANGLES IN KNEE JOINT AMONG NORMAL ADULTS

    Directory of Open Access Journals (Sweden)

    JibiPaul

    2014-04-01

    Full Text Available Introduction: Strengthening exercises have been routinely used in persons with orthopaedic problems and athletes to increase force production or minimize muscle imbalance and joint injuries.Many studies have reported that isometric contractions can rapidly increases strength in quadriceps muscle. Objective: Objective of the study was to find out the effect of isometric strengthening exercise on strength of quadriceps at 45 and 90 degree of knee joint and also to compare the effect of strengthening exercise on strength of quadriceps at multiple angles of knee joint among control and experimental group. Methodology: This was a ccomparative experimental study with forty female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 20 subjects in each group. Isometric strengthening exercise and squatting exercise were given as intervention program for eight weeks respectively for experimental and control group. Pre and post data of quadriceps muscle strength measured were collected separately at 45 and 90 degree of knee joint using goniometry during resisted extension of knee in multi gym. Result: In experimental group Pre –Post statistical analysis found significant effect in increase of quadriceps strength at 45 and 90 degree with P<0.0001.****In control group quadriceps pre-post statistical analysis found no significant effect in increase of quadriceps strength at 45 and 90 degree with P<0.083NS and P<0.055 NS respectively. Comparative study between experimental and control groups for quadriceps strength at 90 degree of knee joint found significant effect in increase of quadriceps strength with P< 0.001.*** Comparative study between experimental and control groups for quadriceps strength at 45 degree of knee joint found significant effect in increase of

  5. The Relationship Between Maximum Isometric Strength and Ball Velocity in the Tennis Serve.

    Science.gov (United States)

    Baiget, Ernest; Corbi, Francisco; Fuentes, Juan Pedro; Fernández-Fernández, Jaime

    2016-12-01

    The aims of this study were to analyze the relationship between maximum isometric strength levels in different upper and lower limb joints and serve velocity in competitive tennis players as well as to develop a prediction model based on this information. Twelve male competitive tennis players (mean ± SD; age: 17.2 ± 1.0 years; body height: 180.1 ± 6.2 cm; body mass: 71.9 ± 5.6 kg) were tested using maximum isometric strength levels (i.e., wrist, elbow and shoulder flexion and extension; leg and back extension; shoulder external and internal rotation). Serve velocity was measured using a radar gun. Results showed a strong positive relationship between serve velocity and shoulder internal rotation (r = 0.67; p isometric strength level in shoulder internal rotation was strongly related to serve velocity, and a large part of the variability in serve velocity was explained by the maximum isometric strength levels in shoulder internal rotation and shoulder flexion.

  6. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    Science.gov (United States)

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.

  7. Coherence and interlimb force control: Effects of visual gain.

    Science.gov (United States)

    Kang, Nyeonju; Cauraugh, James H

    2018-03-06

    Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    International Nuclear Information System (INIS)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77 o /12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127 o range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from

  9. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  10. Physiological profile of a professional boxer preparing for Title Bout: A case study.

    Science.gov (United States)

    Halperin, Israel; Hughes, Steven; Chapman, Dale W

    2016-10-01

    This study aimed to (1) profile a professional boxer (23 years and 80 kg) with boxing-specific, muscle function, aerobic capacity and body composition tests, and (2) quantify how these measures varied during an 8-week preparation phase leading to, and post a state-Title Bout fought in the 76.2-kg class. A series of boxing-specific and muscle function tests were completed on 11 occasions: 9 prior and twice after the bout, each separated by approximately 2 weeks. The boxing test included 36 maximal punches (9 of each: lead and rear straights, lead and rear hooks) to a punching integrator measuring forces and velocity. Muscle function tests included countermovement jump, drop-jumps, isometric mid-thigh pull and isometric bench-press. Body composition was assessed using skin-fold measurements on three occasions and one dual energy X-ray absorptiometry scan. Aerobic capacity was assessed using 2 VO2 max tests. Leading up to the bout, performance decreased in isometric mid-thigh pull (8%), isometric bench-press (5%), countermovement jump (15%) and impact forces in 3 of 4 punches (4%-7%). Whereas measures of dynamic and isometric muscle function remained depressed or unchanged post competition, punching forces (6%-15%) and aerobic power (6%) increased. Data suggest the athlete may have super-compensated following rest as fatigue dissipated and further adaptation occurred.

  11. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    Science.gov (United States)

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  12. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.

    Directory of Open Access Journals (Sweden)

    Ing-Shiou Hwang

    Full Text Available Discharge patterns from a population of motor units (MUs were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF. In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.

  13. Pressure pain and isometric strength of neck flexors are related in chronic tension-type headache.

    Science.gov (United States)

    Castien, Rene; Blankenstein, Annette; De Hertogh, Willem

    2015-01-01

    In patients with chronic tension-type headache (CTTH) changes in pressure pain in the cervical region are associated with peripheral or central sensitization. It is hypothesized that an increase of isometric strength of neck flexors would lead to a decrease of pressure pain in CTTH, as an expression of reduced peripheral or central sensitization In this study we aimed to analyze the correlation between change in isometric strength of the neck flexors and change in pressure pain scores (PPS) in patients with CTTH. Comparative analysis of data from previous study. Primary healthcare center. Data from 145 patients with CTTH who underwent a manual therapy program including isometric strength training of the neck flexors were analyzed at 8 and 26 weeks post-treatment. PPS were measured as a total of pain scores on a numeric rating scale (score 0 to 10) on application of a pressure stimulus of 3kg/cm at 8 cervical- and suboccipital muscles. Isometric strength of the neck flexors was measured in seconds. Correlations were computed between changes in PPS and isometric neck flexor strength. Isometric strength of neck flexors scored significantly different compared to baseline measurement (mean 30.0 seconds, sd:25.2), and increased with a mean difference of 17.33 seconds (95%CI: 20.61 to 14.05) at 8 weeks and 19.18 seconds (95%CI: 23.48 to 14.87) at 26 weeks. Similarly, compared to PPS baseline measurement (31.6 points, sd:18.6), mean difference in PPS was significantly decreased at 8 and 26 weeks: -11.3 points (95%CI: -8.77 to -13.83) and -11.15 points (95%CI: -8.31 to -13.99). There is a negative correlation between changes in PPS and changes in isometric strength of neck flexors which is weak at 8 weeks (r = -0.243, P = 0.004) and moderate at 26 weeks (r = -0.318, P isometric strength of neck flexors in patients with CTTH in short- and long-term.

  14. Some isometrical identities in the wave equation

    Directory of Open Access Journals (Sweden)

    Saburou Saitoh

    1984-01-01

    Full Text Available We consider the usual wave equation utt(x,t=c2uxx(x,t on the real line with some typical initial and boundary conditions. In each case, we establish a natural isometrical identity and inverse formula between the sourse function and the response function.

  15. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.

    Science.gov (United States)

    Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn

    2017-08-01

    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reliability of isometric subtalar pronator and supinator strength testing.

    Science.gov (United States)

    Hagen, Marco; Lahner, Matthias; Winhuysen, Martin; Maiwald, Christian

    2015-01-01

    Due to the specific anatomy of the subtalar joint with its oblique axis, isometric pronator and supinator strength is not well documented. The purpose of this study was to determine intra- and between-session reliability of pronator and supinator strength and lower leg muscle activity measurements during maximum voluntary isometric contractions (MVIC). Pronator and supinator peak torques (PT), with and without supplementary visual muscle strength biofeedback (FB), and muscular activities of peroneus longus (PL) and tibialis anterior (TA) were assessed twice 3 days apart by the same examiner in 21 healthy young male adults (mean age: 27.6 years; SD = 3.9). Limits of agreement (LoA) and minimum detectable change (MDC) were evaluated. By applying FB, reliability of both pronator and supinator PT was improved: LoA were reduced from 32% to 26% and from 20% to 18% and MDC from 20% to 15% and from 16% to 12% in supinator and pronator PT, respectively. Learning effects in pronator and supinator PT (p isometric subtalar pronator and supinator strength testing is reliable in healthy subjects. LoA of 18% and 26% have to be exceeded for pronator and supinator PT, respectively, to detect relevant effects in repeated measures.

  17. Isometric muscle fatigue of the paravertebral and upper extremity muscles after whiplash injury.

    Science.gov (United States)

    Rastovic, Pejana; Gojanovic, Marija Definis; Berberovic, Marina; Pavlovic, Marko; Lesko, Josip; Galic, Gordan; Pandza, Maja

    2017-01-01

    Whiplash-associated disorders (WAD) result from injury of neck structures that most often occur during traffic accidents as a result of rapid acceleration-deceleration. The dominant symptoms manifest in the musculoskeletal system and include increased fatigue. Because of the frequency of whiplash injuries, a simple, cheap and useful diagnostic tool is needed to differentiate whiplash injury from healthy patients or those faking symptoms. To determine muscle fatigue in patients with whiplash injury in six body positions. Analytical cross-sectional study. Emergency center, university hospital. We studied patients with whiplash injury from vehicular traffic accidents who presented to the emergency center within 6 hours of sustaining the injury. We determined whiplash injury grade according to the Quebec Task Force (QTF) classification and measured isometric muscle endurance in six different body positions. Control subjects for each patient were matched by age, gender and anthropomorphic characteristics. Cut-off values were determined to distinguish patients with whiplash injury from controls and for determination of injury grade . QTF grade, time to muscle fatigue in seconds. From September 2013 to September 2016, we enrolled 75 patients with whiplash injury and 75 matching control subjects. In all six positions, the patients with whiplash injury felt muscle fatigue faster than equivalent controls (P whiplash injury grade in all six positions (P whiplash injury and grade. The size of the sample was small. An objective parameter such as electromyography is needed to confirm isometric muscle fatigue.

  18. Effects of experimental muscle pain on force variability during task-related and three directional isometric force task

    DEFF Research Database (Denmark)

    Mista, Christian Ariel; Graven-Nielsen, Thomas

    2013-01-01

    was measured using sample entropy (SEn). Three-way repeated measures ANOVA with factors level of contraction, pain/control, and time were performed for the CV, the CoP, and the SEn of each component of the force. In the tangential forces, no significant effects were found for the 3D matching tasks. The ANOVA.......05). In the task-related force, no significant effects were found for the CV during the three-dimensional task or for the task-related task. Finally, the ANOVA analysis of sample entropy showed a significant interaction between pain/control and time (P

  19. A Systematic Review of Isometric Lingual Strength-Training Programs in Adults With and Without Dysphagia.

    Science.gov (United States)

    McKenna, Victoria S; Zhang, Bin; Haines, Morgan B; Kelchner, Lisa N

    2017-05-17

    This systematic review summarizes the effects of isometric lingual strength training on lingual strength and swallow function in adult populations. Furthermore, it evaluates the designs of the reviewed studies and identifies areas of future research in isometric lingual strength training for dysphagia remediation. A comprehensive literature search of 3 databases and additional backward citation search identified 10 studies for inclusion in the review. The review reports and discusses the isometric-exercise intervention protocols, pre- and postintervention lingual-pressure data (maximum peak pressures and lingual-palatal pressures during swallowing), and oropharyngeal swallowing measures such as penetration-aspiration scales, oropharyngeal residue and duration, lingual volumes, and quality-of-life assessments. Studies reported gains in maximum peak lingual pressures following isometric lingual strength training for both healthy adults and select groups of individuals with dysphagia. However, due to the variability in study designs, it remains unclear whether strength gains generalize to swallow function. Although isometric lingual strength training is a promising intervention for oropharyngeal dysphagia, the current literature is too variable to confidently report specific therapeutic benefits. Future investigations should target homogenous patient populations and use randomized controlled trials to determine the efficacy of this treatment for individuals with dysphagia.

  20. Correct, Fake and Absent Pre-Information Does Not Affect the Occurrence and Magnitude of the Bilateral Force Deficit

    Directory of Open Access Journals (Sweden)

    Lars Donath

    2014-06-01

    Full Text Available The present study examined whether different pre-information conditions could lead to a volitional modulation of the occurrence and magnitude of the bilateral force deficit (BFD during isometric leg press. Twenty trained male adults (age: 24.5 ± 1.7 years; weight: 77.5 ± 7.1 kg; height: 1.81 ± 0.05 m were examined on three days within a week. Isometric leg press was performed on a negatively inclined leg press slide. Each participant completed three maximal isometric strength test sessions with different pre-information conditions given in a graphical chart: no pre-information (NPI; first day, false pre-information (FPI; bilateral force > sum of unilateral forces; second or third day and correct pre-information (CPI; bilateral force < sum of unilateral forces; second or third day during bilateral, unilateral-left and unilateral-right leg-press. The sum of left- and right-sided force values were calculated for bilateral (FBL = FBL_left + FBL_right and unilateral (FUL = FUL_left + FUL_right analyses. Force data for NPI revealed: Mean (SD: FUL_NPI = 3023 N (435 vs. FBL_NPI = 2812 (453; FPI showed FUL_FPI = 3013 N (459 vs. FBL_FPI = 2843 (446 and the CPI revealed FUL_CPI = 3035 (425 vs. FBL_CPI = 2844 (385. The three (no, false, correct x 2 (FUL, FBL rANOVA revealed a high significant main effect of Force (F = 61.82, p < 0.001. No significant main effect of the factor Condition and no significant interaction between Force x Condition was observed. The BFD does not rely on the trueness of the given pre-information (no, false, correct. Cognition-based volitional influences on the BFD on supra-spinal level seem negligible.

  1. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    Science.gov (United States)

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  2. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    Science.gov (United States)

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  3. Effect of long-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  4. Effects of trunk stability on isometric knee extension muscle strength measurement while sitting.

    Science.gov (United States)

    Hirano, Masahiro; Gomi, Masahiro; Katoh, Munenori

    2016-09-01

    [Purpose] This study aimed to investigate the effect of trunk stability on isometric knee extension muscle strength measurement while sitting by performing simultaneous measurements with a handheld dynamometer (HHD) and an isokinetic dynamometer (IKD) in the same seated condition. [Subjects and Methods] The subjects were 30 healthy volunteers. Isometric knee extension muscle strength was simultaneously measured with a HHD and an IKD by using an IKD-specific chair. The measurement was performed twice. Measurement instrument variables and the number of measurements were examined by using the analysis of variance and correlation tests. [Results] The measurement instrument variables and the number of measurements were not significantly different. The correlation coefficients between the HHD and IKD measurements were ≥0.96. [Conclusion] Isometric knee extension muscle strength measurement using the HHD in the sitting position resulted in a lower value than that using the IKD, presumably because of the effect of trunk stability on the measurement. In the same seated posture with trunk stability, no significant difference in measurement values was observed between the HHD and IKD. The present findings suggest that trunk stability while seated during isometric knee extension muscle strength measurement influenced the HHD measurement.

  5. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary...... surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  6. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women.

    Directory of Open Access Journals (Sweden)

    Amanda C Amorim

    Full Text Available Pelvic floor muscle (PFM force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs while performing three different tasks: (a isolated PFM contraction; (b PFM contraction combined with hip adduction (30% and 50% maximum hip force; and (c PFM contraction combined with hip abduction (30% and 50% maximum hip force. Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction for all variables: Maximum force (N, instant of maximum-force occurrence (s, mean force in an 8-second window (N, and PFM force loss (N.s. We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05. PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.

  7. Effects of neck strength training on isometric neck strength in rugby union players.

    Science.gov (United States)

    Geary, Kevin; Green, Brian S; Delahunt, Eamonn

    2014-11-01

    To investigate the effectiveness of a neck strengthening program on the isometric neck strength profile of male rugby union players. Controlled laboratory study. Professional rugby union club. Fifteen professional and 10 semiprofessional rugby union players. The 15 professional players undertook a 5-week neck strengthening intervention, which was performed twice per week, whereas the 10 semiprofessional players acted as the control group. Isometric strength of the neck musculature was tested using a hand-held dynamometer, for flexion (F), extension (E), left-side flexion (LSF), and right-side flexion (RSF). Preintervention and postintervention evaluations were undertaken. No significant between-group differences in isometric neck strength were noted preintervention. A significant main effect for time was observed (P isometric neck strength in all planes after the 5-week intervention (F preintervention = 334.45 ± 39.31 N vs F postintervention 396.05 ± 75.55 N; E preintervention = 606.19 ± 97.34 vs E postintervention = 733.88 ± 127.16 N; LSF preintervention = 555.56 ± 88.34 N vs LSF postintervention = 657.14 ± 122.99 N; RSF preintervention = 570.00 ± 106.53 N vs RSF postintervention = 668.00 ± 142.18 N). No significant improvement in neck strength was observed for control group participants. The results of the present study indicate that a 5-week neck strengthening program improves isometric neck strength in rugby union players, which may have implications for injury prevention, screening, and rehabilitation. The strengthening program described in the present study may facilitate rehabilitation specialists in the development of neck injury prevention, screening, and rehabilitation protocols.

  8. Influences of Fascicle Length During Isometric Training on Improvement of Muscle Strength.

    Science.gov (United States)

    Tanaka, Hiroki; Ikezoe, Tome; Umehara, Jun; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Fujita, Kosuke; Araki, Kojiro; Ichihashi, Noriaki

    2016-11-01

    Tanaka, H, Ikezoe, T, Umehara, J, Nakamura, M, Umegaki, H, Kobayashi, T, Nishishita, S, Fujita, K, Araki, K, and Ichihashi, N. Influences of fascicle length during isometric training on improvement of muscle strength. J Strength Cond Res 30(11): 3249-3255, 2016-This study investigated whether low-intensity isometric training would elicit a greater improvement in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an intervention group and a control group. Before (Pre) and after (Post) training, isometric plantarflexion MVCs were measured every 10° through the range of ankle joint position from 20° dorsiflexion to 30° plantarflexion (i.e., 6 ankle angles). Medial gastrocnemius fascicle length was also measured at each position, using B-mode ultrasound under 3 conditions of muscle activation: at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 20° plantarflexion was performed 3 days a week for 4 weeks at 30%MVC using 3 sets of twenty 3-second isometric contractions. Maximum voluntary contraction in the intervention group increased at 0 and 10° plantarflexion (0°; Pre: 81.2 ± 26.5 N·m, Post: 105.0 ± 21.6 N·m, 10°; Pre: 63.0 ± 23.6 N·m, Post: 81.3 ± 20.3 N·m), which was not the angle used in training (20°). However, the fascicle length adopted in training at 20° plantarflexion and 30%MVC was similar to the value at 0 or 10° plantarflexion at MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle.

  9. Temporal summation of heat pain modulated by isometric exercise.

    Science.gov (United States)

    Koltyn, K F; Knauf, M T; Brellenthin, A G

    2013-08-01

    Little is known about the effects of isometric exercise on temporal summation of heat pain. Thus, the purposes of study 1 and study 2 were to examine the influence of exhaustive and non-exhaustive isometric exercise on temporal summation of heat pain in men and women. Forty-four men and 44 women (mean age = 20 years) completed an informed consent document and a packet of questionnaires. Ten heat pulses were applied to the thenar eminence of the dominant hand using a standardized temporal summation protocol. Participants rated the intensity of the heat pulses using a 0-100 pain rating scale before and following isometric exercise consisting of squeezing a hand dynamometer at 40% of maximal voluntary contraction (MVC) to exhaustion (exhaustive exercise, study 1) and at 25% MVC for 3 min (non-exhaustive exercise, study 2). Muscle pain and perceived exertion were rated every 30 s during exercise using validated rating scales. The data were analysed with repeated measures analysis of variance. The results indicated there were no sex differences (p > 0.05) in time to exhaustion (study 1), muscle pain or perceived exertion (studies 1 and 2). There was a significant reduction (p heat pain in men and women. © 2012 European Federation of International Association for the Study of Pain Chapters.

  10. Comparison of isokinetic and isometric strength training effects on hamstring and quadriceps torques and physical function in knee pain

    International Nuclear Information System (INIS)

    Masood, T.; Khan, H.M.M.H.

    2017-01-01

    To compare the effects of isokinetic and isometric strength trainings on hamstring and quadriceps average-peak-torques, physical performance, and pain. Methodology: Twenty athletes with knee pain were randomly assigned to two equal groups: Isokinetic training and isometric training. Both groups were trained on Biodex System 3 Pro for 10 sessions. Isokinetic-group received isokinetic training on 5 different velocities while isometric-group performed isometric contractions at 3 knee joint angles. Results: Hamstring isokinetic average-peak-torque was significantly higher at all velocities without significant improvement in quadriceps average-peak-torque except for at the slowest velocity. Isometric training did not cause significant change in isometric average-peak-torque at any knee angle for either hamstring or quadriceps. Agility, elastic leg strength, and pain improved significantly in both groups with no significant between-group differences. No significant statistical correlation was observed between pain and any other parameter after either type of training. Conclusions: Athletes participating in sports requiring dynamic hamstring strength should prefer isokinetic strength training for physical rehabilitation of knee pain. However, physical performance and pain can be improved with both isometric and isokinetic strength training. (author)

  11. Isometric and unitary phase operators: explaining the Villain transform

    International Nuclear Information System (INIS)

    Hemmen, J L van; Wreszinski, Walter F

    2007-01-01

    The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable

  12. Comparison of sympathetic nerve responses to neck and forearm isometric exercise

    Science.gov (United States)

    Steele, S. L. Jr; Ray, C. A.

    2000-01-01

    PURPOSE: Although the autonomic and cardiovascular responses to arm and leg exercise have been studied, the sympathetic adjustments to exercise of the neck have not. The purpose of the present study was twofold: 1) to determine sympathetic and cardiovascular responses to isometric contractions of the neck extensors and 2) to compare sympathetic and cardiovascular responses to isometric exercise of the neck and forearm. METHODS: Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate were measured in nine healthy subjects while performing isometric neck extension (INE) and isometric handgrip (IHG) in the prone position. After a 3-min baseline period, subjects performed three intensities of INE for 2.5 min each: 1) unloaded (supporting head alone), 2) 10% maximal voluntary contraction (MVC), and 3) 30% MVC, then subjects performed two intensities (10% and 30% MVC) of IHG for 2.5 min. RESULTS: Supporting the head by itself did not significantly change any of the variables. During [NE, MAP significantly increased by 10 +/- 2 and 31 +/- 4 mm Hg and MSNA increased by 67 +/- 46 and 168 +/- 36 units/30 s for 10% and 30% MVC, respectively. IHG and INE evoked similar responses at 10% MVC, but IHG elicited higher peak MAP and MSNA at 30% MVC (37 +/- 7 mm Hg (P INE can elicit marked increases in MSNA and cardiovascular responses but that it evokes lower peak responses as compared to IHG. We speculate that possible differences in muscle fiber type composition, muscle mass, and/or muscle architecture of the neck and forearm are responsible for these differences in peak responses.

  13. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Gudrun Schappacher-Tilp

    Full Text Available We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.

  14. The effects of control-display gain on performance of race car drivers in an isometric braking task.

    Science.gov (United States)

    de Winter, J C F; de Groot, S

    2012-12-01

    To minimise lap times during car racing, it is important to build up brake forces rapidly and maintain precise control. We examined the effect of the amplification factor (gain) between brake pedal force and a visually represented output value on a driver's ability to track a target value. The test setup was a formula racing car cockpit fitted with an isometric brake pedal. Thirteen racing drivers performed tracking tasks with four control-display gains and two target functions: a step function (35 trials per gain) and a multisine function (15 trials per gain). The control-display gain had only minor effects on root mean-squared error between output value and target value, but it had large effects on build-up speed, overshoot, within-participants variability, and self-reported physical load. The results confirm the hypothesis that choosing an optimum gain involves balancing stability against physical effort.

  15. Papaver Rhoeas L. Hydroalcoholic Extract Exacerbates Forced Swimming Test-Induced Depression in Mice

    OpenAIRE

    Naser Osanloo; Akram Najafi-Abedi; Fatemeh Jafari; Farshid Javid; Mohsen Pirpiran; Mohammad-Reza Memar-Jafari; Seyed Ali Mousavi-Khosravi; Mohammad Rahimzadeh-Behzadi; Mina Ranjbaran; Hedayat Sahraei

    2016-01-01

    Introduction: Depression is one of the most frequent psychiatric disorders in the world with occurs with higher incidence in women. In the present study, the effect of water-alcoholic extract of Papaver rhoeas L. on forced swimming test (FST) in Swiss-Webster mice were examined. Methods: We used Swiss-Webster mice (20-25 g) to execute FST on them. The plant extract (1, 10, 30, and 100 mg/kg) was injected to the animals 30 minutes before each session. Fluoxetine (20 mg/k...

  16. The Validity and Responsiveness of Isometric Lower Body Multi-Joint Tests of Muscular Strength: a Systematic Review.

    Science.gov (United States)

    Drake, David; Kennedy, Rodney; Wallace, Eric

    2017-12-01

    Researchers and practitioners working in sports medicine and science require valid tests to determine the effectiveness of interventions and enhance understanding of mechanisms underpinning adaptation. Such decision making is influenced by the supportive evidence describing the validity of tests within current research. The objective of this study is to review the validity of lower body isometric multi-joint tests ability to assess muscular strength and determine the current level of supporting evidence. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed in a systematic fashion to search, assess and synthesize existing literature on this topic. Electronic databases such as Web of Science, CINAHL and PubMed were searched up to 18 March 2015. Potential inclusions were screened against eligibility criteria relating to types of test, measurement instrument, properties of validity assessed and population group and were required to be published in English. The Consensus-based Standards for the Selection of health Measurement Instruments (COSMIN) checklist was used to assess methodological quality and measurement property rating of included studies. Studies rated as fair or better in methodological quality were included in the best evidence synthesis. Fifty-nine studies met the eligibility criteria for quality appraisal. The ten studies that rated fair or better in methodological quality were included in the best evidence synthesis. The most frequently investigated lower body isometric multi-joint tests for validity were the isometric mid-thigh pull and isometric squat. The validity of each of these tests was strong in terms of reliability and construct validity. The evidence for responsiveness of tests was found to be moderate for the isometric squat test and unknown for the isometric mid-thigh pull. No tests using the isometric leg press met the criteria for inclusion in the best evidence synthesis. Researchers and

  17. Chronic Effects of Different Rest Intervals Between Sets on Dynamic and Isometric Muscle Strength and Muscle Activity in Trained Older Women.

    Science.gov (United States)

    Jambassi Filho, José Claudio; Gurjão, André Luiz Demantova; Ceccato, Marilia; Prado, Alexandre Konig Garcia; Gallo, Luiza Herminia; Gobbi, Sebastião

    2017-09-01

    This study investigated the chronic effects of different rest intervals (RIs) between sets on dynamic and isometric muscle strength and muscle activity. We used a repeated-measures design (pretraining and posttraining) with independent groups (different RI). Twenty-one resistance-trained older women (66.4 ± 4.4 years) were randomly assigned to either a 1-minute RI group (G-1 min; n = 10) or 3-minute RI group (G-3 min; n = 11). Both groups completed 3 supervised sessions per week during 8 weeks. In each session, participants performed 3 sets of 15 repetitions of leg press exercise, with a load that elicited muscle failure in the third set. Fifteen maximum repetitions, maximal voluntary contraction, peak rate of force development, and integrated electromyography activity of the vastus lateralis and vastus medialis muscles were assessed pretraining and posttraining. There was a significant increase in load of 15 maximum repetitions posttraining for G-3 min only (3.6%; P 0.05). The findings suggest that different RIs between sets did not influence dynamic and isometric muscle strength and muscle activity in resistance-trained older women.

  18. The association between submaximal quadriceps force steadiness and the knee adduction moment during walking in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Sørensen, Tina Juul; Langberg, Henning; Aaboe, Jens

    2011-01-01

    in this population. METHODS: Forty-one patients with knee OA (34 females and 7 males) were included in the study. Submaximal isometric quadriceps force steadiness was measured during a force target-tracking task. Peak knee adduction moments during ambulation were measured using a 3-dimensional gait analysis system...

  19. Clinical significance of isometric bite force versus electrical activity in temporal and masseter muscles

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L; Han, K

    1989-01-01

    significant with respect to unilateral, but not to bilateral force measurements. Only in the masseter muscle was strength of dynamic contractions during chewing significantly correlated to bite force. With the present method it was demonstrated that unilateral bite force is a simple clinical indicator...

  20. Comparison of Static Force Sense of Knee Extension between Women with Patellofemoral Pain Syndrome and Healthy Women

    Directory of Open Access Journals (Sweden)

    Zahra Salah-Zadeh

    2008-01-01

    Full Text Available Objectives: Patellofemoaral pain syndrome (PFPS is a common musculoskeletal disorder. Proprioception is important factor in neuromuscular control. Others studies showed that, because of pain and abnormal stresses on soft tissue around joint and Proprioception may be change in these patients. The aim of this study was investigation of sense of quadriceps muscle force accuracy in patients with PFPS. Materials & Methods: In this cross-sectional and case –control study, thirty four young women with and without PFPS were participated. Biodex isokinetic dynamometer was used to measure isometric torque and sense of quadriceps static force. Force matching with ipsilateral limb was used by determining of reference force levels (20 and 60% of maximal voluntary isometric force (MVIF in 20 and 60 degree of knee flexion and attempting to perception and reproduction of target forces .Absolute error (AE, constant error (CE and variability error (VE were calculated for evaluation sense of force accuracy. Data were analyzed by independent T test and Logistics Regression. Results: There was statistically difference in force reproduction error in 60 degree and 60% MVIF between two groups (P<0.005. Sense of force errors were high in patient group. Conclusion: The results confirmed the past studies and showed that proprioception may be altered in PFPS patients because of changes proprioception afferents, specially for quadriceps muscle receptors.

  1. Polynomial conservation laws and exact solutions connected with isometrical and homothetic symmetries in the nonlinear sigma model

    International Nuclear Information System (INIS)

    Ivanov, G.G.

    1985-01-01

    In the non linear delta-model conserved tensor currents connected with the isometrical, homothetic and affine motions in the space Vsup(N) of the chiral field values are constructed. New classes of the exact solutions are obtained in the SO(3) and SO(5) invariant delta-models using the connection between the groups of isometrical and homothetic motions in the space-time and isometrical motions in Vsup(N). Some methods of obtaining exact solutions in 4-dimensional delta-model with non trivial topological charge are considered

  2. Correlation between maximum isometric strength variables and specific performance of Brazilian military judokas

    Directory of Open Access Journals (Sweden)

    Michel Moraes Gonçalves

    2017-06-01

    Full Text Available It was our objective to correlate specific performance in the Special Judo Fitness Test (SJFT and the maximum isometric handgrip (HGSMax, scapular traction (STSMax and lumbar traction (LTSMax strength tests in military judo athletes. Twenty-two military athletes from the judo team of the Brazilian Navy Almirante Alexandrino Instruction Centre, with average age of 26.14 ± 3.31 years old, and average body mass of 83.23 ± 14.14 kg participated in the study. Electronic dynamometry tests for HGSMax, STSMax and LTSMax were conducted. Then, after approximately 1 hour-interval, the SJFT protocol was applied. All variables were adjusted to the body mass of the athletes. Pearson correlation coefficient for statistical analysis was used. The results showed moderate negative correlation between the SJFT index and STSMax (r= -0.550, p= 0.008, strong negative correlations between the SJFT index and HGSMax (r= -0.706, p< 0.001, SJFT index and LTSMax (r= -0.721; p= 0.001, besides the correlation between the sum of the three maximum isometric strength tests and the SJFT index (r= -0.786, p< 0.001. This study concludes that negative correlations occur between the SJFT index and maximum isometric handgrip, shoulder and lumbar traction strength and the sum of the three maximum isometric strength tests in military judokas.

  3. Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: a randomized controlled study.

    Science.gov (United States)

    Anwer, Shahnawaz; Alghadir, Ahmad

    2014-05-01

    [Purpose] The aim of present study was to investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in knee osteoarthritis. [Subjects and Methods] Outpatients (N=42, 21 per group; age range 40-65 years; 13 men and 29 women) with osteoarthritis of the knee participated in the study. The experimental group performed isometric exercises including isometric quadriceps, straight leg raising, and isometric hip adduction exercise 5 days a week for 5 weeks, whereas the control group did not performed any exercise program. The outcome measures or dependent variables selected for this study were pain intensity, isometric quadriceps strength, and knee function. These variables were measured using the Numerical Rating Scale (NRS), strength gauge device, and reduced WOMAC index, respectively. All the measurements were taken at baseline (week 0) and at the end of the trial at week 5. [Results] In between-group comparisons, the maximum isometric quadriceps strength, reduction in pain intensity, and improvement in function in the isometric exercise group at the end of the 5th week were significantly greater than those of the control group (pisometric quadriceps exercise program showed beneficial effects on quadriceps muscle strength, pain, and functional disability in patients with osteoarthritis of the knee.

  4. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction.

    Science.gov (United States)

    Pascoe, Michael A; Holmes, Matthew R; Enoka, Roger M

    2011-02-01

    The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.

  5. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    Science.gov (United States)

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  6. Time to failure and neuromuscular response to intermittent isometric exercise at different levels of vascular occlusion: a randomized crossover study

    Directory of Open Access Journals (Sweden)

    Mikhail Santos Cerqueira

    2017-04-01

    Full Text Available Objectives: The purpose this study was investigate the effects of different vascular occlusion levels (total occlusion (TO, partial occlusion (PO or free flow (FF during intermittent isometric handgrip exercise (IIHE on the time to failure (TF and the recovery of the maximum voluntary isometric force (MVIF, median frequency (EMGFmed and peak of EMG signal (EMGpeak after failure.  Methods: Thirteen healthy men (21 ± 1.71 year carried out an IIHE until the failure at 45% of MVIF with TO, PO or FF. Occlusion pressure was determined previously to the exercise. The MVIF, EMGFmed and EMGpeak were measured before and after exercise. Results: TF (in seconds was significantly different (p < 0.05 among all investigated conditions: TO (150 ± 68, PO (390 ± 210 and FF (510 ± 240. The MVIF was lower immediately after IIHE, remaining lower eleven minutes after failure in all cases (p <0.05, when compared to pre exercise. There was a greater force reduction (p <0.05 one minute after the failure in the PO (-45.8% and FF (-39.9% conditions, when compared to TO (-28.1%. Only the PO condition caused lower MVIF (p <0.05 than in the OT, eleven minutes after the task failure. PO caused a greater reduction in EMGFmed compared TO and greater increase in EMGpeak, when compared to TO and FF (p <0.05. Conclusions: TO during IIHE lead to a lower time to failure, but a faster MVIF recovery, while the PO seems to be associated to a slower neuromuscular recovery, when compared to other conditions.

  7. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    Science.gov (United States)

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  8. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...

  9. Activation of selected shoulder muscles during unilateral wall and bench press tasks under submaximal isometric effort.

    Science.gov (United States)

    Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S

    2011-07-01

    Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.

  10. The Representation of Isometric Operators on C(1)(X)

    International Nuclear Information System (INIS)

    Li Jingke

    2010-01-01

    In this paper,we introduce a new norm on C (1) (X), which is induced by a hexagon on R 2 , and prove that every isometric operator on C (1) (X) can be induced by a homeomorphism of X, where X is a connected subset of R.

  11. The Relationship Between Maximum Isometric Strength and Ball Velocity in the Tennis Serve

    Directory of Open Access Journals (Sweden)

    Baiget Ernest

    2016-12-01

    Full Text Available The aims of this study were to analyze the relationship between maximum isometric strength levels in different upper and lower limb joints and serve velocity in competitive tennis players as well as to develop a prediction model based on this information. Twelve male competitive tennis players (mean ± SD; age: 17.2 ± 1.0 years; body height: 180.1 ± 6.2 cm; body mass: 71.9 ± 5.6 kg were tested using maximum isometric strength levels (i.e., wrist, elbow and shoulder flexion and extension; leg and back extension; shoulder external and internal rotation. Serve velocity was measured using a radar gun. Results showed a strong positive relationship between serve velocity and shoulder internal rotation (r = 0.67; p < 0.05. Low to moderate correlations were also found between serve velocity and wrist, elbow and shoulder flexion – extension, leg and back extension and shoulder external rotation (r = 0.36 – 0.53; p = 0.377 – 0.054. Bivariate and multivariate models for predicting serve velocity were developed, with shoulder flexion and internal rotation explaining 55% of the variance in serve velocity (r = 0.74; p < 0.001. The maximum isometric strength level in shoulder internal rotation was strongly related to serve velocity, and a large part of the variability in serve velocity was explained by the maximum isometric strength levels in shoulder internal rotation and shoulder flexion.

  12. Differential contributions of ankle plantarflexors during submaximal isometric muscle action

    DEFF Research Database (Denmark)

    Masood, Tahir; Bojsen-Møller, Jens; Kalliokoski, Kari K

    2014-01-01

    The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve...

  13. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke.

    Science.gov (United States)

    Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina

    2015-09-01

    To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.

  14. A Common Force-Sharing Pattern in Joint Action That Consists of Four People.

    Science.gov (United States)

    Masumoto, Junya; Inui, Nobuyuki

    2017-12-20

    The authors examined the force-sharing patterns in a joint action performed by a group of two, three, or four people compared with a solo action. In the joint actions, 28 participants produced periodic isometric forces such that the sum of forces they produced cycled between 5% and 10% maximum voluntary contraction with the right hand at 1 Hz. In both the three- and four-person tasks, the correlation between forces produced by two of the three or four participants was negative, and the remaining one or two participants produced intermediate forces. The errors of force and interval and force variabilities were smaller in four- and three-people groups than individuals. Four- and three-people groups thus performed better than individuals.

  15. Dynamical signatures of isometric force control as a function of age, expertise, and task constraints.

    Science.gov (United States)

    Vieluf, Solveig; Sleimen-Malkoun, Rita; Voelcker-Rehage, Claudia; Jirsa, Viktor; Reuter, Eva-Maria; Godde, Ben; Temprado, Jean-Jacques; Huys, Raoul

    2017-07-01

    From the conceptual and methodological framework of the dynamical systems approach, force control results from complex interactions of various subsystems yielding observable behavioral fluctuations, which comprise both deterministic (predictable) and stochastic (noise-like) dynamical components. Here, we investigated these components contributing to the observed variability in force control in groups of participants differing in age and expertise level. To this aim, young (18-25 yr) as well as late middle-aged (55-65 yr) novices and experts (precision mechanics) performed a force maintenance and a force modulation task. Results showed that whereas the amplitude of force variability did not differ across groups in the maintenance tasks, in the modulation task it was higher for late middle-aged novices than for experts and higher for both these groups than for young participants. Within both tasks and for all groups, stochastic fluctuations were lowest where the deterministic influence was smallest. However, although all groups showed similar dynamics underlying force control in the maintenance task, a group effect was found for deterministic and stochastic fluctuations in the modulation task. The latter findings imply that both components were involved in the observed group differences in the variability of force fluctuations in the modulation task. These findings suggest that between groups the general characteristics of the dynamics do not differ in either task and that force control is more affected by age than by expertise. However, expertise seems to counteract some of the age effects. NEW & NOTEWORTHY Stochastic and deterministic dynamical components contribute to force production. Dynamical signatures differ between force maintenance and cyclic force modulation tasks but hardly between age and expertise groups. Differences in both stochastic and deterministic components are associated with group differences in behavioral variability, and observed behavioral

  16. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Science.gov (United States)

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or

  17. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Directory of Open Access Journals (Sweden)

    Tobias Siebert

    Full Text Available The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle and geometric (three-dimensional architecture, n = 3 per muscle muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle. Maximum shortening velocity (normalized to optimal fiber length of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components, enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic

  18. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats.

    Science.gov (United States)

    Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2016-05-01

    Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.

  19. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    Science.gov (United States)

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  20. One Point Isometric Matching with the Heat Kernel

    KAUST Repository

    Ovsjanikov, Maks

    2010-09-21

    A common operation in many geometry processing algorithms consists of finding correspondences between pairs of shapes by finding structure-preserving maps between them. A particularly useful case of such maps is isometries, which preserve geodesic distances between points on each shape. Although several algorithms have been proposed to find approximately isometric maps between a pair of shapes, the structure of the space of isometries is not well understood. In this paper, we show that under mild genericity conditions, a single correspondence can be used to recover an isometry defined on entire shapes, and thus the space of all isometries can be parameterized by one correspondence between a pair of points. Perhaps surprisingly, this result is general, and does not depend on the dimensionality or the genus, and is valid for compact manifolds in any dimension. Moreover, we show that both the initial correspondence and the isometry can be recovered efficiently in practice. This allows us to devise an algorithm to find intrinsic symmetries of shapes, match shapes undergoing isometric deformations, as well as match partial and incomplete models efficiently. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  1. Reliability and fatigue characteristics of a standing hip isometric endurance protocol.

    Science.gov (United States)

    Mutchler, Jessica A; Weinhandl, Joshua T; Hoch, Matthew C; Van Lunen, Bonnie L

    2015-08-01

    Muscle fatigue is a common consideration when evaluating and rehabilitating athletic injuries. The presence of muscular fatigue has been previously determined by quantifying median frequency (MF) through a power spectral analysis on EMG signals collected throughout an endurance task. Research has not yet determined if a prolonged isometric test in a standing position generates muscular fatigue of the hip. The purpose of this study was to determine the reliability and fatigue characteristics of a standing hip isometric endurance test. Twenty healthy participants completed one 60-s Maximum Voluntary Isometric Contraction of standing hip flexion, extension, adduction, and abduction. MF of the participants' dominant limb rectus femoris (RF), biceps femoris (BF), gluteus maximus (GMax), gluteus medius (GMed) and adductor longus (ADD) was determined via surface electromyography during two sessions, 30-min apart. Reliability values (ICC2,1) were moderate-to-excellent for all time intervals of each action (FlexionRF: >0.80; ExtensionBF: >0.89; ExtensionGMax: >0.60; AdductionADD: >0.78; AbductionGMed: >0.60) and MF significantly decreased over time for all actions. Results suggest the endurance test is a reliable technique to generate muscular fatigue for hip flexion, extension, adduction and abduction. It can be used as a time efficient fatigue protocol specific to the RF, BF, GMax, ADD and GMed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    Science.gov (United States)

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Isometric Back Exercise Has Different Effect on Pressure Pain Thresholds in Healthy Men and Women

    DEFF Research Database (Denmark)

    Gajsar, Hannah; Titze, Christina; Hasenbring, Monika Ilona

    2017-01-01

    .07). CONCLUSIONS: The results of this pilot study indicate that isometric back exercise produces local and remote hypoalgesia. Remote EIH was only demonstrated in women, supporting the influence of sex in the hypoalgesic response after exercise. The effect of isometric back exercise on pain sensitivity in patients......OBJECTIVE: Isometric exercises produce an acute decrease in the pain sensitivity, known as exercise-induced hypoalgesia (EIH). Existing EIH paradigms use exercises at the extremities with more pronounced EIH at local compared to remote body sites, indicating local inhibition in addition to central...... inhibitory mechanisms. So far the results on EIH in patients with low back pain (LBP) are equivocal and no studies have investigated an EIH paradigm targeting the lower back in order to assess EIH in patients with LBP. Thus, the aim of this pilot study was to assess pressure pain sensitivity at local...

  4. Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2018-04-01

    This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.

  5. Isometric Contractions Are More Analgesic Than Isotonic Contractions for Patellar Tendon Pain: An In-Season Randomized Clinical Trial.

    Science.gov (United States)

    Rio, Ebonie; van Ark, Mathijs; Docking, Sean; Moseley, G Lorimer; Kidgell, Dawson; Gaida, Jamie E; van den Akker-Scheek, Inge; Zwerver, Johannes; Cook, Jill

    2017-05-01

    This study aimed to compare the immediate analgesic effects of 2 resistance programs in in-season athletes with patellar tendinopathy (PT). Resistance training is noninvasive, a principle stimulus for corticospinal and neuromuscular adaptation, and may be analgesic. Within-season randomized clinical trial. Data analysis was conducted blinded to group. Subelite volleyball and basketball competitions. Twenty jumping athletes aged more than 16 years, participating in games/trainings 3 times per week with clinically diagnosed PT. Two quadriceps resistance protocols were compared; (1) isometric leg extension holds at 60 degrees knee flexion (80% of their maximal voluntary isometric contraction) or (2) isotonic leg extension (at 80% of their 8 repetition maximum) 4 times per week for 4 weeks. Time under load and rest between sets was matched between groups. (1) Pain (0-10 numerical rating score) during single leg decline squat (SLDS), measured preintervention and postintervention sessions. (2) VISA-P, a questionnaire about tendon pain and function, completed at baseline and after 4 weeks. Twenty athletes with PT (18 men, mean 22.5 ± 4.7 years) participated (isotonic n = 10, isometric n = 10). Baseline median SLDS pain was 5/10 for both groups (isotonic range 1-8, isometric range 2-8). Isometric contractions produced significantly greater immediate analgesia (P < 0.002). Week one analgesic response positively correlated with improvements in VISA-P at 4 weeks (r = 0.64). Both protocols appear efficacious for in-season athletes to reduce pain, however, isometric contractions demonstrated significantly greater immediate analgesia throughout the 4-week trial. Greater analgesia may increase the ability to load or perform.

  6. Hiking strap force decreases during sustained upwind sailing

    DEFF Research Database (Denmark)

    Buchardt, R; Bay, Jonathan; Bojsen-Møller, Jens

    2017-01-01

    The hypothesis, that sailing upwind in wind speeds above 12 knots causes fatigue, which manifests as a reduction in exerted hiking strap force and/or maximal isometric voluntary contraction force (MVC) of the knee extensors, was evaluated. Additionally, it was investigated if a relationship exists...... between maximal exerted hiking force (hMVC) and sailing performance. In part 1 of the study, 12 national level athletes sailed upwind for 2 × 10 min while hiking strap forces were continuously acquired. Before, in between and after sailing periods, the MVC of the knee extensors was measured. In part 2...... of the study, hMVC was measured dry land in a hiking bench and correlated with the overall results at a national championship. Hiking strap force decreased from the first to the last minute in both 10 min sailing periods (430 ± 131 vs. 285 ± 130 N, P 

  7. Validity and reliability of a low-cost digital dynamometer for measuring isometric strength of lower limb.

    Science.gov (United States)

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro; Montaño-Munuera, Juan A

    2017-11-01

    Lower limb isometric strength is a key parameter to monitor the training process or recognise muscle weakness and injury risk. However, valid and reliable methods to evaluate it often require high-cost tools. The aim of this study was to analyse the concurrent validity and reliability of a low-cost digital dynamometer for measuring isometric strength in lower limb. Eleven physically active and healthy participants performed maximal isometric strength for: flexion and extension of ankle, flexion and extension of knee, flexion, extension, adduction, abduction, internal and external rotation of hip. Data obtained by the digital dynamometer were compared with the isokinetic dynamometer to examine its concurrent validity. Data obtained by the digital dynamometer from 2 different evaluators and 2 different sessions were compared to examine its inter-rater and intra-rater reliability. Intra-class correlation (ICC) for validity was excellent in every movement (ICC > 0.9). Intra and inter-tester reliability was excellent for all the movements assessed (ICC > 0.75). The low-cost digital dynamometer demonstrated strong concurrent validity and excellent intra and inter-tester reliability for assessing isometric strength in the main lower limb movements.

  8. [Value of the isometric exercise test in objectively evaluating the effectiveness of hyperbaric oxygenation in ischemic heart disease].

    Science.gov (United States)

    Efuni, S N; Kudriashov, V E; Rodionov, V V; Beletskiĭ, Iu V; Telegin, Iu N

    1984-05-01

    The isometric test was conducted prior to and after a hyperbaric oxygenation (HBO) session in 31 coronary heart disease (CHD) patients. The results were compared with the findings provided by the examination of 138 coronary patients and 23 normal subjects receiving no HBO treatment. It was shown that the isometric test makes it possible to objectively assess the HBO effect in CHD patients. The results of the test reflect reduction in the severity of angina pectoris or cardiac failure following hyperbarotherpy. The results obtained justify the recommendation of the isometric test for the individual evaluation of the hyperbaric treatment in CHD.

  9. Effects of isotonic and isometric exercises with mist sauna bathing on cardiovascular, thermoregulatory, and metabolic functions

    Science.gov (United States)

    Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Sugenoya, Junichi; Miwa, Chihiro; Takada, Masumi

    2014-08-01

    To clarify the effects of isometric and isotonic exercise during mist sauna bathing on the cardiovascular function, thermoregulatory function, and metabolism, six healthy young men (22 ± 1 years old, height 173 ± 4 cm, weight 65.0 ± 5.0 kg) were exposed to a mist sauna for 10 min at a temperature of 40 °C, and relative humidity of 100 % while performing or not performing ˜30 W of isometric or isotonic exercise. The effect of the exercise was assessed by measuring tympanic temperature, heart rate, systolic and diastolic blood pressure, chest sweat rate, chest skin blood flow, and plasma catecholamine and cortisol, glucose, lactate, and free fatty acid levels. Repeated measures ANOVA showed no significant differences in blood pressure, skin blood flow, sweat rate, and total amount of sweating. Tympanic temperature increased more during isotonic exercise, and heart rate increase was more marked during isotonic exercise. The changes in lactate indicated that fatigue was not very great during isometric exercise. The glucose level indicated greater energy expenditure during isometric exercise. The free fatty acid and catecholamine levels indicated that isometric exercise did not result in very great energy expenditure and stress, respectively. The results for isotonic exercise of a decrease in lactate level and an increase in plasma free fatty acid level indicated that fatigue and energy expenditure were rather large while the perceived stress was comparatively low. We concluded that isotonic exercise may be a more desirable form of exercise during mist sauna bathing given the changes in glucose and free fatty acid levels.

  10. EFFICACY OF POST ISOMETRIC RELAXATION VERSUS STATIC STRECHING IN SUBJECTS WITH CHRONIC NON SPECIFIC NECK PAIN

    Directory of Open Access Journals (Sweden)

    P.Haritha

    2015-12-01

    Full Text Available Background: Neck pain is a common problem within our society. Upper trapezius sternocleidomastoid and the levator scapulae are the most common postural muscles that tends to get shorten leading to restricted neck mobility. There is lack of evidence to allow conclusions to be drawn about the effectiveness of post isometric relaxation when compared with static stretching exercises. The aim is to find out the effectiveness of Post isometric relaxation Versus Static stretching in the subjects with chronic nonspecific neck pain. To evaluate the effectiveness of post isometric relaxation technique on pain by using Visual analoge scale, range of motion by using Universal Goniometry, and functional disability by using Neck Disability Index in chronic nonspecific neck pain. Methods: A convenient sample of thirty seven subjects was diagnosed with nonspecific neck pain was randomly allocated to one of the two treatment groups on the basis of the inclusion criteria. The experimental group (n=15 received three sessions of post isometric relaxation technique for trapezius, sternocleidomastoid and the levator scapulae and control group (n=15 received the three sessions of static stretching for trapezius, sternocliedomastiod and levator scapulae for four weeks. Results: Non parametric tests demonstrated a statistically significant difference with experimental group showing greater improvement in ROM, VAS, and NDI than the control group and significant difference within the group also. Conclusion: This study concluded and the results reflected that post isometric relaxation technique group had better improvement in reduction of pain, improvement in the range of motion, and increased neck functional activities than the static stretching group.

  11. The effectiveness of isometric exercises as compared to general exercises in the management of chronic non-specific neck pain.

    Science.gov (United States)

    Khan, Muhammad; Soomro, Rabail Rani; Ali, Syed Shahzad

    2014-09-01

    To evaluate the effectiveness of isometric exercises as compared to general exercises in chronic non-specific neck pain. For this randomised controlled trial total 68 patients (34 each group) with chronic non-specific neck pain were recruited from Alain Poly Clinic and Institute of Physical Medicine & Rehabilitation Dow University of Health Sciences, Karachi between May, 2012 and August, 2012. Simple randomisation method was used to assign participants into isometric exercise group and general exercise groups. The isometric exercise group performed exercises for neck muscle groups with a rubber band and general exercises group performed active range of movement exercises for all neck movements. Patients in both groups received 3 supervised treatment sessions per week for 12 weeks. Visual Analogue Scale (VAS), North wick Park Neck Pain Questionnaire and goniometer were used to assess pain, disability and neck range of movements at baseline and after 12 weeks. Both interventions showed statistically significant improvements in pain, function and range of movement p = 0.001f or isometric exercise group, p = 0.04 for general exercises group and p = 0.001 for range of movement. However, mean improvements in post intervention VAS score and North wick Park Neck Pain Questionnaire score was better in isometric exercises group as compared to general exercise group. In conclusion, both interventions are effective in the treatment of chronic non-specific neck pain however; isometric exercises are clinically more effective than general exercises.

  12. Reliability of ultrasound thickness measurement of the abdominal muscles during clinical isometric endurance tests.

    Science.gov (United States)

    ShahAli, Shabnam; Arab, Amir Massoud; Talebian, Saeed; Ebrahimi, Esmaeil; Bahmani, Andia; Karimi, Noureddin; Nabavi, Hoda

    2015-07-01

    The study was designed to evaluate the intra-examiner reliability of ultrasound (US) thickness measurement of abdominal muscles activity when supine lying and during two isometric endurance tests in subjects with and without Low back pain (LBP). A total of 19 women (9 with LBP, 10 without LBP) participated in the study. Within-day reliability of the US thickness measurements at supine lying and the two isometric endurance tests were assessed in all subjects. The intra-class correlation coefficient (ICC) was used to assess the relative reliability of thickness measurement. The standard error of measurement (SEM), minimal detectable change (MDC) and the coefficient of variation (CV) were used to evaluate the absolute reliability. Results indicated high ICC scores (0.73-0.99) and also small SEM and MDC scores for within-day reliability assessment. The Bland-Altman plots of agreement in US measurement of the abdominal muscles during the two isometric endurance tests demonstrated that 95% of the observations fall between the limits of agreement for test and retest measurements. Together the results indicate high intra-tester reliability for the US measurement of the thickness of abdominal muscles in all the positions tested. According to the study's findings, US imaging can be used as a reliable method for assessment of abdominal muscles activity in supine lying and the two isometric endurance tests employed, in participants with and without LBP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Is a sphygmomanometer a valid and reliable tool to measure the isometric strength of hip muscles? A systematic review.

    Science.gov (United States)

    Toohey, Liam Anthony; De Noronha, Marcos; Taylor, Carolyn; Thomas, James

    2015-02-01

    Muscle strength measurement is a key component of physiotherapists' assessment and is frequently used as an outcome measure. A sphygmomanometer is an instrument commonly used to measure blood pressure that can be potentially used as a tool to assess isometric muscle strength. To systematically review the evidence on the reliability and validity of a sphygmomanometer for measuring isometric strength of hip muscles. A literature search was conducted across four databases. Studies were eligible if they presented data on reliability and/or validity, used a sphygmomanometer to measure isometric muscle strength of the hip region, and were peer reviewed. The individual studies were evaluated for quality using a standardized critical appraisal tool. A total of 644 articles were screened for eligibility, with five articles chosen for inclusion. The use of a sphygmomanometer to objectively assess isometric muscle strength of the hip muscles appears to be reliable with intraclass correlation coefficient values ranging from 0.66 to 0.94 in elderly and young populations. No studies were identified that have assessed the validity of a sphygmomanometer. The sphygmomanometer appears to be reliable for assessment of isometric muscle strength around the hip joint, but further research is warranted to establish its validity.

  14. Maternal separation increases later immobility during forced swim in guinea pig pups: evidence for sensitization of a depressive-like state.

    Science.gov (United States)

    Hennessy, Michael B; Schreibeis, Amanda D; Schiml, Patricia A; Deak, Terrence

    2017-01-01

    Early-life stress is thought to increase later vulnerability for developing depressive illness by sensitizing underlying stress-responsive systems. Guinea pig pups separated from their mother and isolated in a novel cage for 3 hr exhibit a sensitized depressive-like behavioral response when separated again the following day as well as weeks later. The behavioral response and its sensitization appear to be mediated by inflammatory factors. To determine if this sensitization is specific to the separation response or if it reflects a broader underlying depressive-like state, guinea pig pups that had either been separated for 3 hr or remained with their mothers were observed in the forced swim test the following 3 days. Earlier separation was found to increase the duration of immobility, a measure sensitive to antidepressant treatment. These results support the use of the guinea pig as a model for examining mechanisms of inflammatory-mediated sensitization of depression following stress in early life. © 2016 Wiley Periodicals, Inc.

  15. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models

    OpenAIRE

    Frey Law, Laura A.; Shields, Richard K.

    2005-01-01

    Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessar...

  16. Effect of Strength Training on Rate of Force Development in Older Women

    Science.gov (United States)

    Gurjao, Andre Luiz Demantova; Gobbi, Lilian Teresa Bucken; Carneiro, Nelson Hilario; Goncalves, Raquel; Ferreira de Moura, Rodrigo; Cyrino, Edilson Serpeloni; Altimari, Leandro Ricardo; Gobbi, Sebastiao

    2012-01-01

    We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n = 7) or training (n = 10) group. A leg-press isometric test was…

  17. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    Directory of Open Access Journals (Sweden)

    Thorsten eRudroff

    2014-05-01

    Full Text Available We used positron emission tomography/computed tomography (PET/CT and [18F]-FDG to test the hypothesis that glucose uptake (GU heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 yrs and six old (77 ± 6 yrs men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD for knee extensors and flexors was greater for the old (35.3 ± 3.3 % than the young (28.6 ± 2.4 % (P = 0.006. Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P= 0.004. In a multiple regression model, knee extensor muscle volume was a predictor (partial r = - 0.87; P = 0.001 of GU heterogeneity for old men (R2 = 0.78; P < 0.001, and MVC force predicted GU heterogeneity for young men (partial r = - 0.95, P < 0.001. The findings demonstrate that glucose uptake is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy.

  18. The influence of isometric preload on power expressed during bench press in strength-trained men.

    Science.gov (United States)

    Bartolomei, Sandro; Fukuda, David H; Hoffman, Jay R; Stout, Jeffrey R; Merni, Franco

    2017-03-01

    The purpose of this study was to compare the power expressed during the bench press exercise in resistance-trained men following different pre-activation conditions. Twenty-two trained men (age 24.1 ± 1.7 years, height 178.6 ± 6.1 cm, body mass 81.1 ± 10.6 kg) completed a maximal effort bench press (1-RM) test (100.0 kg ± 8.1 kg). In a subsequent assessment, each participant performed concentric bench press movements with loads of 20%, 30%, 40% and 50% of their 1-RM preceded by either a concentric contraction (CC), a low isometric preload (LIP; 70% 1-RM) or a high isometric preload (HIP; 100% 1-RM) conditions. All movements were performed in a Smith machine with a settable quick-release device. Participants performed all three conditions in randomized fashion. Results indicated that power outputs during the bench press exercise following HIP were significantly (p < 0.05) greater than CC at 20% 1-RM (+9%), 30% 1-RM (+16%) and 40% 1-RM (+14%), and LIP at 20% 1-RM (+4%), 30% 1-RM (+20%) and 40% 1-RM (+15%). No differences were found between conditions at 50% 1-RM. Area under the force-power curve with HIP was greater (p < 0.05) than with CC and LIP. In conclusion, results of this study indicate that the use of a HIP (100% 1-RM) in trained participants results in significantly greater power output during the concentric phase of a multi-joint exercise when compared to standard concentric movement.

  19. Reproducibility of isometric shoulder protraction and retraction strength measurements in normal subjects and individuals with winged scapula.

    Science.gov (United States)

    Oh, Jae-Seop; Kang, Min-Hyeok; Dvir, Zeevi

    2016-11-01

    The strength of the shoulder protractors and retractors may be compromised in individuals with winged scapula (IwWS). However, no standard approach to measuring the strength of these muscles has been described. The aim of this study was to study the intra-rater and inter-rater reproducibility of a fixed-base isometric dynamometer and to describe cutoff scores for clinically meaningful change for protraction and retraction isometric strength. Twice during a week, 20 normal subjects and 20 IwWS were tested by 2 independent raters. IwWS were significantly weaker (P isometric strength. Excellent intra-rater and inter-rater correlations were obtained in most combinations, leading to low cutoff scores for meaningful change expressed in terms of the smallest real difference. When it is properly used, the technique described in this paper is recommended as an effective clinical tool for the quantitative assessment of protraction and retraction isometric strength, both for status determination and for monitoring of change in IwWS during and after rehabilitation. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer.

    Science.gov (United States)

    Roth, Ralf; Donath, Lars; Kurz, Eduard; Zahner, Lukas; Faude, Oliver

    2017-03-01

    The present study aimed to assess the between day reliability of isokinetic and isometric peak torque (PT) during trunk measurement on an isokinetic device (IsoMed 2000). Test-retest-protocol on five separate days. Fifteen healthy sport students (8 female and 7 male) aged 21 to 26. PT was assessed in isometric back extension and flexion as well as right and left rotation. Isokinetic strength was captured at a speed of 60°/s and 150°/s for all tasks. For none of the assessed parameters a meaningful variation in PT during test days was observed. Relative reliability (ICC = 0.85-0.96) was excellent for all tasks. Estimates of absolute reliability as Coefficient of Variation (CoV) and Standard Error of Measurement (SEM in Nm/kg lean body mass) remained stable for isometric (6.9% strength measurement in flexion and extension or trunk rotation in either isometric or isokinetic condition is highly reliable. Therefore, it seems possible to elucidate changes which are smaller than 10% due to intervention programs when a preceding familiarization condition was applied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Unusual Wrist Tremor: Unilateral Isometric Tremor?

    Directory of Open Access Journals (Sweden)

    Theresa A. Zesiewicz

    2014-01-01

    Full Text Available Background: Tremors may be difficult to classify.Case Report: An 83‐year‐old male presented with an unusual left wrist tremor. The tremor could be reproducibly elicited by making a fist or carrying a weighted object (e.g., a shopping bag, bottle of water of approximately 1 lb or more, and it intensified with heavier weights. The tremor was difficult to classify, although it shared features with isometric tremor.Discussion: This specific presentation of tremor has not been reported previously. We hope that the detailed description we provide will aid other neurologists who encounter this or similar tremors in their clinics.

  2. A modified isometric test to evaluate blood pressure control with ...

    African Journals Online (AJOL)

    Blood pressure at rest is not predictive of roundthe- clock values. Blood pressure should therefore be measured during effort to evaluate hypertension and its response to treatment. The effect of sustained-release verapamil (240 mg taken once a day) on blood pressure at rest and during isometric effort was therefore ...

  3. Response of Coagulation Indices to Two Types of Exercise of Eccentric and Isometric in Male Bodybuilding Athletes

    Directory of Open Access Journals (Sweden)

    Maryam Azimpour

    2016-05-01

    Full Text Available Abstract Background and Objectives: Although activation of blood coagulation system in response to physical activity has been identified to some extent, but the contribution of eccentric activity in comparison with isometric activity as resistance exercise, is not clear yet. Therefore, this research was carried out with the purpose of investigating the effect of one session of eccentric and isometric resistance exercise on some coagulation factors in male bodybuilders. Methods: In this semi-experimental study, 28 volunteers were randomly selected from male bodybuilders and divided into two experimental groups and one control group. One of the experimental groups performed eccentric exercise [controlled return (extension of the elbow flexion movement involving an eccentric contraction] and another group performed isometric exercises (holding barbell while flexing elbows at 45 degrees. In order to assess coagulation indices, blood sampling was performed 15 minutes before and immediately after the exercise. Results: Thromboplastin and prothrombin times did not significantly change immediately after the exercise, but the number of platelets significantly increased in both isometric and eccentric types of exercise immediately after the exercise. Conclusion: The results of isometric and eccentric acute resistance exercise showed that the exercise had no negative impact on blood coagulation factors, and increased coagulation system activity reflects the increased number of platelets. The difference between the results of researches carried out in this direction can be resulted from the difference between the exercise protocols, methods and measurement time, and level of preparedness of the participants in the research.

  4. Early and late rate of force development: differential adaptive responses to resistance training?

    DEFF Research Database (Denmark)

    Andersen, L L; Andersen, Jesper Løvind; Zebis, M K

    2010-01-01

    The objective of this study is to investigate the potentially opposing influence of qualitative and quantitative muscular adaptations in response to high-intensity resistance training on contractile rate of force development (RFD) in the early (200 ms) of rising muscle force. Fifteen healthy young......-intensity resistance training due to differential influences of qualitative and quantitative muscular adaptations on early and later phases of rising muscle force....... males participated in a 14-week resistance training intervention for the lower body and 10 matched subjects participated as controls. Maximal muscle strength (MVC) and RFD were measured during maximal voluntary isometric contraction of the quadriceps femoris muscle. Muscle biopsies were obtained from...

  5. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion.

    Directory of Open Access Journals (Sweden)

    Akira Saito

    Full Text Available Although activity of the rectus femoris (RF differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05. The onset of VI activation was 230-240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05. These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.

  6. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    Science.gov (United States)

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.

  7. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    Science.gov (United States)

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  8. Trunk muscle fatigue during a lateral isometric hold test: what are we evaluating?

    Directory of Open Access Journals (Sweden)

    Pagé Isabelle

    2012-04-01

    Full Text Available Abstract Background Side bridge endurance protocols have been suggested to evaluate lateral trunk flexor and/or spine stabilizer muscles. To date, no study has investigated muscle recruitment and fatigability during these protocols. Therefore the purpose of our study was to quantify fatigue parameters in various trunk muscles during a modified side bridge endurance task (i.e. a lateral isometric hold test on a 45° roman chair apparatus and determine which primary trunk muscles get fatigued during this task. It was hypothesized that the ipsilateral external oblique and lumbar erector spinae muscles will exhibit the highest fatigue indices. Methods Twenty-two healthy subjects participated in this study. The experimental session included left and right lateral isometric hold tasks preceded and followed by 3 maximal voluntary contractions in the same position. Surface electromyography (EMG recordings were obtained bilaterally from the external oblique, rectus abdominis, and L2 and L5 erector spinae. Statistical analysis were conducted to compare the right and left maximal voluntary contractions (MVC, surface EMG activities, right vs. left holding times and decay rate of the median frequency as the percent change from the initial value (NMFslope. Results No significant left and right lateral isometric hold tests differences were observed neither for holding times (97.2 ± 21.5 sec and 96.7 ± 24.9 sec respectively nor for pre and post fatigue root mean square during MVCs. However, participants showed significant decreases of MVCs between pre and post fatigue measurements for both the left and right lateral isometric hold tests. Statistical analysis showed that a significantly NMFslope of the ipsilateral external oblique during both conditions, and a NMFslope of the contralateral L5 erector spinae during the left lateral isometric hold test were steeper than those of the other side’s respective muscles. Although some participants

  9. Psychological interventions for the treatment of depression, anxiety, alcohol misuse or anger in armed forces veterans and their families: systematic review and meta-analysis protocol.

    Science.gov (United States)

    O'Shea, Luke; Watkins, Ed; Farrand, Paul

    2017-06-15

    Evidence highlights a high prevalence of common mental health disorders in armed forces veterans and their families, with depression, anxiety, alcohol misuse and anger being more common than PTSD. This paper presents a protocol for a systematic review and meta-analysis to identify existing randomised controlled trial (RCT) research testing the effectiveness of psychological interventions for these difficulties in armed forces veterans and their family members. Electronic databases (CENTRAL, PsycInfo, MEDLINE, CINAHL, The Cochrane Register of Clinical Trials, EMBASE and ASSIA) will be searched to identify suitable studies for inclusion in the review supplemented by forward and backward reference checking, grey literature searches and contact with subject authors. Research including armed forces veterans and their family members will be included in the review with research including serving personnel or individuals under the age of 18 being excluded. Few RCTs examining the treatment of depression, anxiety, alcohol misuse or anger exist in armed forces veterans to date. The primary outcome will be symptomatic change following intervention for these difficulties. The secondary outcomes will include methodological aspects of interest such as discharge type and recruitment setting if data permits. In the event that the number of studies identified is too low to undertake a meta-analysis, a narrative review will be conducted. Quality assessment will be undertaken using the Cochrane Collaboration Tool and Cochran's Q statistic calculated to test for heterogeneity as suggested by the Cochrane handbook. The review will examine the findings of existing intervention research for depression, anxiety, alcohol misuse or anger in armed forces veterans and their families, along with any effect sizes that may exist. PROSPERO CRD42016036676.

  10. Variation of explosive force at different times of day

    Directory of Open Access Journals (Sweden)

    R Pereira

    2011-03-01

    Full Text Available AIM: The purpose of this study was to compare the explosive force and electromyographic (EMG activity at three different times of the day. METHODS: Thirty healthy subjects took part in the study, and carried out two maximum isometric voluntary knee extensions to measure explosive force, through contractile impulse (CI and rate of force development (RFD, and myoelectric signals from quadriceps muscles in the following periods: 07:30-09:30, 13:30-15:30 and 19:30-21:30 (called morning, afternoon and night respectively, on three non-consecutive days. RESULTS: The body temperature was lower in the morning than in the afternoon and night periods. The explosive force, evaluated through contractile impulse (CI and rate of force development (RFD, was greater at night than in the morning, without differences in the myoelectric signal. CONCLUSION: The ability to produce explosive force varies throughout different times of the day without variation in muscular recruitment, indicating that peripheral and not neural mechanisms could be responsible for this variation.

  11. Effectiveness of acupressure versus isometric exercise on pain, stiffness, and physical function in knee osteoarthritis female patients

    Directory of Open Access Journals (Sweden)

    Amany S. Sorour

    2014-03-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis and a leading cause of disability in older adults. Conservative non-pharmacological strategies, particularly exercise, are recommended by clinical guidelines for its management. The aim of this study was to assess the effectiveness of acupressure versus isometric exercise on pain, stiffness, and physical function in knee OA female patients. This quasi experimental study was conducted at the inpatient and outpatient sections at Al-kasr Al-Aini hospital, Cairo University. It involved three groups of 30 patients each: isometric exercise, acupressure, and control. Data were collected by an interview form and the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC scale. The study revealed high initial scores of pain, stiffness, and impaired physical functioning. After the intervention, pain decreased in the two intervention groups compared to the control group (p < 0.001, while the scores of stiffness and impaired physical function were significantly lower in the isometric group (p < 0.001 compared to the other two groups. The decrease in the total WOMAC score was sharper in the two study groups compared to the control group. In multiple linear regression, the duration of illness was a positive predictor of WOMAC score, whereas the intervention is associated with a reduction in the score. In conclusion, isometric exercise and acupressure provide an improvement of pain, stiffness, and physical function in patients with knee OA. Since isometric exercise leads to more improvement of stiffness and physical function, while acupressure acts better on pain, a combination of both is recommended. The findings need further confirmation through a randomized clinical trial.

  12. The influence of isometric exercises of the quadriceps muscle on young female patients with anterior knee pain

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2015-10-01

    Full Text Available Introduction: Anterior knee pain is a disease associated with abnormalities in the patellofemoral joint. It is a common reason for seeking advice from an orthopaedist. This problem is characterised by chronic pain in the anterior part of one or both knees. This issue often affects women, especially at a young age. The effect of this ailment is deterioration of the quality of life. This dysfunction significantly reduces abilities, and often prevents the performance of daily activities. Pain usually occurs during physical activity, but may also be accompanied by prolonged immobilisation of the knee joint. In defining the type of patellofemoral instability, orthopaedists use magnetic resonance imaging, arthroscopy, ultrasonography, and X-ray examination. A relatively effective method of treatment of pain in the patellofemoral joint is through isometric exercises of the quadriceps. They increase the strength of the quadriceps femoris muscle and reduce instability in the patellofemoral joint. Aim of the research: To evaluate the effectiveness of isometric exercises of the quadriceps muscle on young female patients with anterior knee pain. Material and methods : The study involved 30 women aged 13–44 years (mean age: 26.8 years, who had been diagnosed with pain in the front of the knee. Results and conclusions: Isometric exercises of the quadriceps muscle are an effective method of reducing anterior knee pain. Isometric exercises have a beneficial influence on improving physical activity, including performing basic activities of daily living. Student’s t distribution showed, that isometric exercises of the quadriceps muscle reduce pain at the front of the knee. Kruskal-Wallis test confirmed a significant reduction of anterior knee pain.

  13. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    International Nuclear Information System (INIS)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek

    2016-01-01

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  14. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek [UCL Centre for Cardiovascular MR, UCL Institute of Cardiovascular Science, Level 6 Old Nurses Home, Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London (United Kingdom)

    2016-04-15

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  15. Isometric muscle strength and mobility capacity in children with cerebral palsy

    NARCIS (Netherlands)

    Dallmeijer, Annet J.; Rameckers, Eugene A.; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A.; Becher, Jules G.

    2017-01-01

    Purpose: To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Method: Participants were 62 children with CP (6-13 years), able to walk with (n=10) or without (n=52) walking aids,

  16. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition

    OpenAIRE

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-01-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furth...

  17. Force steadiness, muscle activity, and maximal muscle strength in subjects with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rasmussen, Lars; Aagaard, Per

    2006-01-01

    physically active in spite of shoulder pain and nine healthy matched controls were examined to determine isometric and isokinetic submaximal shoulder-abduction force steadiness at target forces corresponding to 20%, 27.5%, and 35% of the maximal shoulder abductor torque, and maximal shoulder muscle strength......We investigated the effects of the subacromial impingement syndrome (SIS) on shoulder sensory-motor control and maximal shoulder muscle strength. It was hypothesized that both would be impaired due to chronic shoulder pain associated with the syndrome. Nine subjects with unilateral SIS who remained...

  18. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  19. Eccentric and isometric shoulder rotator cuff strength testing using a hand-held dynamometer: reference values for overhead athletes.

    Science.gov (United States)

    Cools, Ann M J; Vanderstukken, Fran; Vereecken, Frédéric; Duprez, Mattias; Heyman, Karel; Goethals, Nick; Johansson, Fredrik

    2016-12-01

    In order to provide science-based guidelines for injury prevention or return to play, regular measurement of isometric and eccentric internal (IR) and external (ER) rotator strength is warranted in overhead athletes. However, up to date, no normative database exists regarding these values, when measured with a hand-held dynamometer. Therefore, the purpose of the study was to provide a normative database on isometric and eccentric rotator cuff (RC) strength values in a sample of overhead athletes, and to discuss gender, age and sports differences. A HHD was used to measure RC strength in 201 overhead athletes between 18 and 50 years old from three different sports disciplines: tennis, volleyball and handball. Isometric as well as eccentric strength was measured in different shoulder positions. Outcome variables of interest were isometric ER and IR strength, eccentric ER strength, and intermuscular strength ratios ER/IR. Our results show significant side, gender and sports discipline differences in the isometric and eccentric RC strength. However, when normalized to body weight, gender differences often are absent. In general, strength differences are in favour of the dominant side, the male athletes and handball. Intermuscular ER/IR ratios showed gender, sports, and side differences. This normative database is necessary to help the clinician in the evaluation of RC strength in healthy and injured overhead athletes. In view of the preventive screening and return-to-play decisions in overhead athletes, normalization to body weight and calculating intermuscular ratios are key points in this evaluation. Diagnostic study, Level III.

  20. Relationship of moderate and low isometric lumbar extension through architectural and muscular activity variables: a cross sectional study

    International Nuclear Information System (INIS)

    Cuesta-Vargas, Antonio I; Gonzalez-Sanchez, Manuel

    2013-01-01

    No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity

  1. Comparison of isometric cervical flexor and isometric cervical extensor system exercises on patients with neuromuscular imbalance and cervical crossed syndrome associated forward head posture.

    Science.gov (United States)

    Lee, Jaejin; Kim, Dohyeon; Yu, Kyunghoon; Cho, Youngki; You, Joshua H

    2018-01-01

    Isometric cervical flexor system exercise (ICF) and isometric cervical extensor system exercise (ICE) are cervical stabilization techniques that have been used to restore cervical crossed syndrome (CCS)-associated forward head posture. However, the therapeutic effects and underlying motor control mechanisms remain elusive. The purpose of present study was investigating the concurrent therapeutic effects of ICF and ICE on muscle size, muscle imbalance ratio, and muscle recruitment sequence using ultrasound imaging and electromyography. A total of 18 participants (7 females; age=24±4.0 years) with CCS associated with forward head posture underwent ICF and ICE. Paired t-test analysis was used for statistical analysis. Paired t-test analysis showed that sternocleidomastoid thickness was greater during ICF than ICE. Similarly, cross-sectional area and horizontal thickness of the longus colli were greater during ICE than ICF. The upper trapezius/lower trapezius muscle imbalance ratio and the pectoralis major/lower trapezius muscle imbalance ratio were significantly decreased during the application of ICE compared to ICF. These results provide compelling, mechanistic evidence as to how ICE is more beneficial for the restoration of neuromuscular imbalance than ICF in individuals with CCS.

  2. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation.

    Science.gov (United States)

    Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie

    2018-04-03

    Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Experimental, randomized crossover study. Laboratory at Marquette University. Thirty healthy adults (19.3±1.5 years, 15 males). Subjects underwent CPM testing before and after isometric exercise (knee extension, 30% maximum voluntary contraction for three minutes) and quiet rest in two separate experimental sessions. Pressure pain thresholds (PPTs) at the quadriceps and upper trapezius muscles were assessed before, during, and after ice water immersions. PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0.43-0.70), and the between-session reliability was poor (ICC = 0.20-0.35). Due to the variability in the systemic exercise-induced hypoalgesia (EIH) response, participants were divided into systemic EIH responders (N = 9) and nonresponders (N = 21). EIH responders experienced attenuated CPM following exercise (P = 0.03), whereas the nonresponders showed no significant change (P > 0.05). Isometric exercise decreased CPM in individuals who reported systemic EIH, suggesting activation of shared mechanisms between CPM and systemic EIH responses. These results may improve the understanding of increased pain after exercise in patients with chronic pain and potentially attenuated CPM.

  3. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Science.gov (United States)

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that

  4. The influence of lower leg configurations on muscle force variability.

    Science.gov (United States)

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Pelvic floor muscle training decreases hip adductors isometric peak torque in incontinent women: an exploratory study

    Directory of Open Access Journals (Sweden)

    Grasiéla Nascimento Correia

    Full Text Available INTRODUCTION: The pelvic floor muscle (PFM training is the most common treatment for urinary incontinence (UI, however many women performed the contraction of PFM with associated contraction of abdominal, gluteus and hip adductors muscles. OBJECTIVE: To assess the effects of pelvic floor muscle (PFM training on isometric and isokinetic hip adductors peak torque (PT among women suffering from urinary incontinence (UI. MATERIALS AND METHODS: It is a longitudinal and prospective exploratory study. This study included 15 physically active women aged 45 years old and over, who presented complaints of UI. The PFM function (digital evaluation and perineometry, isometric and isokinetic hip adductors PT and one hour pad test were performed before and after treatment. The PFM training was performed in group, one hour once a week for 12 sessions. RESULTS: Significant improvement of PFM function and pressure level (p = 0.003, and significant decrease of hip adductors isometric PT and one-hour pad test, were found post-treatment. Moderate negative correlations between PFM contraction pressure and hip adductors isokinetic PT for dominant side (DS (r = -0.62; p = 0.03 and non-dominant side (NDS (r = -0.64; p = 0.02; and between PFM fast fibers contraction and hip adductors isometric PT for DS (r = -0.60; p = 0.03 and NDS (r = -0.59; p = 0.04 were also found. CONCLUSIONS: The PFM training decreased hip adductors PT and improved PFM functions and UI.

  6. Influence of Isometric Exercise Training on Quadriceps Muscle Architecture and Strength in Obese Subjects with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Waleed S Mahmoud

    2017-03-01

    Full Text Available Obese individuals have reduced quadriceps muscle strength relative to body mass that may increase the rate of progression of knee osteoarthritis (OA. The purpose of this study was to evaluate the effects of isometric exercise training on quadriceps muscle architecture and strength in obese subjects with knee osteoarthritis. Methods: Fortyfour obese male subjects aged 40–65 years diagnosed with knee osteoarthritis were randomly assigned into group A (n=32 and group B (n=12. Group A subjects performed a 12-week isometric exercise program. Group B subjects did not participate in any exercise program and maintained their ordinary activities for the same period. Both groups received the same conventional physical therapy program including hot packs and therapeutic ultrasonic. Muscle thickness, pennation angles and fascicle length of the vastus lateralis (VL muscle of the affected knee were measured at rest by B-mode ultrasonography. Maximal voluntary isometric knee extension torque (MVIC of the affected knee was measured using an isokinetic dynamometer. Knee pain and function were evaluated using visual analogue pain scale (VAS and Western Ontario and McMaster Universities Arthritis Index (WOMAC. All variables were evaluated before and the end of the intervention period for both groups. Results: at the end of the program, group A subjects showed significant improvements compared with group B subjects regarding MVIC and muscle architecture parameters (p<0.05. Also, there was significant improvement in post-test VAS and WOMAC scores in group A subjects compared to group B subjects (p<0.05. Conclusion: A 12-week quadriceps isometric training program improves knee pain and quadriceps muscle strength and architecture in obese subjects with knee OA. These results indicate that isometric training should be regarded as a proper exercise intervention for obese patients with knee OA.

  7. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter.

    Science.gov (United States)

    Lin, Shih-Hang; Chou, Mei-Ling; Chen, Wei-Cheng; Lai, Yi-Syuan; Lu, Kuan-Hung; Hao, Cherng-Wei; Sheen, Lee-Yan

    2015-12-04

    Depression is a serious psychological disorder that causes extreme economic loss and social problems. However, the conventional medications typically cause side effects that result in patients opting to out of therapy. Lemon balm (Melissa officinalis L., MO) is an old and particularly reliable medicinal herb for relieving feelings of melancholy, depression and anxiety. The present study aims to investigate the antidepressant-like activity of water extract of MO (WMO) by evaluating its influence on the behaviors and the relevant neurotransmitters of rats performed to forced swimming test. Two phases of the experiment were conducted. In the acute model, rats were administered ultrapure water (control), fluoxetine, WMO, or the indicated active compound (rosmarinic acid, RA) three times in one day. In the sub-acute model, rats were respectively administered ultrapure water (control), fluoxetine, or three dosages of WMO once a day for 10 days. Locomotor activity and depression-like behavior were examined using the open field test and the forced swimming test, respectively. The levels of relevant neurotransmitters and their metabolites in the frontal cortex, amygdala, hippocampus, and striatum were analyzed by high performance liquid chromatography. In the acute model, WMO and RA significantly reduced depressive-like behavior but the type of related neurotransmitter could not be determined. The results indicated that the effect of WMO administration on the reduction of immobility time was associated with an increase in swimming time of the rats, indicative of serotonergic neurotransmission modulation. Chromatography data validated that the activity of WMO was associated with a reduction in the serotonin turnover rate. The present study shows the serotonergic antidepressant-like activity of WMO. Hence, WMO may offer a serotonergic antidepressant activity to prevent depression and to assist in conventional therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.

  8. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    Science.gov (United States)

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  9. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions.

    Science.gov (United States)

    Behrens, Martin; Mau-Moeller, Anett; Mueller, Karoline; Heise, Sandra; Gube, Martin; Beuster, Nico; Herlyn, Philipp K E; Fischer, Dagmar-C; Bruhn, Sven

    2016-02-01

    This study investigated effects of plyometric training (6 weeks, 3 sessions/week) on maximum voluntary contraction (MVC) strength and neural activation of the knee extensors during isometric, concentric and eccentric contractions. Twenty-seven participants were randomly assigned to the intervention or control group. Maximum voluntary torques (MVT) during the different types of contraction were measured at 110° knee flexion (180°=full extension). The interpolated twitch technique was applied at the same knee joint angle during isometric, concentric and eccentric contractions to measure voluntary activation. In addition, normalized root mean square of the EMG signal at MVT was calculated. The twitch torque signal induced by electrical nerve stimulation at rest was used to evaluate training-related changes at the muscle level. In addition, jump height in countermovement jump was measured. After training, MVT increased by 20Nm (95% CI: 5-36Nm, P=0.012), 24Nm (95% CI: 9-40Nm, P=0.004) and 27Nm (95% CI: 7-48Nm, P=0.013) for isometric, concentric and eccentric MVCs compared to controls, respectively. The strength enhancements were associated with increases in voluntary activation during isometric, concentric and eccentric MVCs by 7.8% (95% CI: 1.8-13.9%, P=0.013), 7.0% (95% CI: 0.4-13.5%, P=0.039) and 8.6% (95% CI: 3.0-14.2%, P=0.005), respectively. Changes in the twitch torque signal of the resting muscle, induced by supramaximal electrical stimulation of the femoral nerve, were not observed, indicating no alterations at the muscle level, whereas jump height was increased. Given the fact that the training exercises consisted of eccentric muscle actions followed by concentric contractions, it is in particular relevant that the plyometric training increased MVC strength and neural activation of the quadriceps muscle regardless of the contraction mode. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Weathering reactions and isometric log-ratio coordinates: Do they speak to each other?

    International Nuclear Information System (INIS)

    Buccianti, Antonella; Zuo, Renguang

    2016-01-01

    The aim of this contribution is to explore the relationship among some concepts, often considered to be unrelated, such as weathering reactions, compositional data and fractals by means of distribution analysis. Weathering reactions represent the necessary transfer of heat and entropy to the environment in geochemical cycles. Compositional data express the relative abundance of chemical elements/species in a given total (i.e. volume or weight). Fractals are temporal or spatial objects with self-similarity and scale-invariance, so that internal structures repeat themselves over multiple levels of magnification or scales of measurement. Gibbs's free energy and the application of the Law Mass Action can be used to model weathering reactions, under the hypothesis of chemical equilibrium. Compositional data are obtained in the analytical phase after the determination of the concentrations of chemicals in sampled solid, liquid or gaseous materials. Fractals can be measured by using their fractal dimensions. In this paper, the presence of fractal structures is observed when the frequency distribution of isometric log-ratio coordinates is investigated, showing the logarithm of the cumulative number of samples exceeding a certain coordinate value plotted against the coordinate value itself. Isometric log-ratio coordinates (or balances) were constructed by using the sequential binary partition (SBP) method. The balances were identified to maintain, as far as possible, the similarity with a corresponding weathering reaction affecting the Arno river catchment (Tuscany, central Italy) as described by the Law of Mass Action. The emergence of fractal structures indicates the presence of dissipative systems, which require complexity, large numbers of inter-connected elements and stochasticity. - Highlights: • Frequency distribution analysis links compositional data and fractals. • Isometric log-ratio coordinates simulate chemical reactions in weathering processes. • Fractal

  11. Decreased Prostaglandin D2 Levels in Major Depressive Disorder Are Associated with Depression-Like Behaviors.

    Science.gov (United States)

    Chu, Cuilin; Wei, Hui; Zhu, Wanwan; Shen, Yan; Xu, Qi

    2017-09-01

    Prostaglandin (PG) D2 is the most abundant prostaglandin in the mammalian brain. The physiological and pharmacological actions of PGD2 in the central nervous system seem to be associated with some of the symptoms exhibited by patients with major depressive disorder. Previous studies have found that PGD2 synthase was decreased in the cerebrospinal fluid of major depressive disorder patients. We speculated that there may be a dysregulation of PGD2 levels in major depressive disorder. Ultra-performance liquid chromatography-tandem mass spectrometry coupled with a stable isotopic-labeled internal standard was used to determine PGD2 levels in the plasma of major depressive disorder patients and in the brains of depressive mice. A total of 32 drug-free major depressive disorder patients and 30 healthy controls were recruited. An animal model of depression was constructed by exposing mice to 5 weeks of chronic unpredictable mild stress. To explore the role of PGD2 in major depressive disorder, selenium tetrachloride was administered to simulate the change in PGD2 levels in mice. Mice exposed to chronic unpredictable mild stress exhibited depression-like behaviors, as indicated by reduced sucrose preference and increased immobility time in the forced swimming test. PGD2 levels in the plasma of major depressive disorder patients and in the brains of depressive mice were both decreased compared with their corresponding controls. Further inhibiting PGD2 production in mice resulted in an increased immobility time in the forced swimming test that could be reversed by imipramine. Decreased PGD2 levels in major depressive disorder are associated with depression-like behaviors. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  12. Interactive effect of aging and local muscle heating on renal vasoconstriction during isometric handgrip.

    Science.gov (United States)

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2009-08-01

    The purpose of the study was to determine the interactive effect of aging and forearm muscle heating on renal vascular conductance and muscle sympathetic nerve activity (MSNA) during ischemic isometric handgrip. A tube-lined, water-perfused sleeve was used to heat the forearm in 12 young (27 +/- 1 yr) and 9 older (63 +/- 1 yr) subjects. Ischemic isometric handgrip was performed before and after heating. Muscle temperature (intramuscular thermistor) was 34.3 +/- 0.2 and 38.7 +/- 0.1 degrees C during normothermia and heating, respectively. At rest, heating had no effect on renal blood velocity (Doppler ultrasound) or renal vascular conductance in either group (young, n = 12; older, n = 8). Heating compared with normothermia caused a significantly greater increase in renal vasoconstriction during exercise and postexercise muscle ischemia (PEMI) in both groups. However, the increase in renal vasoconstriction during heating was greater in the older compared with the young subjects (18 +/- 3 vs. 8 +/- 3%). During handgrip, heating elicited greater increases in MSNA responses in the older group (young, n = 12; older, n = 6), whereas no statistical difference was observed between groups during PEMI. In summary, aging augments renal vascular responses to ischemic isometric handgrip during heating of the exercising muscle. The greater renal vasoconstriction was associated with augmented MSNA in the older subjects.

  13. Salient Point Detection in Protrusion Parts of 3D Object Robust to Isometric Variations

    Science.gov (United States)

    Mirloo, Mahsa; Ebrahimnezhad, Hosein

    2018-03-01

    In this paper, a novel method is proposed to detect 3D object salient points robust to isometric variations and stable against scaling and noise. Salient points can be used as the representative points from object protrusion parts in order to improve the object matching and retrieval algorithms. The proposed algorithm is started by determining the first salient point of the model based on the average geodesic distance of several random points. Then, according to the previous salient point, a new point is added to this set of points in each iteration. By adding every salient point, decision function is updated. Hence, a condition is created for selecting the next point in which the iterative point is not extracted from the same protrusion part so that drawing out of a representative point from every protrusion part is guaranteed. This method is stable against model variations with isometric transformations, scaling, and noise with different levels of strength due to using a feature robust to isometric variations and considering the relation between the salient points. In addition, the number of points used in averaging process is decreased in this method, which leads to lower computational complexity in comparison with the other salient point detection algorithms.

  14. Comparison of maximal voluntary isometric contraction and hand-held dynamometry in measuring muscle strength of patients with progressive lower motor neuron syndrome

    NARCIS (Netherlands)

    Visser, J.; Mans, E.; de Visser, M.; van den Berg-Vos, R. M.; Franssen, H.; de Jong, J. M. B. V.; van den Berg, L. H.; Wokke, J. H. J.; de Haan, R. J.

    2003-01-01

    Context. Maximal voluntary isometric contraction, a method quantitatively assessing muscle strength, has proven to be reliable, accurate and sensitive in amyotrophic lateral sclerosis. Hand-held dynamometry is less expensive and more quickly applicable than maximal voluntary isometric contraction.

  15. Different patterns of depressive symptoms during pregnancy

    NARCIS (Netherlands)

    Truijens, S.E.M.; Spek, V.R.M.; van Son, M.J.M.; Oei, S.G.; Pop, V.J.M.

    2017-01-01

    Recently, the US Preventive Services Task Force has advocated to screen pregnant and postpartum women for depression. However, we questioned the meaning of a single elevated depression score: does it represent just one episode of depression or do these symptoms persist throughout the entire

  16. Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress.

    Science.gov (United States)

    Qi, Xiaoli; Lin, Wenjuan; Li, Junfa; Li, Huanhuan; Wang, Weiwen; Wang, Donglin; Sun, Meng

    2008-08-01

    Our previous research indicates that the extracellular signal-regulated kinase (ERK)-cyclic AMP-responsive-element-binding protein (CREB) signal system may be involved in the molecular mechanism of depression. The present study further investigated the effect of antidepressant fluoxetine on the ERK-CREB signal system and the depressive-like behaviors in rats. Fluoxetine was administrated to either naive rats or stressed rats for 21 days. The results showed that chronic forced swim stress induced depressive-like behaviors and decreased the levels of P-ERK2, P-CREB, ERK1/2 and CREB in hippocampus and prefrontal cortex. Fluoxetine alleviated the depressive-like behaviors and reversed the disruptions of the P-ERK2 and P-CREB in stressed rats. Fluoxetine also exerted mood-elevating effect and increased the levels of the P-ERK2 and P-CREB in naive rats. These results suggest that the ERK-CREB signal system may be the targets of the antidepressant action of fluoxetine and participate in the neuronal mechanism of depression.

  17. Reliability and Validity of a New Method for Isometric Back Extensor Strength Evaluation Using A Hand-Held Dynamometer.

    Science.gov (United States)

    Park, Hee-Won; Baek, Sora; Kim, Hong Young; Park, Jung-Gyoo; Kang, Eun Kyoung

    2017-10-01

    To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65-0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was -63.1 N and the upper 95% LoA was 61.1 N. This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity.

  18. The effect of short-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin; McGill, Stuart

    2017-09-01

    "Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.

  19. Effect of gender on strength gains after isometric exercise coupled with electromyographic biofeedback in knee osteoarthritis: a preliminary study.

    Science.gov (United States)

    Anwer, S; Equebal, A; Nezamuddin, M; Kumar, R; Lenka, P K

    2013-09-01

    The objective of this trial was to evaluate the effect of gender on strength gains after five week training programme that consisted of isometric exercise coupled with electromyographic biofeedback to the quadriceps muscle. Forty-three (20 men and 23 women) patients with knee osteoarthritis (OA), were placed into two groups based on their gender. Both groups performed isometric exercise coupled with electromyographic biofeedback for five days a week for five weeks. Both groups reported gains in muscle strength after five week training. However, the difference was found to be statistically insignificant between the two groups (P=0.224). The results suggest that gender did not affect gains in muscle strength by isometric exercise coupled with electromyographic biofeedback in patients with knee OA. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Isometric handgrip does not elicit cardiovascular overload or post-exercise hypotension in hypertensive older women

    Directory of Open Access Journals (Sweden)

    Olher RR

    2013-06-01

    Full Text Available Rafael dos Reis Vieira Olher,1,2,* Danilo Sales Bocalini,3,* Reury Frank Bacurau,4 Daniel Rodriguez,5 Aylton Figueira Jr,5 Francisco Luciano Pontes Jr,4 Francisco Navarro,6 Herbert Gustavo Simões,1 Ronaldo Carvalho Araujo,7 Milton Rocha Moraes8 1Universidade Católica de Brasília, Distrito Federal, 2Universidade Gama Filho, Rio de Janeiro, 3Universidade Nove de Julho (UNINOVE, São Paulo, 4Universidade de São Paulo – Escola de Artes, Ciências e Humanidades, São Paulo, 5Universidade São Judas Tadeu (USJT, São Paulo, Brazil, 6Universidade Federal do Maranhão, Maranhão, 7Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, 8Universidade Federal de São Paulo – Escola Paulista de Medicina, São Paulo, Brazil *These authors contributed equally to this work Background: Arterial hypertension is a serious health problem affecting mainly the elderly population. Recent studies have considered both aerobic and resistance exercises as a non-pharmacological aid for arterial hypertension treatment. However, the cardiovascular responses of the elderly to isometric resistance exercise (eg, isometric handgrip [IHG] have not yet been documented. Objective: The purpose of this study was to investigate cardiovascular responses to different intensities of isometric exercise, as well as the occurrence of post-isometric exercise hypotension in hypertensive elderly people under antihypertensive medication treatment. Patients and methods: Twelve women volunteered to participate in the study after a maximal voluntary contraction test (MVC and standardization of the intervention workload consisting of two sessions of IHG exercise performed in four sets of five contractions of a 10-second duration. Sessions were performed both at 30% of the MVC and 50% of the MVC, using a unilateral IHG protocol. Both intensities were compared with a control session without exercise. Systolic blood pressure (SBP and diastolic blood pressure (DBP at rest

  1. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions.

    Science.gov (United States)

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-05-13

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.

  2. Reference values for isometric muscle force among workers for the Netherlands: a comparison of reference values

    NARCIS (Netherlands)

    Michiel Reneman; W.P. Krijnen; Dr. C.P. van der Schans; K.W. Douma; Remko Soer

    2014-01-01

    Background: Muscle force is important for daily life and sports and can be measured with a handheld dynamometer. Reference values are employed to quantify a subject’s muscle force. It is not unambiguous whether reference values can be generalized to other populations. Objectives in this study were;

  3. Effects of fast-velocity eccentric resistance training on early and late rate of force development

    DEFF Research Database (Denmark)

    Oliveira, Anderson S.C.; Corvino, Rogério Bulhões; Caputo, Fabrizio

    2016-01-01

    This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (phases (>100 ms) of rising torque. Twenty healthy men were......, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL...... assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC...

  4. Isometric and isokinetic muscle strength in patients with fibrositis syndrome. New characteristics for a difficult definable category of patients

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Danneskiold-Samsøe, B

    1987-01-01

    A common complaint among patients with fibrositis syndrome is exhaustion and fatique. It was therefore felt desirable to evaluate the muscle strength of these patients compared with normal subjects. Maximum isometric and isokinetic strength of knee extension was measured in 15 patients and 15...... healthy matched subjects, using an isokinetic dynamometer (Cybex II). Maximum isometric strength at various knee extension angles (90 degrees, 60 degrees and 30 degrees degrees) was significantly (p less than 0.001) lower in the fibrositis group than in controls, a reduction of approximately 58......-66%. Maximum isokinetic strength at various knee extension velocities (30-240 degrees per second) was also significantly (p less than 0.01) lower in the fibrositis group than in controls, the reduction being approximately 41-51%. In conclusion, isometric and isokinetic muscle strength is found to be lower...

  5. Real-time changes in corticospinal excitability related to motor imagery of a force control task.

    Science.gov (United States)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi

    2017-09-29

    To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  7. The relationship of motor unit size, firing rate and force.

    Science.gov (United States)

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  8. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors.

    Science.gov (United States)

    Jubeau, Marc; Muthalib, Makii; Millet, Guillaume Y; Maffiuletti, Nicola A; Nosaka, Kazunori

    2012-02-01

    This study compared between maximal voluntary (VOL) and electrically stimulated (ES) isometric contractions of the elbow flexors for changes in indirect markers of muscle damage to investigate whether ES would induce greater muscle damage than VOL. Twelve non-resistance-trained men (23-39 years) performed VOL with one arm and ES with the contralateral arm separated by 2 weeks in a randomised, counterbalanced order. Both VOL and ES (frequency 75 Hz, pulse duration 250 μs, maximally tolerated intensity) exercises consisted of 50 maximal isometric contractions (4-s on, 15-s off) of the elbow flexors at a long muscle length (160°). Changes in maximal voluntary isometric contraction torque (MVC), range of motion, muscle soreness, pressure pain threshold and serum creatine kinase (CK) activity were measured before, immediately after and 1, 24, 48, 72 and 96 h following exercise. The average peak torque over the 50 isometric contractions was greater (P < 0.05) for VOL (32.9 ± 9.8 N m) than ES (16.9 ± 6.3 N m). MVC decreased greater and recovered slower (P < 0.05) after ES (15% lower than baseline at 96 h) than VOL (full recovery). Serum CK activity increased (P < 0.05) only after ES, and the muscles became more sore and tender after ES than VOL (P < 0.05). These results showed that ES induced greater muscle damage than VOL despite the lower torque output during ES. It seems likely that higher mechanical stress imposed on the activated muscle fibres, due to the specificity of motor unit recruitment in ES, resulted in greater muscle damage.

  9. Dystonic neck muscles show a shift in relative autospectral power during isometric contractions

    NARCIS (Netherlands)

    De Bruijn, E.; Nijmeijer, S. W. R.; Forbes, P. A.; Koelman, J. H. T. M.; Van Der Helm, F. C. T.; Tijssen, M. A. J.; Happee, R.

    2017-01-01

    Objective: To identify effects of a deviant motor drive in the autospectral power of dystonic muscles during voluntary contraction in cervical dystonia patients. Methods: Submaximal (20%) isometric head-neck tasks were performed with the head fixed, measuring surface EMG of the sternocleidomastoid,

  10. A sex-specific comparison of major depressive disorder symptomatology in the canadian forces and the general population.

    Science.gov (United States)

    Erickson, Julie; Kinley, D Jolene; Bolton, James M; Zamorski, Mark A; Enns, Murray W; Sareen, Jitender

    2014-07-01

    To compare major depressive disorder (MDD) symptomatology within men and women in a large, representative sample of Canadian military personnel and civilians. We used the Canadian Community Health Survey: Mental Health and Well-Being (Cycle 1.2 and Canadian Forces Supplement) (n = 36 984 and n = 8441, respectively) to compare past-year MDD symptomatology among military and civilian women, and military and civilian men. Logistic regression models were used to determine differences in the types of depressive symptoms endorsed in each group. Men in the military with MDD were at lower odds than men in the general population to endorse numerous symptoms of depression, such as hopelessness (adjusted odds ratio [AOR] 0.44; 99% CI 0.23 to 0.83) and inability to cope (AOR 0.53; 99% CI 0.31 to 0.92). Military women with MDD were at lower odds of thinking about their death (AOR 0.52; 99% CI 0.32 to 0.86), relative to women with MDD in the general population. Different MDD symptomatology among males and females in the military, compared with those in the general population, may reflect selection effects (for example, personality characteristics and patterns of comorbidity) or occupational experiences unique to military personnel. Future research examining the mechanisms behind MDD symptomatology in military personnel and civilians is required.

  11. Forearm muscle oxygenation during sustained isometric contractions in rock climbers

    Directory of Open Access Journals (Sweden)

    Jan Kodejška

    2016-02-01

    Full Text Available Background. Bouldering and lead climbing are divergent disciplines of the sport of rock climbing. Bouldering moves are short and powerful, whilst sport climbing is longer and require a greater degree of endurance. Aim. The aim of this study was to compare forearm muscle oxygenation during sustained isometric contraction between lead climbers (LC and boulderers (BO. Methods. Eight BO and twelve LC completed maximal finger flexor strength test and sustained contractions to exhaustion at 60% of maximum voluntary contraction (MVC. Differences between BO and LC in maximal strength, time to exhaustion, force time integral (FTI, and tissue oxygenation (SmO2 were assessed by t-test for independent samples. Results. LC showed significantly lower level of average tissue oxygenation (BO 38.9% SmO2, s = 7.4; LC 28.7% SmO2, s = 7.1 and maximal tissue deoxygenation (BO 25.6% SmO2, s = 8.2; LC 13.5% SmO2, s = 8.5. LC demonstrated significantly lower finger flexor strength (519 N, s = 72 than BO (621 N, s = 142. LC sustained a longer time of contraction (not significantly (BO 52.2 s, s = 11.5; LC 60.6 s, s = 13 and achieved a similar value of FTI (BO 17421 Ns, s = 4291; LO 17476 Ns, s = 5036 in the endurance test. Conclusions. The results showed lower deoxygenation during sustained contraction in BO than LC despite similar FTI, indicating different local metabolic pathways in both groups.

  12. Contribution of the Cerebellum in Cue-Dependent Force Changes During an Isometric Precision Grip Task.

    Science.gov (United States)

    Kutz, Dieter F; Schmid, Barbara C; Meindl, Tobias; Timmann, Dagmar; Kolb, Florian P

    2016-08-01

    The "raspberry task" represents a precision grip task that requires continuous adjustment of grip forces and pull forces. During this task, subjects use a specialised grip rod and have to increase the pull force linearly while the rod is locked. The positions of the fingers are unrestrained and freely selectable. From the finger positions and the geometry of the grip rod, a physical lever was derived which is a comprehensive measurement of the subject's grip behaviour. In this study, the involvement of the cerebellum in establishing cued force changes (CFC) was examined. The auditory stimulus was associated with a motor behaviour that has to be readjusted during an ongoing movement that already started. Moreover, cerebellar involvement on grip behaviour was examined. The results show that patients presenting with degenerating cerebellar disease (CBL) were able to elicit CFC and were additionally able to optimise grip behaviour by minimising the lever. Comparison of the results of CBL with a control group of healthy subjects showed, however, that the CFC incidence was significantly lower and the reduction of the lever was less in CBL. Hence, the cerebellum is involved not only in the classical conditioning of reflexes but also in the association of sensory stimuli with complex changes in motor behaviour. Furthermore, the cerebellum is involved in the optimisation of grip behaviour during ongoing movements. Recent studies lead to the assumption that the cerebello-reticulo-spinal pathway might be important for the reduced optimisation of grip behaviour in CBL.

  13. Evaluation of isometric strength and fatty infiltration of the subscapularis in latarjet surgery.

    Science.gov (United States)

    Dos Santos, Ricardo Barreto Monteiro; Kauffman, Fábio Neumann; de Lima, Gabriel Praxedes; Ferreira, Avraham Machado Costa; Dos Santos, Saulo Monteiro; Aguiar, José Lamartine de Andrade

    2015-01-01

    To evaluate the function of the subscapularis muscle by means of isometric strength, clinical examination and analysis of fatty infiltration in patients with recurrent anterior dislocation of the shoulder undergoing Latarjet-Patte surgery. 38 patients operated from March 2011 to March 2012, with minimum follow-up of two years were evaluated, being 26 males and 12 females, with a mean age of 28.7 years old. Isometric strength was measured using a portable dynamometer and measuring the distance from the back of the hand during the lift-off test. We used the Rowe and Walch-Duplay scores for clinical evaluation. The degree of fatty infiltration of the subscapularis belly was assessed by computed tomography. The mean scores in the Walch-Duplay and Rowe were 84.7 and 89.4, respectively. The mean distance to the back of the hand was 7.34 cm on the operated side and 8.72 cm on the opposite side (p strength measured in the lift-off test was 0.38 kg lower than on the contralateral side (p = 0.001). There was no fatty infiltration of the subscapularis in 16 patients (42.1%). Sixteen patients (42.1%) were classified as Goutallier grade 1 and six (15.8%) as grade 2. We found that the measured isometric strength decreases with increasing the degree of fatty infiltration (p strength, albeit of low magnitude (0.38 kg), was directly related to the degree of fatty infiltration and worse clinical outcomes. Level of Evidence III, Therapeutic Study - Investigating the Results of Treatment.

  14. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    Science.gov (United States)

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  15. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis

    DEFF Research Database (Denmark)

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer

    2016-01-01

    INTRODUCTION: In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. METHODS: Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual...

  16. An investigation of the tri-bar gripping system on isometric muscular endurance.

    Science.gov (United States)

    Drury, Daniel G; Faggiono, Heath; Stuempfle, Kristin J

    2004-11-01

    Recently, a new product called the Tri-Bar has been introduced as an alternative to the standard round weightlifting bar. The Tri-Bar has the same weight, length, and circumference as a standard weightlifting bar and differs only in that the shape of the bar is formed like a triangle with rounded edges. Theoretically, the shape of the bar will enhance gripping comfort and increase muscular endurance. We studied 32 moderately trained males who were free from upper-body injury or limitation. Each participant completed 4 visits to the lab as part of 2 separate investigations. The first investigation was a comparison of straight-arm hang times while grasping a standard Olympic bar or a Tri-Bar attached to the top of a power rack. The second investigation involved grasping a standard revolving cable handle or a Tri-Bar revolving handle attached to a weight equal to half the subject's body weight. In both investigations, time was used as a measure of isometric muscular endurance. Differences were determined using a dependent t-test, and a level of significance was set at p < 0.05. Mean hang times were significantly longer when the men hung from the Tri-Bar (107.6 seconds) versus the standard bar (95.4 seconds) (p = 0.015). Conversely, in the investigation using the revolving handles, the round bar produced longer grasping times (71.5 seconds) than the Tri-Bar (62.6 seconds) (p = 0.000). The results of this investigation indicate that a fixed and stable Tri-Bar may help to increase hang time, but a Tri-Bar free to rotate within the grasp may decrease grasping time in comparison to a standard round handle. With regard to exercises that require isometric grasping, the Tri-Bar may be an effective alternative to the standard bar for increasing isometric grasping endurance.

  17. Test-retest reliability of a handheld dynamometer for measurement of isometric cervical muscle strength.

    Science.gov (United States)

    Vannebo, Katrine Tranaas; Iversen, Vegard Moe; Fimland, Marius Steiro; Mork, Paul Jarle

    2018-03-02

    There is a lack of test-retest reliability studies of measurements of cervical muscle strength, taking into account gender and possible learning effects. To investigate test-retest reliability of measurement of maximal isometric cervical muscle strength by handheld dynamometry. Thirty women (age 20-58 years) and 28 men (age 20-60 years) participated in the study. Maximal isometric strength (neck flexion, neck extension, and right/left lateral flexion) was measured on three separate days at least five days apart by one evaluator. Intra-rater consistency tended to improve from day 1-2 measurements to day 2-3 measurements in both women and men. In women, the intra-class correlation coefficients (ICC) for day 2 to day 3 measurements were 0.91 (95% confidence interval [CI], 0.82-0.95) for neck flexion, 0.88 (95% CI, 0.76-0.94) for neck extension, 0.84 (95% CI, 0.68-0.92) for right lateral flexion, and 0.89 (95% CI, 0.78-0.95) for left lateral flexion. The corresponding ICCs among men were 0.86 (95% CI, 0.72-0.93) for neck flexion, 0.93 (95% CI, 0.85-0.97) for neck extension, 0.82 (95% CI, 0.65-0.91) for right lateral flexion and 0.73 (95% CI, 0.50-0.87) for left lateral flexion. This study describes a reliable and easy-to-administer test for assessing maximal isometric cervical muscle strength.

  18. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  19. Deformation and three-dimensional displacement of fibers in isometrically contracting rat plantaris muscles

    NARCIS (Netherlands)

    Savelberg, Hans H.C.M.; Willems, Paul J.B.; Willems, P.; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    In this study, the deformation of different fibers of the rat m. plantaris during isometric contractions at different muscle lengths was considered. Because the m. plantaris has an obviously inhomogeneous architecture, its fibers on the medial side of the muscle belly are judged to be shorter than

  20. ANODAL TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) INCREASES ISOMETRIC STRENGTH OF SHOULDER ROTATORS MUSCLES IN HANDBALL PLAYERS.

    Science.gov (United States)

    Hazime, Fuad Ahmad; da Cunha, Ronaldo Alves; Soliaman, Renato Rozenblit; Romancini, Ana Clara Bezerra; Pochini, Alberto de Castro; Ejnisman, Benno; Baptista, Abrahão Fontes

    2017-06-01

    Weakness of the rotator cuff muscles can lead to imbalances in the strength of shoulder external and internal rotators, change the biomechanics of the glenohumeral joint and predispose an athlete to injury. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has demonstrated promising results in a variety of health conditions. However few studies addressed its potential approach in the realm of athletics. The purpose of this study was to investigate if transcranial direct current stimulation (tDCS) technique increases the isometric muscle strength of shoulder external and internal rotators in handball athletes. Randomized, double-blind, placebo-controlled, crossover study. Eight female handball players aged between 17 and 21 years (Mean=19.65; SD=2.55) with 7.1 ± 4.8 years of experience in training, participating in regional and national competitions were recruited. Maximal voluntary isometric contraction (MVIC) of shoulder external and internal rotator muscles was evaluated during and after 30 and 60 minutes post one session of anodal and sham current (2mA; 0.057mA/cm 2 ) with a one-week interval between stimulations. Compared to baseline, MVIC of shoulder external and internal rotators significantly increased after real but not sham tDCS. Between-group differences were observed for external and internal rotator muscles. Maximal voluntary isometric contraction of external rotation increased significantly during tDCS, and 30 and 60 minutes post-tDCS for real tDCS compared to that for sham tDCS. For internal rotation MVIC increased significantly during and 60 minutes post-tDCS. The results indicate that transcranial direct current stimulation temporarily increases maximal isometric contractions of the internal and external rotators of the shoulder in handball players. 2.

  1. Use of the Air Force Post-Deployment Health Reassessment for the identification of depression and posttraumatic stress disorder: public health implications for suicide prevention.

    Science.gov (United States)

    McCarthy, Michael D; Thompson, Sanna J; Knox, Kerry L

    2012-03-01

    Military members are required to complete the Post-Deployment Health Assessment on return from deployment and the Post-Deployment Health Reassessment (PHDRA) 90 to 180 days later, and we assessed the PDHRA's sensitivity and specificity in identifying posttraumatic stress disorder (PTSD) and depression after a military deployment among US Air Force personnel. We computed the PDHRA's sensitivity and specificity for depression and PTSD and developed a structural model to suggest possible improvements to it. For depression, sensitivity and specificity were 0.704 and 0.651, respectively; for PTSD, they were 0.774 and 0.650, respectively. Several variables produced significant direct effects on depression and trauma, suggesting that modifications could increase its sensitivity and specificity. The PDHRA was moderately effective in identifying airmen with depression and PTSD. It identified behavioral health concerns in many airmen who did not develop a diagnostic mental health condition. Its low level of specificity may result in reduced barriers to care and increased support services, key components of a public health approach to suicide prevention, for airmen experiencing subacute levels of distress after deployment, which may, in part, account for lower suicide rates among airmen after deployment.

  2. Effect of functional isometric squats on vertical jump in trained and untrained men.

    Science.gov (United States)

    Berning, Joseph M; Adams, Kent J; DeBeliso, Mark; Sevene-Adams, Patricia G; Harris, Chad; Stamford, Bryant A

    2010-09-01

    Functional isometrics (FIs) combine dynamic and isometric muscle actions and may hyperstimulate the nervous system leading to an enhanced postactivation potentiation (PAP) and improved subsequent performance. The purpose of this study was to investigate the impact of an FI squat on the countermovement vertical jump (CMVJ) in resistance trained and untrained men. Thirteen trained men (age: 22.8 +/- 3.2 years, mass: 90.0 +/- 16.3 kg, and height: 178.9 +/- 7.1 cm) and 8 untrained men (age: 28.5 +/- 5.9 years, mass: 101.5 +/- 23.0 kg, and height: 177.0 +/- 4.8 cm) participated. On separate days, subjects performed CMVJs after 2 different warm-up conditions. The warm-up conditions consisted of either 5 minutes of low-intensity cycling or 5 minutes of low-intensity cycling plus a 3-second FI squat with 150% of their 1 repetition maximum (1RM). A 2 x 3 repeated-measures analysis of variance with Bonferroni post hoc revealed that when comparing the 2 warm-up conditions in the trained subjects, a significant increase (p squat. This increase was maintained when subjects were retested at 5 minutes post (2.6 cm, + 5.5%). No significant difference in CMVJ was detected in the untrained group (p = 0.49). Results support the addition of an FI squat performed at 150% of 1RM to a low-intensity cycling warm-up to enhance PAP in resistance trained but not in untrained men as measured by CMVJ. Practically, adding functional isometrics to a warm-up scheme may significantly enhance acute, short-term power output in resistance trained men.

  3. Motor Unit Interpulse Intervals During High Force Contractions.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2016-01-01

    We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

  4. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kazuhiro eMatsui

    2014-06-01

    Full Text Available Functional electrical stimulation (FES is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly nonlinearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define theelectrical agonist-antagonist muscle ratio (EAA ratio and electrical agonist-antagonist muscle activity (EAA activity in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  5. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    Science.gov (United States)

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  6. Acute effect of whole body vibration on isometric strength, squat jump, and flexibility in well-trained combat athletes

    Directory of Open Access Journals (Sweden)

    Cem Kurt

    2015-02-01

    Full Text Available The purpose of this study was to investigate the effect of whole body vibration (WBV training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm. During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm. Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2] repeated measures ANOVA revealed a significant interaction (p = 0.018 of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61 after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.

  7. Acute effect of whole body vibration on isometric strength, squat jump, and flexibility in well-trained combat athletes.

    Science.gov (United States)

    Kurt, C; Pekünlü, E

    2015-06-01

    The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.

  8. An Isometric Mapping Based Co-Location Decision Tree Algorithm

    Science.gov (United States)

    Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.

    2018-05-01

    Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  9. AN ISOMETRIC MAPPING BASED CO-LOCATION DECISION TREE ALGORITHM

    Directory of Open Access Journals (Sweden)

    G. Zhou

    2018-05-01

    Full Text Available Decision tree (DT induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT, which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1 The extraction method of exposed carbonate rocks is of high accuracy. (2 The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  10. Quasi-local mass via isometric embeddings: a review from a geometric perspective

    International Nuclear Information System (INIS)

    Miao, Pengzi

    2015-01-01

    In this paper, we review geometric aspects of quasi-local energies proposed by Brown–York, Liu–Yau, and Wang–Yau. These quasi-local energy functions, having the important positivity property, share a common feature that they are defined via the canonical Hamiltonian approach, and therefore an isometric embedding of the two-surface into a background space is used as a reference. (topical review)

  11. Functional and muscular adaptations in an experimental model for isometric strength training in mice.

    Directory of Open Access Journals (Sweden)

    Karsten Krüger

    Full Text Available Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT or a regular endurance training group (ET groups were used as controls. Performance capacity was determined by maximum holding time (MHT and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK, succinate dehydrogenase (SDHa, and glucose transporter type 4 (GLUT4 were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO(2max, a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.

  12. Optimization measurement of muscle oxygen saturation under isometric studies using FNIRS

    Science.gov (United States)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to investigate hemodynamic response in human muscle. These non-invasive technologies have been widely used to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to quantify the oxygenation level of haemoglobin and myoglobin in human muscle. The goal of this paper is to optimize the measurement of muscle oxygen saturation during isometric exercise using functional near infrared spectroscopy (fNIRS). The experiment was carried out on 15 sedentary healthy male volunteers. All volunteers are required to perform an isometric exercise at three assessment of muscular fatigue's level on flexor digitalis (FDS) muscle in the human forearm using fNIRS. The slopes of the signals have been highlighted to evaluate the muscle oxygen saturation of regional muscle fatigue. As a result, oxygen saturation slope from 10% exercise showed steeper than the first assessment at 30%-50% of fatigues level. The hemodynamic signal response showed significant value (p=0.04) at all three assessment of muscular fatigue's level which produce a p-value (p<0.05) measured by fNIRS. Thus, this highlighted parameter could be used to estimate fatigue's level of human and could open other possibilities to study muscle performance diagnosis.

  13. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Ostadhadi, Sattar; Kordjazy, Nastaran; Dehpour, Ahmad Reza; Ejtemaei Mehr, Shahram

    2014-07-15

    Opioid and glutamatergic receptors have a key role in depression following stress. In this study, we assessed opioid and glutamatergic receptors interaction with the depressant-like behavior of acute foot-shock stress in the mouse forced swimming test. Stress was induced by intermittent foot shock stimulation during 30min and swim periods were afterwards conducted by placing mice in separated glass cylinders filled with water for 6min. The immobility time during the last 4min of the test was considered. Acute foot-shock stress significantly increased the immobility time of mice compared to non-stressed control group (P≤0.01). Administration of non-selective opioid receptors antagonist, naltrexone (1 and 2mg/kg, i.p.), and the selective non-competitive NMDA receptor antagonist, MK-801 (0.05mg/kg, i.p.), and the selective serotonin reuptake inhibitor, fluoxetine (5mg/kg), significantly reduced the immobility time in stressed animals (P≤0.01). Lower doses of MK-801 (0.01mg/kg), naltrexone (0.3mg/kg), NMDA (75mg/kg) and morphine(5mg/kg) had no effect on foot-shock stressed mice. Combined treatment of sub-effective doses of naltrexone and MK-801 significantly showed an antidepressant-like effect (P≤0.001). On the other hand, co-administration of non-effective doses of NMDA and morphine with effective doses of naltrexone and MK-801 reversed the anti-immobility effect of these drugs. Taken together, we have for the first time demonstrated the possible role of opioid/NMDA receptors signaling in the depressant-like effect of foot-shock stress, and proposed the use of drugs that act like standard anti-depressants in stress-induced depression. Copyright © 2014. Published by Elsevier B.V.

  14. Isometric and dynamic strength and neuromuscular attributes as predictors of vertical jump performance in 11- to 13-year-old male athletes.

    Science.gov (United States)

    McKinlay, Brandon John; Wallace, Phillip J; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David A; Falk, Bareket

    2017-09-01

    In explosive contractions, neural activation is a major factor in determining the rate of torque development, while the latter is an important determinant of jump performance. However, the contribution of neuromuscular activation and rate of torque development to jump performance in children and youth is unclear. The purpose of this study was to examine the relationships between the rate of neuromuscular activation, peak torque, rate of torque development, and jump performance in young male athletes. Forty-one 12.5 ± 0.5-year-old male soccer players completed explosive, unilateral isometric and dynamic (240°/s) knee extensions (Biodex System III), as well as countermovement-, squat-, and drop-jumps. Peak torque (pT), peak rate of torque development (pRTD), and rate of vastus lateralis activation (Q 30 ) during the isometric and dynamic contractions were examined in relation to attained jump heights. Isometric pT and pRTD were strongly correlated (r = 0.71) but not related to jump performance. Dynamic pT and pRTD, normalized to body mass, were significantly related to jump height in all 3 jumps (r = 0.38-0.66, p jump performance, while isometric contractions are not. These findings have implications in the choice of training and assessment methods for young athletes.

  15. The effects of a 28-Hz vibration on arm muscle activity during isometric exercise

    NARCIS (Netherlands)

    Mischi, M.; Cardinale, M. (Marco)

    2009-01-01

    The aim of this study was to evaluate activation and coactivation of biceps and triceps muscles during isometric exercise performed with and without superimposing a vibration stimulation. Methods: Twelve healthy volunteers (age = 22.7 +/- 2.6 yr) participated in this study. The subjects performed

  16. SIDE TO SIDE DIFFERENCES BETWEEN DOMINANT AND NON-DOMINANT ARM'S BONE DENSITY AND ISOMETRIC HANDGRIP STRENGTH IN MALES AND FEMALES AGED 40-65 YEARS OLD.

    Science.gov (United States)

    Krasniqi, Ermira; Koni, Mynyr; Kabashi, Antigona; Bahtiri, Abedin; Gjeli, Selda; Boshnjaku, Arben

    2016-10-01

    This observational, cross-sectional study, investigates and compares the differences of BMD, T-score, Z-score and isometric strength between dominant (D) versus non-dominant (ND) arms of 162 subjects aged 40-65 in a developing, low income country (Kosova). Bone Mineral Density (BMD), T-score and Z-score at distal forearm regions of both arms (measured by DXA scan), together with the Handgrip Isometric Strength (HIS) (by handgrip) were evaluated in a total subjects (53 Males and 109 Females). Additionally, General Healthcare Status Questionnaire together with self-administrated International Physical Activity Questionnaire (IPAQ) were filled. Significant differences (p0.05) were observed in Males BMD comparing to significantly higher results (p0.05) in males. When comparing the total subject's BMD, T-score, Z-score and Handgrip based on the PA levels (1 to 3 according to IPAQ scoring) no significant differences (p>0.05) were found between PA1, as well as PA3 whereas significantly differences (p<0.05) were found in D arms of PA2 level. The study analyses side-to-side differences in bone density and muscular force between D and ND arms amongst a population which is frequently exposed to diagnostic screenings for age related osteomuscular conditions (aged 40-60), and demonstrates that these differences should be in consideration amongst clinicians, but not in the way it is done right now.

  17. The Effect of an Isometric Hip Muscle Strength Training Protocol on Valgus Angle During a Drop Vertical Jump in Competitive Female Volleyball Players

    Directory of Open Access Journals (Sweden)

    Kaitlin M. Jackson

    2017-10-01

    Full Text Available Background: Hip muscle weakness is associated with higher peak knee valgus angles (VA during drop vertical jumps (DVJ and linked to ACL injury risk. Objective: To determine if isometric strengthening (IST of the hip extensor, abductor, and external rotator muscle groups would reduce VA exhibited during a DVJ. Methodology:  Fourteen female volleyball players (7 training (TG, 7 control (CG, VA≥9˚ during DVJ participated. Pre- and post-test gluteal, quadriceps and hamstring strength were measured with a digital force gauge. Three-dimensional kinematics were collected during 15 DVJ trials. TG participated in a 6-week IST program that targeted the hip extensor, abductor, and external rotator muscle groups. Two-way mixed ANOVAs compared mean differences of VA and strength. Single-participant analyses examined if athlete-specific adaptations went undetected in the analyses of aggregated data. Results: TG hip extension, abduction, and knee flexion strength increased, respectively, by 20.5%, 27.5% and 23.5% (P<0.05. No group-level changes in VA were detected. Unilateral VA decreased for 5 TG participants, and bilateral VA decreased in 2 TG participants. Conclusions: IST increased isometric hip muscle strength, but its effect on VA is inconclusive based on group-level analyses. Using single-participant designs, future studies should assess IST and/or dynamic resistance/neuromuscular training in a larger sample to determine its effect on ACL injury risk factors.

  18. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men.

    Science.gov (United States)

    Mangine, Gerald T; Hoffman, Jay R; Wang, Ran; Gonzalez, Adam M; Townsend, Jeremy R; Wells, Adam J; Jajtner, Adam R; Beyer, Kyle S; Boone, Carleigh H; Miramonti, Amelia A; LaMonica, Michael B; Fukuda, David H; Ratamess, Nicholas A; Stout, Jeffrey R

    2016-12-01

    To compare the effects of two different resistance training programs, high intensity (INT) and high volume (VOL), on changes in isometric force (FRC), rate of force development (RFD), and barbell velocity during dynamic strength testing. Twenty-nine resistance-trained men were randomly assigned to either the INT (n = 15, 3-5 RM, 3-min rest interval) or VOL (n = 14, 10-12 RM, 1-min rest interval) training group for 8 weeks. All participants completed a 2-week preparatory phase prior to randomization. Measures of barbell velocity, FRC, and RFD were performed before (PRE) and following (POST) the 8-week training program. Barbell velocity was determined during one-repetition maximum (1RM) testing of the squat (SQ) and bench press (BP) exercises. The isometric mid-thigh pull was used to assess FRC and RFD at specific time bands ranging from 0 to 30, 50, 90, 100, 150, 200, and 250 ms. Analysis of covariance revealed significant (p velocity. Results indicate that INT is more advantageous than VOL for improving FRC and RFD, while changes in barbell velocity during dynamic strength testing are similarly improved by both protocols in resistance-trained men.

  19. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    Science.gov (United States)

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  20. Avoiding Systematic Errors in Isometric Squat-Related Studies without Pre-Familiarization by Using Sufficient Numbers of Trials

    Directory of Open Access Journals (Sweden)

    Pekünlü Ekim

    2014-10-01

    Full Text Available There is no scientific evidence in the literature indicating that maximal isometric strength measures can be assessed within 3 trials. We questioned whether the results of isometric squat-related studies in which maximal isometric squat strength (MISS testing was performed using limited numbers of trials without pre-familiarization might have included systematic errors, especially those resulting from acute learning effects. Forty resistance-trained male participants performed 8 isometric squat trials without pre-familiarization. The highest measures in the first “n” trials (3 ≤ n ≤ 8 of these 8 squats were regarded as MISS obtained using 6 different MISS test methods featuring different numbers of trials (The Best of n Trials Method [BnT]. When B3T and B8T were paired with other methods, high reliability was found between the paired methods in terms of intraclass correlation coefficients (0.93-0.98 and coefficients of variation (3.4-7.0%. The Wilcoxon’s signed rank test indicated that MISS obtained using B3T and B8T were lower (p < 0.001 and higher (p < 0.001, respectively, than those obtained using other methods. The Bland- Altman method revealed a lack of agreement between any of the paired methods. Simulation studies illustrated that increasing the number of trials to 9-10 using a relatively large sample size (i.e., ≥ 24 could be an effective means of obtaining the actual MISS values of the participants. The common use of a limited number of trials in MISS tests without pre-familiarization appears to have no solid scientific base. Our findings suggest that the number of trials should be increased in commonly used MISS tests to avoid learning effect-related systematic errors

  1. A Comparison of Isometric Midthigh-Pull Strength, Vertical Jump, Sprint Speed, and Change-of-Direction Speed in Academy Netball Players.

    Science.gov (United States)

    Thomas, Christopher; Comfort, Paul; Jones, Paul A; Dos'Santos, Thomas

    2017-08-01

    To investigate the relationships between maximal isometric strength, vertical jump (VJ), sprint speed, and change-of-direction speed (CoDS) in academy netball players and determine whether players who have high performance in isometric strength testing would demonstrate superior performance in VJ, sprint speed, and CoDS measures. Twenty-six young female netball players (age 16.1 ± 1.2 y, height 173.9 ± 5.7 cm, body mass 66.0 ± 7.2 kg) from a regional netball academy performed isometric midthigh pull (IMTP), squat jumps (SJs), countermovement jumps (CMJs), 10-m sprints, and CoDS (505). IMTP measures displayed moderate to strong correlations with sprint and CoDS performance (r = -.41 to -.66). The VJs, which included SJs and CMJs, demonstrated strong correlations with 10-m sprint times (r = -.60 to -.65; P strength to enhance VJ, sprint, and CoDS performance in youth netball players, with stronger athletes demonstrating superior VJ, sprint, and CoDS performances.

  2. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns.

    Directory of Open Access Journals (Sweden)

    Mojtaba Mirakhorlo

    Full Text Available Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22-30 years flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS and extensor digitorum (ED in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260-370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly responsible for the observed increase in force enslaving during index finger flexion.

  3. Is cardiac autonomic modulation during upper limb isometric contraction and Valsalva maneuver impaired in COPD patients?

    Directory of Open Access Journals (Sweden)

    Goulart CL

    2017-03-01

    Full Text Available Cássia da Luz Goulart,1 Ramona Cabiddu,2 Paloma de Borba Schneiders,1 Elisabete Antunes San Martin,1 Renata Trimer,3 Audrey Borghi-Silva,2 Andréa Lúcia Gonçalves da Silva4,5 1Course of Physiotherapy, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil; 2Cardiopulmonary Physiotherapy Laboratory, Nucleus of Research in Physical Exercise, Federal University of São Carlos, São Carlos, Brazil; 3Department of Physiotherapy, Federal University of Amazonas, Manaus, AM, Brazil; 4Course of Physiotherapy, Department of Health and Physical Education, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil; 5Pulmonary Rehabilitation Program, Santa Cruz Hospital, Santa Cruz do Sul, Rio Grande do Sul, Brazil Purpose: To evaluate the heart rate variability (HRV indices and heart rate (HR responses during isometric contraction (IC and Valsalva maneuver (VM in COPD patients. Methods: Twenty-two stable moderate to severe COPD patients were evaluated. R-R intervals were recorded (monitor Polar® S810i during dominant upper limb IC (2 minutes. Stable signals were analyzed by Kubios HRV® software. Indices of HRV were computed in the time domain (mean HR; square root of the mean squared differences of successive RR intervals [RMSSD] and HRV triangular index [RR tri index] and in the frequency domain (high frequency [HF]; low frequency [LF] and LF/HF ratio. The HR responses were evaluated at rest, at the peak and at the nadir of the VM (15 seconds. The Valsalva index was also calculated. Results: During IC: time domain indices (mean HR increased [P=0.001], RMSSD, and RR tri index decreased [P=0.005 and P=0.005, respectively]; frequency domain indices (LF increased [P=0.033] and HF decreased [P=0.002]; associations were found between forced expiratory volume in 1 second (FEV1 vs RMSSD (P=0.04; r=–0.55, FEV1 vs HR (P=0.04; r=–0.48, forced vital capacity (FVC vs RMSSD (P=0.05; r=–0.62, maximum inspiratory pressure (MIP vs HF (P=0.02; r=0.68. FEV1

  4. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-06-01

    Full Text Available The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  5. Knee extension isometric torque production differences based on verbal motivation given to introverted and extroverted female children.

    Science.gov (United States)

    McWhorter, J Wesley; Landers, Merrill; Young, Daniel; Puentedura, E Louie; Hickman, Robbin A; Brooksby, Candi; Liveratti, Marc; Taylor, Lisa

    2011-08-01

    To date, little research has been conducted to test the efficacy of different forms of motivation based on a female child's personality type. The purpose of this study was to evaluate the ability of female children to perform a maximal knee extension isometric torque test with varying forms of motivation, based on the child's personality type (introvert vs. extrovert). The subjects were asked to perform a maximal isometric knee extension test under three different conditions: 1) with no verbal motivation, 2) with verbal motivation from the evaluator only, and 3) with verbal motivation from a group of their peers and the evaluator combined. A 2×3 mixed ANOVA was significant for an interaction (F 2,62=17.530; pintroverted group showed that scores without verbal motivation were significantly higher than with verbal motivation from the evaluator or the evaluator plus the peers. The extroverted group revealed that scores with verbal motivation from the evaluator or the evaluator plus the peers were significantly higher than without verbal motivation. Results suggest that verbal motivation has a varying effect on isometric knee extension torque production in female children with different personality types. Extroverted girls perform better with motivation, whereas introverted girls perform better without motivation from others.

  6. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  7. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  8. Short-term vascular hemodynamic responses to isometric exercise in young adults and in the elderly

    NARCIS (Netherlands)

    Hartog, R. (Renee); D. Bolignano (Davide); E.J.G. Sijbrands (Eric); Pucci, G. (Giacomo); F.U.S. Mattace Raso (Francesco)

    2018-01-01

    textabstractBackground: Vascular aging is known to induce progressive stiffening of the large elastic arteries, altering vascular hemodynamics under both rest and stress conditions. In this study, we aimed to investigate changes in vascular hemodynamics in response to isometric handgrip exercise

  9. Tremor irregularity, torque steadiness and rate of force development in Parkinson's disease

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    with idiopathic PD and 15 neurologically healthy matched controls performed isometric maximal contractions (extension/flexion) as well as steady submaximal and powerful isometric knee extensions. The patients with PD showed decreased isometric tremor irregularity. Torque steadiness was reduced in PD...... that both knee isometric tremor Approximate Entropy and torque steadiness clearly differentiate between patients with PD and healthy controls. Furthermore, severely compromised RFD was found in patients with PD and was associated with decreased agonist muscle activation....

  10. Mapping Muscles Activation to Force Perception during Unloading.

    Directory of Open Access Journals (Sweden)

    Simone Toma

    Full Text Available It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort. Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function" that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.

  11. Isometric strength, sprint power, and aerobic power in individuals with a spinal cord injury

    NARCIS (Netherlands)

    Janssen, T W; van Oers, C A; Hollander, A P; Veeger, DirkJan (H. E. J.); van der Woude, L H

    This study investigated in rather specific wheelchair tests the relationships among estimates of isometric upper-body strength (Fiso), sprint power (P30), aerobic power (VO2peak), and maximal power output (POaer) in a group of 44 men (age 34 +/- 12 yr) with longstanding spinal cord injuries ranging

  12. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  13. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty.

    Science.gov (United States)

    Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A

    2013-12-01

    Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia

    DEFF Research Database (Denmark)

    Ge, H-Y; Nie, Hongling; Graven-Nielsen, Thomas

    2012-01-01

    OBJECTIVE: Sustained isometric muscle contraction (fatiguing contraction) recruits segmental and/or extrasegmental descending inhibition in healthy subjects but not in fibromyalgia (FM). We hypothesized that fatiguing contraction may shift descending pain modulation from inhibition towards...

  15. Oxygenation and EMG in the proximal and distal vastus lateralis during submaximal isometric knee extension

    DEFF Research Database (Denmark)

    Crenshaw, Albert G.; Bronee, Lars; Krag, Ida

    2010-01-01

    /or (2) fatigue development. Nine males performed 2-min sustained isometric knee extensions at 15% and 30% maximum voluntary contraction during which oxygenation and EMG were recorded simultaneously from proximal and distal locations of the vastus lateralis muscle. Near infrared spectroscopy variables...

  16. An Estimating Method of Contractile State Changes Come From Continuous Isometric Contraction of Skeletal Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Lee, S.J. [Wonkwang University, Iksan (Korea)

    2003-01-01

    In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes (EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue). (author). 24 refs., 7 figs.

  17. The influence of past unemployment duration on symptoms of depression among young women and men in the United States.

    Science.gov (United States)

    Mossakowski, Krysia N

    2009-10-01

    I examined whether unemployment while looking for a job and being out of the labor force while not seeking work have distinct effects on symptoms of depression among young women and men in the United States. I also investigated whether past unemployment duration predicts depressive symptoms. I used ordinary least squares regression to analyze data from the 1979-1994 National Longitudinal Survey of Youth. Cross-sectional results suggested that current unemployment status and out-of-the-labor-force status were significantly associated with depressive symptoms at ages 29 through 37 years. The association between being out of the labor force and depressive symptoms was stronger for men. Longitudinal results revealed that past unemployment duration across 15 years of the transition to adulthood significantly predicted depressive symptoms, net of demographics, family background, current socioeconomic status, and prior depressive symptoms. However, duration out of the labor force did not predict depressive symptoms. Longer durations of unemployment predict higher levels of depressive symptoms among young adults. Future research should measure duration longitudinally and distinguish unemployment from being out of the labor force to advance our understanding of socioeconomic mental health disparities.

  18. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    Lactic acid accumulation is generally believed to be involved in muscle fatigue. However, one study reported that in rat soleus muscle (in vitro), with force depressed by high external K+ concentrations a subsequent incubation with lactic acid restores force and thereby protects against fatigue...

  19. Pycnogenol Ameliorates Depression-Like Behavior in Repeated Corticosterone-Induced Depression Mice Model

    Directory of Open Access Journals (Sweden)

    Lin Mei

    2014-01-01

    Full Text Available Oxidative stress is considered to be a mechanism of major depression. Pycnogenol (PYC is a natural plant extract from the bark of Pinus pinaster Aiton and has potent antioxidant activities. We studied the ameliorative effect of PYC on depression-like behavior in chronic corticosterone- (CORT- treated mice for 20 days. After the end of the CORT treatment period, PYC (0.2 mg/mL was orally administered in normal drinking water. Depression-like behavior was investigated by the forced swimming test. Immobility time was significantly longer by CORT exposure. When the CORT-treated mice were supplemented with PYC, immobility time was significantly shortened. Our results indicate that orally administered PYC may serve to reduce CORT-induced stress by radical scavenging activity.

  20. Isometric Shoulder Strength Reference Values for Physically Active Collegiate Males and Females

    Science.gov (United States)

    Westrick, Richard B.; Duffey, Michele L.; Cameron, Kenneth L.; Gerber, J. Parry; Owens, Brett D.

    2013-01-01

    Background: It is common clinical practice to assess muscle strength during examination of patients following shoulder injury or surgery. Strength comparisons are often made between the patient’s injured and uninjured shoulders, with the uninjured side used as a reference without regard to upper extremity dominance. Despite the importance of strength measurements, little is known about expected normal baselines of the uninjured shoulder. The purpose of this study was to report normative values for isometric shoulder strength for physically active college-age men and women without history of shoulder injury. Methods: University students—546 males (18.8 ± 1.0 years, 75.3 ± 12.2 kg) and 73 females (18.7 ± 0.9 years, 62.6 ± 7.0 kg)—underwent thorough shoulder evaluations by an orthopaedic surgeon and completed bilateral isometric strength measurements with a handheld dynamometer. Variables measured included internal rotation, external rotation, abduction, supine internal rotation and external rotation at 45°, and lower trapezius in prone flexion. Results: Significant differences were found between the dominant and nondominant shoulder for internal rotation, internal rotation at 45°, abduction, and prone flexion in males and in internal rotation at 45° and prone flexion for females (P ≤ 0.01). PMID:24381696

  1. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  2. Specific force of the vastus lateralis in adults with achondroplasia.

    Science.gov (United States)

    Sims, David T; Onambélé-Pearson, Gladys L; Burden, Adrian; Payton, Carl; Morse, Christopher I

    2018-03-01

    Achondroplasia is a clinical condition defined by shorter stature and disproportionate limb length. Force production in able-bodied individuals (controls) is proportional to muscle size, but given the disproportionate nature of achondroplasia, normalizing to anatomical cross-sectional area (ACSA) is inappropriate. The aim of this study was to assess specific force of the vastus lateralis (VL) in 10 adults with achondroplasia (22 ± 3 yr) and 18 sex-matched controls (22 ± 2 yr). Isometric torque (iMVCτ) of the dominant knee extensors (KE) and in vivo measures of VL muscle architecture, volume, activation, and patella tendon moment arm were used to calculate VL physiological CSA (PCSA), fascicle force, and specific force in both groups. Achondroplasic muscle volume was 53% smaller than controls (284 ± 36 vs. 604 ± 102 cm 3 , P 0.05), but coactivation of bicep femoris of achondroplasic subjects was 70% more than controls (43 ± 20 vs. 13 ± 5%, P force (702 ± 235 vs. 1704 ± 303 N, P force than control subjects (17 ± 6 vs. 24 ± 6 N⋅cm -2 , P = 0.012). The smaller VL specific force in achondroplasia may be attributed to infiltration of fat and connective tissue, rather than to any difference in myofilament function. NEW & NOTEWORTHY The novel observation of this study was the measurement of normalized force production in a group of individuals with disproportionate limb length-to-torso ratios.

  3. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n3p292   The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  4. Relationship between isometric shoulder strength and arms-only swimming power among male collegiate swimmers: study of valid clinical assessment methods.

    Science.gov (United States)

    Awatani, Takenori; Morikita, Ikuhiro; Mori, Seigo; Shinohara, Junji; Tatsumi, Yasutaka

    2018-04-01

    [Purpose] The purpose of the present study was to confirm the relationships between shoulder strength (extensor strength and internal rotator strength) of the abducted position and swimming power during arm-only swimming. [Subjects and Methods] Fourteen healthy male collegiate swimmers participated in the study. Main measures were shoulder strength (strength using torque that was calculated from the upper extremity length and the isometric force of the abducted position) and swimming power. [Results] Internal rotation torque of the dominant side in the abducted external rotated position (r=0.85) was significantly correlated with maximum swimming power. The rate of bilateral difference in extension torque in the maximum abducted position (r=-0.728) was significantly correlated with the swimming velocity-to-swimming power ratio. [Conclusion] The results of this study suggest that internal rotator strength measurement in the abducted external rotated position and extensor strength measurement in the maximum abducted position are valid assessment methods for swimmers.

  5. Two-dimensional Doppler echocardiographic correlation of dipyridamole-thallium stress testing with isometric handgrip

    International Nuclear Information System (INIS)

    Whitfield, S.; Aurigemma, G.; Pape, L.; Leppo, J.

    1991-01-01

    To determine how frequently new wall-motion abnormalities that are indicative of ischemia accompany thallium redistribution, 47 consecutive patients underwent two-dimensional, echocardiography during routine dipyridamole-thallium stress testing. A secondary aim of the study was to determine whether the addition of isometric handgrip exercises to the standard dipyridamole imaging protocol increased the frequency of wall-motion abnormalities or thallium redistribution. Echocardiograms and thallium scans were independently interpreted, and wall-motion abnormalities that appeared with dipyridamole, handgrip exercise, or both were compared with results of thallium imaging. Five of 24 patients with thallium redistribution had new wall-motion abnormalities, and the extent (number of segments) of thallium redistribution in these five patients was significantly greater than in those who did not have well-motion abnormalities (p less than 0.03). The addition of isometric handgrip exercises to the imaging protocol did not distinguish between patients with and without new wall-motion abnormalities or thallium redistribution. Thus new wall-motion abnormalities infrequently accompany thallium redistribution in routine dipyridamole stress testing in spite of the addition of handgrip exercises, but when new wall-motion abnormalities are present, they are associated with a greater area of thallium redistribution

  6. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain

    Science.gov (United States)

    Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per

    2014-01-01

    Background: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. Purpose: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Results: Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Conclusion: Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain

  7. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Directory of Open Access Journals (Sweden)

    Sarmento AO

    2017-06-01

    Full Text Available Adriana de Oliveira Sarmento,1–3 Amilton da Cruz Santos,1,4 Ivani Credidio Trombetta,2,5 Marciano Moacir Dantas,1 Ana Cristina Oliveira Marques,1,4 Leone Severino do Nascimento,1,4 Bruno Teixeira Barbosa,1,2 Marcelo Rodrigues Dos Santos,2 Maria do Amparo Andrade,3 Anna Myrna Jaguaribe-Lima,3,6 Maria do Socorro Brasileiro-Santos1,3,4 1Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil; 2Unit of Cardiovascular Rehabilitation and Exercise Physiology – Heart Institute (InCor/HC-FMUSP, University of São Paulo, São Paulo, Brazil; 3Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil; 4Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil; 5Graduate Program in Medicine, Universidade Nove de Julho (UNINOVE, São Paulo, Brazil; 6Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil Abstract: The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis and muscle blood flow (venous occlusion plethysmography were measured for 10 minutes at rest (baseline and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver. Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac

  8. Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation

    NARCIS (Netherlands)

    Denier van der Gon, J.J.; Haar Romenij, ter B.M.; Zuylen, Van E.J.

    1985-01-01

    The behaviour of motor units in the m. biceps brachii (long head), in the m. brachialis and in the m. supinator during slow isometric contraction and relaxation was studied when subjects were performing different motor tasks. These tasks were: flexion of the elbow joint, supination of the forearm

  9. SUSTAINED ISOMETRIC SHOULDER CONTRACTION ON MUSCULAR STRENGTH AND ENDURANCE: A RANDOMIZED CLINICAL TRIAL.

    Science.gov (United States)

    Myers, Natalie L; Toonstra, Jenny L; Smith, Jacob S; Padgett, Cooper A; Uhl, Tim L

    2015-12-01

    The Advanced Throwers Ten Exercise Program incorporates sustained isometric contractions in conjunction with dynamic shoulder movements. It has been suggested that incorporating isometric holds may facilitate greater increases in muscular strength and endurance. However, no objective evidence currently exists to support this claim. The purpose of this research was to compare the effects of a sustained muscle contraction resistive training program (Advanced Throwers Ten Program) to a more traditional exercise training protocol to determine if increases in shoulder muscular strength and endurance occur in an otherwise healthy population. It was hypothesized that utilizing a sustained isometric hold during a shoulder scaption exercise from the Advanced Throwers Ten would produce greater increases in shoulder strength and endurance as compared to a traditional training program incorporating a isotonic scapular plane abduction (scaption) exercise. Randomized Clinical Trial. Fifty healthy participants were enrolled in this study, of which 25 were randomized into the traditional training group (age: 26 ± 8, height:172 ± 10 cm, weight: 73 ± 13 kg, Marx Activity Scale: 11 ± 4) and 25 were randomized to the Advanced Throwers Ten group (age: 28 ± 9, height: 169 ± 23 cm, weight: 74 ± 16 kg, Marx Activity Scale: 11 ± 5). No pre-intervention differences existed between the groups (P>0.05). Arm endurance and strength data were collected pre and post intervention using a portable load cell (BTE Evaluator, Hanover, MD). Both within and between group analyses were done in order to investigate average torque (strength) and angular impulse (endurance) changes. The traditional and Advanced Throwers Ten groups both significantly improved torque and angular impulse on both the dominant and non-dominant arms by 10-14%. There were no differences in strength or endurance following the interventions between the two training groups (p>0

  10. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B. M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G. S.; Ahn, B.; Ferreira, L. F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  11. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    International Nuclear Information System (INIS)

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-01-01

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  12. Novel Behavioral and Neural Evidences for Age-Related changes in Force complexity.

    Science.gov (United States)

    Chen, Yi-Ching; Lin, Linda L; Hwang, Ing-Shiou

    2018-02-17

    This study investigated age-related changes in behavioral and neural complexity for a polyrhythmic movement, which appeared to be an exception to the loss of complexity hypothesis. Young (n = 15; age = 24.2 years) and older (15; 68.1 years) adults performed low-level force-tracking with isometric index abduction to couple a compound sinusoidal target. Multi-scale entropy (MSE) of tracking force and inter-spike interval (ISI) of motor unit (MU) in the first dorsal interosseus muscle were assessed. The MSE area of tracking force at shorter time scales of older adults was greater (more complex) than that of young adults, whereas an opposite trend (less complex for the elders) was noted at longer time scales. The MSE area of force fluctuations (the stochastic component of the tracking force) were generally smaller (less complex) for older adults. Along with greater mean and coefficient of ISI, the MSE area of the cumulative discharge rate of elders tended to be lower (less complex) than that of young adults. In conclusion, age-related complexity changes in polyrhythmic force-tracking depended on the time scale. The adaptive behavioral consequences could be multi-factorial origins of the age-related impairment in rate coding, increased discharge noises, and lower discharge complexity of pooled MUs.

  13. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Lara McManus

    2017-11-01

    Full Text Available Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC. A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045. The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04. Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03. MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively, and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04. This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the

  14. ISOMETRIC EXERCISE AND ITS EFFECT ON BLOOD PRESSURE AND HEART RATE, BEFORE AND AFTER TRAINING IN YOUNG HEALTHY MALES

    Directory of Open Access Journals (Sweden)

    Mohammed

    2015-05-01

    Full Text Available INTRODUCTION: Isometric exercise is a normal part of everyday activities and many occupational tasks. Preventive services are important as they give physicians an opportunity and responsibility to promote regular physical activity, reduc e high blood pressure, and help in weight control. Physical inactivity is recognized as a risk factor for coronary artery disease. Regular aerobic physical activity increases exercise capacity and plays a role in both primary and secondary prevention of ca rdiovascular disease. OBJECTIVE: To assess the effects of isometric handgrip training on Blood pressure and Heart rate in healthy young males in the age group of 18 - 22 years. MATERIALS AND METHOD : Study subjects consisted of 30 healthy adult males in the age group of 18 - 22 yrs. Age and sex matched adults who were not active in sports or in physical activities constituted the control group (n=30. Blood pressure and heart rate were recorded and eval uated after a defined protocol of handgrip sustained static (isometric contractions performed with the handgrip dynamometer at Rest and Post Exercise. BP and HR were recorded with the help of automated blood pressure monitor and power lab 8/30 series inst rument available in the Department of Physiology , Navodaya Medical college, Raichur. RESULTS: There was no change in Resting Blood pressure and Heart rate between the subject and control group before the training sessions. There was significant decrease in resting Blood pressure and Heart rate in trained subject group when compared to untrained control group after 5 weeks of training sessions. CONCLUSION : Isometric hand grip training is effective in lowering arterial pressure in normotensive subjects. Isome tric training may be an effective intervention in the prevention and treatment of hypertension

  15. Effects of a 16-week Pilates exercises training program for isometric trunk extension and flexion strength.

    Science.gov (United States)

    Kliziene, Irina; Sipaviciene, Saule; Vilkiene, Jovita; Astrauskiene, Audrone; Cibulskas, Gintautas; Klizas, Sarunas; Cizauskas, Ginas

    2017-01-01

    To evaluate the effects of Pilates exercises designed to improve isometric trunk extension and flexion strength of muscles in women with chronic low back pain (cLBP). Female volunteers with cLBP were divided into an experimental group (EG; n = 27) and a control group (CG; n = 27). Pilates exercises were performed twice per week by the EG; the duration of each session was 60 min. The program lasted for 16 weeks; thus patients underwent a total of 32 exercise sessions. The maximum isometric waist bending strength of the EG had improved significantly (p = 0.001) after 16 weeks of the Pilates program. The results of trunk flexion muscle endurance tests significantly depended on the trunk extension muscle endurance before the intervention, and at 1 month (r = 0.723, p Pilates exercise program. At the end of the 16-week exercise program, cLBP intensity decreased by 2.01 ± 0.8 (p Pilates exercise program the pain intensified and the functional state deteriorated much faster than the maximum trunk muscle strength. Therefore, it can be concluded that, to decrease pain and improve functional condition, regular exercise (and not only improved strength and endurance) is required. We established that, although the 16-week lumbar stabilization exercise program increased isometric trunk extension and flexion strength and this increase in strength persisted for 2 months, decreased LBP and improved functional condition endured for only 1 month. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. SIDE TO SIDE DIFFERENCES BETWEEN DOMINANT AND NON-DOMINANT ARM’S BONE DENSITY AND ISOMETRIC HANDGRIP STRENGTH IN MALES AND FEMALES AGED 40-65 YEARS OLD

    Science.gov (United States)

    Krasniqi, Ermira; Koni, Mynyr; Kabashi, Antigona; Bahtiri, Abedin; Gjeli, Selda; Boshnjaku, Arben

    2016-01-01

    Objective: This observational, cross-sectional study, investigates and compares the differences of BMD, T-score, Z-score and isometric strength between dominant (D) versus non-dominant (ND) arms of 162 subjects aged 40-65 in a developing, low income country (Kosova). Material and Methods: Bone Mineral Density (BMD), T-score and Z-score at distal forearm regions of both arms (measured by DXA scan), together with the Handgrip Isometric Strength (HIS) (by handgrip) were evaluated in a total subjects (53 Males and 109 Females). Additionally, General Healthcare Status Questionnaire together with self-administrated International Physical Activity Questionnaire (IPAQ) were filled. Results: Significant differences (p0.05) were observed in Males BMD comparing to significantly higher results (p0.05) in males. When comparing the total subject’s BMD, T-score, Z-score and Handgrip based on the PA levels (1 to 3 according to IPAQ scoring) no significant differences (p>0.05) were found between PA1, as well as PA3 whereas significantly differences (p<0.05) were found in D arms of PA2 level. Conclusion: The study analyses side-to-side differences in bone density and muscular force between D and ND arms amongst a population which is frequently exposed to diagnostic screenings for age related osteomuscular conditions (aged 40-60), and demonstrates that these differences should be in consideration amongst clinicians, but not in the way it is done right now. PMID:27999479

  17. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  18. The reliability of a maximal isometric hip strength and simultaneous surface EMG screening protocol in elite, junior rugby league athletes.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Grimaldi, Alison; Pua, Yong-Hao; Clark, Ross A

    2017-02-01

    Firstly to describe the reliability of assessing maximal isometric strength of the hip abductor and adductor musculature using a hand held dynamometry (HHD) protocol with simultaneous wireless surface electromyographic (sEMG) evaluation of the gluteus medius (GM) and adductor longus (AL). Secondly, to describe the correlation between isometric strength recorded with the HHD protocol and a laboratory standard isokinetic device. Reliability and correlational study. A sample of 24 elite, male, junior, rugby league athletes, age 16-20 years participated in repeated HHD and isometric Kin-Com (KC) strength testing with simultaneous sEMG assessment, on average (range) 6 (5-7) days apart by a single assessor. Strength tests included; unilateral hip abduction (ABD) and adduction (ADD) and bilateral ADD assessed with squeeze (SQ) tests in 0 and 45° of hip flexion. HHD demonstrated good to excellent inter-session reliability for all outcome measures (ICC (2,1) =0.76-0.91) and good to excellent association with the laboratory reference KC (ICC (2,1) =0.80-0.88). Whilst intra-session, inter-trial reliability of EMG activation and co-activation outcome measures ranged from moderate to excellent (ICC (2,1) =0.70-0.94), inter-session reliability was poor (all ICC (2,1) Isometric strength testing of the hip ABD and ADD musculature using HHD may be measured reliably in elite, junior rugby league athletes. Due to the poor inter-session reliability of sEMG measures, it is not recommended for athlete screening purposes if using the techniques implemented in this study. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Unsteady steady-states: central causes of unintentional force drift.

    Science.gov (United States)

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-12-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.

  20. Validity Assessment of 5 Day Repeated Forced-Swim Stress to Model Human Depression in Young-Adult C57BL/6J and BALB/cJ Mice.

    Science.gov (United States)

    Mul, Joram D; Zheng, Jia; Goodyear, Laurie J

    2016-01-01

    The development of animal models with construct, face, and predictive validity to accurately model human depression has been a major challenge. One proposed rodent model is the 5 d repeated forced swim stress (5d-RFSS) paradigm, which progressively increases floating during individual swim sessions. The onset and persistence of this floating behavior has been anthropomorphically characterized as a measure of depression. This interpretation has been under debate because a progressive increase in floating over time may reflect an adaptive learned behavioral response promoting survival, and not depression (Molendijk and de Kloet, 2015). To assess construct and face validity, we applied 5d-RFSS to C57BL/6J and BALB/cJ mice, two mouse strains commonly used in neuropsychiatric research, and measured a combination of emotional, homeostatic, and psychomotor symptoms indicative of a depressive-like state. We also compared the efficacy of 5d-RFSS and chronic social defeat stress (CSDS), a validated depression model, to induce a depressive-like state in C57BL/6J mice. In both strains, 5d-RFSS progressively increased floating behavior that persisted for at least 4 weeks. 5d-RFSS did not alter sucrose preference, body weight, appetite, locomotor activity, anxiety-like behavior, or immobility behavior during a tail-suspension test compared with nonstressed controls. In contrast, CSDS altered several of these parameters, suggesting a depressive-like state. Finally, predictive validity was assessed using voluntary wheel running (VWR), a known antidepressant intervention. Four weeks of VWR after 5d-RFSS normalized floating behavior toward nonstressed levels. These observations suggest that 5d-RFSS has no construct or face validity but might have predictive validity to model human depression.

  1. Efficacy of Interactive Whiteboard on Psychomotor Skills Achievement of Students in Isometric and Orthographic Projection

    Science.gov (United States)

    Gambari, Isiaka A.; Balogun, Sherifat A.; Alfa, Ahmadu S.

    2014-01-01

    This paper discusses importance of technology education and evidences of declining performance of junior secondary school students in basic technology subject. Potentials on interactive whiteboard (IWB) as one of the new technologies to meet the challenges of the 21st century are also discussed. The efficacy of IWB for teaching Isometric and…

  2. Isometric strength ratios of the hip musculature in females with patellofemoral pain: a comparison to pain-free controls.

    Science.gov (United States)

    Magalhães, Eduardo; Silva, Ana Paula M C C; Sacramento, Sylvio N; Martin, RobRoy L; Fukuda, Thiago Y

    2013-08-01

    The purpose of the study was to compare hip agonist-antagonist isometric strength ratios between females with patellofemoral pain (PFP) syndrome and pain-free control group. One hundred and twenty females between 15 and 40 years of age (control group: n = 60; PFP group: n = 60) participated in the study. Hip adductor, abductor, medial rotator, lateral rotator, flexor, and extensor isometric strength were measured using a hand-held dynamometer. Comparisons in the hip adductor/abductor and medial/lateral rotator and flexor/extensor strength ratios were made between groups using independent t-tests. Group comparisons also were made between the anteromedial hip complex (adductor, medial rotator, and flexor musculature) and posterolateral hip complex (abductor, lateral rotator, and extensor musculature). On average, the hip adductor/abductor isometric strength ratio in the PFP group was 23% higher when compared with the control group (p = 0.01). The anteromedial/posterolateral complex ratio also was significantly higher in the PFP group (average 8%; p = 0.04). No significant group differences were found for the medial/lateral rotator ratio and flexor/extensor strength ratios. The results of this study demonstrate that females with PFP have altered hip strength ratios when compared with asymptomatic controls. These strength imbalances may explain the tendency of females with PFP to demonstrate kinematic tendencies that increase loading on the patellofemoral joint (i.e., dynamic knee valgus).

  3. Prevalence of depression among health workers in Enugu, South ...

    African Journals Online (AJOL)

    2014-11-11

    Nov 11, 2014 ... A structured self‑administered questionnaire including the Zung self‑rating depression scale was used to ... A feeling of sadness over family, living and working conditions was ... effects of depression in the Nigerian health work force are necessary. ... conflicts especially related to welfare of staff, conditions.

  4. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    Science.gov (United States)

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  5. Effects of Isometric Hand-Grip Muscle Contraction on Young Adults' Free Recall and Recognition Memory

    Science.gov (United States)

    Tomporowski, Phillip D.; Albrecht, Chelesa; Pendleton, Daniel M.

    2017-01-01

    Purpose: The purpose of this study was to determine if physical arousal produced by isometric hand-dynamometer contraction performed during word-list learning affects young adults' free recall or recognition memory. Method: Twenty-four young adults (12 female; M[subscript age] = 22 years) were presented with 4 20-item word lists. Moderate arousal…

  6. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    Science.gov (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  7. Changes in motor unit recruitment strategy during pain alters force direction.

    Science.gov (United States)

    Tucker, Kylie J; Hodges, Paul W

    2010-10-01

    Motor unit (MU) recruitment is altered (decreased discharge rate and cessation of discharge in some units, and recruitment of new units) in force-matched contractions during pain compared to contractions performed before pain. As MU's within a motoneurone pool have different force direction properties we hypothesised that altered MU recruitment during experimental knee pain would change the force vector (total force (F(T)): amplitude and angle) generated by the quadriceps. Force was produced at two levels during 1 × 60-s and 3 × 10-s isometric contractions of knee extensors, and recorded by two force transducers at right angles. This enabled calculation of both F(E) (extension force) and F(T). MU recruitment was recorded from the medial and lateral vastii with four fine-wire electrodes. Pain was induced by hypertonic saline injection in the infra-patella fat pad. Nine subjects matched F(E) and six subjects also matched both medial and lateral forces (F(T)) before and during pain. Changes in MU discharge pattern (decreased discharge rate (Precruitment of new units) during pain were associated with a ∼5° change in absolute force angle. As force angle changed in both directions (left/right) for individual subjects with pain there was no change in average F(T) amplitude between conditions. When both medial and lateral forces were matched MU discharge rate decreased (Punits ceased firing or were newly recruited during pain. Change in motoneurone recruitment during pain alters direction of muscle force. This may be a strategy to avoid pain or protect the painful part. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  8. Rate control and quality assurance during rhythmic force tracking.

    Science.gov (United States)

    Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou

    2014-02-01

    Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Reliability of isometric lower-extremity muscle strength measurements in children with cerebral palsy: implications for measurement design

    NARCIS (Netherlands)

    Willemse, Lydia; Brehm, Merel A.; Scholtes, Vanessa A.; Jansen, Laura; Woudenberg-Vos, Hester; Dallmeijer, Annet J.

    2013-01-01

    Children with cerebral palsy (CP) typically show muscle weakness of the lower extremities, which can be measured with the use of handheld dynamometry (HHD). The purposes of this study were: (1) to determine test-retest reliability and measurement error of isometric lower-extremity strength

  10. Lumbar extensor muscle force control is associated with disability in people with chronic low back pain.

    Science.gov (United States)

    Pranata, Adrian; Perraton, Luke; El-Ansary, Doa; Clark, Ross; Fortin, Karine; Dettmann, Tim; Brandham, Robert; Bryant, Adam

    2017-07-01

    The ability to control lumbar extensor force output is necessary for daily activities. However, it is unknown whether this ability is impaired in chronic low back pain patients. Similarly, it is unknown whether lumbar extensor force control is related to the disability levels of chronic low back pain patients. Thirty-three chronic low back pain and 20 healthy people performed lumbar extension force-matching task where they increased and decreased their force output to match a variable target force within 20%-50% maximal voluntary isometric contraction. Force control was quantified as the root-mean-square-error between participants' force output and target force across the entire, during the increasing and decreasing portions of the force curve. Within- and between-group differences in force-matching error and the relationship between back pain group's force-matching results and their Oswestry Disability Index scores were assessed using ANCOVA and linear regression respectively. Back pain group demonstrated more overall force-matching error (mean difference=1.60 [0.78, 2.43], Pback pain group demonstrated more force-matching error while increasing than decreasing force output (mean difference=1.74, Pback pain group (R 2 =0.19, P=0.006). Lumbar extensor muscle force control is compromised in chronic low back pain patients. Force-matching error predicts disability, confirming the validity of our force control protocol for chronic low back pain patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Real-time changes in corticospinal excitability related to motor imagery of a force control task

    DEFF Research Database (Denmark)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki

    2017-01-01

    Objective To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Methods Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion...... in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist...... in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion...

  12. Isometric surfaces with a common mean curvature and the problem of Bonnet pairs

    International Nuclear Information System (INIS)

    Sabitov, Idzhad Kh

    2012-01-01

    Simple methods are used to give new proofs, and sometimes to make them more precise, of basic theorems on isometric surfaces with a common mean curvature, which are usually called Bonnet pairs. The considerations are conducted under the assumption of minimally admissible smoothness of the objects in question, and certain necessary or sufficient criteria are given for the non-existence of Bonnet pairs with a common non-constant mean curvature among compact surfaces. Bibliography: 26 titles.

  13. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  14. Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force

    International Nuclear Information System (INIS)

    Shibuya, Kenichi; Kuboyama, Naomi; Tanaka, Junya

    2014-01-01

    It is possible to examine bilateral primary motor cortex (M1) activation during a sustained motor task using near-infrared spectroscopy (NIRS), in which it is assumed that increased oxygenation reflects cortical activation. The purpose of this study was to examine bilateral M1 activation in response to graded levels of force production during a unilateral finger task. Ten healthy right-handed male subjects participated in this study. NIRS probes were placed over the cortex to measure M1 activity while the subjects performed the finger task. The subjects performed a 10 s finger task at 20%, 40%, and 60% of the maximal voluntary contraction (MVC). Symmetrical activation was found over both M1 areas at all force levels investigated. In the contralateral M1, there were significant differences in oxygenation between 20% and 60% MVC, as well as between 40% and 60% MVC. In the ipsilateral M1, there were significant differences among all force levels. These results indicate the ipsilateral M1 takes part in muscle force control. (paper)

  15. Corticomuscular synchronization with small and large dynamic force output

    Science.gov (United States)

    Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2007-01-01

    Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC

  16. Corticomuscular synchronization with small and large dynamic force output

    Directory of Open Access Journals (Sweden)

    Witte Matthias

    2007-11-01

    Full Text Available Abstract Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study 1 that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic generated by a manipulandum. The CMC, the cortical EEG spectral power (SP, the EMG SP and the errors in motor performance (as the difference between target and exerted force were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no

  17. [Positive inotropic and lusitropic effect of RP 62719, a new class III antiarrhythmia agent].

    Science.gov (United States)

    Beregi, J P; Escande, D; Coudray, N; Chemla, D; Mestre, M; Péry, N; Lecarpentier, Y

    1994-02-01

    Antiarrhythmic drugs, especially the Class I family, exert a negative inotropic effect on the myocardium which is particularly undesirable in patients with depressed left ventricular function. Therefore, research has been directed to the development of new, more specific molecules of the Class III family. The authors studies the mechanical effects of RP 62719 on guinea pig left ventricular papillary muscle. This new molecule is a pure Class III antiarrhythmic, known to lengthen the duration of the cardiac action potential by selectively blocking the potassium current iK1 (inward rectifier K+ current). The mechanical parameters were determined during the phases of contraction and relaxation under isotonic and isometric conditions. At 0.2 and 2 microM concentrations, RP 62719 improved cardiac contraction under both isotonic and isometric conditions with an increase of about 30% of Vmax (p delta 1 (p force normalized per cross-sectional area [AF/S (p actions could provide significant therapeutic advantages especially in patients cardiac failure.

  18. Modulation of Isometric Quadriceps Strength in Soccer Players With Transcranial Direct Current Stimulation: A Crossover Study.

    Science.gov (United States)

    Vargas, Valentine Z; Baptista, Abrahão F; Pereira, Guilherme O C; Pochini, Alberto C; Ejnisman, Benno; Santos, Marcelo B; João, Silvia M A; Hazime, Fuad A

    2018-05-01

    Vargas, VZ, Baptista, AF, Pereira, GOC, Pochini, AC, Ejnisman, B, Santos, MB, João, SMA, and Hazime, FA. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J Strength Cond Res 32(5): 1336-1341, 2018-The aim of this study was to evaluate the effect of transcranial direct current stimulation (tDCS) on the maximum isometric muscle contraction (MVIC) of the knee extensors in soccer players at the preprofessional level. Twenty female soccer players aged 15-17 years (mean = 16.1; SD = 0.9) with 5.2 ± 2.6 years of training were randomly divided into 2 groups to receive either active or sham tDCS in a single session (2 mA; 0.057 mA·cm). The MVIC of the knee extensors was evaluated in both lower limbs by manual dynamometry in 5 sets of contractions divided into 4 blocks: (a) prestimulation, (b) during tDCS, (c) 30 minutes after tDCS, and (d) 60 minutes after tDCS. After an interval of 7 days, the groups were evaluated again, and the type of initial stimulation was inverted between participants. The MVIC of the knee extensors increased significantly during active tDCS (dominant limb (DL) = 0.4; IC = 0.1-0.8 N·Kg), 30 minutes after active tDCS (DL = 0.9; IC 0.4-1.4 N·Kg), and 60 minutes after active tDCS (DL = 1.0; IC 0.3-1.6 N·Kg) but not for sham tDCS. Our conclusion was that tDCS temporarily increases isometric quadriceps strength in adolescent female soccer players, which may be useful for both strength training and rehabilitation.

  19. Novel Use of the Nintendo Wii Board for Measuring Isometric Lower Limb Strength: A Reproducible and Valid Method in Older Adults.

    Science.gov (United States)

    Gronbech Jorgensen, Martin; Andersen, Stig; Ryg, Jesper; Masud, Tahir

    2015-01-01

    Portable, low-cost, objective and reproducible assessment of muscle strength in the lower limbs is important as it allows clinicians to precisly track progression of patients undergoing rehabilitation. The Nintendo Wii Balance Board (WBB) is portable, inexpensive, durable, available worldwide, and may serve the above function. The purpose of the study was to evaluate (1) reproducibility and (2) concurrent validity of the WBB for measuring isometric muscle strength in the lower limb. A custom hardware and software was developed to utilize the WBB for assessment of isometric muscle strength. Thirty older adults (69.0 ± 4.2 years of age) were studied on two separate occasions on both the WBB and a stationary isometric dynamometer (SID). On each occasion, three recordings were obtained from each device. For the first recording, means and maximum values were used for further analysis. The test-retest reproducibility was examined using intraclass correlation coefficients (ICC), Standard Error of Measurement (SEM), and limits of agreement (LOA). Bland-Altman plots (BAP) and ICC's were used to explore concurrent validity. No systematic difference between test-retest was detected for the WBB. ICC within-device were between 0.90 and 0.96 and between-devices were from 0.80 to 0.84. SEM ranged for the WBB from 9.7 to 13.9%, and for the SID from 11.9 to 13.1%. LOA ranged for the WBB from 20.3 to 28.7% and for the SID from 24.2 to 26.6%. The BAP showed no relationship between the difference and the mean. A high relative and an acceptable absolute reproducibility combined with a good validity was found for the novel method using the WBB for measuring isometric lower limb strength in older adults. Further research using the WBB for assessing lower limb strength should be conducted in different study-populations.

  20. Novel Use of the Nintendo Wii Board for Measuring Isometric Lower Limb Strength: A Reproducible and Valid Method in Older Adults.

    Directory of Open Access Journals (Sweden)

    Martin Gronbech Jorgensen

    Full Text Available Portable, low-cost, objective and reproducible assessment of muscle strength in the lower limbs is important as it allows clinicians to precisly track progression of patients undergoing rehabilitation. The Nintendo Wii Balance Board (WBB is portable, inexpensive, durable, available worldwide, and may serve the above function.The purpose of the study was to evaluate (1 reproducibility and (2 concurrent validity of the WBB for measuring isometric muscle strength in the lower limb.A custom hardware and software was developed to utilize the WBB for assessment of isometric muscle strength. Thirty older adults (69.0 ± 4.2 years of age were studied on two separate occasions on both the WBB and a stationary isometric dynamometer (SID. On each occasion, three recordings were obtained from each device. For the first recording, means and maximum values were used for further analysis. The test-retest reproducibility was examined using intraclass correlation coefficients (ICC, Standard Error of Measurement (SEM, and limits of agreement (LOA. Bland-Altman plots (BAP and ICC's were used to explore concurrent validity.No systematic difference between test-retest was detected for the WBB. ICC within-device were between 0.90 and 0.96 and between-devices were from 0.80 to 0.84. SEM ranged for the WBB from 9.7 to 13.9%, and for the SID from 11.9 to 13.1%. LOA ranged for the WBB from 20.3 to 28.7% and for the SID from 24.2 to 26.6%. The BAP showed no relationship between the difference and the mean.A high relative and an acceptable absolute reproducibility combined with a good validity was found for the novel method using the WBB for measuring isometric lower limb strength in older adults. Further research using the WBB for assessing lower limb strength should be conducted in different study-populations.

  1. Range of motion and isometric strength of shoulder joints of team handball athletes during the playing season, Part II: changes after midseason.

    Science.gov (United States)

    Fieseler, Georg; Jungermann, Philipp; Koke, Alexander; Irlenbusch, Lars; Delank, Karl-Stefan; Schwesig, Rene

    2015-03-01

    Our objective was to investigate the influence of workload and consecutive changes on active range of motion and isometric strength of team handball athletes' throwing shoulders (TSs) because the available data are insufficient. In a longitudinal investigation, 31 professional male handball athletes underwent a clinical shoulder examination. Athletes were examined at the beginning (week 0), at the end (week 6) of the preseasonal training, and at the end of the half-season (week 22) on both shoulders to determine isometric rotational strength (hand held dynamometer) and active range of motion (goniometer). This analysis demonstrates the results subsequently from week 6 to week 22 and from week 0 to week 22. The glenohumeral internal rotation (IR) deficit (GIRD), external rotation (ER) gain, and ER at the TS increased significantly (P 0.10, d > 0.30) in the first sequence (week 6 to week 22) but not significantly from week 0 to week 22. The total range of motion remained stable, and IR changed but not significantly. There was no influence on IR, ER, and total range of motion at the non-TS. The isometric strength of the TS and non-TS IR did not change. The isometric strength in ER significantly increased bilaterally during the investigation period. Our data verify changes and influences, such as an increasing GIRD, at the overhead TS joint in accordance with the workload during team handball season. ER gain did improve after the half-season period but did not fully compensate the GIRD at the TS. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Influence of obstructive sleep apnea syndrome in the fluctuation of the submaximal isometric torque of knee extensors in patients with early-grade osteoarthritis

    Science.gov (United States)

    Silva, Andressa; Mello, Marco T.; Serrão, Paula R.; Luz, Roberta P.; Bittencourt, Lia R.; Mattiello, Stela M.

    2015-01-01

    OBJECTIVE: The aim of this study was to investigate whether obstructive sleep apnea (OSA) alters the fluctuation of submaximal isometric torque of the knee extensors in patients with early-grade osteoarthritis (OA). METHOD: The study included 60 male volunteers, aged 40 to 70 years, divided into four groups: Group 1 (G1) - Control (n=15): without OA and without OSA; Group 2 (G2) (n=15): with OA and without OSA; Group 3 (G3) (n=15): without OA and with OSA; and Group 4 (G4) (n=15) with OA and with OSA. Five patients underwent maximal isometric contractions of 10 seconds duration each, with the knee at 60° of flexion to determine peak torque at 60°. To evaluate the fluctuation of torque, 5 submaximal isometric contractions (50% of maximum peak torque) of 10 seconds each, which were calculated from the standard deviation of torque and coefficient of variation, were performed. RESULTS: Significant differences were observed between groups for maximum peak torque, while G4 showed a lower value compared with G1 (p=0.005). Additionally, for the average torque exerted, G4 showed a lower value compared to the G1 (p=0.036). However, no differences were found between the groups for the standard deviation (p=0.844) and the coefficient of variation (p=0.143). CONCLUSION: The authors concluded that OSA did not change the parameters of the fluctuation of isometric submaximal torque of knee extensors in patients with early-grade OA. PMID:26443974

  3. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    Science.gov (United States)

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  4. Hip rate of force development and strength are impaired in females with patellofemoral pain without signs of altered gluteus medius and maximus morphology.

    Science.gov (United States)

    Nunes, Guilherme S; Barton, Christian John; Serrão, Fábio Viadanna

    2018-02-01

    To compare rate of force development (RFD) and isometric muscle strength of the hip abductors and extensors; and the thickness and the amount of non-contractile tissue of the gluteus medius and maximus between females with and without patellofemoral pain (PFP). Cross-sectional study. Fifty-four physically active females (27 with PFP and 27 healthy individuals) were studied. Hip muscle isometric strength and RFD was evaluated using isokinetic dynamometry. RFD was measured until 30%, 60%, and 90% of the maximal isometric torque (MIT). Hip muscle morphology was evaluated using ultrasonography. The PFP group possessed slower RFD compared to the control group by 33% for hip abductors until 90%MIT (-0.23%/ms, 95%CI -0.44 to -0.02, ES=0.59); by 51% for hip extensors until 30%MIT (-0.42%/ms, 95%CI -0.66 to -0.18, ES=0.97); and by 55% for hip extensors until 60%MIT (-0.36%/ms, 95%CI -0.60 to -0.12, ES=0.81). The PFP group possessed reduced isometric torque compared to the control group by 10% for hip abduction (-16.0Nm/kg×100, 95% CI -30.2 to -1.9, ES=0.61) and by 15% for hip extension (-30.1Nm/kg×100, 95%CI -51.4 to -8.9, ES=0.76). No significant between group differences for the thickness and the amount of non-contractile tissue of the gluteus medius and maximus were identified. Females with PFP have deficits in isometric strength and RFD in hip abduction and extension. RFD deficits are greater than strength deficits which may highlight their potential importance. Hip muscle strength and RFD deficits do not appear to be explained by muscle thickness or proportion of non-contractile tissue of the gluteal musculature as measured by ultrasound. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Memory-guided force control in healthy younger and older adults.

    Science.gov (United States)

    Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A

    2017-08-01

    Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.

  6. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    Science.gov (United States)

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  7. Temperature dependence of the kinetics of isometric myocardium relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Izakov, V.Ya.; Bykov, B.L.; Kimmelman, I.Ya.

    1981-11-01

    The dependence of the exponential decay constant expressing the isometric relaxation of the myocardium on temperature is investigated in animals with various specific contents of myocardial sarcoplasmic reticulum. Experiments were performed on cardiac ventricles and atria isolated from rabbits, frogs and turtles and electrically stimulated to produce maximal contraction at temperatures from 10 to 35 C. Arrhenius plots derived from the data are found to be linear in the myocardia of the rabbit and frog, with a greater activation energy for the relaxation found in the rabbit. The Arrhenius plot for the turtle, which has a sarcoplasmic reticulum content intermediate between those of the frog and rabbit, corresponds to two straight lines with different activation energies. Results thus support the hypothesis of two separate mechanisms of calcium removal, involving the sarcoplasmic reticulum and cellular membrane, in muscle relaxation.

  8. Fault diagnosis of rotating machine by isometric feature mapping

    International Nuclear Information System (INIS)

    Zhang, Yun; Li, Benwei; Wang, Lin; Wang, Wen; Wang, Zibin

    2013-01-01

    Principal component analysis (PCA) and linear discriminate analysis (LDA) are well-known linear dimensionality reductions for fault classification. However, since they are linear methods, they perform not well for high-dimensional data that has the nonlinear geometric structure. As kernel extension of PCA, Kernel PCA is used for nonlinear fault classification. However, the performance of Kernel PCA largely depends on its kernel function which can only be empirically selected from finite candidates. Thus, a novel rotating machine fault diagnosis approach based on geometrically motivated nonlinear dimensionality reduction named isometric feature mapping (Isomap) is proposed. The approach can effectively extract the intrinsic nonlinear manifold features embedded in high-dimensional fault data sets. Experimental results with rotor and rolling bearing data show that the proposed approach overcomes the flaw of conventional fault pattern recognition approaches and obviously improves the fault classification performance.

  9. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy

    NARCIS (Netherlands)

    Dallmeijer, A.J.; Baker, R.; Dodd, K.; Taylor, N.

    2011-01-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0. yr)

  10. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    Science.gov (United States)

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp

    NARCIS (Netherlands)

    Woude, van der Emma; Smid, Hans M.

    2017-01-01

    Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to

  12. New approach to isometric transformations in oblique local coordinate systems of reference

    Directory of Open Access Journals (Sweden)

    Stępień Grzegorz

    2017-12-01

    Full Text Available The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a “virtual” translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles, transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data. This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.

  13. Blackcurrant Alters Physiological Responses and Femoral Artery Diameter during Sustained Isometric Contraction

    Directory of Open Access Journals (Sweden)

    Matthew David Cook

    2017-05-01

    Full Text Available Blackcurrant is rich in anthocyanins that may affect exercise-induced physiological responses. We examined tissue oxygen saturation, muscle activity, cardiovascular responses and femoral artery diameter during a submaximal sustained isometric contraction. In a randomised, double-blind, crossover design, healthy men (n = 13, age: 25 ± 4 years, BMI: 25 ± 3 kg·m−2, mean ± SD ingested New Zealand blackcurrant (NZBC extract (600 mg∙day−1 CurraNZ™ or placebo (PL for 7-days separated by 14-days washout. Participants produced isometric maximal voluntary contractions (iMVC and a 120-s 30%iMVC of the quadriceps with electromyography (EMG, near-infrared spectroscopy, hemodynamic and ultrasound recordings. There was no effect of NZBC extract on iMVC (NZBC: 654 ± 73, PL: 650 ± 78 N. During the 30%iMVC with NZBC extract, total peripheral resistance, systolic, diastolic, and mean arterial pressure were lower with increased cardiac output and stroke volume. With NZBC extract, EMG root mean square of the vastus medialis and muscle oxygen saturation were lower with higher total haemoglobin. During the 30%iMVC, femoral artery diameter was increased with NZBC extract at 30 (6.9%, 60 (8.2%, 90 (7.7% and 120 s (6.0%. Intake of NZBC extract for 7-days altered cardiovascular responses, muscle oxygen saturation, muscle activity and femoral artery diameter during a 120-s 30%iMVC of the quadriceps. The present study provides insight into the potential mechanisms for enhanced exercise performance with intake of blackcurrant.

  14. Complex myograph allows the examination of complex muscle contractions for the assessment of muscle force, shortening, velocity, and work in vivo

    Directory of Open Access Journals (Sweden)

    Ruhschulte Hainer

    2008-07-01

    Full Text Available Abstract Background The devices used for in vivo examination of muscle contractions assess only pure force contractions and the so-called isokinetic contractions. In isokinetic experiments, the extremity and its muscle are artificially moved with constant velocity by the measuring device, while a tetanic contraction is induced in the muscle, either by electrical stimulation or by maximal voluntary activation. With these systems, experiments cannot be performed at pre-defined, constant muscle length, single contractions cannot be evaluated individually and the separate examination of the isometric and the isotonic components of single contractions is not possible. Methods The myograph presented in our study has two newly developed technical units, i.e. a. a counterforce unit which can load the muscle with an adjustable, but constant force and b. a length-adjusting unit which allows for both the stretching and the contraction length to be infinitely adjustable independently of one another. The two units support the examination of complex types of contraction and store the counterforce and length-adjusting settings, so that these conditions may be accurately reapplied in later sessions. Results The measurement examples presented show that the muscle can be brought to every possible pre-stretching length and that single isotonic or complex isometric-isotonic contractions may be performed at every length. The applied forces act during different phases of contraction, resulting into different pre- and after-loads that can be kept constant – uninfluenced by the contraction. Maximal values for force, shortening, velocity and work may be obtained for individual muscles. This offers the possibility to obtain information on the muscle status and to monitor its changes under non-invasive measurement conditions. Conclusion With the Complex Myograph, the whole spectrum of a muscle's mechanical characteristics may be assessed.

  15. Computerized analysis of isometric tension studies provides important additional information about vasomotor activity

    Directory of Open Access Journals (Sweden)

    Vincent M.B.

    1997-01-01

    Full Text Available Concentration-response curves of isometric tension studies on isolated blood vessels are obtained traditionally. Although parameters such as Imax, EC50 and pA2 may be readily calculated, this method does not provide information on the temporal profile of the responses or the actual nature of the reaction curves. Computerized data acquisition systems can be used to obtain average data that represent a new source of otherwise inaccessible information, since early and late responses may be observed separately in detail

  16. Eight-week vibration training of the elbow flexors by force modulation : effects on dynamic and isometric strength

    NARCIS (Netherlands)

    Xu, L.; Cardinale, M.; Rabotti, C.; Beju, B.; Mischi, M.

    2016-01-01

    Vibration exercise (VE) has been suggested as an effective method to improve strength and power capabilities. However, the underlying mechanisms in response to VE are still unclear. A pulley-like VE system, characterized by sinusoidal force applications has been developed and tested for proof of

  17. Sweat production during global heating and during isometric exercise in people with diabetes.

    Science.gov (United States)

    Petrofsky, Jerrold Scott; Lee, Scott; Patterson, Chris; Cole, Melissa; Stewart, Brian

    2005-11-01

    While sweat production in response to heat is impaired in people with diabetes, sweat production has not been examined during isometric exercise. Eight subjects with type 2 diabetes and 9 control subjects exerted a fatiguing isometric contraction of the handgrip muscles at a tension of 40% of the maximum voluntary strength (MVC) after exposure to a 32 deg C environment for 30 min. compared to 10 controls and 10 subjects with diabetes exposed to a 39 deg C environment. Sweat was impaired to all areas of the body during heat exposure in patients with diabetes under both environmental conditions. For example, on the chest, the average sweat rates after exposure to the 32 deg environment was 259.2 +/- 55.2 nanoliters/min in control subjects and 198.3 +/- 46.2 nanoliters/min for subjects with diabetes. Compared to the 32 deg C environment, control subjects increased sweat in all 4 areas proportionally more than subjects with diabetes. Sudomotor rhythm was present in sweat in control subjects at a rate of repetition of 11 and 50 seconds but almost absent in subjects with diabetes. During exercise, sweat rates slowly increased from the beginning to the end of the exercise. But the head of the subjects with diabetes showed hypersweating while the other areas showed diminished sweating compared to control subjects. Thus some of the impairment in sweating may be due to central mechanisms associated with heat sensitivity or in the hypothalamus and not to the sweat glands themselves.

  18. ISOMETRIC EXERCISE VERSUS COMBINED CONCENTRIC-ECCENTRIC EXERCISE TRAINING IN PATIENTS WITH OSTEOARTHRITIS KNEE

    Directory of Open Access Journals (Sweden)

    Nigombam Amit Kumar

    2015-12-01

    Full Text Available Background: Osteoarthritis is a slowly evolving articular disease, which appears to originate in the cartilage and affects the underlying bone and soft tissues. OA results in pain and functional disability. The purpose of this study was to determine the effect of isometric exercises and combined concentric-eccentric exercises in reducing pain and functional disability in patients with osteoarthritis of knee. Methods: Forty individuals who were diagnosed as osteoarthritis by qualified orthopaedics and orthopaedic surgeons were chosen and were randomly divided into 2 groups Group A (N=20 and Group B (N=20. Group A was treated with isometric exercises and Group B was treated with combined concentric-eccentric exercises. The intervention lasted eight weeks and the physical activity was carried out for 3 days a week. Both the groups were assessed for pain and functional disability of knee joint by using WOMAC osteoarthritis index and VAS. Results: Between group analysis of pre and post study data reveals that VAS and WOMAC osteoarthritis index revealed significant findings (P=0.00. Group B performs significantly better on both the scales after the treatment. Conclusion: Both the groups showed significant improvement in decreasing pain and functional disability. But mean scores of Group B showed greater improvement in reducing pain and functional disability as compared to Group A in patients with knee osteoarthritis. Thus the results suggest that a combined concentric-eccentric e

  19. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women.

    Science.gov (United States)

    Francis, Peter; Toomey, Clodagh; Mc Cormack, William; Lyons, Mark; Jakeman, Philip

    2017-07-01

    Muscle quality is defined as strength per unit muscle mass. The aim of this study was to measure the maximal voluntary isometric torque of the knee extensor and flexor muscle groups in healthy older women and to develop an index of muscle quality based on the combined knee extensor and flexor torque per unit lean tissue mass (LTM) of the upper leg. One hundred and thirty-six healthy 50- to 70-year-old women completed an initial measurement of isometric peak torque of the knee extensors and flexors (Con-Trex MJ; CMV AG, Dubendorf, Switzerland) that was repeated 7 days later. Subsequently, 131 women returned for whole- and regional-body composition analysis (iDXA ™ ; GE Healthcare, Chalfont St Giles, Buckinghamshire, UK). Isometric peak torque demonstrated excellent within-assessment reliability for both the knee extensors and flexors (ICC range: 0·991-1·000). Test-retest reliability was lower (ICC range: 0·777-0·828) with an observed mean increase of 5% in peak torque [6·2 (17·2) N m] on the second day of assessment (Ptorque (-12·2%; P = 0·001) was double that of the relative, non-significant, median difference in upper leg LTM (-5·3%; P = 0·102) between those in the 5th and 6th decade. The majority of difference in peak isometric torque came from the knee extensors (15·1 N m, Ptorque normalized for upper leg LTM (muscle quality) was 8% lower between decades (P = 0·029). These findings suggest strength per unit tissue may provide a better indication of age-related differences in muscle quality prior to change in LTM. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Bidirectional transfer between joint and individual actions in a task of discrete force production.

    Science.gov (United States)

    Masumoto, Junya; Inui, Nobuyuki

    2017-07-01

    The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.

  1. Isometric quadriceps strength determines sailing performance and neuromuscular fatigue during an upwind sailing emulation.

    Science.gov (United States)

    Bourgois, Jan G; Callewaert, Margot; Celie, Bert; De Clercq, Dirk; Boone, Jan

    2016-01-01

    This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training.

  2. A pilot randomised controlled trial of the feasibility of using body scan and isometric exercises for reducing urge to smoke in a smoking cessation clinic

    Directory of Open Access Journals (Sweden)

    Aveyard Paul

    2008-10-01

    Full Text Available Abstract Background The main cause of relapse in smokers attempting to quit is inability to resist urges to smoke. Pharmacotherapy ameliorates but does not entirely prevent urges to smoke when abstinent, so other methods to resist urges to smoke might be helpful. Exercise is effective, but aerobic exercise is often impractical when urges strike. Two techniques, body scan and isometric exercise, have been shown to reduce urge intensity and nicotine withdrawal symptoms in temporarily abstinent smokers. It is unclear whether they would be used or effective in typical smokers attempting to quit. Methods In a pilot trial set in a UK smoking cessation clinic, 20 smokers were randomised to receive emails containing .mp3 files and .pdf illustrations of the instructions for doing the body scan and isometric exercises. Twenty smokers received no other intervention, although all 40 were receiving weekly behavioural support and nicotine replacement therapy. Carbon monoxide confirmed abstinence, nicotine withdrawal symptoms, urges to smoke, and use of the techniques to resist urges were recorded weekly for four weeks after quit day. Results 60–80% of quitters reported using the isometric exercises each week and 40–70% reported using the body scan to deal with urges. On average, these techniques were rated as 'slightly helpful' for controlling the urges. There were no large or significant differences in withdrawal symptoms or urge intensity between the two groups. The risk ratio and 95% confidence interval for exercises compared with controls for prolonged confirmed abstinence at four weeks was 0.82 (0.44–1.53. 81% of quitters intended to continue using isometric exercises and 25% body scan, while 81% and 50% respectively would recommend using these techniques to others trying to stop. Conclusion Isometric exercises, and to a lesser extent body scan, were popular and perceived as somewhat helpful by quitters. The trial showed that these techniques were

  3. Adaptive increase in force variance during fatigue in tasks with low redundancy.

    Science.gov (United States)

    Singh, Tarkeshwar; S K M, Varadhan; Zatsiorsky, Vladimir M; Latash, Mark L

    2010-11-26

    We tested a hypothesis that fatigue of an element (a finger) leads to an adaptive neural strategy that involves an increase in force variability in the other finger(s) and an increase in co-variation of commands to fingers to keep total force variability relatively unchanged. We tested this hypothesis using a system with small redundancy (two fingers) and a marginally redundant system (with an additional constraint related to the total moment of force produced by the fingers, unstable condition). The subjects performed isometric accurate rhythmic force production tasks by the index (I) finger and two fingers (I and middle, M) pressing together before and after a fatiguing exercise by the I finger. Fatigue led to a large increase in force variance in the I-finger task and a smaller increase in the IM-task. We quantified two components of variance in the space of hypothetical commands to fingers, finger modes. Under both stable and unstable conditions, there was a large increase in the variance component that did not affect total force and a much smaller increase in the component that did. This resulted in an increase in an index of the force-stabilizing synergy. These results indicate that marginal redundancy is sufficient to allow the central nervous system to use adaptive increase in variability to shield important variables from effects of fatigue. We offer an interpretation of these results based on a recent development of the equilibrium-point hypothesis known as the referent configuration hypothesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  5. Teleoperator comfort and psychometric stability: Criteria for limiting master-controller forces of operation and feedback during telemanipulation

    Science.gov (United States)

    Wiker, Steven F.; Hershkowitz, Elaine; Zik, John

    1989-01-01

    The following question is addressed: How much force should operators exert, or experience, when operating a telemanipulator master-controller for sustained periods without encountering significant fatigue and discomfort, and without loss of stability in psychometric perception of force. The need to minimize exertion demands to avoid fatigue is diametrically opposed by the need to present a wide range of force stimuli to enhance perception of applied or reflected forces. For 104 minutes subjects repetitiously performed a series of 15 s isometric pinch grasps; controlled at 5, 15, and 25 percent of their maximum voluntary strength. Cyclic pinch grasps were separated by rest intervals of 7.5 and 15 s. Upon completion of every 10 minute period, subjects interrupted grasping activities to gage the intensity of fatigue and discomfort in the hand and forearm using a cross-modal matching technique. A series of psychometric tests were then conducted to determine accuracy and stability in the subject's perception of force experienced. Results showed that onset of sensations of discomfort and fatigue were dependent upon the magnitude of grasp force, work/rest ratio, and progression of task. Declines in force magnitude estimation slopes, indicating a reduction in force perception sensitivity, occurred with increased grasp force when work/rest ratios were greater than 1.0. Specific recommendations for avoiding discomfort and shifts in force perception, by limiting pinch grasp force required for master-controller operation and range of force reflection or work/rest ratios, are provided.

  6. The Impact of Chocolate Goat's and Cow's Milk on Postresistance Exercise Endocrine Responses and Isometric Mid-Thigh Pull Performance.

    Science.gov (United States)

    Bellar, David; LeBlanc, Nina R; Murphy, Kellie; Moody, Kaitlyn M; Buquet, Gina

    2016-01-01

    The present investigation examined the effects of chocolate cow's and goat's milk on endocrine responses and isometric mid-thigh pull performance post back squat exercise. Twelve college-aged males volunteered to participate and reported to the lab on four occasions. The first visit included anthropometric measurement, one-repetition back squat (1RM), and familiarization with the isometric mid-thigh pull assessment (IMTP). During the subsequent three visits, five sets of eight repetitions of the back squat exercise at 80% of 1RM were performed. For these trials, the participants performed an IMTP and gave a saliva sample prior to, immediately after, 1 hr and 2 hr post exercise. After exercise, a treatment of low-fat chocolate goat's milk (355 ml, 225 kcal), low-fat chocolate cow's milk (355 ml, 225 kcal), or control (water 355 ml, 0 kcal) was given in a counterbalanced order. Saliva samples were analyzed for testosterone, cortisol, and dehydroepiandrosterone (DHEA). Cortisol and DHEA hormone were unaffected by exercise; however, testosterone values did increase significantly post exercise. For IMTP, there was a significant main effect for time (F = 8.41, p = .007) but no treatment or interactions effects. N changes were noted post supplementation for cortisol or DHEA, but testosterone was found to be significantly reduced in both diary treatments compared to control (F = 4.27, p = .022). Based upon these data, it appears that a single treatment of chocolate goat's or cow's milk results in similar endocrine alterations but both fail to enhance postexercise isometric strength following resistance exercise.

  7. Inotropic effects of extracts of Psidium guajava L. (guava) leaves on the guinea pig atrium.

    Science.gov (United States)

    Conde Garcia, E A; Nascimento, V T; Santiago Santos, A B

    2003-05-01

    Many pharmacological effects have been ascribed to extracts of Psidium guajava L. (guava) leaves. However, in spite of its widespread use in Brazilian folk medicine and a reasonable number of scientific reports about it, we could not find any study dealing with its action on the mammalian myocardium. In the present study, by measuring isometric force, we observed that the crude extract of P. guajava (water-alcohol extract obtained by macerating dry leaves) depresses the guinea pig atrial contractility in a concentration-dependent fashion (N = 8 hearts, 15 trials). The compound with cardiac activity was concentrated by extraction in a Soxhlet apparatus using 17 M glacial acetic acid after removing the less polar fractions (hexane, chloroform, acetone, ethanol and methanol), suggesting that this compound is a highly polar substance. In the isolated guinea pig left atrium the acetic acid fraction (10-800 mg/l) of P. guajava 1) reversibly decreased myocardial force in a concentration-dependent fashion (EC50 = 0.07g/l, N = 5 hearts, 9 trials, Pleaves depress myocardial inotropism.

  8. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Sridhar P. Arjunan

    2014-01-01

    Full Text Available The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC. Six features were considered in this study: normalised spectral index (NSM5, median frequency, root mean square, waveform length, normalised root mean square (NRMS, and increase in synchronization (IIS index. Analysis of variance (ANOVA and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P0.05.

  9. Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P 0.05).

  10. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain: An Assessor-Blinded Comparison.

    Science.gov (United States)

    Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per

    2014-02-01

    Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Cross-sectional study; Level of evidence, 3. Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain compared with asymptomatic soccer players, while no isometric

  11. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats.

    Science.gov (United States)

    Boyd, David A; Donald, Neil; Balshaw, Thomas G

    2014-12-01

    The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.

  12. An MR-compatible device for the in situ assessment of isometric contractile performance of mouse hind-limb ankle flexors.

    NARCIS (Netherlands)

    Drost, M.R.; Heemskerk, A.M.; Strijkers, G.J.; Dekkers, E.C.A.; Kranenburg, van G.; Nicolaij, K.

    2003-01-01

    The goal of the present study was to develop and evaluate an isometric dynamometer for measuring mouse ankle flexor torque after electric stimulation of the nerve. The dynamometer was to be used within an magnetic resonance (MR) apparatus and should require minimal surgical intervention. To quantify

  13. Papaver Rhoeas L. Hydroalcoholic Extract Exacerbates Forced Swimming Test-Induced Depression in Mice.

    Science.gov (United States)

    Osanloo, Naser; Najafi-Abedi, Akram; Jafari, Fatemeh; Javid, Farshid; Pirpiran, Mohsen; Memar Jafari, Mohammad-Reza; Mousavi Khosravi, Seyed Ali; Rahimzadeh Behzadi, Mohammad; Ranjbaran, Mina; Sahraei, Hedayat

    2016-07-01

    Depression is one of the most frequent psychiatric disorders in the world with occurs with higher incidence in women. In the present study, the effect of water-alcoholic extract of Papaver rhoeas L. on forced swimming test (FST) in Swiss-Webster mice were examined. We used Swiss-Webster mice (20-25 g) to execute FST on them. The plant extract (1, 10, 30, and 100 mg/kg) was injected to the animals 30 minutes before each session. Fluoxetine (20 mg/kg) was used as standard antidepressant drug. In another group of animals, 30 minutes after extract administration, blood samples were taken from retro-orbital sinus for corticosterone assay. Yet in third group, the drugs were injected to the animals and 30 minutes later, their activities were tested in an open field apparatus. Our experiments showed that the extract efficiently reduced FST time both in male and female mice dose-dependently. This effect was comparable with fluoxetine. In addition, corticosterone assay indicated that plasma corticosterone in animals which received extract was higher than those amounts in fluoxetine and saline controls. Moreover, the animals did not show any motor activity deficit in all doses of the extract and fluoxetine compared to saline control. The extract of Papaver rhoeas can reduce immobility time which is comparable to the effect of fluoxetine. Also the effect of the extract is contrary to its effects on plasma corticosterone level and or animals' activity.

  14. The effects of athletics training on isometric strength and EMG activity in adolescent athletes

    OpenAIRE

    NIKOLAOS AGGELOUSIS; NIKOLAOS MANTZOURANIS; THEOPHILOS PILIANIDIS; GEORGIOS DASTERIDIS

    2012-01-01

    The aim of this study was to evaluate the effect of two different training programs on electromyographic activity (EMG), isometric strength and quadriceps hypertrophy in track and field athletes. 27 male adolescents athletes were divided in three (3) groups of nine (9), the Neuromuscular Group (NeuroGr), the Hypertrophy Group (HyperGr) and the Control Group (ControlG). The participants in both NeuroGr and HyperGr trained 3 times per week for 8 weeks while the athletes’of ControlGr did not tak...

  15. Isometric Exercise for the Cervical Extensors Can Help Restore Physiological Lordosis and Reduce Neck Pain: A Randomized Controlled Trial.

    Science.gov (United States)

    Alpayci, Mahmut; İlter, Server

    2017-09-01

    The aim of this study was to investigate whether isometric neck extension exercise restores physiological cervical lordosis and reduces pain. Sixty-five patients with loss of cervical lordosis were randomly assigned to exercise (27 women, 7 men; mean age, 32.82 ± 8.83 yrs) and control (26 women, 5 men; mean age, 33.48 ± 9.67 yrs) groups. Both groups received nonsteroidal anti-inflammatory drugs for 10 days. The exercise group received additional therapy as a home exercise program, which consisted of isometric neck extension for 3 mos. Neck pain severity and cervical lordosis were measured at baseline and at 3 mos after baseline. Compared with baseline levels, cervical lordosis angle was significantly improved in the exercise group (P cervical lordosis angle returned to physiological conditions (85.2% vs. 22.5%; P pain intensity was significantly reduced in both groups compared with baseline levels (for all, P pain was about twice in the exercise group compared with the control group (P cervical lordosis and pain.

  16. Acute Effects of Partial-Body Cryotherapy on Isometric Strength: Maximum Handgrip Strength Evaluation.

    Science.gov (United States)

    De Nardi, Massimo; Pizzigalli, Luisa; Benis, Roberto; Caffaro, Federica; Micheletti Cremasco, Margherita

    2017-12-01

    De Nardi, M, Pizzigalli, L, Benis, R, Caffaro, F, and Cremasco, MM. Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation. J Strength Cond Res 31(12): 3497-3502, 2017-The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 men and 50 women in each group). After the initial handgrip strength test (T0), the experimental group performed a 150-second session of PBC (temperature range between -130 and -160° C), whereas the control group stayed in a thermo neutral room (22.0 ± 0.5° C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0 = 39.48 kg, T1 = 40.01 kg; PBC: T0 = 39.61 kg, T1 = 41.34 kg). The analysis also reported a statistical effect related to gender (F = 491.99, P ≤ 0.05), with women showing lower handgrip strength values compared with men (women = 30.43 kg, men = 52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study imply that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength.

  17. The effects of isometric exercises and stretching on postural stability in Non–Insulin Dependent Diabetes Mellitus patients with diffuse symmetrical sensory motor neuropathy

    Directory of Open Access Journals (Sweden)

    S. Nenkova

    2009-02-01

    Full Text Available The purpose of this study was to explore the effects of isometric exercises and stretching on postural stability in Non – Insulin Dependent Diabetes Mellitus (NIDDM patients with diffuse symmetrical sensory motor neuropathy. Patients were assigned to an experimental group and amatched control group. The experimental group received isometric exer-cises and stretching three times weekly for 12 weeks in addition to routine medication and dietary advice. A t the end of this period, this group wascompared with the control group, which received routine medication anddietary advice only. Measurements of muscle strength of quadriceps, ham-strings, ankle plantar and dorsiflexors, and Romberg’s test for postural sta-bility were carried out before and after the 12 weeks intervention. The study showed that isometric exercises and stretching for the lower extremities improved postural stability (p = 0.00and strength of the quadriceps (p = 0.001 hamstrings (p = 0.001 dorsiflexors (p = 0.001 plantarflexors (p = 0.001in NIDDM patients with diffuse symmetrical sensory motor neuropathy. This exercise regimen also had a loweringeffect on blood glucose level (p = 0.00.  In conclusion it seems that the simple exercise intervention described in thisstudy may be of benefit to these patients if incorporated into their management programmes.

  18. A mitochondrial-targeted antioxidant improves myofilament Ca2+ sensitivity during prolonged low frequency force depression at low PO2.

    Science.gov (United States)

    Gandra, Paulo G; Shiah, Amy A; Nogueira, Leonardo; Hogan, Michael C

    2018-03-15

    Skeletal muscle contractile activity is associated with an enhanced reactive oxygen species (ROS) generation. At very low PO2, ROS generation by mitochondria can be elevated in intact cells. An elevated intracellular oxidant activity may affect muscle force development and recovery from fatigue. We treated intact single muscle fibres with a mitochondrial antioxidant and stimulated the fibres to contract at a low extracellular PO2 that is similar to the intracellular PO2 that is observed during moderate to intense exercise in vivo. The mitochondrial antioxidant prevented a sustained decrease in the myofibrillar Ca 2+ sensitivity and improved muscle submaximal force development after fatigue at low extracellular PO2. Skeletal muscle can develop a prolonged low frequency-stimulation force depression (PLFFD) following fatigue-inducing contractions. Increased levels of reactive oxygen species (ROS) have been implicated in the development of PLFFD. During exercise the skeletal muscle intracellular PO2 decreases to relatively low levels, and can be further decreased when there is an impairment in O 2 diffusion or availability, such as in certain chronic diseases and during exercise at high altitude. Since ROS generation by mitochondria is elevated at very low PO2 in cells, we tested the hypothesis that treatment of muscle fibres with a mitochondrial-targeted antioxidant at a very low, near hypoxic, PO2 can attenuate PLFFD. We treated intact single fibres from mice with the mitochondrial-specific antioxidant SS31, and measured force development and intracellular [Ca 2+ ] 30 min after fatigue at an extracellular PO2 of ∼5 Torr. After 30 min following the end of the fatiguing contractions, fibres treated with SS31 showed significantly less impairment in force development compared to untreated fibres at submaximal frequencies of stimulation. The cytosolic peak [Ca 2+ ] transients (peak [Ca 2+ ] c ) were equally decreased in both groups compared to pre-fatigue values. The

  19. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  20. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device.

    Science.gov (United States)

    Jackson, Steven M; Cheng, M Samuel; Smith, A Russell; Kolber, Morey J

    2017-02-01

    Hand held dynamometry (HHD) is a more objective way to quantify muscle force production (MP) compared to traditional manual muscle testing. HHD reliability can be negatively impacted by both the strength of the tester and the subject particularly in the lower extremities due to larger muscle groups. The primary aim of this investigation was to assess intrarater reliability of HHD with use of a portable stabilization device for lower extremity MP in an athletic population. Isometric lower extremity strength was measured for bilateral lower extremities including hip abductors, external rotators, adductors, knee extensors, and ankle plantar flexors was measured in a sample of healthy recreational runners (8 male, 7 females, = 30 limbs) training for a marathon. These measurements were assessed using an intrasession intrarater reliability design. Intraclass correlation coefficients (ICC) were calculated using 3,1 model based on the single rater design. The standard error of measurement (SEM) for each muscle group was also calculated. ICC were excellent ranging from ICC (3,1) = 0.93-0.98 with standard error of measurements ranging from 0.58 to 17.2 N. This study establishes the use of a HHD with a portable stabilization device as demonstrating good reliability within testers for measuring lower extremity muscle performance in an active healthy population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure.

    Science.gov (United States)

    Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard

    2016-05-03

    Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.

    Science.gov (United States)

    Frey Law, Laura A; Shields, Richard K

    2006-03-01

    Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.

  3. Relationship Between the Range of Motion and Isometric Strength of Elbow and Shoulder Joints and Ball Velocity in Women Team Handball Players.

    Science.gov (United States)

    Schwesig, René; Hermassi, Souhail; Wagner, Herbert; Fischer, David; Fieseler, Georg; Molitor, Thomas; Delank, Karl-Stefan

    2016-12-01

    Schwesig, R, Hermassi, S, Wagner, H, Fischer, D, Fieseler, G, Molitor, T, and Delank, K-S. Relationship between the range of motion and isometric strength of elbow and shoulder joints and ball velocity in women team handball players. J Strength Cond Res 30(12): 3428-3435, 2016-The aims of this study were to investigate relationships between isometric strength and range of motion (ROM) of shoulder and elbow joints and compare 2 different team handball throwing techniques in women team handball. Twenty highly experienced women team handball players (age: 20.7 ± 2.9 years; body mass: 68.4 ± 6.0 kg; and height: 1.74 ± 0.06 m) participated in this study. The isometric strength (hand-held dynamometer) and ROM (goniometer) of shoulder and elbow joints were measured at the beginning of the preseasonal training. After clinical examination, the subjects performed 3 standing throws with run-up (10 m) and 3 jump throws over a hurdle (0.20 m). The mean ball velocity was calculated from 3 attempts and measured using a radar gun. The results showed that the ball velocity of the standing throw with run-up (vST) was significantly higher than that of the jump throw (vJT) (25.5 ± 1.56 vs. 23.2 ± 1.31 m·s; p handball players.

  4. Sensorimotor modulation differs with load type during constant finger force or position.

    Directory of Open Access Journals (Sweden)

    Hikari Kirimoto

    Full Text Available During submaximal isometric contraction, there are two different load types: production of a constant force against a rigid restraint (force task, and maintenance of position against a constant load (position task. Previous studies reported that the time to task failure during a fatigue task was twice as long in the force task compared with the position task. Sensory feedback processing may contribute to these differences. The purpose of the current study was to determine the influence of load types during static muscle contraction tasks on the gating effect, i.e., attenuation of somatosensory-evoked potentials (SEPs and the cortical silent period (cSP. Ten healthy subjects contracted their right first dorsal interosseus muscle by abducting their index finger for 90 s, to produce a constant force against a rigid restraint that was 20% of the maximum voluntary contraction (force task, or to maintain a constant position with 10° abduction of the metacarpophalangeal joint against the same load (position task. Somatosensory evoked potentials (SEPs were recorded from C3' by stimulating either the right ulnar or median nerve at the wrist while maintaining contraction. The cortical silent period (cSP was also elicited by transcranial magnetic stimulation. Reduction of the amplitude of the P45 component of SEPs was significantly larger during the position task than during the force task and under control rest conditions when the ulnar nerve, but not the median nerve, was stimulated. The position task had a significantly shorter cSP duration than the force task. These results suggest the need for more proprioceptive information during the position task than the force task. The shorter duration of the cSP during the position task may be attributable to larger amplitude of heteronymous short latency reflexes. Sensorimotor modulations may differ with load type during constant finger force or position tasks.

  5. Isometric pre-conditioning blunts exercise-induced muscle damage but does not attenuate changes in running economy following downhill running.

    Science.gov (United States)

    Lima, Leonardo C R; Bassan, Natália M; Cardozo, Adalgiso C; Gonçalves, Mauro; Greco, Camila C; Denadai, Benedito S

    2018-05-08

    Running economy (RE) is impaired following unaccustomed eccentric-biased exercises that induce muscle damage. It is also known that muscle damage is reduced when maximal voluntary isometric contractions (MVIC) are performed at a long muscle length 2-4 days prior to maximal eccentric exercise with the same muscle, a phenomenon that can be described as isometric pre-conditioning (IPC). We tested the hypothesis that IPC could attenuate muscle damage and changes in RE following downhill running. Thirty untrained men were randomly assigned into experimental or control groups and ran downhill on a treadmill (-15%) for 30 min. Participants in the experimental group completed 10 MVIC in a leg press machine two days prior to downhill running, while participants in the control group did not perform IPC. The magnitude of changes in muscle soreness determined 48 h after downhill running was greater for the control group (122 ± 28 mm) than for the experimental group (92 ± 38 mm). Isometric peak torque recovered faster in the experimental group compared with the control group (3 days vs. no full recovery, respectively). No significant effect of IPC was found for countermovement jump height, serum creatine kinase activity or any parameters associated with RE. These results supported the hypothesis that IPC attenuates changes in markers of muscle damage. The hypothesis that IPC attenuates changes in RE was not supported by our data. It appears that the mechanisms involved in changes in markers of muscle damage and parameters associated with RE following downhill running are not completely shared. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    Directory of Open Access Journals (Sweden)

    Brent J. Raiteri

    2016-07-01

    isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity. Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.

  7. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure.

    Science.gov (United States)

    Tayashiki, Kota; Hirata, Kosuke; Ishida, Kiraku; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-06-01

    Muscle size of the hamstring and gluteus maximus (GM) as well as intra-abdominal pressure (IAP) are considered as factors affecting the torque development during hip extension. This study examined the associations of torque development during maximal voluntary isometric hip extension with IAP and muscle size of the hamstring and GM. Anatomical cross-sectional area (ACSA) of the hamstring and thickness of GM were determined in 20 healthy young males using an ultrasonography apparatus (Experiment 1). Torque and IAP were simultaneously measured while subjects performed maximal voluntary isometric hip extension. The IAP was measured using a pressure transducer placed in the rectum and determined at the time at which the developed torque reached to the maximal. In Experiment 2, torque and IAP were measured during maximal voluntary isometric hip flexion in 18 healthy young males. The maximal hip extension torque was significantly correlated with the IAP (r = 0.504, P = 0.024), not with the ACSA of the hamstring (r = 0.307, P = 0.188) or the thickness of GM (r = 0.405, P = 0.076). The relationship was still significant even when the ACSA of the hamstring and the thickness of GM were adjusted statistically (r = 0.486, P = 0.041). The maximal hip flexion torque was not significantly correlated with the IAP (r = -0.118, P = 0.642). The current results suggest that IAP can contribute independently of the muscle size of the agonists to maximal voluntary hip extension torque.

  8. Reliability of a device for the knee and ankle isometric and isokinetic strength testing in older adults.

    Science.gov (United States)

    Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea

    2017-01-01

    Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (pisometric strength provided reliable test-retest measures in healthy older adults. Ib.

  9. Isokinetic and isometric strength in osteoarthrosis of the knee. A comparative study with healthy women.

    Science.gov (United States)

    Tan, J; Balci, N; Sepici, V; Gener, F A

    1995-01-01

    Dynamic stability of the knee joint depends on the appropriate strength ratio of quadriceps and hamstring muscles. The purpose of this investigation was to determine the maximum peak torque (MPT) and MPT ratios of hamstrings to quadriceps (H/Q) muscles in patients with knee osteoarthritis (OA). Two groups of patients were included in the study. The first group consisted of 30 patients (Group A) with the clinical and radiologic findings of knee OA. The second group consisted of 30 patients (Group B) exhibiting knee joint pain without roentgenologic findings of knee OA. The findings of two patient groups were compared with each other and also with 30 healthy subjects (Group C). Isokinetic (at 60 degrees/s and at 180 degrees/s) and isometric (at 30 degrees and at 60 degrees of knee flexion) tests were performed by the rate-limiting isokinetic dynamometer system. Isokinetic and isometric MPT loss of knee flexors and extensors was found in both patient groups with respect to controls, but MPT ratios of H/Q muscles did not show a statistically significant difference compared with the control group. This may be related to the equal strength loss of knee flexors and knee extensors in patients with knee OA. It is concluded that strengthening exercises of hamstring muscles is as important as quadriceps strengthening in rehabilitation of knee OA.

  10. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain An Assessor-Blinded Comparison

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Branci, Sonia; Nielsen, Peter Martin

    2014-01-01

    BACKGROUND: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been...... investigated. PURPOSE: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction...... strength than players without adductor-related groin pain. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain...

  11. Paroxetine blunts the corticosterone response to swim-induced stress and increases depressive-like behavior in a rat model of postpartum depression

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Lieblich, Stephanie E; Richardson, Robin

    2018-01-01

    Perinatal depression (PND) affects 15% of women. During the perinatal period both stress- and gonadal hormones fluctuate widely. Putatively, these fluctuations are involved in PND disease mechanisms. The serotonin system is sensitive to such hormone fluctuations, and serotonin reuptake inhibitors...... depression. In the rat model corticosterone (CORT; 40mg/kgs.c.) was administered in Sprague Dawley rats across postpartum day (PD)2 to PD14. Stress response was measured during the first exposure to the forced swim test (FST1), and depressive-like behavior was measured in both FST1 and FST2. We found...... that paroxetine completely blunted the swim stress-induced CORT response and increased depressive-like behavior in both FST1 and FST2. Our findings suggest that in the postpartum context, SSRIs compromise stress axis dynamics, which are needed for a healthy stress response. This is likely unfavorable...

  12. Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Krix, Martin; Weber, Marc-Andre; Kauczor, Hans-Ulrich; Delorme, Stefan; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: To quantitatively assess local muscle micro-circulation with real-time contrast-enhanced ultrasound (CEUS) during different exercises and compare the results with performed muscle work and global blood flow. Materials and methods: Sixteen low mechanical index CEUS examinations of the right lower leg flexors of healthy volunteers were performed using a continuous infusion of SonoVue (4.8 mL/300 s). Several muscle perfusion parameters were extracted from derived CEUS signal intensity time curves during different isometric exercises (10-50% of maximum individual strength for 20-30 s) and then correlated with the performed muscle work or force, and the whole lower leg blood flow which we measured simultaneously by venous occlusion plethysmography (VOP). Results: The shapes of the CEUS curve during and after exercise differed individually depending on the performed muscle work. The maximum blood volume MAX was observed only after exercise cessation and was significantly correlated with the performed muscle force (r = 0.77, p < 0.0001). The blood volume over exercise time was inversely correlated with the spent muscle work (r = -0.60, p = 0.006). CEUS and VOP measurements correlated only at rest and after the exercise. During exercise, mean CEUS local blood volume decreased (from 3.48 to 2.19 (∼mL)), while mean VOP global blood flow increased (mean, from 3.96 to 7.71 mL/100 mg/min). Conclusion: Real-time low-MI CEUS provides complementary information about the local muscle micro-circulation compared to established blood flow measures. CEUS may be used for a better understanding of muscle perfusion physiology and in the diagnosis of micro-circulation alterations such as in peripheral arterial occlusive disease or diabetic angiopathy.

  13. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions.

    Science.gov (United States)

    Muthalib, Makii; Millet, Guillaume Y; Quaresima, Valentina; Nosaka, Kazunori

    2010-01-01

    We examine the test-retest reliability of biceps brachii tissue oxygenation index (TOI) parameters measured by near-infrared spectroscopy during a 10-s sustained and a 30-repeated (1-s contraction, 1-s relaxation) isometric contraction task at 30% of maximal voluntary contraction (30% MVC) and maximal (100% MVC) intensities. Eight healthy men (23 to 33 yr) were tested on three sessions separated by 3 h and 24 h, and the within-subject reliability of torque and each TOI parameter were determined by Bland-Altman+/-2 SD limits of agreement plots and coefficient of variation (CV). No significant (P>0.05) differences between the three sessions were found for mean values of torque and TOI parameters during the sustained and repeated tasks at both contraction intensities. All TOI parameters were within+/-2 SD limits of agreement. The CVs for torque integral were similar between the sustained and repeated task at both intensities (4 to 7%); however, the CVs for TOI parameters during the sustained and repeated task were lower for 100% MVC (7 to 11%) than for 30% MVC (22 to 36%). It is concluded that the reliability of the biceps brachii NIRS parameters during both sustained and repeated isometric contraction tasks is acceptable.

  14. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.

    Science.gov (United States)

    Ali, Syed Hamid; Madhana, Rajaram Mohanrao; K V, Athira; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Pitta, Sathish; Mahareddy, Jalandhar Reddy; Lahkar, Mangala

    2015-09-01

    A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Single Sub-anesthetic Dose of Ketamine Relieves Depression-like Behaviors Induced by Neuropathic Pain in Rats

    Science.gov (United States)

    Wang, Jing; Goffer, Yossef; Xu, Duo; Tukey, David S.; Shamir, D. B.; Eberle, Sarah E.; Zou, Anthony H.; Blanck, Thomas J.J.; Ziff, Edward B.

    2011-01-01

    Background Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its anti-nociceptive properties. Methods We examined whether the spared nerve injury (SNI) model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats SNI-induced depression. Results SNI-treated rats, compared with control, showed decreased sucrose preference (0.719 ± 0.068 (mean ± SEM) vs. 0.946 ± 0.010) and enhanced immobility in the forced swim test (107.3 ± 14.6s vs. 56.2 ± 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 ± 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10mg/kg) did not alter SNI-induced hypersensitivity; however, it treated SNI-associated depression-like behaviors (0.896 ± 0.020 for ketamine vs. 0.663 ± 0.080 for control 1 day after administration; 0.858 ± 0.017 for ketamine vs. 0.683 ± 0.077 for control 5 days after administration). Conclusions Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain. PMID:21934410

  16. Testing the efficacy of existing force-endurance models to account for the prevalence of obesity in the workforce.

    Science.gov (United States)

    Pajoutan, Mojdeh; Cavuoto, Lora A; Mehta, Ranjana K

    2017-10-01

    This study evaluates whether the existing force-endurance relationship models are predictive of endurance time for overweight and obese individuals, and if not, provide revised models that can be applied for ergonomics practice. Data was collected from 141 participants (49 normal weight, 50 overweight, 42 obese) who each performed isometric endurance tasks of hand grip, shoulder flexion, and trunk extension at four levels of relative workload. Subject-specific fatigue rates and a general model of the force-endurance relationship were determined and compared to two fatigue models from the literature. There was a lack of fit between previous models and the current data for the grip (ICC = 0.8), with a shift toward lower endurance times for the new data. Application of the revised models can facilitate improved workplace design and job evaluation to accommodate the capacities of the current workforce.

  17. Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice

    NARCIS (Netherlands)

    Gorselink, M.; Drost, M.R.; Louw, de J.; Willems, P.J.B.; Rosielle, P.C.J.N.; Janssen, J.D.; Vusse, van der G.J.

    2000-01-01

    An isometric torque sensor for measuring in situ contractions of plantar or dorsal flexors of intact mouse hindlimb has been developed and evaluated. With this device, muscle torque can be accurately measured within the range of -14 mN·m to +14 mN·m. Special attention was paid to fixation of the

  18. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation

    DEFF Research Database (Denmark)

    Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie

    2018-01-01

    Objective: Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute...... isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Design: Experimental, randomized crossover study. Setting: Laboratory at Marquette University. Subjects: Thirty healthy adults (19.3±1.5 years, 15 males). Methods: Subjects underwent CPM....... Results: PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0...

  19. Synchronization of muscular oscillations between two subjects during isometric interaction

    Directory of Open Access Journals (Sweden)

    Laura V. Schaefer

    2014-05-01

    Full Text Available Muscles oscillate with a frequency around 10 Hz. But what happens with myofascial oscillations, if two neuromuscular systems interact? The purpose of this study was to examine this question, initially, on the basis of a case study. Oscillations of the triceps brachii muscles of two subjects were determined through mechanomyography (MMG during isometric interaction. The MMG-signals were analyzed concerning the interaction of the two subjects with algorithms of nonlinear dynamics. In this case study it could be shown, that the muscles of both neuromuscular systems also oscillate with the known frequency (here 12 Hz during interaction. Furthermore, both subjects were able to adapt their oscillations against each other. This adjustment induced a significant ( < .05 coherent behavior, which was characterized by a phase shifting of approximately 90°. The authors draw the conclusion, that the complementary neuromuscular partners potentially have the ability of mutual synchronization.

  20. A COMPARATIVE STUDY OF PASSIVE SHOULDER ROTATION RANGE OF MOTION, ISOMETRIC ROTATION STRENGTH AND SERVE SPEED BETWEEN ELITE TENNIS PLAYERS WITH AND WITHOUT HISTORY OF SHOULDER PAIN.

    Science.gov (United States)

    Moreno-Pérez, V; Elvira, Jll; Fernandez-Fernandez, J; Vera-Garcia, F J

    2018-02-01

    Glenohumeral internal rotation deficit and external rotation strength have been associated with the development of shoulder pain in overhead athletes. To examine the bilateral passive shoulder rotational range of motion (ROM), the isometric rotational strength and unilateral serve speed in elite tennis players with and without shoulder pain history (PH and NPH, respectively) and compare between dominant and non-dominant limbs and between groups. Cohort study. Fifty-eight elite tennis players were distributed into the PH group (n = 20) and the NPH group (n = 38). Serve velocity, dominant and non-dominant passive shoulder external and internal rotation (ER and IR) ROM, total arc of motion (TAM: the sum of IR and ER ROM), ER and IR isometric strength, bilateral deficits and ER/IR strength ratio were measured in both groups. Questionnaires were administered in order to classify characteristics of shoulder pain. The dominant shoulder showed significantly reduced IR ROM and TAM, and increased ER ROM compared to the non-dominant shoulder in both groups. Isometric ER strength and ER/IR strength ratio were significantly lower in the dominant shoulder in the PH group when compared with the NPH group. No significant differences between groups were found for serve speed. These data show specific adaptations in the IR, TAM and ER ROM in the dominant shoulder in both groups. Isometric ER muscle weakness and ER/IR strength ratio deficit appear to be associated with history of shoulder injuries in elite tennis players. It would be advisable for clinicians to use the present information to design injury prevention programs. 2.

  1. Cluster analysis of novel isometric strength measures produces a valid and evidence-based classification structure for wheelchair track racing.

    Science.gov (United States)

    Connick, Mark J; Beckman, Emma; Vanlandewijck, Yves; Malone, Laurie A; Blomqvist, Sven; Tweedy, Sean M

    2017-11-25

    The Para athletics wheelchair-racing classification system employs best practice to ensure that classes comprise athletes whose impairments cause a comparable degree of activity limitation. However, decision-making is largely subjective and scientific evidence which reduces this subjectivity is required. To evaluate whether isometric strength tests were valid for the purposes of classifying wheelchair racers and whether cluster analysis of the strength measures produced a valid classification structure. Thirty-two international level, male wheelchair racers from classes T51-54 completed six isometric strength tests evaluating elbow extensors, shoulder flexors, trunk flexors and forearm pronators and two wheelchair performance tests-Top-Speed (0-15 m) and Top-Speed (absolute). Strength tests significantly correlated with wheelchair performance were included in a cluster analysis and the validity of the resulting clusters was assessed. All six strength tests correlated with performance (r=0.54-0.88). Cluster analysis yielded four clusters with reasonable overall structure (mean silhouette coefficient=0.58) and large intercluster strength differences. Six athletes (19%) were allocated to clusters that did not align with their current class. While the mean wheelchair racing performance of the resulting clusters was unequivocally hierarchical, the mean performance of current classes was not, with no difference between current classes T53 and T54. Cluster analysis of isometric strength tests produced classes comprising athletes who experienced a similar degree of activity limitation. The strength tests reported can provide the basis for a new, more transparent, less subjective wheelchair racing classification system, pending replication of these findings in a larger, representative sample. This paper also provides guidance for development of evidence-based systems in other Para sports. © Article author(s) (or their employer(s) unless otherwise stated in the text of

  2. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M

    2016-08-01

    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; Ptorque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during

  3. Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression.

    Science.gov (United States)

    Flores-Burgess, Antonio; Millón, Carmelo; Gago, Belén; Narváez, Manuel; Borroto-Escuela, Dasiel O; Mengod, Guadalupe; Narváez, José Angel; Fuxe, Kjell; Santín, Luis; Díaz-Cabiale, Zaida

    2017-05-15

    The pharmacological treatment of major depression is mainly based on drugs elevating serotonergic (5-HT) activity. Specifically, selective 5-HT reuptake inhibitors, including Fluoxetine (FLX), are the most commonly used for treatment of major depression. However, the understanding of the mechanism of action of FLX beyond its effect of elevating 5-HT is limited. The interaction between serotoninergic system and neuropeptides signaling could be a key aspect. We examined the ability of the neuropeptide Galanin(1-15) [GAL(1-15)] to modulate the behavioral effects of FLX in the forced swimming test (FST) and studied feasible molecular mechanisms. The data show that GAL(1-15) enhances the antidepressant-like effects induced by FLX in the FST, and we demonstrate the involvement of GALR1/GALR2 heteroreceptor complex in the GAL(1-15)-mediated effect using in vivo rat models for siRNA GALR1 or GALR2 knockdown. Importantly, 5-HT1A receptors (5HT1A-R) also participate in the GAL(1-15)/FLX interactions since the 5HT1AR antagonist WAY100635 blocked the behavioral effects in the FST induced by the coadministration of GAL(1-15) and FLX. The mechanism underlying GAL(1-15)/FLX interactions affected the binding characteristics as well as the mRNA levels of 5-HT1A-R specifically in the dorsal hippocampus while leaving unaffected mRNA levels and affinity and binding sites of this receptor in the dorsal raphe. The results open up the possibility to use GAL(1-15) as for a combination therapy with FLX as a novel strategy for treatment of depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    Science.gov (United States)

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  5. Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks

    Directory of Open Access Journals (Sweden)

    Wenxiang Cui

    2017-05-01

    Full Text Available This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS, mean power frequency (MPF, the first coefficient of autoregressive model (ARC1, sample entropy (SE and Higuchi’s fractal dimension (HFD, in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS. Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.

  6. Acute influence of the application of strength treatment based on the combinated contrast training method on precision and velocity in overarm handball throwing

    Directory of Open Access Journals (Sweden)

    Juan S. Gómez Navarrete

    2011-01-01

    Full Text Available Abstract Combination of strengh training methods has been shown as an effective way for strengh development. This is specially indicated for improving explosive strengh and power. Our study shows the influence of combined contrast improvement method on overarm throwing in handball. Treatment consisted on one session of combined contras method. 10 handball palyers and 13 non-players participated in this estudy. The instrumental was a gun radar to know velocity throws, a camera to digitalize the accuracy, and an isometric dynamometer for strenght data collection. Results show a significant decrease in peak of force values in players group. Another significant decrease was obsesrved on integral to peak force for both groups. There are significant positive relations between throwing velocity parameters related to weight and size with isometric peak of force. We concluded that isometric time/strengh curve is an usefull instrument to observe changes produced in the subjet's capacity of producing strengh during training. Keywords: Precision, velocity, overarm handball throwing, isometric test, combined contrast method

  7. Exact solutions for isometric embeddings of pseudo-Riemannian manifolds

    International Nuclear Information System (INIS)

    Amery, G; Moodley, J

    2014-01-01

    Embeddings into higher dimensions are of direct importance in the study of higher dimensional theories of our Universe, in high energy physics and in classical general relativity. Theorems have been established that guarantee the existence of local and global codimension-1 embeddings between pseudo-Riemannian manifolds, particularly for Einstein embedding spaces. A technique has been provided to determine solutions to such embeddings. However, general solutions have not yet been found and most known explicit solutions are for embedded spaces with relatively simple Ricci curvature. Motivated by this, we have considered isometric embeddings of 4-dimensional pseudo-Riemannian spacetimes into 5-dimensional Einstein manifolds. We have applied the technique to treat specific 4-dimensional cases of interest in astrophysics and cosmology (including the global monopole exterior and Vaidya-de Sitter-class solutions), and provided novel physical insights into, for example, Einstein-Gauss-Bonnet gravity. Since difficulties arise in solving the 5-dimensional equations for given 4-dimensional spaces, we have also investigated embedded spaces, which admit bulks with a particular metric form. These analyses help to provide insight to the general embedding problem

  8. Mental health of a police force: estimating prevalence of work-related depression in Australia without a direct national measure.

    Science.gov (United States)

    Lawson, Katrina J; Rodwell, John J; Noblet, Andrew J

    2012-06-01

    The risk of work-related depression in Australia was estimated based on a survey of 631 police officers. Psychological wellbeing and psychological distress items were mapped onto a measure of depression to identify optimal cutoff points. Based on a sample of police officers, Australian workers, in general, are at risk of depression when general psychological wellbeing is considerably compromised. Large-scale estimation of work-related depression in the broader population of employed persons in Australia is reasonable. The relatively high prevalence of depression among police officers emphasizes the need to examine prevalence rates of depression among Australian employees.

  9. Effect of Isometric Hand Grip Exercises on Blood Flow and Placement of IV Catheters for Administration of Chemotherapy.

    Science.gov (United States)

    Ozkaraman, Ayse; Yesilbalkan, Öznur Usta

    2016-04-01

    Complications may occur in the subcutaneous or subdermal tissues during IV administration of chemotherapy related to blood flow and catheter placement. Daily isometric hand grip exercises were evaluated for their effect on blood flow in the vessels of the nondominant arm before placement of IV catheters and the success rate of IV catheter placement on the first attempt. The study focused on patients with non-Hodgkin lymphoma receiving the first and second cycles of chemotherapy. The intervention group performed daily isometric hand grip exercises before chemotherapy with peripheral catheter insertion. The control group performed routine activities only. Blood flow was measured by ultrasound in the brachial artery (BA) and brachial vein (BV) of the nondominant arm before the first (T1) and second (T2) cycles of chemotherapy. Blood flow slightly increased in the intervention group at T2 compared to T1. In the control group, blood flow decreased in the BA and did not change in the BV at T2 compared to T1. The success rate for first-attempt placement of a peripheral IV catheter was the same for the intervention and control groups.

  10. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.

    Science.gov (United States)

    Krueger, Eddy; Popović-Maneski, Lana; Nohama, Percy

    2018-02-01

    A motor neural prosthesis based on surface functional electrical stimulation (sFES) can restore functional movement (e.g., standing, walking) in patients with a spinal cord injury (SCI). sFES generates muscle contractions in antigravity muscles and allows balance-assisted standing. This induced standing has several benefits, such as improved cardiovascular function, decreased incidence of urinary infections, reduced joint contractures, and muscle atrophy. The duration of sFES assisted standing is limited due to the quick onset of muscle fatigue. Currently, there is no method available to reliably estimate real-time muscle fatigue during sFES. Simply monitoring the M-wave changes is not suitable due to the high signal disturbances that arise during multi-channel electrical stimulation. Mechanomyography (MMG) is immune to electrical stimulation artifacts and can be used to detect subtle vibrations on the surface of the skin related to activation of the underlying muscle's motor units (MU). The aim of this study was to develop a method for detecting muscle fatigue brought on by sFES. The method was tested in three different heads of the quadriceps muscle in SCI patients during electrically elicited quasi-isometric contraction. Six spinal cord-injured male volunteers, with no voluntary control of the quadriceps muscle participated in the study. Electrical bursts of voltage-controlled monophasic square pulses at frequencies of 1 kHz (50% duty cycle) at 50 Hz (15% duty cycle) were used to generate thigh muscle contractions that controlled the knee joint in the sagittal plane. The pulse amplitudes were set to position the knee joint at a 5° angle from the horizontal plane and when the knee angle dropped to 20° (e.g., the quadriceps were unable to hold the lower leg in the desired position), the test was terminated. Two data segments lasting 10 s each, at the beginning and end of each test, were analyzed. The muscle contraction was assessed by MMG sensors positioned on

  11. Motor Unit Number Estimate and Isometric Hand Grip Strength in Military Veterans with or Without Muscular Complaints: Reference Values for Longitudinal Follow-up.

    Science.gov (United States)

    Li, Mian; Yao, Wenguo; Sundahl, Cynthia

    2018-03-26

    It remains unclear if Gulf War (GW) veterans have a higher risk of developing motor neuron disorder. We intended to establish baseline neurophysiological values, including thenar motor unit number estimate (MUNE) and isometric hand grip (IHG) strength, to compare future follow-ups of deployed GW veterans with or without muscular complaints. We evaluated 19 GW veterans with self-reported weakness, cramps, or excessive muscle fatigue (Ill-19) and compared them with 18 controls without such muscular complaints (C-18). We performed MUNE on hand thenar muscles using adapted multipoint stimulation method for Ill-19 and 15 controls (C-15). We measured IHG strength (maximum force, endurance, and fatigue level) on Ill-19 and C-18 with a hand dynamometer. We performed nerve conduction studies on all study participants to determine which subjects had mild carpal tunnel syndrome (CTS). We compared the MUNE and IHG strength measures between Ill group and controls and between those with CTS and those without CTS. We obtained thenar MUNE of Ill-19 (95% CI of mean: 143-215; mean age: 46 yr) and compared it with that of C-15 (95% CI of mean: 161-230; mean age: 45 yr), and 95% of CI of mean among IHG strength variables (maximum force: 324-381 Newton; endurance: 32-42 s; fatigue level: 24%-33%) compared with C-18 (maximum force: 349-408 Newton; endurance: 35-46 s; fatigue level: 21%-27%). There was no significant difference in either MUNE or IHG strength between Ill-19 group and controls. The MUNE and IHG maximum forces were significantly lower in those with CTS compared with those without CTS. As a surrogate of mild CTS, the median versus ulnar distal sensory latency on nerve conduction study was only weakly associated with MUNE, maximum force, and fatigue level, respectively. To our knowledge, no published study on MUNE reference values of military veteran population has been available. The quantifiable values of both thenar MUNE and IHG strength of military veterans serve as

  12. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    Science.gov (United States)

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Acute hormonal and force responses to combined strength and endurance loadings in men and women: the "order effect".

    Directory of Open Access Journals (Sweden)

    Ritva S Taipale

    Full Text Available PURPOSE: To examine acute responses and recovery of serum hormones and muscle force following combined strength (S and endurance (E loading sessions in which the order of exercises is reversed (ES vs. SE. METHODS: This cross-over study design included recreationally endurance trained men and women (age 21-45 years, n = 12 men n = 10 women who performed both loadings. Maximal bilateral isometric strength (MVC, isometric rate of force development (RFD and serum concentrations of testosterone (T, cortisol (C, growth hormone (GH, insulin-like growth factor 1 (IGF-1, binding protein 3 (IGFBP3 and sex hormone binding globulin (SHBG were measured during and after both loadings. RESULTS: Both of the present combined (ES and SE loadings led to a greater acute decrease in MVC in men than in women, while RFD was slightly affected only in men. Recovery of MVC and RFD to baseline was complete at 24 h regardless of the order of exercises. In men, neuromuscular fatigue was accompanied by increased C concentrations observed post SE. This was followed by decreased concentrations of T at 24 h and 48 h that were significantly lower than those observed following ES. GH response in men also differed significantly post loadings. In women, only a significant difference in T between ES and SE loadings was observed at post. CONCLUSION: These observed differences in hormonal responses despite similarities in neuromuscular fatigue in men indicate the presence of an order effect as the body was not fully recovered at 48 h following SE. These findings may be applicable in training prescription in order to optimize specific training adaptations.

  14. Physicists' Forced Migrations under Hitler

    Science.gov (United States)

    Beyerchen, Alan

    2011-03-01

    When the Nazis came to power in early 1933 they initiated formal and informal measures that forced Jews and political opponents from public institutions such as universities. Some physicists retired and others went into industry, but most emigrated. International communication and contact made emigration a viable option despite the desperate economic times in the Great Depression. Another wave of emigrations followed the annexation of Austria in 1938. Individual cases as well as general patterns of migration and adaptation to new environments will be examined in this presentation. One important result of the forced migrations was that many of the physicists expelled under Hitler played important roles in strengthening physics elsewhere, often on the Allied side in World War II.

  15. The integration of depressive behaviors and cardiac dysfunction during an operational measure of depression: investigating the role of negative social experiences in an animal model.

    Science.gov (United States)

    Grippo, Angela J; Moffitt, Julia A; Sgoifo, Andrea; Jepson, Amanda J; Bates, Suzanne L; Chandler, Danielle L; McNeal, Neal; Preihs, Kristin

    2012-01-01

    There is a bidirectional association between depression and cardiovascular disease. The neurobiological mechanisms underlying this association may involve an inability to cope with disrupted social bonds. This study investigated in an animal model the integration of depressive behaviors and cardiac dysfunction after a disrupted social bond and during an operational measure of depression, relative to the protective effects of intact social bonds. Depressive behaviors in the forced swim test and continuous electrocardiographic parameters were measured in 14 adult, female socially monogamous prairie voles (rodents), after 4 weeks of social pairing or isolation. After social isolation, animals exhibited (all values are mean ± standard error of the mean; isolated versus paired, respectively) increased heart rate (416 ± 14 versus 370 ± 14 bpm, p sibling is behaviorally protective and cardioprotective. The present results can provide insight into a possible social mechanism underlying the association between depression and cardiovascular disease in humans.

  16. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    OpenAIRE

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role ...

  17. Control Of Motor Unit Firing During Step-Like Increases In Voluntary Force

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu

    2014-09-01

    Full Text Available In most skeletal muscles, force is generated by a combination of motor unit (MU recruitment and increases in the firing rate of previously active MUs. Two contrasting patterns of firing rate organization have been reported. In the first pattern, the earliest recruited MUs reach the highest firing rates as force is increased, and later recruited MUs fire at lower rates. When firing rate of multiple MUs are superimposed, these rate trajectories form a concentric layered profile termed ‘onion skin’. In the second pattern, called ‘reverse onion skin’, later recruited MUs reach higher firing rates, and crossing of firing rate trajectories for recorded MUs is common (although such trajectories are assembled routinely from different trials. Our present study examined the firing rate organization of concurrently active MUs of the first dorsal interosseous muscle during serial, step-like increases in isometric abduction forces. We used a surface sensor array coupled with MU discrimination algorithms to characterize MU firing patterns. Our objective was to determine whether ‘onion skin’ profiles are contingent upon the force trajectory of the motor task, examined here using step-like increases of force output, and also whether they are manifested at different force levels.Our results revealed that the overall ‘onion skin’ firing rate profile was retained as the force level increased with each force step up to 15% MVC. However, the distribution of firing rates across MUs was compressed with increasing force, and overlapping firing rate of units were observed. This rate compression was largely due to rate saturation of the relatively high frequency discharging MUs.Our results reflect flexible firing patterns across MUs at different levels of excitation drive. It is also evident that many units did not follow all the step increases consistently. This failure to track firing rate increases at higher forces could be due to an intrinsically

  18. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  19. Muscle Fatigue in the Three Heads of the Triceps Brachii During a Controlled Forceful Hand Grip Task with Full Elbow Extension Using Surface Electromyography.

    Science.gov (United States)

    Ali, Asraf; Sundaraj, Kenneth; Badlishah Ahmad, R; Ahamed, Nizam Uddin; Islam, Anamul; Sundaraj, Sebastian

    2015-06-27

    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.

  20. Antidepressant behavioral effects of duloxetine and fluoxetine in the rat forced swimming test.

    Science.gov (United States)

    Ciulla, Leandro; Menezes, Honório Sampaio; Bueno, Bárbara Beatriz Moreira; Schuh, Alexandre; Alves, Rafael José Vargas; Abegg, Milena Pacheco

    2007-01-01

    To compare the effects of the antidepressant drugs duloxetine and fluoxetine on depressive behaviors in rodents. Eighteen male Wistar rats were given systemic injections of duloxetine, fluoxetine, or saline prior to a Forced Swimming Test (FST). Immobility and number of stops were measured. Rats given injections of fluoxetine displayed significantly less immobility (p = 0.02) and fewer stops than the control group (p = 0.003). Duloxetine significantly reduced the number of stops (p = 0.003), but did not effect immobility (p = 0.48). Duloxetine and fluoxetine reduced depressive behaviors in the Forced FST. However, our findings suggest that fluoxetine is more effective than duloxetine.

  1. Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm

    Science.gov (United States)

    Supinski, Gerald S.; Kelsen, Steven G.

    1982-01-01

    The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (La

  2. Association of work-related stress with mental health problems in a special police force unit.

    Science.gov (United States)

    Garbarino, Sergio; Cuomo, Giovanni; Chiorri, Carlo; Magnavita, Nicola

    2013-01-01

    Law and order enforcement tasks may expose special force police officers to significant psychosocial risk factors. The aim of this work is to investigate the relationship between job stress and the presence of mental health symptoms while controlling sociodemographical, occupational and personality variables in special force police officers. At different time points, 292 of 294 members of the 'VI Reparto Mobile', a special police force engaged exclusively in the enforcement of law and order, responded to our invitation to complete questionnaires for the assessment of personality traits, work-related stress (using the Demand-Control-Support (DCS) and the Effort-Reward-Imbalance (ERI) models) and mental health problems such as depression, anxiety and burnout. Regression analyses showed that lower levels of support and reward and higher levels of effort and overcommitment were associated with higher levels of mental health symptoms. Psychological screening revealed 21 (7.3%) likely cases of mild depression (Beck Depression Inventory, BDI≥10). Officers who had experienced a discrepancy between work effort and rewards showed a marked increase in the risk of depression (OR 7.89, 95% CI 2.32 to 26.82) when compared with their counterparts who did not perceive themselves to be in a condition of distress. The findings of this study suggest that work-related stress may play a role in the development of mental health problems in police officers. The prevalence of mental health symptoms in the cohort investigated here was low, but not negligible in the case of depression. Since special forces police officers have to perform sensitive tasks for which a healthy psychological functioning is needed, the results of this study suggest that steps should be taken to prevent distress and improve the mental well-being of these workers.

  3. Individualized measurement of irrational beliefs in remitted depressives.

    Science.gov (United States)

    Solomon, Ari; Arnow, Bruce A; Gotlib, Ian H; Wind, Brian

    2003-04-01

    Recent reviews of cognitive theories of depression have noted that individualized assessment strategies might help to resolve mixed findings regarding the stability of depressotypic beliefs and attitudes. We describe encouraging results for an individualized measure of one such cognitive construct, irrational beliefs. Twenty depression-prone women (recurrent major depressives in full remission) and twenty closely matched never-depressed controls completed leading forced-choice measures of irrational beliefs (the Belief Scale; BS) and sociotropy-autonomy (The Revised Personal Style Inventory), as well as the Specific Demands on Self Scale (SDS). The BS requires participants to rate their agreement with twenty preselected statements of irrational beliefs, while the SDS focuses on whether participants harbor any strongly held irrational beliefs, even if uncommon or idiosyncratic. Consistent with previous research, there were no group differences on the traditional measure of irrational beliefs. In contrast, depression-prone participants strongly exceeded controls on the SDS, and this difference persisted after controlling for residual depression, anxiety symptoms, anxiety diagnoses, sociotropy, and autonomy. These findings provide some initial support for a key assumption of the rational-emotive model of depression, and, more broadly, suggest that individualized assessment strategies may help researchers capture the core negative beliefs of asymptomatic individuals, even in the absence of mood or cognitive priming. Copyright 2003 Wiley Periodicals, Inc. J Clin Psychol 59: 439-455, 2003.

  4. Increased palpation tenderness and muscle strength deficit in the prediction of tendon hypertrophy in symptomatic unilateral shoulder tendinopathy: an ultrasonographic study

    DEFF Research Database (Denmark)

    Joensen, J.; Couppe, C.; Bjordal, J.M.

    2009-01-01

    . The observer was blinded in the maximal pain-free isometric force test. Setting Outpatient physiotherapy clinic at Bergen University College, Norway. Participants Sixty-four patients with an exclusive, tentative diagnosis of unilateral shoulder tendinopathy. Main outcome measures Differences in maximal pain......-free isometric force, tendon pain pressure and tendon thickness measured by ultrasonography. Results This paper follows the STARD recommendations for papers on diagnostic accuracy. When cut-off values for within-subject side differences were selected at >= 0.8 mm for tendon thickness (TTdiff), >= 10 N...... for maximal pain-free isometric force (PFFdiff) and >= 0.6 kg for tendon pain pressure (PPTdiff), positive tests were found in 92% of patients. All three tests were sensitive for the detection of within-subject side differences with the selected cut-off values (TTdiff, n = 60/64; PPTdiff, n = 59/64 PFFdiff, n...

  5. Animal models as tools to study the pathophysiology of depression

    Directory of Open Access Journals (Sweden)

    Helena M. Abelaira

    2013-01-01

    Full Text Available The incidence of depressive illness is high worldwide, and the inadequacy of currently available drug treatments contributes to the significant health burden associated with depression. A basic understanding of the underlying disease processes in depression is lacking; therefore, recreating the disease in animal models is not possible. Popular current models of depression creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology. Within this context, this study aims to evaluate animal models of depression and determine which has the best face, construct, and predictive validity. These models differ in the degree to which they produce features that resemble a depressive-like state, and models that include stress exposure are widely used. Paradigms that employ acute or sub-chronic stress exposure include learned helplessness, the forced swimming test, the tail suspension test, maternal deprivation, chronic mild stress, and sleep deprivation, to name but a few, all of which employ relatively short-term exposure to inescapable or uncontrollable stress and can reliably detect antidepressant drug response.

  6. Anhedonia but not passive floating is an indicator of depressive-like behavior in two chronic stress paradigms.

    Science.gov (United States)

    Stepanichev, Mikhail Yu; Tishkina, Anna O; Novikova, Margarita R; Levshina, Irina P; Freiman, Sofiya V; Onufriev, Mikhail V; Levchenko, Olga A; Lazareva, Natalia A; Gulyaeva, Natalia V

    2016-01-01

    Depression is the most common form of mental disability in the world. Depressive episodes may be precipitated by severe acute stressful events or by mild chronic stressors. Studies on the mechanisms of depression require both appropriate experimental models (most of them based on the exposure of animals to chronic stressors), and appropriate tests for assessment of depressive states. In this study male Wistar rats were exposed to two different chronic stress paradigms: an eight-week chronic unpredictable mild stress or a two-week combined chronic stress. The behavioral effects of stress were evaluated using sucrose preference, forced swim and open field tests. After the exposure to chronic unpredictable mild stress, anhedonia was developed, activity in the open field increased, while no changes in the duration of passive floating could be detected. After chronic combined stress, anhedonia was also evident, whereas behavior in the open field and forced swim test did not change. The levels of corticosterone in the blood and brain structures involved in stress-response did not differ from control in both experiments. The absence of significant changes in corticosterone levels and passive floating may be indicative of the adaptation of animals to chronic stress. Anhedonia appears to be a more sensitive indicator of depressive-like behavioral effects of chronic stress as compared to behavior in the forced swim or open field tests.

  7. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    Science.gov (United States)

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt.

  8. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres

    Science.gov (United States)

    Vandenboom, R; Claflin, D R; Julian, F J

    1998-01-01

    The effect of rapid shortening on rate of force regeneration (dF/dtR) was examined in single, intact frog (Rana temporaria) skeletal muscle fibres (3·0 °C). Step releases leading to unloaded shortening were applied after 500 ms of stimulation, during the plateau of an isometric tetanus. Initial mean sarcomere length ranged from 2·05 to 2·35 μm; force regeneration after shortening was at 2·00 μm.Values for dF/dtR following a 25 nm half-sarcomere−1 release were 3·17 ± 0·17 (mean ± s.e.m., n= 8) times greater than the initial rate of rise of force before release (dF/dtI). As release size was increased from 25 to 175 nm half-sarcomere−1, the relationship between release size and dF/dtR decreased sharply before attaining a plateau value that was 1·34 ± 0·09 times greater than dF/dtI. Despite wide variations in dF/dtR, the velocity of unloaded shortening remained constant (2·92 ± 0·08 μm half-sarcomere−1 s−1; n= 8) for the different release amplitudes used in this study.To investigate its role in the attenuation of dF/dtR with increased shortening, the effects of rapid ramp (constant velocity) shortening on intracellular free Ca2+ concentration ([Ca2+]i) were monitored using the Ca2+-sensitive fluorescent dye furaptra. Compared with an isometric contraction, rapid fibre shortening was associated with a transient increase in [Ca2+]i while force regeneration after shortening was associated with a transient reduction in [Ca2+]i. The greatest reductions in [Ca2+]i were associated with the largest amplitude ramps.Cross-bridge-mediated modifications of the Ca2+ affinity of troponin C (TnC) may explain the fluctuations in [Ca2+]i observed during and after ramps. Associated fluctuations in TnC Ca2+ occupancy could play a role in the reduction of dF/dtR with increasing release size. PMID:9679172

  9. Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice.

    Science.gov (United States)

    Adebesin, Adaeze; Adeoluwa, Olusegun A; Eduviere, Anthony T; Umukoro, Solomon

    2017-11-01

    Depression is a recurrent neuropsychiatric disorder that affects millions of individuals worldwide and impact negatively on the patients' social functions and quality of life. Studies have shown that i.p injection of lipopolysaccharide (LPS) induces depressive-like behavior in rodents via induction of oxidative stress and neuroinflammation. Methyl jasmonate (MJ), an isolated compound from jasmine plant has gained reputation in aromatherapy for treatment of depression, nervousness and memory deficits. This study was designed to evaluate the effects of MJ on LPS-induced depressive-like behavior in mice. Mice were given MJ (5-20 mg/kg), imipramine (10 mg/kg) or vehicle (10 mL/kg) intraperitoneally for 7 consecutive days. On day 7, treatment was carried out 30 min prior to i.p injection of LPS (830 μg/kg). Twenty four hours after LPS administration, tail suspension, forced swim and sucrose preference tests were carried out. Thereafter, serum corticosterone levels were determined using ELISA. The levels of malondialdehyde (MDA), glutathione (GSH) and tumor necrosis factor-alpha (TNF-α) were determined in brain tissue homogenates. LPS significantly increased immobility time in the tail suspension and forced swim tests when compared with vehicle (p < 0.05), which indicates depressive-like syndromes. However, the increased immobility time was significantly reduced by MJ (5-20 mg/kg) when compared with LPS-treated group. LPS administration also altered the levels of MDA, GSH, corticosterone and TNF alpha in mice, which was significantly reversed by MJ. These findings suggest that attenuation of LPS-induced depressive-like behavior by MJ may be related to suppression of oxidative stress and release of TNF alpha. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  11. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure.

    OpenAIRE

    Buller, N P; Jones, D; Poole-Wilson, P A

    1991-01-01

    Skeletal muscle function was measured as force production and fatigue in both the quadriceps (a large locomotive muscle) and adductor pollicis (a small intrinsic hand muscle) in five healthy volunteers, five patients with mild chronic heart failure, and five patients with severe chronic heart failure. The quadriceps of patients with chronic heart failure had a reduced muscle cross sectional area, a reduced maximum isometric force production, and an increased tendency to fatigue. Isometric for...

  12. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  13. Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm.

    Directory of Open Access Journals (Sweden)

    Stanisław Sterkowicz

    Full Text Available Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent's clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1 maximum isometric handgrip strength (HGSmax and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax and 2 the balance of 13 judo athletes at national (n = 8 and international (n = 5 competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI and body composition (JAWON were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer and balance (biplate balance platform were measured before warm-up (T1, before the WAnT test (T2, and after (T3. Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1, athletes showed higher strength (more divergent from the calculated ½HGSmax value compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

  14. Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm.

    Science.gov (United States)

    Sterkowicz, Stanisław; Jaworski, Janusz; Lech, Grzegorz; Pałka, Tomasz; Sterkowicz-Przybycień, Katarzyna; Bujas, Przemysław; Pięta, Paweł; Mościński, Zenon

    2016-01-01

    Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent's clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1) maximum isometric handgrip strength (HGSmax) and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax) and 2) the balance of 13 judo athletes at national (n = 8) and international (n = 5) competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI) and body composition (JAWON) were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E) measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer) and balance (biplate balance platform) were measured before warm-up (T1), before the WAnT test (T2), and after (T3). Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI) than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1), athletes showed higher strength (more divergent from the calculated ½HGSmax value) compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

  15. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model.

    Science.gov (United States)

    Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter

    2015-01-01

    The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

  16. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Kwon, Minhyuk; Mohanty, Suman; Schmitt, Lauren M; White, Stormi P; Christou, Evangelos A; Mosconi, Matthew W

    2017-03-25

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.

  17. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness.

    Science.gov (United States)

    Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian

    2008-03-01

    This study independently examined the effects of three hydrotherapy interventions on the physiological and functional symptoms of delayed onset muscle soreness (DOMS). Strength trained males (n = 38) completed two experimental trials separated by 8 months in a randomised crossover design; one trial involved passive recovery (PAS, control), the other a specific hydrotherapy protocol for 72 h post-exercise; either: (1) cold water immersion (CWI: n = 12), (2) hot water immersion (HWI: n = 11) or (3) contrast water therapy (CWT: n = 15). For each trial, subjects performed a DOMS-inducing leg press protocol followed by PAS or one of the hydrotherapy interventions for 14 min. Weighted squat jump, isometric squat, perceived pain, thigh girths and blood variables were measured prior to, immediately after, and at 24, 48 and 72 h post-exercise. Squat jump performance and isometric force recovery were significantly enhanced (P < 0.05) at 24, 48 and 72 h post-exercise following CWT and at 48 and 72 h post-exercise following CWI when compared to PAS. Isometric force recovery was also greater (P < 0.05) at 24, 48, and 72 h post-exercise following HWI when compared to PAS. Perceived pain improved (P < 0.01) following CWT at 24, 48 and 72 h post-exercise. Overall, CWI and CWT were found to be effective in reducing the physiological and functional deficits associated with DOMS, including improved recovery of isometric force and dynamic power and a reduction in localised oedema. While HWI was effective in the recovery of isometric force, it was ineffective for recovery of all other markers compared to PAS.

  18. Reliability of Ultrasonographic Measurement of Cervical Multifidus Muscle Dimensions during Isometric Contraction of Neck Muscles

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri Arimi

    2012-07-01

    Full Text Available Background and Aim: Cervical multifidus is considered as one of the most important neck stabilizers. Weakness and muscular atrophy of this muscle were seen in patients with chronic neck pain. Ultrasonographic imaging is a non-invasive and feasible technique that commonly used to record such changes and measure muscle dimensions. Therefore, the aim of this study was to evaluate the reliability of ultrasonographic measurement of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles. Materials and Method: Ten subjects (5 patients with chronic neck pain and 5 healthy subjects were recruited in this study. Cervical multifidus muscle’s dimensions were measured at the level of forth cervical vertebrae. Ultrasonographic measurement of cervical multifidus muscle at rest, 50% and 100% of maximal voluntary contraction (MVC were performed by one examiner within 1 week interval. The dimensions of cervical multifidus muscle including cross-sectional area (CSA, anterior posterior dimension (APD, and lateral dimension (LD were measured. Intraclass correlation coefficients (ICC, standard error of measurement (SEM and minimal detectable change (MDC were computed for data analysis.Results: The between days reliability of maximum strength of neck muscles and multifidus muscle dimensions at rest, 50% and 100% of MVC of neck muscles were good to excellent (ICC=0.75-0.99.Conclusion: The results of this study showed that ultrasonographic measuring of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles at the level of C4 in females with chronic neck pain and healthy subjects is a reliable and repeatable method.

  19. Proton Density Fat-Fraction of Rotator Cuff Muscles Is Associated With Isometric Strength 10 Years After Rotator Cuff Repair: A Quantitative Magnetic Resonance Imaging Study of the Shoulder.

    Science.gov (United States)

    Karampinos, Dimitrios C; Holwein, Christian; Buchmann, Stefan; Baum, Thomas; Ruschke, Stefan; Gersing, Alexandra S; Sutter, Reto; Imhoff, Andreas B; Rummeny, Ernst J; Jungmann, Pia M

    2017-07-01

    Quantitative muscle fat-fraction magnetic resonance (MR) imaging techniques correlate with semiquantitative Goutallier scores with failure after rotator cuff (RC) repair. To investigate the relationship of proton density fat fraction (PDFF) of the RC muscles with semiquantitative MR scores, cartilage T2 relaxation times, and clinical isometric strength measurements in patients 10 years after unilateral RC repair. Cross-sectional study; Level of evidence, 3. Bilateral shoulder MR imaging was performed in 13 patients (11 male, 2 female; age, 72 ± 8 years) 10.9 ± 0.4 years after unilateral autologous periosteal flap augmented RC repair (total shoulders assessed, N = 26). Goutallier classification, muscle atrophy, RC tendon integrity, and cartilage defects were determined based on morphological MR sequences. A paracoronal 2D multi-slice multi-echo sequence was used for quantitative cartilage T2 mapping. A chemical shift-encoding-based water-fat separation technique (based on a 6-echo 3D spoiled gradient echo sequence) was used for quantification of the PDFF of RC muscles. Isometric shoulder abduction strength was measured clinically. Mean and SD, Pearson correlation, and partial Spearman correlation were calculated. There were 6 RC full-thickness retears in ipsilateral shoulders and 6 RC full-thickness tears in contralateral shoulders. Isometric shoulder abduction strength was not significantly different between ipsilateral and contralateral shoulders (50 ± 24 N vs 54 ± 24 N; P = .159). The mean PDFF of RC muscles was 11.7% ± 10.4% (ipsilateral, 14.2% ± 8.5%; contralateral, 9.2% ± 7.8%; P = .002). High supraspinatus PDFF correlated significantly with higher Goutallier scores ( R = 0.75, P isometric muscle strength ( R = -0.49, P = .011). This correlation remained significant after adjustment for muscle area measurements and tendon rupture ( R = -0.41, P = .048). More severe cartilage defects at the humerus were significantly associated with higher supraspinatus

  20. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Science.gov (United States)

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  2. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    Science.gov (United States)

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p strength was significantly higher during condition 3 than during condition 1 (p isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Henningsen, Kim; Bate, Simon

    2011-01-01

    Smoking rates among depressed individuals are higher than is observed in the background population, and nicotine alleviates depressive symptoms. In rodents, nicotine shows antidepressant-like effects in the forced swim and learned helplessness paradigms. Clinical depression is associated with both...... anhedonia and cognitive impairments. In rats, chronic mild stress (CMS) decreases voluntary sucrose intake, reflecting an anhedonic-like state, and impairs performance in the spontaneous alternation behaviour (SAB) test, suggesting impaired cognitive function. Here, we examine the effect of chronic...... with depression....

  4. Comparison of depression symptoms between primary depression and secondary-to-schizophrenia depression.

    Science.gov (United States)

    Rahim, Twana; Rashid, Roshe

    2017-11-01

    This study exclusively aimed to clinically assess which symptom pattern discriminates primary depression from depression-secondary to-schizophrenia. A total of 98 patients with primary depression and 71 patients with secondary-to-schizophrenia depression were assessed for identifying the clinical phenomena of depression. Diagnosis of schizophrenia was confirmed by Mini International Neuropsychiatric Interview. Each participant was, however, assessed by Patient Health Questionnaire-9 as well as Calgary Depression Scale for Schizophrenia (CDSS) for possible concurrent depressive symptoms. Depressed mood, loss of interest, reduced energy and pathological guilt were more common in primary depression, whereas sleep disturbance and guilty ideas of reference were more amounting towards the diagnosis of depression secondary-to-schizophrenia. It is clinically hard to differentiate primary from secondary-to-schizophrenia depression, especially in the absence of obvious psychotic symptoms. However, the classical symptoms of depression like subjective depressed mood, anhedonia, reduced energy and pathological guilt are more prominent in the primary depression.

  5. Anti-neuropeptide Y plasma immunoglobulins in relation to mood and appetite in depressive disorder.

    Science.gov (United States)

    Garcia, Frederico D; Coquerel, Quentin; do Rego, Jean-Claude; Cravezic, Aurore; Bole-Feysot, Christine; Kiive, Evelyn; Déchelotte, Pierre; Harro, Jaanus; Fetissov, Sergueï O

    2012-09-01

    Depression and eating disorders are frequently associated, but the molecular pathways responsible for co-occurrence of altered mood, appetite and body weight are not yet fully understood. Neuropeptide Y (NPY) has potent antidepressant and orexigenic properties and low central NPY levels have been reported in major depression. In the present study, we hypothesized that in patients with major depression alteration of mood, appetite and body weight may be related to NPY-reactive autoantibodies (autoAbs). To test this hypothesis, we compared plasma levels and affinities of NPY-reactive autoAbs between patients with major depression and healthy controls. Then, to evaluate if changes of NPY autoAb properties can be causally related to altered mood and appetite, we developed central and peripheral passive transfer models of human autoAbs in mice and studied depressive-like behavior in forced-swim test and food intake. We found that plasma levels of NPY IgG autoAbs were lower in patients with moderate but not with mild depression correlating negatively with the Montgomery-Åsberg Depression Rating Scale scores and with immobility time of the forced-swim test in mice after peripheral injection of autoAbs. No significant differences in NPY IgG autoAb affinities between patients with depression and controls were found, but higher affinity of IgG autoAbs for NPY was associated with lower body mass index and prevented NPY-induced orexigenic response in mice after their central injection. These data suggest that changes of plasma levels of anti-NPY autoAbs are relevant to altered mood, while changes of their affinity may participate in altered appetite and body weight in patients with depressive disorder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. CHARACTER OF THE CHANGES IN FEAR MOTIVATED DECLARATIVE MEMORY IN THE HIGH IMMOBILIZATION "DEPRESSIVE" RATS.

    Science.gov (United States)

    Nachkebia, N; Shavgulidze, M; Babilodze, M; Chkhartishvili, E; Rogava, N

    2016-10-01

    Present study investigated possible differences in the learning and memory of declarative memory task in rats selected according to the differences in immobilization response that is in high immobilization "depressive" and low immobilization "non-depressive" rats. Understanding the character of learning and memory disturbances in basal conditions of animal models of depression is still very topical for more intimate definition of the pathophysiology of major depressive disorder and appropriate searching the ways of its correction. Experiments were carried out on the adult white wild rats (with the weight 200-250 g, n=20). Selection of rats according to the level of immobilization was made by means of forced swim test. Learning and memory disturbances were studied using passive avoidance test that is fear motivated one trial declarative memory task. It was shown by us that 100% of low immobilization "non-depressive" rats remember painful stimulation and therefore they are not enter in the dark compartment during whole period of observation during testing session. Behavior of high immobilization "depressive" rats is not similar in passive avoidance camera; 50% of "depressive" rats, with long escape latency during training session (92±10 sec), remember painful stimulation during testing session and therefore they are not enter in the dark compartment during whole observation period. The remaining 50%, that are not differ significantly from the low immobility "non-depressive" rats by the latency of escape (5±1 sec) during training session, are not able to remember painful stimulation during testing session and therefore they enter in the dark compartment with shortest escape latency (6±1 sec). In conclusion, high immobility "depressive" rats perform passive avoidance declarative memory task at the chance level that is a direct indicator for the serious disturbances of declarative memory mechanisms in "depressive" rats selected in forced swim test according to the

  7. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  8. Comparison of lumbar force between pubertal and post-pubertal adolescents: interference of physical growth, body fat and lifestyle.

    Directory of Open Access Journals (Sweden)

    Mikael Seabra Moraes

    2018-01-01

    Full Text Available Abstract Aim: To compare performance in the lumbar force test in pubertal and post-pubertal adolescents by controlling the interference of physical growth, body fat, screen time and physical activity. Methods: A cross-sectional study with 933 adolescents (492 girls aged 14-19 from the city of São José, Brazil. Lumbar strength was assessed using the isometric lumbar extension test proposed by the Canadian Society of Exercise Physiology. Sexual maturation was classified according to Tanner’s criteria. Physical growth variables (age, body weight, stature, BMI, body fat (triceps and subscapular skinfolds, sedentary behavior based on screen time and overall physical activity were controlled in the Analysis of Covariance (ANCOVA, with a significance level of 5%. Results: Post-pubertal boys presented higher lumbar force compared to pubertal ones only when interference of BMI, body fat, screen time and physical activity was controlled. Pubertal girls presented higher lumbar force compared to post-pubertal ones, both when controlling the analysis for the studied variables and when not controlled by them. Conclusion: BMI, body fat, screen time and physical activity interfere in the difference in lumbar strength of boys, in which post-pubertal boys presented better performance in lumbar force compared to pubertal ones. Regardless of interference or not of these variables, pubertal girls presented better performance in lumbar force when compared to post-pubertal ones.

  9. Occipital bending in depression.

    Science.gov (United States)

    Maller, Jerome J; Thomson, Richard H S; Rosenfeld, Jeffrey V; Anderson, Rodney; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2014-06-01

    There are reports of differences in occipital lobe asymmetry within psychiatric populations when compared with healthy control subjects. Anecdotal evidence and enlarged lateral ventricles suggests that there may also be a different pattern of curvature whereby one occipital lobe wraps around the other, termed 'occipital bending'. We investigated the prevalence of occipital bending in 51 patients with major depressive disorder (males mean age = 41.96 ± 14.00 years, females mean age = 40.71 ± 12.41 years) and 48 age- and sex-matched healthy control subjects (males mean age = 40.29 ± 10.23 years, females mean age = 42.47 ± 14.25 years) and found the prevalence to be three times higher among patients with major depressive disorder (18/51, 35.3%) when compared with control subjects (6/48, 12.5%). The results suggest that occipital bending is more common among patients with major depressive disorder than healthy subjects, and that occipital asymmetry and occipital bending are separate phenomena. Incomplete neural pruning may lead to the cranial space available for brain growth being restricted, or ventricular enlargement may exacerbate the natural occipital curvature patterns, subsequently causing the brain to become squashed and forced to 'wrap' around the other occipital lobe. Although the clinical implications of these results are unclear, they provide an impetus for further research into the relevance of occipital bending in major depression disorder. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Depression (Major Depressive Disorder)

    Science.gov (United States)

    ... generally miserable or unhappy without really knowing why. Depression symptoms in children and teens Common signs and ... in normal activities, and avoidance of social interaction. Depression symptoms in older adults Depression is not a ...

  11. Fast and Powerful: Biomechanics and Bite Forces of the Mandibles in the American Cockroach Periplaneta americana.

    Directory of Open Access Journals (Sweden)

    Tom Weihmann

    Full Text Available Knowing the functionality and capabilities of masticatory apparatuses is essential for the ecological classification of jawed organisms. Nevertheless insects, especially with their outstanding high species number providing an overwhelming morphological diversity, are notoriously underexplored with respect to maximum bite forces and their dependency on the mandible opening angles. Aiming for a general understanding of insect biting, we examined the generalist feeding cockroach Periplaneta americana, characterized by its primitive chewing mouth parts. We measured active isometric bite forces and passive forces caused by joint resistance over the entire mandibular range with a custom-built 2D force transducer. The opening angle of the mandibles was quantified by using a video system. With respect to the effective mechanical advantage of the mandibles and the cross-section areas, we calculated the forces exerted by the mandible closer muscles and the corresponding muscle stress values. Comparisons with the scarce data available revealed close similarities of the cockroaches' mandible closer stress values (58 N/cm2 to that of smaller specialist carnivorous ground beetles, but strikingly higher values than in larger stag beetles. In contrast to available datasets our results imply the activity of faster and slower muscle fibres, with the latter becoming active only when the animals chew on tough material which requires repetitive, hard biting. Under such circumstances the coactivity of fast and slow fibres provides a force boost which is not available during short-term activities, since long latencies prevent a specific effective employment of the slow fibres in this case.

  12. Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny.

    Science.gov (United States)

    Habegger, Maria L; Motta, Philip J; Huber, Daniel R; Dean, Mason N

    2012-12-01

    Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73-285cm total length). Theoretical bite force ranged from 36 to 2128N at the most anterior bite point, and 170 to 5914N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible

  13. Administration of venlafaxine after chronic methadone detoxification blocks post-depression relapse in rats

    Directory of Open Access Journals (Sweden)

    Meysam Fadaei-Kenarsary

    2017-08-01

    Full Text Available ABSTRACT Relapse is highly prevalent after detoxification and depression. Due to the advantages of venlafaxine compared with other antidepressants, it is expected that venlafaxine administration may reduce relapse after detoxification and depression. This study aimed to evaluate the effects of venlafaxine on depression-induced relapse to morphine dependence after methadone detoxification. Eighty Sprague-Dawley rats were habituated and conditioned with morphine (10 mg/kg, S.C., for 4 days. After that, primary forced swimming and conditioned place preference (CPP were tested. They were followed by methadone (70 mg/kg/day, P.O., for 7 days administration, extinguishing, forced swimming stress (FSS and administration of venlafaxine (80 mg/kg/day, I.P., for 7 days. Finally same tests were performed. Administration of venlafaxine resulted in a decrement in final preference scores associated with a prime morphine injection (PMI compared to the primary scores in methadone treated (MTD+ animals. In a swimming test, venlafaxine increased the amount of final floating and decreased final activity scores compared with the primary scores after administration of methadone. Venlafaxine reduced locomotor activity in MTD+ animals in the final test with PMI. There was a positive correlation between the final activity and preference scores after PMI. In conclusion, venlafaxine improved anxiety and depression-induced relapse on methadone detoxified rats.

  14. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

    Science.gov (United States)

    Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model

  15. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin......-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development...... of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative...

  16. Specificity of interpretation and judgemental biases in social phobia versus depression.

    Science.gov (United States)

    Voncken, M J; Bögels, S M; Peeters, F

    2007-09-01

    A body of studies shows that social phobia is characterized by content specific interpretation and judgmental biases. That is, they show bias in social situations but not in non-social situations. Comorbid depression, one of the major comorbid disorders in social phobia, might account for these biases in social phobia since depression also is characterized by cognitive distortions in social situations. This study hypothesized that, despite comorbid depression, patients with social phobia would suffer from contentspecific biases. Participants filled out the Interpretation and Judgmental Questionnaire (IJQ) to assess interpretation bias (using open-ended responses and forced-interpretations) and judgmental bias in social and non-social situations. Four groups participated: social phobic patients with high (N=38) and low (N=47) depressive symptoms, depressed patients (N=22) and normal controls (N=33). We found both social phobic groups to interpret social situations more negatively and judge social situations as more threatening than non-social situations relative to depressed patients and normal controls. As expected, depressive symptoms related to increased general interpretation and judgmental biases across social and non-social situations. In contrast to expectations, we did not find these patterns for the open-ended measure of interpretation bias. The content-specific biases for social situations distinguished social phobic patients from depressive patients. This speaks for the importance of establishing the primary diagnosis in patients with mixed depression and social anxiety complaints.

  17. Depressive realism and clinical depression.

    Science.gov (United States)

    Carson, Richard C; Hollon, Steven D; Shelton, Richard C

    2010-04-01

    Depressive realism suggests that depressed individuals make more accurate judgments of control than their nondepressed counterparts. However, most studies demonstrating this phenomenon were conducted in nonclinical samples. In this study, psychiatric patients who met criteria for major depressive disorder underestimated control in a contingent situation and were consistently more negative in their judgments than were nondepressed controls. Depressed patients were less likely than their nondepressed counterparts to overestimate control in a noncontingent situation, but largely because they perceived receiving less reinforcement. Depressed patients were no more likely to use the appropriate logical heuristic to generate their judgments of control than their nondepressed counterparts and each appeared to rely on different primitive heuristics. Depressed patients were consistently more negative than their nondepressed counterparts and when they did appear to be more "accurate" in their judgments of control (as in the noncontingent situation) it was largely because they applied the wrong heuristic to less accurate information. These findings do not support the notion of depressive realism and suggest that depressed patients distort their judgments in a characteristically negative fashion. 2009 Elsevier Ltd. All rights reserved.

  18. Isometric embeddings of 2-spheres by embedding flow for applications in numerical relativity

    International Nuclear Information System (INIS)

    Jasiulek, Michael; Korzyński, Mikołaj

    2012-01-01

    We present a numerical method for solving Weyl's embedding problem which consists in finding a global isometric embedding of a positively curved and positive-definite spherical 2-metric into the Euclidean 3-space. The method is based on a construction introduced by Weingarten and was used in Nirenberg's proof of Weyl's conjecture. The target embedding results as the endpoint of an embedding flow in R 3 beginning at the unit sphere's embedding. We employ spectral methods to handle functions on the surface and to solve various (non)linear elliptic PDEs. The code requires no additional input or steering from the operator and its convergence is guaranteed by the Nirenberg arguments. Possible applications in 3 + 1 numerical relativity range from quasi-local mass and momentum measures to coarse-graining in inhomogeneous cosmological models. (paper)

  19. Psychiatric and physical sequelae of childhood physical and sexual abuse and forced sexual trauma among individuals with serious mental illness.

    Science.gov (United States)

    Subica, Andrew M

    2013-10-01

    Trauma and posttraumatic stress disorder (PTSD) frequently co-occur with serious mental illness, yet the unique mental and physical health influences of childhood physical abuse (CPA), childhood sexual abuse (CSA), and forced sexual trauma on individuals with serious mental illness remain unevaluated. The present study of 172 individuals with serious mental illness investigated the adverse effects of CPA, CSA, and forced sexual trauma on severity of PTSD and depression, and overall mental and physical health functioning. Data analysis consisted of chi-square tests, independent t tests, bivariate odds ratios, and linear regressions. Prevalence of CPA (44.8%), CSA (29.1%), and forced sexual trauma (33.1%) were elevated, and nearly one third of participants (31.4%) reported clinical PTSD. Participants exposed to CSA or forced sexual trauma evidenced bivariate ORs ranging from 4.13 to 7.02 for PTSD, 2.44 to 2.50 for major depression, and 2.14 to 2.31 for serious physical illness/disability. Sexual trauma exposure associated with heightened PTSD and depression, and reduced mental and physical health functioning, with CSA uniquely predicting PTSD, depression, and physical health difficulties. CPA less significantly affected these clinical domains. Sexual traumas have profound negative effects on mental and physical health outcomes among individuals with serious mental illness; increased screening and treatment of sexual traumas is needed. Copyright © 2013 International Society for Traumatic Stress Studies.

  20. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2015-01-01

    Neuromuscular fatigue increases the amplitude of fluctuations in torque output during isometric contractions, but the effect of fatigue on the temporal structure, or complexity, of these fluctuations is not known. We hypothesised that fatigue would result in a loss of temporal complexity and a change in fractal scaling of the torque signal during isometric knee extensor exercise. Eleven healthy participants performed a maximal test (5 min of intermittent maximal voluntary contractions, MVCs), and a submaximal test (contractions at a target of 40% MVC performed until task failure), each with a 60% duty factor (6 s contraction, 4 s rest). Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified by calculating approximate entropy (ApEn), sample entropy (SampEn) and the detrended fluctuation analysis (DFA) scaling exponent α. Fresh submaximal contractions were more complex than maximal contractions (mean ± SEM, submaximal vs. maximal: ApEn 0.65 ± 0.09 vs. 0.15 ± 0.02; SampEn 0.62 ± 0.09 vs. 0.14 ± 0.02; DFA α 1.35 ± 0.04 vs. 1.55 ± 0.03; all P torque, fatigue reduces the neuromuscular system's adaptability to external perturbations. PMID:25664928