WorldWideScience

Sample records for isolated spoilage molds

  1. Predicting and preventing mold spoilage of food products.

    Science.gov (United States)

    Dagnas, Stéphane; Membré, Jeanne-Marie

    2013-03-01

    This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management

  2. Prediction of Mold Spoilage for Soy/Polyethylene Composite Fibers

    Directory of Open Access Journals (Sweden)

    Chinmay Naphade

    2015-01-01

    Full Text Available Mold spoilage was determined over 109 days on soy/PE fibers held under controlled temperatures (T ranging from 10°C to 40°C and water activities (aw from 0.11 to 0.98. Water activities were created in sealed containers using saturated salt solutions and placed in temperature-controlled incubators. Soy/PE fibers that were held at 0.823 aw or higher exhibited mold growth at all temperatures. As postulated, increased water activity (greater than 0.89 and temperature (higher than 25°C accelerated mold growth on soy/PE fibers. A slower mold growth was observed on soy/PE fibers that were held at 0.87 aw and 10°C. A Weibull model was employed to fit the observed logarithmic values of T, aw, and an interaction term log⁡T×log⁡aw and was chosen as the final model as it gave the best fit to the raw mold growth data. These growth models predict the expected mold-free storage period of soy/PE fibers when exposed to various environmental temperatures and humidities.

  3. Isolation and Identification of Spoilage Fungi Associated With Rice ...

    African Journals Online (AJOL)

    The spoilage fungi isolated were Aspergillus species, Rhizopus, Penicilluim, Fusarium, Eurotium, Mucor, Geotrichum, Alternaria, Cladosporium and Actinomyces species. The predominant spoilage fungi in the grains were Aspergillus species. The populations of some spoilage fungi isolated from the grains were not high ...

  4. Solving Microbial Spoilage Problems in Processed Foods

    Science.gov (United States)

    Clavero, Rocelle

    This chapter surveys common microbial food spoilage processes. The chapter is organized by food products and includes sections addressing spoilage in meat, poultry, fish; dairy products (milk, butter, cheese); beverage products; bakery products; canned foods; fruit and confectionery products; and emulsions. It addresses the isolation and identification of spoilage organisms and provides several case studies as examples. It introduces various organisms responsible for spoilage including Gram-positive lactic acid bacteria, Gram-negative aerobic bacteria, yeasts, molds, and fungal contaminants. Throughout the chapter, attention is given to when, where, and how spoilage organisms enter the food processing chain. Troubleshooting techniques are suggested. The effect (or lack of effect) of heating, dehydration, pH change, cooling, and sealing on various organisms is explained throughout. The chapter contains four tables that connect specific organisms to various spoilage manifestations in a variety of food products.

  5. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH.

    Science.gov (United States)

    Dagnas, Stéphane; Onno, Bernard; Membré, Jeanne-Marie

    2014-09-01

    The objective of this study was to quantify the effect of water activity, pH and storage temperature on the growth of Eurotium repens, Aspergillus niger and Penicillium corylophilum, isolated from spoiled bakery products. Moreover, the behaviors of these three mold species were compared to assess whether a general modeling framework may be set and re-used in future research on bakery spoilage molds. The mold growth was modeled by building two distinct Gamma-type secondary models: one on the lag time for growth and another one on the radial growth rate. A set of 428 experimental growth curves was generated. The effect of temperature (15-35 °C), water activity (0.80-0.98) and pH (3-7) was assessed. Results showed that it was not possible to apply the same set of secondary model equations to the three mold species given that the growth rate varied significantly with the factors pH and water activity. In contrast, the temperature effect on both growth rate and lag time of the three mold species was described by the same equation. The equation structure and model parameter values of the Gamma models were also compared per mold species to assess whether a relationship between lag time and growth rate existed. There was no correlation between the two growth responses for E. repens, but a slight one for A. niger and P. corylophilum. These findings will help in determining bakery product shelf-life and guiding future work in the predictive mycology field. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ.

    Science.gov (United States)

    Wang, Guang-Yu; Wang, Hu-Hu; Han, Yi-Wei; Xing, Tong; Ye, Ke-Ping; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-05-01

    Microorganisms play an important role in the spoilage of chilled chicken. In this study, a total of 53 isolates, belonging to 7 species of 3 genera, were isolated using a selective medium based on the capacity to spoil chicken juice. Four isolates, namely Aeromonas salmonicida 35, Pseudomonas fluorescens H5, Pseudomonas fragi H8 and Serratia liquefaciens 17, were further characterized to assess their proteolytic activities in vitro using meat protein extracts and to evaluate their spoilage potential in situ. The in vitro studies showed that A. salmonicida 35 displayed the strongest proteolytic activity against both sarcoplasmic and myofibrillar proteins. However, the major spoilage isolate in situ was P. fragi H8, which exhibited a fast growth rate, slime formation and increased pH and total volatile basic nitrogen (TVBN) on chicken breast fillets. The relative amounts of volatile organic compounds (VOCs) originating from the microorganisms, including alcohols, aldehydes, ketones and several sulfur compounds, increased during storage. In sum, this study demonstrated the characteristics of 4 potential spoilage bacteria on chilled yellow-feather chicken and provides a simple and convenient method to assess spoilage bacteria during quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage.

    Science.gov (United States)

    Haakensen, Monique; Vickers, David M; Ziola, Barry

    2009-09-07

    Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  8. Spoilage potential of Pseudomonas species isolated from goat milk.

    Science.gov (United States)

    Scatamburlo, T M; Yamazi, A K; Cavicchioli, V Q; Pieri, F A; Nero, L A

    2015-02-01

    Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical. Copyright © 2015 American Dairy Science Association

  9. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

    Directory of Open Access Journals (Sweden)

    Ziola Barry

    2009-09-01

    Full Text Available Abstract Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol. Use of antimicrobial compounds (e.g., hop-compounds, Penicillin by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  10. Microbiological Spoilage of Dairy Products

    Science.gov (United States)

    Ledenbach, Loralyn H.; Marshall, Robert T.

    The wide array of available dairy foods challenges the microbiologist, engineer, and technologist to find the best ways to prevent the entry of microorganisms, destroy those that do get in along with their enzymes, and prevent the growth and activities of those that escape processing treatments. Troublesome spoilage microorganisms include aerobic psychrotrophic Gram-negative bacteria, yeasts, molds, heterofermentative lactobacilli, and spore-forming bacteria. Psychrotrophic bacteria can produce large amounts of extracellular hydrolytic enzymes, and the extent of recontamination of pasteurized fluid milk products with these bacteria is a major determinant of their shelf life. Fungal spoilage of dairy foods is manifested by the presence of a wide variety of metabolic by-products, causing off-odors and flavors, in addition to visible changes in color or texture.

  11. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates.

    Science.gov (United States)

    Haakensen, M; Schubert, A; Ziola, B

    2009-03-15

    Identification of the beer-spoilage Lactobacillus and Pediococcus bacteria has largely taken two approaches; identification of spoilage-associated genes or identification of specific species of bacteria regardless of ability to grow in beer. The problem with these two approaches is that they are either overly inclusive (i.e., detect all bacteria of a given species regardless of spoilage potential) or overly selective (i.e., rely upon individual, putative spoilage-associated genes). Our goal was to design a method to assess the ability of Lactobacillus and Pediococcus to spoil beer that is independent of speciation or genetic background. In searching for a method by which to differentiate between beer-spoilage bacteria and bacteria that cannot grow in beer, we explored the ability of lactobacilli and pediococci isolates to grow in the presence of varying concentrations of hop-compounds and ethanol in broth medium versus on agar medium. The best method for differentiating between bacteria that can grow in beer and bacteria that do not pose a threat as beer-spoilage organisms was found to be a hop-gradient agar plate containing ethanol. This hop-gradient agar plate technique provides a rapid and simple solution to the dilemma of assessing the ability of Lactobacillus and Pediococcus isolates to grow in beer, and provides new insights into the different strategies used by these bacteria to survive under the stringent conditions of beer.

  12. Isolation and Identification of Spoilage Yeasts in Wine Samples by MALDI-TOF MS Biotyper

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-05-01

    Full Text Available Many genera and species of microorganisms can be found in grape musts and wines at various times during the winemaking process. For instance, Saccharomyces, Brettanomyces, and Pediococcus can be found together in wine. There are many species of yeast involved in wine spoilage during storage. Aim of this study was to isolate the spoilage yeasts from wine samples with using special selective agar media and identified on species level by Matrix-Assisted Laser Desorption/Ionization-Time of Fly Mass Spectrometry (MALDI-TOF MS. Six red wines used in this study. We identified 10 yeast species from 152 isolates. The most common species in wine samples was Saccharomyces cerevisiae. We also identified four Candida species, two Zygosaccharomyces species and one species from genus Rhodotorula, Saccharomycodes and Dekkera.

  13. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process

    Directory of Open Access Journals (Sweden)

    Beatriz de Cássia Martins Salomão

    2014-01-01

    Full Text Available Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37ºC, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  14. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process.

    Science.gov (United States)

    de Cássia Martins Salomão, Beatriz; Muller, Chalana; do Amparo, Hudson Couto; de Aragão, Gláucia Maria Falcão

    2014-01-01

    Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  15. Microbiological Spoilage of High-Sugar Products

    Science.gov (United States)

    Thompson, Sterling

    The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (a w), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The a w range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.

  16. Spoilage potential of brettanomyces bruxellensis strains isolated from Italian wines.

    Science.gov (United States)

    Guzzon, Raffaele; Larcher, Roberto; Guarcello, Rosa; Francesca, Nicola; Settanni, Luca; Moschetti, Giancarlo

    2018-03-01

    Brettanomyces bruxellensis is an important wine spoilage agent. In this study a population of Brettanomyces strains isolated from Italian wines was thoroughly investigated to evaluate adaptability to wine conditions and spoilage potential. The presumptive isolates of Brettanomyces were identified at species level with 26S rRNA gene sequencing and species-specific PCR, and subsequently subjected to analysis of intra-species variability through the study of intron splice sites (ISS-PCR). Although, some strains were tracked in wines from different regions, extensive genetic biodiversity was observed within the B. bruxellensis population investigated. All strains were evaluated for their growth ability in the presence of ethanol, high sugar content, low pH, different temperatures and sulphur dioxide, using optical density and flow cytometry measurement. The ability of yeasts to produce ethyl phenols in red wines with different chemical compositions was evaluated by means of high performance liquid chromatography with electrochemical detection (HPLC-ECD). The results highlighted wide variability in B. bruxellensis in response to wine limiting factors and in terms of the accumulation of ethyl phenols. As regards this last aspect, the differences found among strains were closely related to chemical composition of wine and strain resistance to environmental stress factors, making a priori evaluation of risk of wine alteration quite difficult. These results suggest that strategies for the control of Brettanomyces should be tailored on the basis of strain distribution and wine characteristics. Copyright © 2017. Published by Elsevier Ltd.

  17. Modified atmosphere packaging for prevention of mold spoilage of bakery products with different pH and water activity levels.

    Science.gov (United States)

    Guynot, M E; Marín, S; Sanchis, V; Ramos, A J

    2003-10-01

    A sponge cake analog was used to study the influence of pH, water activity (aw), and carbon dioxide (CO2) levels on the growth of seven fungal species commonly causing bakery product spoilage (Eurotium amstelodami, Eurotium herbariorum, Eurotium repens, Eurotium rubrum, Aspergillus niger, Aspergillus flavus, and Penicillium corylophilum). A full factorial design was used. Water activity, CO2, and their interaction were the main factors significantly affecting fungal growth. Water activity at levels of 0.80 to 0.90 had a significant influence on fungal growth and determined the concentration of CO2 needed to prevent cake analog spoilage. At an aw level of 0.85, lag phases increased twofold when the level of CO2 in the headspace increased from 0 to 70%. In general, no fungal growth was observed for up to 28 days of incubation at 25 degrees C when samples were packaged with 100% CO2, regardless of the aw level. Partial least squares projection to latent structures regression was used to build a polynomial model to predict sponge cake shelf life on the basis of the lag phases of all seven species tested. The model developed explained quite well (R2 = 79%) the growth of almost all species, which responded similarly to changes in tested factors. The results of this study emphasize the importance of combining several hurdles, such as modified atmosphere packaging, aw, and pH, that have synergistic or additive effects on the inhibition of mold growth.

  18. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    Science.gov (United States)

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  19. Effect of different storage temperatures on bacterial spoilage of ...

    African Journals Online (AJOL)

    This study determined the bacterial organisms associated with Oreochromis niloticus spoilage at two storage temperatures (6 and 20°C) and also assessed the ability of the individual bacterial isolates to cause spoilage at the two storage temperatures. Bacteriological analysis revealed the association of five bacteria ...

  20. Food spoilage - interactions between food spoilage bacteria

    DEFF Research Database (Denmark)

    Gram, Lone; Flodgaard, Lars; Rasch, Maria

    2002-01-01

    Food spoilage is a complex process and excessive amounts of foods are lost due to microbial spoilage even with modem day preservation techniques. Despite the heterogeneity in raw materials and processing conditions, the microflora that develops during storage and in spoiling foods can be predicted...... based on knowledge of the origin of the food, the substrate base and a few central preservation parameters such as temperature, atmosphere, a(w) and pH. Based on such knowledge, more detailed sensory, chemical and microbiological analysis can be carried out on the individual products to determine...... the actual specific spoilage organism. Whilst the chemical and physical parameters are the main determining factors for selection of spoilage microorganisms, a level of refinement may be found in some products in which the interactive behavior of microorganisms may contribute to their growth and/or spoilage...

  1. Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2011-04-01

    Full Text Available Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were 2.6~2.7×106, 4.6×105, 1.2×106 CFU/g of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at 28℃, the microbial diversity had been changed. The total aerobic bacterial numbers increased to 1.1~4.6×108, 4.9×107, and 7.6×108 CFU/g of fresh weight for lettuce, perilla leaf, and chicory that is about 102 times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48% was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

  2. Spoilage potential of Paenibacillussp. in Brazilian raw milk

    Directory of Open Access Journals (Sweden)

    José Carlos Ribeiro Júnior

    2016-04-01

    Full Text Available ABSTRACT: Bacterial spores are widespread in the environment and can contaminate milk. Spores are resistant to thermal conditions and your germination reduces milk shelf-life because the aerobic bacteria that are sporulated produce proteases and lipases. The aim of this study was identify Paenibacillus sp., the spoilage microbiota, arising from the germination of spores in raw milk and your spoilage potential. Twenty different milk samples were treated at 80°C/12min and plated to isolate spore-forming bacteria. These strains were picked in milk agar and tributyrin agar for verification of their potential proteolytic and lipolytic activities, respectively. Amplification and sequencing of the 16S rRNA gene of the strains for identification by similarity to the DNA sequences deposited in GenBank was performed. One hundred and thirty-seven isolates were obtained, of which 40 (29.2% showed spoilage activity for milk. Of these, three (7.5% were identified as strains of Paenibacillus sp., and all were lipolytic. Paenibacillus sp. have been identified as primarily responsible for the spoilage of pasteurized milk with a long shelf-life in other countries. To increase the shelf-life of Brazilian pasteurized milk, it is important to identify the sporulated microbes to determine their origin and to control the contamination of milk by vegetative forms such as spores.

  3. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  4. Microorganisms associated with the spoilage of avocado pear ...

    African Journals Online (AJOL)

    The microorganisms associated with the spoilage of Avocado pear, Persea americana fruits, purchased fresh from various markets in Benin City were investigated. The pour plate method was used for the isolation. A total of nine species of microorganisms were isolated and identified in this study. They comprise of seven ...

  5. Occurrence and growth of yeasts in processed meat products - implications for potential spoilage

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Jacobsen, Tomas; Jespersen, Lene

    2008-01-01

    of the processed meat products. The yeast microflora was complex with 4-12 different species isolated from the different production sites. In general, Candida zeylanoides, Debaryomyces hansenii and the newly described Candida alimentaria were found to be the dominant yeast species. In addition, three putatively......Spoilage of meat products is in general attributed to bacteria but new processing and storage techniques inhibiting growth of bacteria may provide opportunities for yeasts to dominate the microflora and cause spoilage of the product. With the aim of obtaining a deeper understanding of the potential...... role of yeast in spoilage of five different processed meat products (bacon, ham, salami and two different liver patés), yeasts were isolated, enumerated and identified during processing, in the final product and in the final product at the end of shelf life. Yeasts were isolated along the bacon...

  6. Characterization and control of Mucor circinelloides spoilage in yogurt.

    Science.gov (United States)

    Snyder, Abigail B; Churey, John J; Worobo, Randy W

    2016-07-02

    Consumer confidence in the food industry is severely affected by large-scale spoilage incidents. However, relatively little research exists on spoilage potential of members of the fungal subphylum Mucormycotina (e.g. Mucor), which includes dimorphic spoilage organisms that can switch between a yeast-like and hyphal phase depending on environmental conditions. The presence of Mucor circinelloides in yogurt may not cause spoilage, but growth and subsequent changes in quality (e.g. container bloating) can cause spoilage if not controlled. The purpose of this study was to evaluate the effects on M. circinelloides of pasteurization regimen, natamycin concentrations, and storage temperature in yogurt production, as measured by fungal proliferation and carbon dioxide production. A strain of M. circinelloides isolated from commercially spoiled yogurt showed greater yogurt-spoilage potential than clinical isolates and other industrial strains. D-values and z-values were determined for the spoilage isolate in milk as an evaluation of the fungus' ability to survive pasteurization. Natamycin was added to yogurt at 0, 5, 10, 15, and 20ppm (μg/ml) to determine its ability to inhibit M. circinelloides over the course of month-long challenge studies at 4°C, 15°C, and 25°C. Survivors were recovered on acidified PDA and carbon dioxide levels were recorded. The D-values at 54°C, 56°C, and 58°C for hyphae/sporangiospores were (in min) 38.31±0.02, 10.17±0.28, and 1.94±0.53, respectively, which yielded a z-value of 3.09°C. The D-values at 51°C, 53°C, and 55°C for yeast-like cells were (in min) 14.25±0.12, 6.87±1.19, and 2.44±0.35, respectively, which yielded a z-value of 0.34°C. These results indicated that M. circinelloides would not survive fluid milk pasteurization if contamination occurred prior to thermal treatment. CO2 production was only observed when M. circinelloides was incubated under low-oxygen conditions, and occurred only at temperatures above 4

  7. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts

    DEFF Research Database (Denmark)

    Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog

    2005-01-01

    Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although...... the bacterial population reached levels similar to those in the commercial sprouts, 10(8) to 10(9) CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean...... sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic...

  8. Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives

    Directory of Open Access Journals (Sweden)

    Simona L. Bavaro

    2017-07-01

    Full Text Available Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food safety point of view, occurring molds could also produce mycotoxins, so, it is important to monitor and control them. In this respect, identification of molds associated to two Italian and two Greek fermented black table olives cultivars, was carried out. Sixty strains were isolated and molecularly identified as Penicillium crustosum (21, P. roqueforti (29, P. paneum (1, P. expansum (6, P. polonicum (2, P. commune (1. A group of 20 selected isolates was subjected to technological (beta-glucosidase, cellulolytic, ligninolytic, pectolytic, and xylanolytic activities; proteolytic enzymes and safety (biogenic amines and secondary metabolites, including mycotoxins characterization. Combining both technological (presence of desired and absence of undesired enzymatic activities and safety aspects (no or low production of biogenic amines and regulated mycotoxins, it was possible to select six strains with biotechnological interest. These are putative candidates for future studies as autochthonous co-starters with yeasts and lactic acid bacteria for black table olive production.

  9. Meat spoilage during distribution.

    Science.gov (United States)

    Nychas, George-John E; Skandamis, Panos N; Tassou, Chrysoula C; Koutsoumanis, Konstantinos P

    2008-01-01

    Meat spoilage during distribution can be considered as an ecological phenomenon that encompasses the changes of the available substrata (e.g., low molecular compounds), during the prevailing of a particular microbial association, the so-called specific spoilage organisms (SSO). In fact, spoilage of meat depends on an even smaller fraction of SSO, called ephemeral spoilage organisms (ESO). These ESO are the consequence of factors that dynamically persist or imposed during, e.g., processing, transportation and storage in the market. Meanwhile spoilage is a subjective judgment by the consumer, which may be influenced by cultural and economic considerations and background as well as by the sensory acuity of the individual and the intensity of the change. Indeed, when spoilage progresses, most consumers would agree that gross discoloration, strong off-odors, and the development of slime would constitute the main qualitative criteria for meat rejection. On the other hand, meat industry needs rapid analytical methods or tools for quantification of these indicators to determine the type of processing needed for their raw material and to predict remaining shelf life of their products. The need of an objective evaluation of meat spoilage is of great importance. The use of metabolomics as a potential tool for the evaluation of meat spoilage can be of great importance. The microbial association of meat should be monitored in parallel with the estimation of changes occurring in the production and/or assimilation of certain compounds would allow us to evaluate spoilage found or produced during the storage of meat under different temperatures as well as packaging conditions.

  10. Species-Level Discrimination of Psychrotrophic Pathogenic and Spoilage Gram-Negative Raw Milk Isolates Using a Combined MALDI-TOF MS Proteomics-Bioinformatics-based Approach.

    Science.gov (United States)

    Vithanage, Nuwan R; Bhongir, Jeevana; Jadhav, Snehal R; Ranadheera, Chaminda S; Palombo, Enzo A; Yeager, Thomas R; Datta, Nivedita

    2017-06-02

    Identification of psychrotrophic pathogenic and spoilage Gram-negative bacteria using rapid and reliable techniques is important in commercial milk processing, as these bacteria can produce heat-resistant proteases and act as postprocessing contaminants in pasteurized milk. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is a proven technology for identification of bacteria in food, however, may require optimization for identification of pathogenic and spoilage bacteria in milk and dairy products. The current study evaluated the effects of various culture conditions and sample preparation methods on assigning of raw milk isolates to the species level by MALDI-TOF MS. The results indicated that culture media, incubation conditions (temperature and time), and sample preparation significantly affected the identification rates of bacteria to the species level. Nevertheless, the development of spectral libraries of isolates grown on different media using a web tool for hierarchical clustering of peptide mass spectra (SPECLUST) followed by a ribosomal protein based bioinformatics approach significantly enhanced the assigning of bacteria, with at least one unique candidate biomarker peak identified for each species. Phyloproteomic relationships based on spectral profiles were compared to phylogenetic analysis using 16S rRNA gene sequences and demonstrated similar clustering patterns with significant discriminatory power. Thus, with appropriate optimization, MALDI-TOF MS is a valuable tool for species-level discrimination of pathogenic and milk spoilage bacteria.

  11. Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: a 5-year study.

    Science.gov (United States)

    Ciardo, Diana E; Lucke, Katja; Imhof, Alex; Bloemberg, Guido V; Böttger, Erik C

    2010-08-01

    The implementation of internal transcribed spacer (ITS) sequencing for routine identification of molds in the diagnostic mycology laboratory was analyzed in a 5-year study. All mold isolates (n = 6,900) recovered in our laboratory from 2005 to 2009 were included in this study. According to a defined work flow, which in addition to troublesome phenotypic identification takes clinical relevance into account, 233 isolates were subjected to ITS sequence analysis. Sequencing resulted in successful identification for 78.6% of the analyzed isolates (57.1% at species level, 21.5% at genus level). In comparison, extended in-depth phenotypic characterization of the isolates subjected to sequencing achieved taxonomic assignment for 47.6% of these, with a mere 13.3% at species level. Optimization of DNA extraction further improved the efficacy of molecular identification. This study is the first of its kind to testify to the systematic implementation of sequence-based identification procedures in the routine workup of mold isolates in the diagnostic mycology laboratory.

  12. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    Science.gov (United States)

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage.

  13. Microbiological Spoilage of Fruits and Vegetables

    Science.gov (United States)

    Barth, Margaret; Hankinson, Thomas R.; Zhuang, Hong; Breidt, Frederick

    Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

  14. Systematic Internal Transcribed Spacer Sequence Analysis for Identification of Clinical Mold Isolates in Diagnostic Mycology: a 5-Year Study▿ †

    Science.gov (United States)

    Ciardo, Diana E.; Lucke, Katja; Imhof, Alex; Bloemberg, Guido V.; Böttger, Erik C.

    2010-01-01

    The implementation of internal transcribed spacer (ITS) sequencing for routine identification of molds in the diagnostic mycology laboratory was analyzed in a 5-year study. All mold isolates (n = 6,900) recovered in our laboratory from 2005 to 2009 were included in this study. According to a defined work flow, which in addition to troublesome phenotypic identification takes clinical relevance into account, 233 isolates were subjected to ITS sequence analysis. Sequencing resulted in successful identification for 78.6% of the analyzed isolates (57.1% at species level, 21.5% at genus level). In comparison, extended in-depth phenotypic characterization of the isolates subjected to sequencing achieved taxonomic assignment for 47.6% of these, with a mere 13.3% at species level. Optimization of DNA extraction further improved the efficacy of molecular identification. This study is the first of its kind to testify to the systematic implementation of sequence-based identification procedures in the routine workup of mold isolates in the diagnostic mycology laboratory. PMID:20573873

  15. Studies on safety and efficacy of gamma-irradiated ginseng

    International Nuclear Information System (INIS)

    Kwon, Joong Ho; Cho, Han Oak; Byun, Myung Woo; Kim, Suk Won; Yang, Jae Seung; You, Young Soo; Jin, Joon Ha; Park, Soon Chul

    1992-09-01

    Microbiological qualities were evaluated for the commercial red ginseng. Molds, which might cause microbial spoilage of stored ginseng, were isolated and identified for determining radiosensitivity and growth characteristics on ginseng-extract agar media. Red ginseng inoculated with isolated molds was incubated under the ideal condition following irradiation at different doses to pre-establish the effective dose-range for decontamination by confirming mold growth on the surface of the sample. At this point of time, moisture content was determined for the corresponding sample. By comparing the monolayer moisture content of red ginseng and its actual moisture level causing microbial spoilage during storage, it was intended to establish a basal condition for the continued project regarding irradiation effects on the quality of high-moisture products and their storage stability. (Author)

  16. Antifungal Resistance Patterns in Molds Isolated from Wounds of Combat Related Trauma Patients

    Science.gov (United States)

    2017-10-05

    and co 1S. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b.ABSTRACT c . THIS PAGE ABSTRACT uu 18. NUMBER OF PAGES...studies on molds Isolated from wounds of US service members treated at San Antonio Military Medlcal Center (SAMMC) were exam ined

  17. In vitro and comparative study on the extracellular enzyme activity of molds isolated from keratomycosis and soil

    Directory of Open Access Journals (Sweden)

    Arumugam Mythili

    2014-10-01

    Full Text Available AIM:To isolate and identify the molds involved in mycotic keratitis; to isolate corresponding species from soil samples; to compare the extracellular enzyme activity indices of the molds isolated from keratitis cases and the corresponding soil isolates.METHODS:The specimens were collected from the target patients attending the microbiology laboratory of tertiary eye hospital in Coimbatore, Tamilnadu state, India. The isolates were subjected for identification based on the growth on solid media, direct microscopy and lacto phenol cotton blue wet mount preparation. Extracellular enzymes such as lipase, deoxyribonuclease (DNase, α-amylase, protease, cellulase and pectinase produced by the fungalisolates were screened on solid media supplemented with the corresponding substrates. Based on growth and zone diameter, the enzyme activity indices were calculated and were compared with that of the soil fungalisolates.RESULTS:A total of 108 clinical samples were collected from a tertiary eye care hospital and out of which 60 fungal isolates were obtained. Among these, Fusarium spp. (n=30, non sporulating molds (n=9, Aspergillus flavus (n=6, Bipolaris spp. (n=6, Exserohilum spp. (n=4, Curvularia spp. (n=3, Alternaria spp. (n=1 and Exophiala spp. (n=1were identified and designated as FS1-30, NSM1-9, AF1-6, BS1-6, ES1-4, CS1-3, AS1 and EX1, respectively. For comparative analysis, soil samples were also collected from which, one isolate of each Fusarium spp., Aspergillus flavus, Bipolaris spp., Exserohilum spp., and Curvularia spp., respectively were selected. Highest lipase activity was seen in corneal isolate NSM2 (EAI= 2.14. The DNase activity was higher in NSM9 (EAI=1.88. In case of protease, Fusarium spp. (FS9 had prominent enzyme activity index of 1.38; α-amylase activity was also superior in corneal isolate FS13 with EAI of 1.63 when compared to other isolates. The enzyme activity index for cellulase was also noted to be higher in corneal isolates i

  18. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  19. Fish spoilage bacteria - problems and solutions

    DEFF Research Database (Denmark)

    Gram, Lone; Dalgaard, Paw

    2002-01-01

    Microorganisms are the major cause of spoilage of most seafood products. However, only a few members of the microbial community, the specific spoilage organisms (SSOs), give rise to the offensive off-flavours associated with seafood spoilage. Combining microbial ecology, molecular techniques, ana...

  20. Longterm storage of post-packaged bread by controlling spoilage pathogens using Lactobacillus fermentum C14 isolated from homemade curd.

    Directory of Open Access Journals (Sweden)

    Soma Barman

    Full Text Available One potent lactic acid bacterial strain C14 with strong antifungal activity was isolated from homemade curd. Based on morphological as well as biochemical characters and 16S rDNA sequence homology the strain was identified as Lactobacillus fermentum. It displayed a wide antimicrobial spectrum against both Gram-positive and Gram-negative pathogenic bacteria, and also against number of food spoilage, plant and human pathogenic fungi. The cell free supernatant (CFS of the strain C14 was also effective against the fungi tested. Inhibition of radial growth of Penicillium digitatum, Trichophyton rubrum and Mucor sp. was noticed in the presence of CFS of C14 even at low concentration (1%. More than 94.3 ± 1.6% and 91.5 ± 2.2% inhibition of conidial germination of P. digitatum and Mucor sp. were noticed in the presence of 10-fold-concentrated CFS of C14. Massive deformation of the fungal mycelia was observed by SEM studies, and losses of cellular proteins and DNA are also evident upon its treatment with C14. HPLC analysis revealed the presence of phenyl lactic acid, lactic acid along with some unidentified compounds in the antifungal extract. Challenge experiment showed immense potential of the strain C14 in preventing the spoilage of bread samples caused by Mucor sp. and Bacillus subtilis. The bread samples remained fresh upto 25 days even after inoculation with Mucor sp. (3.7 × 104 spores /ml and B. subtilis (4.6 × 104 CFU /ml. Along with the antifungal properties, the isolated lactic acid bacterial strain also showed very good antioxidant activities. Unchanged level of liver enzymes serum glutamic pyruvic transaminase and serum glutamic oxaloacetic transaminase in albino mice upon feeding with C14 also suggested non-toxic nature of the bacterial isolate.

  1. Lactobacilli and tartrazine as causative agents of red-color spoilage in cucumber pickle products.

    Science.gov (United States)

    Pérez-Díaz, I M; Kelling, R E; Hale, S; Breidt, F; McFeeters, R F

    2007-09-01

    The cucumber pickling industry has sporadically experienced spoilage outbreaks in pickled cucumber products characterized by development of red color on the surface of the fruits. Lactobacillus casei and Lactobacillus paracasei were isolated from 2 outbreaks of this spoilage that occurred about 15 y apart during the last 3 decades. Both organisms were shown to produce this spoilage when inoculated into pickled cucumbers while concomitantly degrading the azo dye tartrazine (FD&C yellow nr 5). This food dye is used as a yellow coloring in the brine cover solutions of commercial pickled cucumber products. The red color does not occur in the absence of tartrazine, nor when turmeric is used as a yellow coloring in the pickles. Addition of sodium benzoate to the brine cover solutions of a pickled cucumber product, more specifically hamburger dill pickles, prevented growth of these lactic acid bacteria and the development of the red spoilage.

  2. Microbiological Spoilage of Cereal Products

    Science.gov (United States)

    Cook, Frederick K.; Johnson, Billie L.

    A wide range of cereal products, including bakery items, refrigerated dough, fresh pasta products, dried cereal products, snack foods, and bakery mixes, are manufactured for food consumption. These products are subject to physical, chemical, and microbiological spoilage that affects the taste, aroma, leavening, appearance, and overall quality of the end consumer product. Microorganisms are ubiquitous in nature and have the potential for causing food spoilage and foodborne disease. However, compared to other categories of food products, bakery products rarely cause food poisoning. The heat that is applied during baking or frying usually eliminates pathogenic and spoilage microorganisms, and low moisture contributes to product stability. Nevertheless, microbiological spoilage of these products occurs, resulting in substantial economic losses.

  3. Antimicrobial Assay of Soil Mold Isolates from Wonorejo Surabaya

    Directory of Open Access Journals (Sweden)

    Septia Arisanti

    2012-11-01

    Full Text Available This study was aimed to an examine antimicrobial activity of 34 soil molds isolates from the Wonorejo Surabaya on the growth of Gram negatif bacteria (Escherichia coli and Coliform Bacteria Group, Gram positif bacteria (Bacillus subtilis and yeast (Saccharomyces cerevisiae. Antimicrobial ability detected with modification of dual culture antagonism assay in Potato Dextrose Agar (PDA medium. The result showed that genus Aspergillus, Scopulariopsis, Penicillium, Paecilomyces, Fusarium, and Trichoderma were able to inhibit E. coli; while genus Aspergillus, Scopulariopsis, Penicillium, Paecilomyces, Exophiala, Stachybotrys, and Acremonium inhibit B. subtilis; further on only genus Aspergillus could inhibit group of Coliform bacteria; and genus Scopulariopsis, Penicillium, Trichoderma, and Absidia inhibited the growth of yeast S. cerevisiae.

  4. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials

    Directory of Open Access Journals (Sweden)

    Lorenzo Siroli

    2017-12-01

    Full Text Available The aim of this work was to study the interaction of corrugated and plastic materials with pathogenic and spoiling microorganisms frequently associated to fresh produce. The effect of the two packaging materials on the survival during the storage of microorganisms belonging to the species Escherichia coli, Listeria monocytogenes, Salmonella enteritidis, Saccharomyces cerevisiae, Lactobacillus plantarum, Pseudomonas fluorescens, and Aspergillus flavus was studied through traditional plate counting and scanning electron microscopy (SEM. The results obtained showed that cardboard materials, if correctly stored, reduced the potential of packaging to cross-contaminate food due to a faster viability loss by spoilage and pathogenic microorganisms compared to the plastic ones. In fact, the cell loads of the pathogenic species considered decreased over time independently on the inoculation level and packaging material used. However, the superficial viability losses were significantly faster in cardboard compared to plastic materials. The same behavior was observed for the spoilage microorganisms considered. The SEM microphotographs indicate that the reduction of superficial contamination on cardboard surfaces was due to the entrapping of the microbial cells within the fibers and the pores of this material. In addition, SEM data showed that the entrapped cells were subjected to more or less rapid lyses, depending on the species, due to the absence of water and nutrients, with the exception of molds. The latter spoilers were able to proliferate inside the cardboard fibers only when the absorption of water was not prevented during the storage. In conclusion, the findings of this work showed the reduction of cross-contamination potential of corrugated compared to plastic packaging materials used in fruit and vegetable sector. However, the findings outlined the importance of hygiene and low humidity during cardboard storage to prevent the mold growth on

  5. Microbiological spoilage of fish and fish products.

    Science.gov (United States)

    Gram, L; Huss, H H

    1996-11-01

    Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative biochemical indicators of spoilage. Shewanella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram-positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish is well understood, much less is known about spoilage of lightly preserved fish products. It is concluded that the spoilage is probably caused by lactic acid bacteria, certain psychotrophic Enterobacteriaceae and/or Photobacterium phosphoreum. However, more work is needed in this area.

  6. Isolation and identification of mold and yeast in medombae, a rice wine starter culture from Kompong Cham Province, Cambodia

    Directory of Open Access Journals (Sweden)

    Chay, C.,

    2017-07-01

    Full Text Available Medombae is a dried starter culture used for traditional rice wine processing in Cambodia. However, studies on the role of mold and yeast present and their efficacy for rice wine fermentation are still limited. Cultural and morphological tests revealed that the isolated representative mold strains were isolated based on the method of identification used as Mucor spp and Rhizopus oryzae. On the other hand, the biochemical properties of the first yeast isolate using the Vitek 2 identification system and YST Card identification suggests its identity as Candida tropicalis. The second yeast strain examined for its morphological and cultural characteristic using agar slide technique, and its protein profile which was compared to the reference and sample protein masses using Biomerieux Vitek MS (MALD-TOF showed the presence of Saccharomyces cerevisiae. The biochemical characteristics and cellular characteristics of the third yeast isolate as described by Lodder (1970 and Kreger-Van Rij (1984 confirmed its identity as Saccharomycopsis spp. The DNA test of identification of the isolates should be conducted to further confirm the identity of the isolates.

  7. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Vancanneyt, M.; Vilalta, N.E.

    2003-01-01

    MAP shrimps were characterized by phenotypic tests and identified as lactic acid bacteria (78 isolates), other Gram-positive bacteria (13 isolates) and Gram-negative bacteria (11 isolates). A selection of 48 LAB isolates were further characterized and identified by phenotypic tests and SDS-PAGE...... the dominant parts of spoilage associations of cooked and brined MAP shrimps stored at high and low temperatures, respectively. Significance and Impact of the Study: The SDS-PAGE technique and simple biochemical keys allowed the majority of LAB isolates from spoilage associations of cooked and brined MAP...

  8. Sea salts as a potential source of food spoilage fungi.

    Science.gov (United States)

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Microbiological spoilage of fish and fish products

    DEFF Research Database (Denmark)

    Gram, Lone; Huss, Hans Henrik

    1996-01-01

    Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative...... biochemical indicators of spoilage. Shewanzella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram......- positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish...

  10. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  11. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  12. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    Science.gov (United States)

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  13. Selection of antifungal protein-producing molds from dry-cured meat products.

    Science.gov (United States)

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  14. Inhibitory Properties of Lactic Acid Bacteria against Moulds Associated with Spoilage of Bakery Products

    OpenAIRE

    I. A. Adesina; A. O. Ojokoh; D. J. Arotupin

    2017-01-01

    Aim: To evaluate the potentiality of LAB strains isolated from different fermented products to inhibit moulds associated with spoilage of bakery products. Methodology: Lactic acid bacterial (LAB) strains obtained from fermented products (“burukutu”, “pito”, yoghurt, and “iru”) were screened for antifungal activity against moulds (Aspergillus flavus, Aspergillus fumigatus, Aspergillus repens and Penicillium sp.) isolated from spoilt bakery products. Inhibitory activities of the lactic acid...

  15. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  16. Mold Flora of Traditional Cheeses Produced in Turkey

    Directory of Open Access Journals (Sweden)

    Musa Yalman

    2016-11-01

    Full Text Available In our country, there are many cheese types that are produced traditionally. Cheeses which produced from cows, sheep and goat milk that matured with spontaneous growth of molds present in livestock skins, pots and similar environments are among them. They are produced traditionally in Mediterrian, Central and Eastern Anatolia regions. Molds that grow spontaneously in cheeses could create public health risk because of their secondary metabolites. Penicillium spp. are the most isolated mold from these cheeses and Penicillium roqueforti is determined as the dominant species. Furthermore, Aspergillus, Alternaria, Mucor, Geotrichum, Cladosporium species have been isolated. It is very important to control the ripening conditions and starter strain selection since some strains were reported as mycotoxin producers. In this review, it has been tried to give general information about traditional production of mold-ripened cheese in Turkey and the mold flora found in traditional cheeses. In addition, public health risk of these cheeses is reported.

  17. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    Science.gov (United States)

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  18. Fungal Spoilage in Food Processing.

    Science.gov (United States)

    Snyder, Abigail B; Worobo, Randy W

    2018-06-01

    Food processing, packaging, and formulation strategies are often specifically designed to inhibit or control microbial growth to prevent spoilage. Some of the most restrictive strategies rely solely or on combinations of pH reduction, preservatives, water activity limitation, control of oxygen tension, thermal processing, and hermetic packaging. In concert, these strategies are used to inactivate potential spoilage microorganisms or inhibit their growth. However, for select microbes that can overcome these controls, the lack of competition from additional background microbiota helps facilitate their propagation.

  19. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  20. In-situ Crystallization of Highly Volatile Commercial Mold Flux Using an Isolated Observation System in the Confocal Laser Scanning Microscope

    Science.gov (United States)

    Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il

    2014-08-01

    The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.

  1. American lobsters (Homarus americanus not surviving during air transport: evaluation of microbial spoilage

    Directory of Open Access Journals (Sweden)

    Erica Tirloni

    2016-05-01

    Full Text Available Eighteen American lobsters (Homarus americanus, dead during air transport, were analysed in order to evaluate the microbial population of meat, gills and gut: no specific studies have ever been conducted so far on the microbiological quality of American lobsters’ meats in terms of spoilage microbiota. The meat samples showed very limited total viable counts, in almost all the cases below the level of 6 Log CFU/g, while higher loads were found, as expected, in gut and gills, the most probable source of contamination. These data could justify the possibility to commercialise these notsurviving subjects, without quality concerns for the consumers. Most of the isolates resulted to be clustered with type strains of Pseudoalteromonas spp. (43.1% and Photobacterium spp. (24.1%, and in particular to species related to the natural marine environment. The distribution of the genera showed a marked inhomogeneity among the samples. The majority of the isolates identified resulted to possess proteolytic (69.3% and lipolytic ability (75.5%, suggesting their potential spoilage ability. The maintanance of good hygienical practices, especially during the production of ready-to-eat lobsters-based products, and a proper storage could limit the possible replication of these microorganisms.

  2. American Lobsters (Homarus Americanus) not Surviving During Air Transport: Evaluation of Microbial Spoilage.

    Science.gov (United States)

    Tirloni, Erica; Stella, Simone; Gennari, Mario; Colombo, Fabio; Bernardi, Cristian

    2016-04-19

    Eighteen American lobsters ( Homarus americanus ), dead during air transport, were analysed in order to evaluate the microbial population of meat, gills and gut: no specific studies have ever been conducted so far on the microbiological quality of American lobsters' meats in terms of spoilage microbiota. The meat samples showed very limited total viable counts, in almost all the cases below the level of 6 Log CFU/g, while higher loads were found, as expected, in gut and gills, the most probable source of contamination. These data could justify the possibility to commercialise these not-surviving subjects, without quality concerns for the consumers. Most of the isolates resulted to be clustered with type strains of Pseudoalteromonas spp. (43.1%) and Photobacterium spp. (24.1%), and in particular to species related to the natural marine environment. The distribution of the genera showed a marked inhomogeneity among the samples. The majority of the isolates identified resulted to possess proteolytic (69.3%) and lipolytic ability (75.5%), suggesting their potential spoilage ability. The maintanance of good hygienical practices, especially during the production of ready-to-eat lobsters-based products, and a proper storage could limit the possible replication of these microorganisms.

  3. Effect of microbial cell-free meat extract on the growth of spoilage bacteria.

    Science.gov (United States)

    Nychas, G-J E; Dourou, D; Skandamis, P; Koutsoumanis, K; Baranyi, J; Sofos, J

    2009-12-01

    This study examined the effect of microbial cell-free meat extract (CFME) derived from spoiled meat, in which quorum sensing (QS) compounds were present, on the growth kinetics (lag phase, and growth rate) of two spoilage bacteria, Pseudomonas fluorescens and Serratia marcescens. Aliquots of CFME from spoiled meat were transferred to Brain Heart Infusion broth inoculated with 10(3) CFU ml(-1) of 18 h cultures of Ps. fluorescens or Ser. marcescens, both fresh meat isolates; CFME derived from unspoiled fresh meat ('clean' meat) served as a control. Changes in impedance measurements were monitored for 48 h, and the detection time (Tdet) was recorded. It was found that in the absence of CFME containing QS compounds the Tdet was shorter (P meat. The rate of growth of Ps. fluorescens, recorded as the maximum slope rate of conductance changes (MSrCC), after Tdet, was higher (P meat. Similar results in MSrCC of impedance changes were obtained for Ser. marcescens. The study indicated that the growth rate (expressed in MSrCC units) of meat spoilage bacteria in vitro was enhanced in samples supplemented with CFME containing QS compounds compared to control samples (i.e., without CFME or with CFME from 'clean' meat). This behaviour may explain the dominant role of these two bacteria in the spoilage of meat. These results illustrate the potential effect of signalling compounds released during storage of meat on the behaviour of meat spoilage bacteria. Understanding such interactions may assist in the control of fresh meat quality and the extension of its shelf life.

  4. A mechanistic approach to postirradiation spoilage kinetics of fish

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: In order to simulate postirradiation spoilage of fish, the mechanistic aspects of the growth of surviving microorganisms during chill storage and their product formation in irradiated fish were analyzed. Anchovy (Engraulis encrasicholus) samples those unirradiated and irradiated at 1, 2 and 3 kGy doses of gamma radiation were stored at +2 o C for 21 days. Total bacterial counts (TBC) and trimethylamine (TMA) analysis of the samples were done periodically during storage. Depending on the proposed spoilage mechanism, kinetic model equations were derived. By using experimental data of TBC and TMA in the developed model, the postirradiation spoilage parameters including growth rate constant, inital and maximum attainable TBC, lag time and TMA yield were evaluated and microbial spoilage of fish was simulated for postirradiation storage. Shelf life of irradiated fish was estimated depending on the spoilage kinetics. Dose effects on the kinetic parameters were analyzed. It is suggested that the kinetic evaluation method developed in this study may be used for quality assessment, shelf life determination and dose optimization for radiation preservation of fish

  5. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    Science.gov (United States)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  6. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P....... freudenreichii subsp. shermanii grew in CDIM and showed antifungal properties similar to those observed in milk-based systems. Most of the antifungal effect of the protective bacterial ferment was lost after removal of cells. This was explained by a marked decrease in diacetyl concentration, which...

  7. Seafood Spoilage Predictor - development and distribution of a product specific application software

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Buch, P.; Silberg, Steen

    2002-01-01

    To allow shelf-life prediction of a range of products, the Seafood Spoilage Predictor (SSP) software has been developed to include both kinetic models for growth of specific spoilage microorganisms and empirical relative rates of spoilage models. SSP can read and evaluate temperature profile data...

  8. Stress tolerance in fungi - to kill a spoilage yeast.

    NARCIS (Netherlands)

    Smits, G.J.; Brul, S.

    2005-01-01

    The fungal spoilage of ingredients of food manufacture is an economic problem, often causes product loss and may constitute a health hazard. To effectively combat fungal food spoilage, a mechanistic understanding of tolerance for, and adaptation to, the preservation method used is crucial. Both are

  9. Mycology and spoilage of retail cashew nuts | Adebajo | African ...

    African Journals Online (AJOL)

    All the species recovered induced detectable loss in weights of the milled nuts, though to varying extents and would be expected to cause considerable spoilage of the nuts. Key words: Cashew nut, Anacardium occidentale, fungal count, mycology, Aspergillus sp., Penicillium sp., spoilage. African Journal of Biotechnology ...

  10. Application of atmospheric-pressure argon plasma jet for bread mold decontamination

    Science.gov (United States)

    Thonglor, P.; Amnuaycheewa, P.

    2017-09-01

    Atmospheric-pressure argon plasma (APAP) is a promising non-thermal technology for microbial control and prevention minimally affecting quality of foods. Effect of APAP jet on the growth of bread molds, including two Aspergillus sp., Rhizopus stolonifer, and Penicillium roqueforti, isolated from white bread were investigated. The molds were isolated, verified, cultured to fully grown on potato dextrose agar (PDA), and subsequently treated with APAP jet using plasma generating power at 24 W for 5, 10, and 20 min, respectively. The inhibition of mold growth was investigated by comparing fungal dry weights and the effect on fungal cell structure was observed using compound light microscope. The results indicated that the 20-min treatment time is most effective in retarding the growth of the three bread molds. However, this level of generating power did not lead to destruction of the cellular structures for all the four fungi. Plasma generating power and treatment time are significant parameters determining the success of bread mold decontamination and further investigation on real bread matrix is needed.

  11. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef.

    Science.gov (United States)

    Ercolini, Danilo; Russo, Federica; Nasi, Antonella; Ferranti, Pasquale; Villani, Francesco

    2009-04-01

    Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC/MS). Fifty mesophilic and twenty-nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA gene sequencing. Carnobacterium maltaromaticum and C. divergens were the species most frequently found in both mesophilic and psychrotrophic populations. Acinetobacter baumannii, Buttiauxella spp. and Serratia spp. were identified among the mesophilic isolates, while Pseudomonas spp. were commonly identified among the psychrotrophs. The isolates were further characterized for their growth at different temperatures and their proteolytic activity in vitro on meat proteins extracts at 7 degrees C. Selected proteolytic strains of Serratia proteamaculans, Pseudomonas fragi, and C. maltaromaticum were used to examine their spoilage potential in situ. Single strains of these species and mixtures of these strains were used to contaminate beef chops that were packed and stored at 7 degrees C. At time intervals up to 1 month, viable counts were determined, and VOC were identified by GC/MS. Generally, the VOC concentrations went to increase during the storage of the contaminated meats, and the profiles of the analyzed meat changed dramatically depending on the contaminating microbial species. About 100 volatiles were identified in the different contaminated samples. Among the detected volatiles, some specific molecules were identified only when the meat was contaminated by a specific microbial species. Compounds such as 2-ethyl-1-hexanol, 2-buten-1-ol, 2-hexyl-1-octanol, 2-nonanone, and 2-ethylhexanal were detectable only for C. maltaromaticum, which also produced the highest number of aldehydes, lactones, and sulfur compounds. The

  12. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  13. Bacterial spoilage of fresh meat in some selected Lagos markets ...

    African Journals Online (AJOL)

    A study of the bacteria associated with spoilage of fresh meat was carried out. The flora causing spoilage of meat include Alcaligenes liquefaciens, Bacillus subtilis, Clostridium perfringes, Escherichia coli, Klebsiella pneumoniae, Lactobacillus sp., Micrococcus varians, Pseudomonas aeruginosa, Sarcina sp. Serratia ...

  14. Rapid measurement of meat spoilage using fluorescence spectroscopy

    Science.gov (United States)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  15. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  16. Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals.

    Science.gov (United States)

    Helmond, Mariette; Nierop Groot, Masja N; van Bokhorst-van de Veen, Hermien

    2017-07-03

    Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7°C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow in the starch-rich environment of pasteurized and chilled meals. Growth of the Paenibacillus isolates appeared to be delayed by decreased (5.5%, corresponding with an a w meal on spore inactivation, heat-inactivation kinetics were determined and D-values were calculated. According to these kinetics, pasteurization up to 90°C, necessary for inactivation of vegetative spoilage microorganisms and pathogens, does not significantly contribute to the inactivation of Paenibacillus spores in the meals. Furthermore, outgrowth of pasteurized spores was determined in the mixed rice-vegetable meal at several temperatures; P. terrae FBR-61 and P. pabuli FBR-75 isolates did not substantially increase in numbers during storage at 2°C, but had a significant increase within a month of storage at 4°C or within several days at 22°C. Overall, this work shows the importance of Paenibacillus species as spoilage microorganisms of pasteurized, chilled RTE meals and that the meals' matrix, processing conditions, and storage temperature are important hurdles to control microbial meal spoilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals

    NARCIS (Netherlands)

    Helmond, Mariette; Nierop Groot, Masja N.; Bokhorst-van de Veen, van Hermien

    2017-01-01

    Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7 °C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow

  18. Assessing genetic heterogeneity within bacterial species isolated from gastrointestinal and environmental samples: How many isolates does it take?

    NARCIS (Netherlands)

    Dopfer, D.; Buist, W.; Soyer, Y.; Munoz, M.A.; Zadoks, R.N.; Geue, L.; Engel, B.

    2008-01-01

    Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contamination and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of bacterial isolates belonging to the same species that is analyzed per sample is

  19. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5-5.5).

    Science.gov (United States)

    Guynot, M E; Ramos, A J; Sanchis, V; Marín, S

    2005-05-25

    A hurdle technology approach has been applied to control common mold species causing spoilage of intermediate moisture bakery products (Eurotium spp., Aspergillus spp., and Penicillium corylophilum), growing on a fermented bakery product analogue (FBPA). The factors studied included a combination of different levels of weak acid preservatives (potassium sorbate, calcium propionate, and sodium benzoate; 0-0.3%), pH (4.5-5.5), and water activity (a(w); 0.80-0.90). Potassium sorbate was found to be the most effective in preventing fungal spoilage of this kind of products at the maximum concentration tested (0.3%) regardless of a(w). The same concentration of calcium propionate and sodium benzoate was effective only at low a(w) levels. On the other hand, potassium sorbate activity was slightly reduced at pH 5.5, the 0.3% being only effective at 0.80 a(w). These findings indicate that potassium sorbate may be a suitable preserving agent to inhibit deterioration of a FBPA of slightly acidic pH (near 4.5) by xerophilic fungi. Further studies have to be done in order to adjust the minimal inhibitory concentration necessary to obtain a product with the required shelf life.

  20. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  1. The occurrence of spoilage yeasts in cream-filled bakery products.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Cardinali, Federica; Pasquini, Marina; Aquilanti, Lucia; Clementi, Francesca

    2017-04-01

    Filling creams can provide an adequate substrate for spoilage yeasts because some yeasts can tolerate the high osmotic stress in these products. To discover the source of spoilage of a cream-filled baked product, end products, raw materials, indoor air and work surfaces were subjected to microbiological and molecular analyses. The efficacy of disinfectants against spoilage yeasts was also assessed. The analyses on end products revealed the presence of the closest relatives to Zygosaccharomyces bailii with counts ranging from 1.40 to 4.72 log cfu g -1 . No spoilage yeasts were found in the indoor air and work surfaces. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis, carried out directly on filling creams collected from unopened cans, showed the presence of bands ascribed to the closest relatives to Z. bailii sensu lato, although with counts products, reliable and sensitive methods must be used. Moreover, hygiene and the application of good manufacturing practices represent the most efficient way for the prevention and minimization of cross-contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  3. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  4. Progress in Titanium Metal Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  5. Isolation and Identification of Contaminant Molds on Pumpkin Candy From Sumbawa Besar

    OpenAIRE

    Henny Nurul Khasanah, Utami Sri Hastuti, Linda Hapsari

    2015-01-01

    Pumpkin candy is a sort of pumpkin fruit processed products that is typical food from Sumbawa Besar. Pumpkin candy contains carbohydrates, fats, protein, fiber, and minerals. The mold can contaminate and degradate the pumpkin candy compounds, thus lowering the quality of the pumpkins candy. The purpose of this research were: 1) to identify the species of contaminant mold on candy pumpkin; 2) to determining the most dominant species on the pumpkins candy. The research were conducted at the Mic...

  6. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  7. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie

    2016-01-01

    their color changes in response to compounds present in fresh products (hexanal, 1-octane-3-ol) used as negative controls. The colorimetric sensor array was used to follow fish spoilage over time at room temperature for up to 24 h as well as at 4 °C for 9 days. Additionally, fish decay was monitored using......Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  8. Classification of buildings mold threat using electronic nose

    Science.gov (United States)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  9. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  10. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  11. Cooked meat products made of coarsely ground pork: the main bacterial strains of bacterial flora, their heat resistance and effect on spoilage

    Directory of Open Access Journals (Sweden)

    Esko Petäjä

    1993-09-01

    Full Text Available This study was conducted to investigate the bacterial flora of the surface layer and the core of meat products made of coarsely ground pork at the moment of spoilage when stored at 7°C or 4°C. The dominating strains were isolated, their heat resistance was studied in APT-broth, on APT-agar and in coarsely ground cured pork, and their growth after heating and effect on spoilage were followed in coarsely ground cured pork. The first signs of spoilage appeared in the surface layer of the products. The strains were coccoid lactic acid bacteria with counts ranging from 3,5 to 7.8 log cfu (colony forming units/g. They survived only accidentally after heating for 15 minutes at 72°C in APT-broth. The core of the products contained only coccoid lactic acid bacteria or only pseudomonads or both as the main bacterial strains. The counts ranged from 2.6 to 6.0 log cfu/g. Most of the strains isolated from the core survived after heating for 30 minutes at 72°C in APT-broth in at least three tests out of six. The most noticeable result of the study was the occurence of heat-resistant pseudomonads in the core. It must be pointed out that all pseudomonads found survived after heating for 60 minutes at 72°C in APT-broth, and often after heating for 15 minutes at 72°C in coarsely ground cured pork (core 72°C. The cfu number of the two most heat-resistant streptococcus strains decreased only 1 log unit over 15 minutes at 72°C in coarsely ground cured pork. The numbers of inoculated pseudomonads decreased but those of streptococci rose by a maximum of 1 log unit when the experimental porks were kept at 4°C after heating. This indicates that streptococci and pseudomonads probably do not constitute a serious spoilage factor in cooked meat products, but spoilage is generally effected by bacteria which have contaminated the surface layer of the products after heat treatment.

  12. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis.

    Science.gov (United States)

    Parlapani, Foteini F; Kormas, Konstantinos Ar; Boziaris, Ioannis S

    2015-09-01

    Sea bream fillets are one of the most important value-added products of the seafood market. Fresh seafood spoils mainly owing to bacterial action. In this study an exploration of initial and spoilage microbiota of sea bream fillets stored under air and commercial modified atmosphere packaging (MAP) at 0 and 5 °C was conducted by 16S rRNA gene sequence analysis of isolates grown on plates. Sensory evaluation and enumeration of total viable counts and spoilage microorganisms were also conducted to determine shelf life and bacterial growth respectively. Different temperatures and atmospheres affected growth and synthesis of spoilage microbiota as well as shelf life. Shelf life under air at 0 and 5 °C was 14 and 5 days respectively, while under MAP it was 20 and 8 days respectively. Initial microbiota were dominated by Pseudomonas fluorescens, Psychrobacter and Macrococcus caseolyticus. Different temperatures and atmospheres affected the synthesis of spoilage microbiota. At the end of shelf life, different phylotypes of Pseudomonas closely related to Pseudomonas fragi were found to dominate in most cases, while Pseudomonas veronii dominated in fillets under MAP at 0 °C. Furthermore, in fillets under MAP at 5 °C, new dominant species such as Carnobacterium maltaromaticum, Carnobacterium divergens and Vagococcus fluvialis were revealed. Different temperature and atmospheric conditions affected bacterial growth, shelf life and the synthesis of spoilage microbiota. Molecular identification revealed species and strains of microorganisms that have not been reported before for sea bream fillets stored under various conditions, thus providing valuable information regarding microbiological spoilage. © 2014 Society of Chemical Industry.

  13. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination.

    Science.gov (United States)

    Doll, Etienne V; Scherer, Siegfried; Wenning, Mareike

    2017-01-01

    Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from shelf life is influenced only to a minor extent by raw-milk-associated factors. In contrast, recontamination with spores, particularly from the B. cereus complex, seems to occur. To enhance milk quality throughout the entire shelf life, improved plant sanitation and disinfection that target the elimination of spores are necessary.

  14. Diversity and Control of Spoilage Fungi in Dairy Products: An Update

    Science.gov (United States)

    Valence, Florence; Mounier, Jérôme

    2017-01-01

    Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods. PMID:28788096

  15. Diversity and Control of Spoilage Fungi in Dairy Products: An Update

    Directory of Open Access Journals (Sweden)

    Lucille Garnier

    2017-07-01

    Full Text Available Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially new hurdle technologies to control their occurrence in dairy foods.

  16. Bacterial spoilage profiles to identify irradiated fish

    International Nuclear Information System (INIS)

    Alur, M.D.; Venugopal, V.; Nerkar, D.P.; Nair, P.M.

    1991-01-01

    Effects of low dose gamma-irradiation of fish product on spoilage potentials of bacteria (Aeromonas hydrophila, Salmonella typhimurium, Bacillus megaterium, and Pseudomonas marinoglutinosa) and mixed flora were examined for ability to proliferate in radurized fish and produce volatile acids (TVA) and bases (TVBN). Bacteria proliferated well in unirradiated and irradiated fish, but formation of VA and VB were lower in irradiated than unirradiated counterparts. This was found in Bombay duck, Indian mackerel, white pomfret, seer and shrimp gamma-irradiated at 0 to 5 kGy under ice. TVA and TVBN produced by the organisms or mixed flora from fish were only 30-50% those of controls. A method for identifying radiation-processed fish could evolve based on lower susceptibility of irradiated fish to bacterial spoilage

  17. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    Science.gov (United States)

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Classification of photobacteria associated with spoilage of fish products by numerical taxanomy and pyrolysis mass spectrometry

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Manfio, G.P.; Goodfellow, M.

    1997-01-01

    , from spoiled products and by using a specific detection method. The data were analysed using the similarity coefficient and the unweighted pair-group with arithmetic averages algorithm. In addition twenty-six of the fish isolates and five reference strains were analysed by Curie-point pyrolysis mass...... sub-groups. One sub-group of psychrotolerant P. phosphoreum strains, which was selected in modified atmosphere packed fish stored at low temperature, was also highlighted using each of the methods. The importance of classifying food spoilage bacteria has been shown and a simple key generated......Forty strains of luminous and non-luminous Photobacterium phosphoreum isolates from cod (Gadus morhua) and seven reference strains of psychrotolerant and mesophilic photobacteria were examined for 156 unit characters in a numerical taxonomic study. The fish strains were isolated from the intestines...

  19. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity

    Science.gov (United States)

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine

    2016-01-01

    ABSTRACT Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). IMPORTANCE Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in

  20. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity.

    Science.gov (United States)

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane

    2016-07-01

    Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in dietary salt intake

  1. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Li, Bing; Peters, Brian M; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2017-09-01

    The present study aimed at investigating the capability of L. plantarum strain BM-LP14723 to enter into and recover from the viable but nonculturable (VBNC) state and to cause beer spoilage. VBNC state was induced by incubating in beer with subculturing or low temperature treatment. Culturable, total, and viable cells numbers were assessed by MRS agar plate counting, acridine orange direct counting, and Live/Dead BacLight bacterial viability kit, respectively. Organic acids concentrations were measured by reversed-phase high performance liquid chromatography. VBNC L. plantarum cells were detected after 189 ± 1.9 days low temperature treatment or 29 ± 0.7 subcultures in beer. The VBNC L. plantarum retained spoilage capability. Addition of catalase is an effective method for the recovery of the VBNC L. plantarum cells. L. plantarum strain BM-LP14723 is capable of entering into and recovery from the VBNC state and maintained spoilage capability. The current study presented that beer-spoilage L. plantarum can hide both in breweries and during transporting and marketing process and thus lead to beer-spoilage incidents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  3. Allergies, asthma, and molds

    Science.gov (United States)

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  4. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus.

    Science.gov (United States)

    Šantrić, Ljiljana; Potočnik, Ivana; Radivojević, Ljiljana; Umiljendić, Jelena Gajić; Rekanović, Emil; Duduk, Bojan; Milijašević-Marčić, Svetlana

    2018-05-18

    Thirty-five actinobacterial isolates, obtained from button mushroom (Agaricus bisporus) substrates (i.e., compost in different phases of composting, black peat or casing layer) in Serbia in 2014-2016 were tested in vitro against the causal agents of green mold in cultivated mushroom. Out of six most promising isolates, A06 induced 42.4% in vitro growth inhibition of Trichoderma harzianum T54, and 27.6% inhibition of T. aggressivum f. europaeum T77. The novel strain A06 was identified as Streptomyces flavovirens based on macroscopic and cultural characteristics and 16S rDNA sequence and used in mushroom growing room experiments. Actinobacteria had no negative influence on mycelial growth of the cultivated mushroom in compost in situ. Isolate S. flavovirens A06 enhanced mushroom yield significantly, up to 31.5%. The A06 isolate was more efficient in enhancing yield after inoculation with the compost mold T. aggressivum (26.1%), compared to casing mold T. harzianum (8%). Considering disease incidence, actinobacteria significantly prevented green mold in compost caused by T. aggressivum (6.8%). However, fungicide prochloraz-Mn had a more significant role in reducing symptoms of casing mold, T. harzianum, in comparison with actinobacteria (24.2 and 11.8%, respectively). No significant differences between efficacies of S. flavovirens A06 and the fungicide prochloraz-Mn against T. aggressivum were revealed. These results imply that S. flavovirens A06 can be used to increase mushroom yield and contribute to disease control against the aggressive compost green mold disease caused by Trichoderma aggressivum.

  5. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    Science.gov (United States)

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  7. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef.

    Science.gov (United States)

    Säde, Elina; Penttinen, Katri; Björkroth, Johanna; Hultman, Jenni

    2017-04-01

    Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O 2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of fluorescent pseudomonades and Trichoderma sp. and their combination with two chemicals on Penicillium digitatum caused agent of citrus green mold.

    Science.gov (United States)

    Zamani, M; Tehrani, A Sharifi; Ahmadzadeh, M; Abadi, A Alizadeh Ali

    2006-01-01

    Citrus green mold (Penicillium digitatum) causes economic losses. Chemical fungicides such as imazalil provide the primary means for controlling green mold decay of citrus fruits. Continuous use of fungicides has faced two major obstacles- increasing public concern regarding contamination of perishables with fungicidal residues, and proliferation of resistance in the pathogen populations. The aim of this research was to determine if the attacks of green mold on orange could be reduced by usage of biocontrol agent alone or in combination with low dosage of imazalil or sodium bicarbonate. Pseudomonas fluorescens isolate PN, P. fluorescens isolate PS and Trichoderma virens isolate TE were evaluated as potential biological agents for control of green mold of oranges caused by P. digitatum. Increasing concentration of SB decreased spore germination of P. digitatum. In laboratory tests, a cell suspension (10(8) cells per ml.) of bacterial strains reduced the incidence of green mold. On fruits surface biocontrol activity of antagonistic isolates was significantly increased when combined with low dosage of imazalil (500ppm) or sodium carbonate (5%). Effect of Trichoderma virens on controlling P. digitatum was better than others with or without these chemicals.

  9. Molds in the Environment

    Science.gov (United States)

    ... on Facebook Tweet Share Compartir Molds in the Environment What are molds? What are some of the ... molds found? Molds are found in virtually every environment and can be detected, both indoors and outdoors, ...

  10. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    Science.gov (United States)

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  11. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  12. Spoilage and shelf-life extension of fresh fish and shellfish.

    Science.gov (United States)

    Ashie, I N; Smith, J P; Simpson, B K

    1996-01-01

    Fresh fish and shellfish are highly perishable products due to their biological composition. Under normal refrigerated storage conditions, the shelf life of these products is limited by enzymatic and microbiological spoilage. However, with increasing consumer demands for fresh products with extended shelf life and increasing energy costs associated with freezing and frozen storage, the fish-processing industry is actively seeking alternative methods of shelf life preservation and marketability of fresh, refrigerated fish and at the same time economizing on energy costs. Additional methods that could fulfill these objectives include chemical decontamination, low-dose irradiation, ultra-high pressure, and modified atmosphere packaging (MAP). This review focuses on the biochemical and microbiological composition of fresh fish/shellfish, the spoilage patterns in these products, factors influencing spoilage, and the combination treatments that can be used in conjunction with refrigeration to extend the shelf life and keeping quality of fresh fish/shellfish. The safety concerns of minimally processed/MAP fish, specifically with respect to the growth of Clostridium botulinum type E, is also addressed.

  13. Introduction to the Microbiological Spoilage of Foods and Beverages

    Science.gov (United States)

    Sperber, William H.

    Though direct evidence of ancient food-handling practices is difficult to obtain and examine, it seems safe to assume that over the span of several million years, prehistoric humans struggled to maintain an adequate food supply. Their daily food needed to be hunted or harvested and consumed before it spoiled and became unfit to eat. Freshly killed animals, for example, could not have been kept for very long periods of time. Moreover, many early humans were nomadic, continually searching for food. We can imagine that, with an unreliable food supply, their lives must have often been literally "feast or famine." Yet, our ancestors gradually learned by accident, or by trial and error, simple techniques that could extend the storage time of their food (Block, 1991). Their brain capacity was similar to that of modern humans; therefore, some of them were likely early scientists and technologists. They would have learned that primitive cereal grains, nuts and berries, etc. could be stored in covered vessels to keep them dry and safer from mold spoilage. Animal products could be kept in cool places or dried and smoked over a fire, as the controlled use of fire by humans is thought to have begun about 400,000 years ago. Quite likely, naturally desiccated or fermented foods were also noticed and produced routinely to provide a more stable supply of edible food. Along with the development of agricultural practices for crop and animal production, the "simple" food-handling practices developed during the relatively countless millennia of prehistory paved the way for human civilizations.

  14. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension.

    Science.gov (United States)

    Axel, Claudia; Zannini, Emanuele; Arendt, Elke K

    2017-11-02

    Microbial spoilage of bread and the consequent waste problem causes large economic losses for both the bakery industry and the consumer. Furthermore the presence of mycotoxins due to fungal contamination in cereals and cereal products remains a significant issue. The use of conventional chemical preservatives has several drawbacks, necessitating the development of clean-label alternatives. In this review, we describe current research aiming to extend the shelf life of bread through the use of more consumer friendly and ecologically sustainable preservation techniques as alternatives to chemical additives. Studies on the in situ-production/-expression of antifungal compounds are presented, with special attention given to recent developments over the past decade. Sourdough fermented with antifungal strains of lactic acid bacteria (LAB) is an area of increasing focus and serves as a high-potential biological ingredient to produce gluten-containing and gluten-free breads with improved nutritional value, quality and safety due to shelf-life extension, and is in-line with consumer's demands for more products containing less additives. Other alternative biopreservation techniques include the utilization of antifungal peptides, ethanol and plant extracts. These can be added to bread formulations or incorporated in antimicrobial films for active packaging (AP) of bread. This review outlines recent progress that has been made in the area of bread biopreservation and future perspectives in this important area.

  15. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  16. Molds contamination of raw milk and dairy products: Occurrence, diversity and contamination source

    Directory of Open Access Journals (Sweden)

    T Moshtaghi Maleki

    2015-11-01

    Full Text Available This study aimed to assess the occurrence and diversity of mold species in raw milk and its products along with the identification of potential contamination sources. For this reason, a total of 260 samples consisting of 80 raw milk, 100 dairy products (i.e., pasteurized milk, yoghurt, cheese and buttermilk and 80 environmental (i.e. ingredients, packaging materials, surface of processing equipments and air specimens were collected. Using culture assay and microscopic observation, the occurrence as well as the diversity of mold species was investigated. According to the results, 82.3% of the samples were identified as positive for mold contamination. The percentage of mold contamination for raw milk was estimated as 97.5%. In the case of pasteurized milk, yoghurt, buttermilk, cheese and environmental samples, it was determined as 52%, 76%, 52%, 56% and 96.25%, respectively. Mold diversity among various samples consisted of Aspergillus, Geotrichum, Penicillium, Mucor, Alternaria, Rhizopus, Stemphylium, Cladosporium, and Fusarium. Results revealed a significant (p < 0.01 correlation between kind of mold species isolated from raw milk and dairy products. Similarly, a correlation was observed between dairy products and environmental sources. Regarding the high occurrence of mold contamination in raw milk and environmental sources, it seems that in some instances heat treatment was not effective enough to inactivate all molds; whereas in some other cases, cross contamination may have resulted in mold contamination. Therefore, it is crucial to maintain hygienic conditions during raw milk handling as well as processing steps. These practices could efficiently reduce the occurrence of mold contaminations in dairy products.

  17. Chemorheology of in-mold coating for compression molded SMC applications

    Science.gov (United States)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  18. The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Chen, Lequn; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2017-10-01

    This study aimed to investigate the viable but nonculturable (VBNC) state and genomic features of a beer-spoilage strain, Lactobacillus caseiBM-LC14617. Induction on the VBNC state of L. casei strain BM-LC14617 was conducted by both low-temperature storage and continuous passage in beer, and formation of VBNC state was detected after 196 ± 3.3 days and 32 ± 1.6 subcultures, respectively. Resuscitation of VBNC cells was successfully induced by addition of catalase, and culturable, VBNC, and resuscitated cells shared similar beer-spoilage capability. Whole genome sequencing was performed, and out of a total of 3,964 predicted genes, several potential VBNC and beer-spoilage-associated genes were identified. L. casei is capable of entering into and resuscitating from the VBNC state and possesses beer-spoilage capability. The genomic characterization yield insightful elucidation of VBNC state for L. casei. This study represents the first evidence on VBNC state induction of L. casei and beer-spoilage capability of VBNC and resuscitated cells. Also, this is the first genomic characterization of L. casei as a beer-spoilage bacterium. The current study may aid in further study on L. casei and other beer-spoilage bacteria, and guide the prevention and control of beer spoilage. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Comparative genomic and plasmid analysis of beer-spoiling and non-beer-spoiling Lactobacillus brevis isolates.

    Science.gov (United States)

    Bergsveinson, Jordyn; Ziola, Barry

    2017-12-01

    Beer-spoilage-related lactic acid bacteria (BSR LAB) belong to multiple genera and species; however, beer-spoilage capacity is isolate-specific and partially acquired via horizontal gene transfer within the brewing environment. Thus, the extent to which genus-, species-, or environment- (i.e., brewery-) level genetic variability influences beer-spoilage phenotype is unknown. Publicly available Lactobacillus brevis genomes were analyzed via BlAst Diagnostic Gene findEr (BADGE) for BSR genes and assessed for pangenomic relationships. Also analyzed were functional coding capacities of plasmids of LAB inhabiting extreme niche environments. Considerable genetic variation was observed in L. brevis isolated from clinical samples, whereas 16 candidate genes distinguish BSR and non-BSR L. brevis genomes. These genes are related to nutrient scavenging of gluconate or pentoses, mannose, and metabolism of pectin. BSR L. brevis isolates also have higher average nucleotide identity and stronger pangenome association with one another, though isolation source (i.e., specific brewery) also appears to influence the plasmid coding capacity of BSR LAB. Finally, it is shown that niche-specific adaptation and phenotype are plasmid-encoded for both BSR and non-BSR LAB. The ultimate combination of plasmid-encoded genes dictates the ability of L. brevis to survive in the most extreme beer environment, namely, gassed (i.e., pressurized) beer.

  20. Moulds in food spoilage

    DEFF Research Database (Denmark)

    Filtenborg, Ole; Frisvad, Jens Christian; Thrane, Ulf

    1996-01-01

    There is an increasing knowledge and understanding of the role played by moulds in food spoilage. Especially the discovery of mycotoxin production in foods has highligh-ted the importance of moulds in food quality. It is, however, only within the last 5-10 years that major progresses have been made...... the associated or critical funga and has been shown to consist of less than 10 species. In this paper the associated funga is described for the following foods: Citrus and pomaceous fruits, potato and yam tubers, onions, rye, wheat, rye bread, cheese and fermented sausages and whenever possible the selective...

  1. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  2. Assessing Genetic Heterogeneity within Bacterial Species Isolated from Gastrointestinal and Environmental Samples: How Many Isolates Does It Take?▿

    OpenAIRE

    Döpfer, D.; Buist, W.; Soyer, Y.; Munoz, M. A.; Zadoks, R. N.; Geue, L.; Engel, B.

    2008-01-01

    Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contamination and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of bacterial isolates belonging to the same species that is analyzed per sample is determined by convention, convenience, laboratory capacity, or financial resources. Statistical considerations and knowledge of the heterogeneity of bacterial populations in various sources can be used t...

  3. Effects of a spoilage yeast from silage on in vitro ruminal fermentation.

    Science.gov (United States)

    Santos, M C; Lock, A L; Mechor, G D; Kung, L

    2015-04-01

    Feeding silages with high concentrations of yeasts from aerobic spoilage is often implicated as a cause of poor animal performance on dairies. Our objective was to determine if a commonly found spoilage yeast, isolated from silage, had the potential to alter in vitro ruminal fermentations. A single colony of Issatchenkia orientalis, isolated from high-moisture corn, was grown in selective medium. The yeast culture was purified and added to in vitro culture tubes containing a total mixed ration (43% concentrate, 43% corn silage, 11% alfalfa haylage, and 3% alfalfa hay on a dry matter basis), buffer, and ruminal fluid to achieve added theoretical final concentrations of 0 (CTR), 4.40 (low yeast; LY), 6.40 (medium yeast; MY), and 8.40 (high yeast; HY) log10 cfu of yeast/mL of in vitro fluid. Seven separate tubes were prepared for each treatment and each time point and incubated for 12 and 24h at 39 °C. At the end of the incubation period, samples were analyzed for pH, yeast number, neutral detergent fiber (NDF) digestibility, volatile fatty acids (VFA), and fatty acids (FA). We found that total viable yeast counts decreased for all treatments in in vitro incubations but were still relatively high (5.3 log10 cfu of yeasts/mL) for HY after 24h of incubation. Addition of HY resulted in a lower pH and higher concentration of total VFA in culture fluid compared with other treatments. Moreover, additions of MY and HY decreased in vitro NDF digestibility compared with CTR, and the effect was greatest for HY. Overall, the biohydrogenation of dietary unsaturated FA was not altered by addition of I. orientalis and decreased over time with an increase in the accumulation of saturated FA, especially palmitic and stearic acids. We conclude that addition of I. orientalis, especially at high levels, has the potential to reduce in vitro NDF digestion and alter other aspects of ruminal fermentations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All

  4. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan

    2015-01-01

    of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical...

  5. Bacterial spoilage of meat and cured meat products

    NARCIS (Netherlands)

    Borch, E.; Kant-Muermans, M.L.T.; Blixt, Y.

    1996-01-01

    The influence of environmental factors (product composition and storage conditions) on the selection, growth rate and metabolic activity of the bacterial flora is presented for meat (pork and beef) and cooked, cured meat products. The predominant bacteria associated with spoilage of refrigerated

  6. Screening of antagonistic bacteria against the green mold disease (Trichoderma harzianum Rifai of Grey Oyster Mushroom (Pleurotus pulmonarius (Fr. Quel.

    Directory of Open Access Journals (Sweden)

    Nualsri, C.

    2005-01-01

    Full Text Available A total of 174 strains of bacteria antagonistic against the green mold (Trichoderma harzianum, isolated from cultivating bags and fruiting bodies of the mushrooms, were screened for effects on mushroom mycelia and ability to control the green mold disease. Twenty-eight of them promoted the primodia formation of the Pleurotus pulmonarius mycelia on agar plates. Twenty-two isolates were selected and further tested in a mushroom house. Cell suspension of each isolate was prepared and sprayed onto the spawn surface of P. pulmonarius. Fifteen isolates shortened the times required from watering to 2nd and 3rd flushing and increased yield of the basidiocarps by 1.1-34.3% over 30 days. Six isolates of bacteria which showed an inhibitory effect against T. harzianum, enhanced primordia formation and increased yield of P. pulmonarius were selected and used for control testing in a cultivation house. The suspension of each isolate was sprayed onto the spawn surface immediately after exposure to the air in the mushroom house, followed by spore suspension of T. harzianum two days later. The number of infected bags was counted at 30 days after inoculation and the cumulative yield was compared after 60 days. The results showed that bacteria isolate B012-022 was highly effective in suppressing the green mold disease.Only 6.7% of the cultivating bags were found to be infected by T. harzianum when bacteria isolate B012-022 was applied. Cumulative yield obtained from 900 g of 94% sawdust + 5% rice bran + 1% Ca(OH2 was 300.0 g/bag after 60 days, 71.1% higher than the bags infected by the green mold and without bacterial spraying. Identification of the six bacterial isolates showed all to be Bacillus spp.

  7. Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres.

    Science.gov (United States)

    Kuuliala, L; Al Hage, Y; Ioannidis, A-G; Sader, M; Kerckhof, F-M; Vanderroost, M; Boon, N; De Baets, B; De Meulenaer, B; Ragaert, P; Devlieghere, F

    2018-04-01

    During fish spoilage, microbial metabolism leads to the production of volatile organic compounds (VOCs), characteristic off-odors and eventual consumer rejection. The aim of the present study was to contribute to the development of intelligent packaging technologies by identifying and quantifying VOCs that indicate spoilage of raw Atlantic cod (Gadus morhua) under atmospheres (%v/v CO 2 /O 2 /N 2 ) 60/40/0, 60/5/35 and air. Spoilage was examined by microbiological, chemical and sensory analyses over storage time at 4 or 8 °C. Selected-ion flow-tube mass spectrometry (SIFT-MS) was used for quantifying selected VOCs and amplicon sequencing of the 16S rRNA gene was used for the characterization of the cod microbiota. OTUs classified within the Photobacterium genus increased in relative abundance over time under all storage conditions, suggesting that Photobacterium contributed to spoilage and VOC production. The onset of exponential VOC concentration increase and sensory rejection occurred at high total plate counts (7-7.5 log). Monitoring of early spoilage thus calls for sensitivity for low VOC concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Design and thermal analysis of a mold used in the injection of elastomers

    Science.gov (United States)

    Fekiri, Nasser; Canto, Cécile; Madec, Yannick; Mousseau, Pierre; Plot, Christophe; Sarda, Alain

    2017-10-01

    In the process of injection molding of elastomers, improving the energy efficiency of the tools is a current challenge for industry in terms of energy consumption, productivity and product quality. In the rubber industry, 20% of the energy consumed by capital goods comes from heating processes; more than 50% of heat losses are linked to insufficient control and thermal insulation of Molds. The design of the tooling evolves in particular towards the reduction of the heated mass and the thermal insulation of the molds. In this paper, we present a complex tool composed, on one hand, of a multi-cavity mold designed by reducing the heated mass and equipped with independent control zones placed closest to each molding cavity and, on the other hand, of a regulated channel block (RCB) which makes it possible to limit the waste of rubber during the injection. The originality of this tool lies in thermally isolating the regulated channel block from the mold and the cavities between them in order to better control the temperature field in the material which is transformed. We present the design and the instrumentation of the experimental set-up. Experimental measurements allow us to understand the thermal of the tool and to show the thermal heterogeneities on the surface of the mold and in the various cavities. Tests of injection molding of the rubber and a thermal balance on the energy consumption of the tool are carried out.

  9. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  10. Interactive Mold House Tour

    Science.gov (United States)

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  11. Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Mailafia

    2017-04-01

    Full Text Available Aim: Annual reports have shown that 20% of fruits and vegetables produced are lost to spoilage. This study was undertaken to isolate and identify fungi that are associated with spoilt fruits commonly sold in Gwagwalada market, Abuja, and recommend appropriate control measure. Materials and Methods: The study was conducted in Gwagwalada metropolis, Gwagwalada Area Council of the Federal Capital Territory, Abuja, Nigeria. A total of 100 spoilt fruits which include pawpaw (Carica papaya, orange (Citrus sinensis, tomato (Lycopersicon esculentum, pineapple (Ananas comosus, and watermelon (Citrullus vulgaris were purchased and examined for the presence of fungal organisms using standard methods. The data collected were analyzed using simple descriptive statistics (frequency and mean and analysis of variance (p<0.05. Results: Aspergillus niger had the highest occurrence in pineapple, watermelon, oranges, pawpaw, and tomatoes with a frequency of 38%. Fusarium avenaceum followed with the frequency of occurrence of 31% in fruits such as pineapple, watermelon, oranges, pawpaw, and tomatoes while Penicillium digitatum and Rhizopus stolonifer had the least frequency of 4% each in tomato; and orange and tomato, respectively. Other fungal species were identified as yeast (Saccharomyces species (10%, Fusarium solani (8%, and Aspergillus flavus (5%. The highest prevalence rate was 70% of A. niger from orange followed by F. avenaceum of which 65% isolates were recovered from pawpaw. Other fungal organisms such as yeast (Saccharomyces species, P. digitatum and R. stolonifer were isolated with varying prevalence (40%, 20%, and 5% from watermelon, tomato, and orange, respectively. However, there was no significant difference in the fungal load of the various fruits studied (analysis of variance=478.2857, p<0.05, F=4.680067 and df=34. Conclusion: The pathogenic fungi species associated with fruits spoilage in this study are of economical and public health

  12. Rubber molds for investment casting

    International Nuclear Information System (INIS)

    Sibtain, S.N.

    2011-01-01

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  13. Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives

    DEFF Research Database (Denmark)

    Bavaro, Simona L.; Susca, Antonia; Frisvad, Jens Christian

    2017-01-01

    Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food...

  14. An easy mold

    International Nuclear Information System (INIS)

    Kim, Nam Hun; Choe, Jong Sun

    1988-04-01

    This book deals with an easy mold, which introduces what is a mold kinds and classification of mold. It gives descriptions of easy theories such as basic knowledge on shearing work, clearance, power for punching and shear angle, basic knowledge for bending such as transform by bending, the minimal bending radius, spring back, the length of material, flexural strength for bending, fundamental knowledge for drawing work with transform of drawing and limitation of drawing.

  15. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans

    OpenAIRE

    Junyan Liu; Yang Deng; Brian M. Peters; Lin Li; Bing Li; Lequn Chen; Zhenbo Xu; Mark E. Shirtliff

    2016-01-01

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA1...

  16. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography

    International Nuclear Information System (INIS)

    Song, Jingfeng; Lu, Haidong; Gruverman, Alexei; Ducharme, Stephen; Li, Shumin; Tan, Li

    2016-01-01

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics. (paper)

  17. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography.

    Science.gov (United States)

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-08

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  18. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    Science.gov (United States)

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Antibacterial Activity of Zataria multiflora Boiss Essential Oil against Some Fish Spoilage Bacteria

    OpenAIRE

    Mohammad Hashemi; Saber Barkhori-Mehni; Saeed Khanzadi; Mohammad Azizzadeh

    2017-01-01

    Background: The aim of this study was to investigate antimicrobial effect of Zataria multiflora Boiss essential oil (EO) against six fish spoilage bacteria for evaluation of its potential utilization in the preservation of minimally processed fish products. Methods: Firstly, GC-MS analysis of the EO was performed to determine its chemical composition. Then, antibacterial effect of the EO in a range of 0.031 to 4 mg/ml was tested against different fish spoilage bacteria such as Aeromonas h...

  20. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  1. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    Science.gov (United States)

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Assessment of indoor air in Austrian apartments with and without visible mold growth

    Science.gov (United States)

    Haas, D.; Habib, J.; Galler, H.; Buzina, W.; Schlacher, R.; Marth, E.; Reinthaler, F. F.

    Fungal spores are transported across great distances in the outdoor air and are also regularly found indoors. Building conditions and behavior-related problems in apartments may lead to massive growth of mold within a very short period of time. The aim of this study was to evaluate whether the visible growth of mold indoors influences the concentration of fungal spores in the air as well as the variety of their species. Samples were collected from 66 households in Austria. For each sampling, the corresponding outdoor air was measured as reference value. The size of the visible mold growth was categorized in order to correlate the extent of mold growth with the concentration of airborne spores as well as the fungal genera. In order to determine fungal spore concentrations in the air, the one-stage MAS-100 ® air sampler was used. Malt extract agar (MEA) and dichloran glycerol agar (DG18) plates were used as culture media. The total colony forming units (CFU) per m 3 were determined. The fungi were identified from the isolated colonies. The results show that in apartments visibly affected by mold, the median values were significantly higher than those of apartments without visible mold growth. The extent of visible mold growth is significantly correlated with both concentration of fungal spores ( pPenicillium sp. and Aspergillus sp. ( pPenicillium and Aspergillus in the air of apartments is recommended for assessing fungal exposure.

  3. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    Science.gov (United States)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  4. Metabolic Phenotype Characterization of Botrytis cinerea, the Causal Agent of Gray Mold

    Directory of Open Access Journals (Sweden)

    Han-Cheng Wang

    2018-03-01

    Full Text Available Botrytis cinerea, which causes gray mold, is an important pathogen in four important economic crops, tomato, tobacco, cucumber and strawberry, in China and worldwide. Metabolic phenomics data on B. cinerea isolates from these four crops were characterized and compared for 950 phenotypes with a BIOLOG Phenotype MicroArray (PM. The results showed that the metabolic fingerprints of the four B. cinerea isolates were similar to each other with minimal differences. B. cinerea isolates all metabolized more than 17% of the tested carbon sources, 63% of the amino acid nitrogen substrates, 80% of the peptide nitrogen substrates, 93% of the phosphorus substrates, and 97% of the sulfur substrates. Carbon substrates of organic acids and carbohydrates, and nitrogen substrates of amino acids and peptides were the significant utilization patterns for B. cinerea. Each B. cinerea isolate contained 94 biosynthetic pathways. These isolates showed a large range of adaptabilities and were still able to metabolize substrates in the presence of the osmolytes, including up to 6% potassium chloride, 10% sodium chloride, 5% sodium sulfate, 6% sodium formate, 20% ethylene glycol, and 3% urea. These isolates all showed active metabolism in environments with pH values from 3.5 to 8.5 and exhibited decarboxylase activities. These characterizations provide a theoretical basis for the study of B. cinerea in biochemistry and metabolic phenomics and provide valuable clues to finding potential new ways to manage gray mold.

  5. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces ' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus . These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p -coumaric acid, a trait not shared among the spoilage strains.

  6. Spoilage fungi and their mycotoxins in commercially marketed chestnuts

    DEFF Research Database (Denmark)

    Overy, David Patrick; Seifert, K.A.; Savard, M.E.

    2003-01-01

    A nationwide survey was carried out to assess mould spoilage of Castanea sativa nuts sold in Canadian grocery stores in 1998-99. Morphological and cultural characters, along with secondary metabolite profiles derived from thin-layer chromatography, were used to sort and identify fungi cultured from...

  7. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  8. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    Science.gov (United States)

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  9. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...

  10. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    Science.gov (United States)

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  11. Computer-aided injection molding system

    Science.gov (United States)

    Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.

    1982-10-01

    Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.

  12. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  13. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  14. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  15. Environmental Sustainability and Mold Hygiene in Buildings.

    Science.gov (United States)

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  16. Environmental Sustainability and Mold Hygiene in Buildings

    Directory of Open Access Journals (Sweden)

    Haoxiang Wu

    2018-04-01

    Full Text Available Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  17. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    Science.gov (United States)

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  18. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    Science.gov (United States)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  19. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    Science.gov (United States)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  20. Comparing suppository mold variability which can lead to dosage errors for suppositories prepared with the same or different molds.

    Science.gov (United States)

    Alexander, Kenneth S; Baki, Gabriella; Hart, Christine; Hejduk, Courtney; Chillas, Stephanie

    2013-01-01

    Suppository molds must be properly calibrated to ensure accurate dosing. There are often slight differences between molds and even in the cavities within a mold. A method is presented for the calibration of standard aluminum 6-, 12-, 50-, or 100-well suppository molds. Ten different molds were tested using water for volume calibration, and cocoa butter for standardization involving establishing the density factor. This method is shown to be straightforward and appropriate for calibrating suppository molds.

  1. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    OpenAIRE

    Utami Sri Hastuti; Indriana Rahmawati

    2016-01-01

    The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM). The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, an...

  2. Gray Mold on Saintpaulia ionantha Caused by Botrytis cinerea in Korea

    Directory of Open Access Journals (Sweden)

    Hyung-Moo Kim

    2011-04-01

    Full Text Available Gray mold caused by Botrytis cinerea occurred on Saintpaulia ionantha in flower shop of the Jeonju city in Korea. Typical symptoms with brown water-soaked and rotting lesions were appeared on the flowers, leaves and petiole of infected plants. Many conidia spores appeared on the lesions under humid conditions. Colonies were grayish brown and sclerotial formation on potato dextrose agar. Conidia were one celled, mostly ellipsoidal or ovoid in shape, and were colorless to pale brown in color. The conidia were 7~14×5~9 μm in size. Based on pathogenicity and morphological characteristics of the isolated fungus, the causal fungus was identified as B. cinerea Persoon: Fries. Gray mold of S. ionantha was proposed to the name of this disease.

  3. Occurrence of Foodborne Pathogens and Molds in Turkish Foods

    Directory of Open Access Journals (Sweden)

    Sebnem Ozturkogu-Budak

    2016-06-01

    Full Text Available A survey of the occurrence of food pathogens like Salmonella, Listeria, Escherichia, Clostridium, Bacillus and Staphylococcus analyses were performed on 301 food samples from 8 different food categories such as dry legumes, milk products, meat products, fish, frozen foods, deserts, nuts and vegetables and fruits. Yeast and mold analyses were also performed on 364 food products from 9 main food categories such as dry legumes, milk products, meat products, seasonings, deserts, nuts, bee products, bakery products and dried fruits produced in Turkey. S. aureus and Salmonella were the most prevalent (1.33% of the six isolated pathogens. The species Cl. perfringens, L. monocytogenes and B. cereus were detected with the ratios of 1.00%, 0.66% and 0.66%, respectively. Total yeast and molds occurrence were 1.65% and 9.06%, respectively. Pathogens were detected in cream cheese, spinach, strawberry and cod fish most prevalently, whereas dried fig, chilli pepper, hazelnut and bakery products were determined as foods prone to the growth of molds. The results of this study suggest that faecal contamination of water needs to be prevented, and the production and storage conditions of food materials should be improved. These findings have implications for the use of these surveillance data in developing evidence-based food policy.

  4. Binary combination of epsilon-poly-L-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat.

    Science.gov (United States)

    Hyldgaard, Morten; Meyer, Rikke L; Peng, Min; Hibberd, Ashley A; Fischer, Jana; Sigmundsson, Arnar; Mygind, Tina

    2015-12-23

    Proliferation of microbial population on fresh poultry meat over time elicits spoilage when reaching unacceptable levels, during which process slime production, microorganism colony formation, negative organoleptic impact and meat structure change are observed. Spoilage organisms in raw meat, especially Gram-negative bacteria can be difficult to combat due to their cell wall composition. In this study, the natural antimicrobial agents ε-poly-L-lysine (ε-PL) and isoeugenol were tested individually and in combinations for their activities against a selection of Gram-negative strains in vitro. All combinations resulted in additive interactions between ε-PL and isoeugenol towards the bacteria tested. The killing efficiency of different ratios of the two antimicrobial agents was further evaluated in vitro against Pseudomonas putida. Subsequently, the most efficient ratio was applied to a raw turkey meat model system which was incubated for 96 h at spoilage temperature. Half of the samples were challenged with P. putida, and the bacterial load and microbial community composition was followed over time. CFU counts revealed that the antimicrobial blend was able to lower the amount of viable Pseudomonas spp. by one log compared to untreated samples of challenged turkey meat, while the single compounds had no effect on the population. However, the compounds had no effect on Pseudomonas spp. CFU in unchallenged meat. Next-generation sequencing offered culture-independent insight into population diversity and changes in microbial composition of the meat during spoilage and in response to antimicrobial treatment. Spoilage of unchallenged turkey meat resulted in decreasing species diversity over time, regardless of whether the samples received antimicrobial treatment. The microbiota composition of untreated unchallenged meat progressed from a Pseudomonas spp. to a Pseudomonas spp., Photobacterium spp., and Brochothrix thermosphacta dominated food matrix on the expense of low

  5. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  6. Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, Matteo; Speranza, V.

    2016-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded aselectrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule effect...

  7. Antibacterial Activity of Zataria multiflora Boiss Essential Oil against Some Fish Spoilage Bacteria

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2017-09-01

    Full Text Available Background: The aim of this study was to investigate antimicrobial effect of Zataria multiflora Boiss essential oil (EO against six fish spoilage bacteria for evaluation of its potential utilization in the preservation of minimally processed fish products. Methods: Firstly, GC-MS analysis of the EO was performed to determine its chemical composition. Then, antibacterial effect of the EO in a range of 0.031 to 4 mg/ml was tested against different fish spoilage bacteria such as Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas fluorescens, Shewanella putrefaciens, Escherichia coli and Bacillus subtilis by broth microdilution method to determine minimum inhibitory (MIC and minimum bactericidal (MBC concentrations. Results: GC-MS results showed that phenolic components such as carvacrol (51.55% and thymol (25.49% were predominant constituents of the EO. Zataria multiflora Boiss EO exhibited strong antimicrobial activity against all tested bacteria. Shewanella Putrefaciens was the most sensitive bacteria with MBC value of 0. 5 mg/ml. Conclusion: According to the results, this EO could be used as an important natural alternative to prevent bacterial growth in food specially seafood products to preserve them against bacterial spoilage.

  8. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  9. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    Directory of Open Access Journals (Sweden)

    Utami Sri Hastuti

    2016-09-01

    Full Text Available The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM. The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, and competition.

  10. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  11. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  12. Mold

    Science.gov (United States)

    ... has developed a device known as an acoustical generator that can create and disperse molds for rodent ... Sciences) . 2004. Damp Indoor Spaces and Health. Washington, DC: The National Academies Press. 3 WHO ( World Health ...

  13. Mold After a Disaster

    Science.gov (United States)

    ... should clean up the mold and fix any water problem, such as leaks in roofs, walls, or plumbing. Controlling moisture in your home is the most critical factor for preventing mold growth. To ... use commercial products, soap and water, or a bleach solution of no more than ...

  14. Antimicrobial activity and high thermostability of a novel BLIS secreted by Enterococcus Mundtii isolated from Lebanese cow’s milk

    Directory of Open Access Journals (Sweden)

    Imad AL Kassaa

    2016-12-01

    Full Text Available AL Kassaa, I., Safourim, N., Mostafa, N. and Hamze, M. Antimicrobial activity and high thermostability of a novel BLIS secreted by Enterococcus Mundtii isolated from lebanese cow’s milk. 2016. Lebanese Science Journal, 17(2: 166-176. Lactic acid bacteria (LAB are used in many fields such as fermentation agents, increasing nutritional value and improving organoleptic quality of food. Also they are used as probiotics and preservatives against pathogens and spoilage microbes by producing antimicrobial substances such as bacteriocins. Fifty cow’s milk samples were collected and 175 LAB isolates were isolated and identified by using biochemical method. Fifteen isolates showed an antimicrobial activity against Listeria monocytogenes ATCC® 19115™. One strain, BL4 which showed the strongest activity, was chosen to extract and characterize its antimicrobial substance in order to evaluate its potential use as a new food protective agent. This strain was identified as Enterococcus mundtii by pyrosequencing method. The active substance was extracted using solvent method. This Bacteriocin like Inhibitory Substances “BLIS” can support a high temperature (121 ˚C for a long time and resist pH variation. The BLIS BL4 can be considered as a peptide active against many food pathogen and food-spoilage microbes, such as Listeria monocytogenes and Penicillium spp. BLIS BL4 can be used in food application as bio-preservative to reduce food-spoilage and food-borne diseases in food products.

  15. Molecular comparisons for identification of food spoilage yeasts and prediction of species that may develop in different food products

    Science.gov (United States)

    Spoilage of foods and beverages by yeasts is often characterized by objectionable odors, appearance, taste, texture or build-up of gas in packaging containers, resulting in loss of the product. Seldom is human health compromised by products spoiled by yeasts even though some spoilage is caused by sp...

  16. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  17. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...... figure 1). The cavities have different surface topographies on one side, but are otherwise identical (see discussion of other contribution factors)....

  18. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    Science.gov (United States)

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  19. Implementation of Molding Constraints in Topology Optimization

    DEFF Research Database (Denmark)

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  20. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  1. Association of Stremptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status.

    Science.gov (United States)

    Abstract Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study, we used a cultureindependent met...

  2. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium

  3. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    International Nuclear Information System (INIS)

    Giboz, Julien; Mélé, Patrice; Copponnex, Thierry

    2009-01-01

    The skin–core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin–core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities

  4. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  5. Digital Twin concept for smart injection molding

    Science.gov (United States)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  6. Mold inhibition on unseasoned southern pine

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  7. Medical diagnostics for indoor mold exposure.

    Science.gov (United States)

    Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A

    2017-04-01

    In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and

  8. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    Science.gov (United States)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  9. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    International Nuclear Information System (INIS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-01-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  10. Radiation resistance of some microorganisms isolated from irradiated herbs

    International Nuclear Information System (INIS)

    El-Bazza, Z.E.; Shihab, A.; Farrag, H.A.; El-Sayed, Z.G.; Mahmoud, M.I.

    1997-01-01

    Three types of Egyptian medicinal herbs, sweet marjoram, spearmint and thyme were used in this study. The tested herbs were exposed to gamma radiation doses ranging from 1.0 to 10,0 kGy. The sublethal doses of radioresistant molds ranged from 1.0 to 2.0 kGy and the sublethal doses of radioresistant bacteria ranged from 7.0 to 8.0 kGy. The radioresistant molds isolated from sweet marjoram and spearmint herbs were identified as Aspergillus, whereas that isolated from thyme was identified as Aspergillus ochraceus. The radioresistant bacteria isolated from sweet marjoram, spearmint and thyme were identified as Bacillus megaterium, B.pantothenticus and B. brevis, respectively. All the radioresistant molds exhibited an exponential response. The D 15 v alue of Asp. ochraceus was 0.33 kGy, while that of Asp. niger were 0.45 and 0.5 kGy, respectively. All the bacterial species exhibited non-exponential response. The D 10 -values for B.megaterium, B. pantothenticus and B. brevis were found to be 2.58, 3.0 and 1.63 kGy, respectively

  11. AKTIVITAS ANTIKAPANG BAKTERI ASAM LAKTAT TERHADAP PERTUMBUHAN KAPANG KONTAMINAN KEJI [Antimycotic Activity of Lactic Acid Bacteria on the Growth of Cheese Contaminating Molds

    Directory of Open Access Journals (Sweden)

    S. Styahadi3

    2006-04-01

    Full Text Available Local cheese is frequently contaminated by toxigenic molds which is harmful for human health. Lactic acid bacteria have been proven to inhibit the growth of toxigenic mold in some food products. The research was aimed to study the activity of indigenous lactic acid bacteria to inhibit the growth of toxigenic molds in local cheese. The molds studied were isolated from local cheese production (Gouda type. The cheese contaminating molds were identified as Penicillium sp. and Aspergillus sp. Nine species of indigenous lactic acid bacteria (LAB were tested for antimycotic activities, i.e. Lactobacillus plantarum kik, Lactobacillus plantarum sa, Lactobacillus plantarum pi28a, Lactobacillus plantarum dd, Lactobacillus coryneformis, Lactobacillus brevis, Lactococcus piscium, Leuconostoc mesenteroides, and Leuconostoc paramesenteroides. The research revealed that the promising indigenous LAB which inhibited the contaminating molds was Lb plantarum pi28a. Application of Lb plantarum pi28a on local cheese production could inhibit the growth of Penicillium sp. and Aspergillus sp. up to 12 days.

  12. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  13. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  14. Spoilage-related activity of Carnobacterium maltaromaticum strains in air-stored and vacuum-packed meat.

    Science.gov (United States)

    Casaburi, Annalisa; Nasi, Antonella; Ferrocino, Ilario; Di Monaco, Rossella; Mauriello, Gianluigi; Villani, Francesco; Ercolini, Danilo

    2011-10-01

    One hundred three isolates of Carnobacterium spp. from raw meat were analyzed by random amplification of polymorphic DNA (RAPD) and PCR and were identified by 16S rRNA gene sequencing. Forty-five strains of Carnobacterium maltaromaticum were characterized for their growth capabilities at different temperatures, NaCl concentrations, and pH values and for in vitro lipolytic and proteolytic activities. Moreover, their spoilage potential in meat was investigated by analyzing the release of volatile organic compounds (VOCs) in meat stored in air or vacuum packs. Almost all the strains were able to grow at 4, 10, and 20°C, at pH values of 6 to 9, and in the presence of 2.5% NaCl. The release of VOCs by each strain in beef stored at 4°C in air and vacuum packs was evaluated by headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) analysis. All the meat samples inoculated and stored in air showed higher numbers of VOCs than the vacuum-packed meat samples. Acetoin, 1-octen-3-ol, and butanoic acid were the compounds most frequently found under both storage conditions. The contaminated meat samples were evaluated by a sensory panel; the results indicated that for all sensory odors, no effect of strain was significant (P > 0.05). The storage conditions significantly affected (P meat, and mozzarella cheese odors, which were more intense in meat stored in air than in vacuum packs but were never very intense. In conclusion, different strains of C. maltaromaticum can grow efficiently in meat stored at low temperatures both in air and in vacuum packs, producing volatile molecules with low sensory impacts, with a negligible contribution to meat spoilage overall.

  15. Effects of fast mold temperature evolution on micro features replication quality during injection molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, M.; Speranza, V.

    2017-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded as electrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule...

  16. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...

  17. Effect of Some Plant Extracts on the Microbial Spoilage of Cajanus ...

    African Journals Online (AJOL)

    The effect of ethanolic extracts of seven plant sources on the microbial spoilage of Cajanus cajan extract was investigated. The results showed that the extracts obtained from Aloe vera, bitter leaf, Gultiferae (garcinia or bitter kola), Ocimum gratissimum (scent leaf) and Zingiber officialae (ginger) were effective against ...

  18. Microbial Quality and Antimicrobial Resistance of Staphylococcus aureus and Escherichia coli Isolated from Traditional Ice Cream in Hamadan City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ghadimi

    2016-10-01

    Full Text Available Background Foodborne diseases are one of the most major public health concerns in the world. Ice cream flavors, especially the traditional ones, have a high potential for the transmission of the pathogenic bacteria. Objectives The aim of the current study is to investigate the microbiological status and antibiotic resistance of Escherichia coli and Staphylococcus aureus isolated from traditional ice cream. Methods A total of 114 traditional ice creams were randomly collected from retail stores in Hamadan, Iran. Samples were investigated for the total bacteria count (TBC and contamination with the coliform, Enterobacteriaceae and Salmonella as well as the prevalence and antibiotic resistance of Staphylococcus aureus and Escherichia coli. Results The count of Enterobacteriaceae (89.47%, mold and yeast (50%, coliform (40.35% and TBC (28.07% of samples was higher than Iran’s standard. Salmonella was not found in all samples. The prevalence of Staphylococcus aureus and Escherichia coli was confirmed in 50% and 37.72% of samples, respectively. Collected Escherichia coli had the highest antibiotic resistance to ampicillin 67.44%, nalidixic acid 39.53% and co-amoxyclav 37.21%. Staphylococcus aureus showed a higher antibiotic resistance to penicillin (82.46% of isolates and oxacillin (38% of isolates. Conclusions The results showed high contamination levels of traditional ice cream with spoilage and pathogenic microorganisms as well as considerable resistance of isolated Staphylococcus aureus and Escherichia coli to common antibiotics. Therefore, good hygienic practice during processing and personal hygiene should be considered to improve the quality of ice cream. In addition, it is necessary that the regulatory authorities carry out more control on the production centers of traditional ice cream.

  19. Isolation and Identification of Fungi Associated with the Spoilage of ...

    African Journals Online (AJOL)

    This study was carried out in Sokoto Metropolis to isolate and identify fungi associated with the deterioration of sweet orange fruits. A total of one hundred samples of fresh sweet Oranges (Citrus sinensis L) were used. First, a total of seventy samples were obtained from the three selected marketing centres in Sokoto ...

  20. Process for molding improved polyethylene

    International Nuclear Information System (INIS)

    Kanai, Masanori; Aine, Norio; Nakada, Shinsaku.

    1962-01-01

    Various configurations in size and shape of polyethylene are molded by: (a) irradiating powders of polyethylene with ionizing radiations in the presence of oxygen to the extent of producing substantially no cross-linking among the molecules of polyethylene, and thereafter (b) molding the thus irradiated powders of polyethylene at 100-250 0 C to cross-link the molding. In this process, a uniform and desirable degree of cross-linking and any desirable configuration are provided for the polyethylene molding. Any extruder and any molding machine producing heat can be employed in this process. In embodiments, the radiation dose units may preferably be 1x10 6 to 1.5x10 7 roentgen. The ionizing radiations may be X-rays, gamma-rays or electron beams, but preferably gamma-rays. The preheating prior to molding may be effected in vacuum, in inert gas, or in oxygen at 100-250 0 C, but preferably in oxygen at 100 0 C. In an example, a polyethylene powder of 100 mesh was irradiated with gamma-rays from a Co-60 source with a dose of 3.1x10 6 r at a dose rate of 5.5x10 4 r/hr in air, then preheated in air at 80 0 C for 1 hr, and finally extruded to form a rod of 5 mm phi at 200 0 C. max. The degree of product cross-linking was 0% after irradiation in step (a), and 38% after heating in step (b). (Iwakiri, K.)

  1. Development of Volatile Oil of Mustard and Vanillin as an Effective Food Preservation System for Military Bread and Baked Goods

    National Research Council Canada - National Science Library

    Muller, Wayne S; Sikes, Anthony; Yeomans, Walter; Anderson, Danielle; Senecal, Andy

    2006-01-01

    ...) vanillin is an effective food preservation system for molds and yeast. Four bread spoilage organisms were evaluated in the study Penicillium notatum, Rhizopus stolonifer, Aspergillus niger, and Saccharomycopsis fibuligera...

  2. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  3. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  4. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  5. Solvent-assisted polymer micro-molding

    Institute of Scientific and Technical Information of China (English)

    HAN LuLu; ZHOU Jing; GONG Xiao; GAO ChangYou

    2009-01-01

    The micro-molding technology has played an important role in fabrication of polymer micro-patterns and development of functional devices.In such a process,suitable solvent can swell or dissolve the polymer films to decrease their glass transition temperature (Tg) and viscosity and thereby improve flowing ability.Consequently,it is easy to obtain the 2D and 3D patterns with high fidelity by the solvent-assisted micro-molding.Compared with the high temperature molding,this technology overcomes some shortcomings such as shrinking after cooling,degradation at high temperature,difficulty in processing some functional materials having high Tg,etc.It can be applied to making patterns not only on polymer monolayers but also on polyelectrolyte multilayers.Moreover,the compressioninduced patterns on the multilayers are chemically homogenous but physically heterogeneous.In this review,the controlling factors on the pattern quality are also discussed,including materials of the mold,solvent,pressure,temperature and pattern density.

  6. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    Science.gov (United States)

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  8. The use of chitooligosaccharide in beer brewing for protection against beer-spoilage bacteria and its influence on beer performance.

    Science.gov (United States)

    Zhao, Xue; Yu, Zhimin; Wang, Ting; Guo, Xuan; Luan, Jing; Sun, Yumei; Li, Xianzhen

    2016-04-01

    To identify a biological preservative that can protect beer from microbial contamination, which often results in the production of turbidity and off-flavor. The antimicrobial activity of a chitooligosaccharide against beer-spoilage bacteria and its effect on the fermentation performance of brewer's yeast was studied. Chitooligosaccharide with an average 2 kDa molecular weight was the best at inhibiting all tested beer-spoilage bacteria. The application of chitooligosaccharide in the brewing process did not influence the fermentation of brewer's yeast. The change in beer performance induced by the contamination of Lactobacillus brevis could be effectively controlled by application of chitooligosaccharide in the beer brewing process. The experimental data suggested that chitooligosaccharide should be an excellent preservative to inhibit beer-spoilage bacteria in the brewing process and in the end product.

  9. Effects of innovative and conventional sanitizing treatments on the reduction of Saccharomycopsis fibuligera defects on industrial durum wheat bread.

    Science.gov (United States)

    Giannone, Virgilio; Pitino, Iole; Pecorino, Biagio; Todaro, Aldo; Spina, Alfio; Lauro, Maria Rosaria; Tomaselli, Filippo; Restuccia, Cristina

    2016-10-17

    Wickerhamomyces anomalus, Hyphopichia burtonii and Saccharomycopsis fibuligera are spoilage yeasts causing chalk mold defects on sliced bread packaged under modified atmosphere. The first objective of this study, carried out in a bread-making company for two consecutive years, was to genetically identify yeasts isolated from spoiled sliced bread in Modified Atmosphere Packaging (MAP) and to determine the dominant species among identified strains. The second objective was to evaluate the effects of hydrogen peroxide and silver solution 12% (HPS) treatment in the leavening cells and cooling chambers, in comparison with the conventional Ortho-Phenylphenol (OPP) fumigating treatment, on the incidence of chalk defects of the commercialized products. One-hundred percent of the isolated yeasts were identified as S. fibuligera, while H. burtonii and W. anomalus were not detected. Concerning mean water activity (aw) and moisture content values, packaged bread samples were, respectively, included in the range 0.922-0.940 and 33.40-35.39%. S. fibuligera was able to grow in a wide range of temperature (11.5 to 28.5°C) and relative humidity (70.00 to 80.17%) in the processing environments, and product aw<0.94. Compared to OPP, the combined treatment with hydrogen peroxide and silver solution, in association with MAP, reduced to a negligible level yeast contamination of industrial sliced bread. The identification of the spoilage organisms and a comprehensive understanding of the combined effects of aw, pO2/pCO2 inside the packages, environmental conditions and sanitizing treatment on the growth behaviour is essential for future development of adequate preventive process strategies against chalk mold defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii.

    Science.gov (United States)

    Portugal, Cauré; Pinto, Luís; Ribeiro, Miguel; Tenorio, Carmen; Igrejas, Gilberto; Ruiz-Larrea, Fernanda

    2015-10-01

    Wine microbiota is complex and includes a wide diversity of yeast species. Few of them are able to survive under the restrictive conditions of dry red wines. In our study we detected and identified seven yeast species of the order Saccharomycetales that can be considered potential spoilers of wines due to physiological traits such as acidogenic metabolism and off-odor generation: Arthroascus schoenii, Candida ishiwadae, Meyerozyma guilliermondii, Pichia holstii, Pichia manshurica, Trigonopsis cantarellii, and Trigonopsis variabilis. Based on the prevalence of T. cantarellii isolates in the wine samples of our study, we further characterized this species, determined molecular and phenotypic features, and performed a proteomic analysis to identify differentially expressed proteins at mid-exponential growth phase in the presence of ethanol in the culture broth. This yeast species is shown to be able to grow in the presence of ethanol by expressing heat shock proteins (Hsp70, Hsp71) and a DNA damage-related protein (Rad24), and to be able to confer spoilage characteristics on wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  12. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  13. Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms.

    Science.gov (United States)

    Balay, Danielle R; Dangeti, Ramana V; Kaur, Kamaljit; McMullen, Lynn M

    2017-08-16

    The aims of this study were to improve the method for purification of leucocin A to increase yield of peptide and to evaluate the efficacy of leucocin A and an analogue of leucocin A (leucocin N17L) to inhibit the growth of Listeria monocytogenes on wieners in the presence of spoilage organisms. Leucocin A was produced by Leuconostoc gelidum UAL187 and purified with a five-fold increase in yield; leucocin N17L was synthesized replacing asparagine at residue 17 with leucine. Five strains of L. monocytogenes associated with foodborne illness were used to assess bacteriocin efficacy in vitro and in situ. Minimum inhibitory concentrations could not be determined in broth; however, on agar the minimum inhibitory concentrations ranged from 11.7-62.5μM and 62.5->500μM for leucocin A and leucocin N17L, respectively. Leucocin N17L was less effective than the native bacteriocin at controlling the growth of L. monocytogenes. The inactivation profiles of L. monocytogenes in broth in the presence of leucocin A suggested each isolate had different levels of resistance to the bacteriocin as determined by the initial bactericidal effect. The formation of spontaneously resistance subpopulations were also observed for each strain of L. monocytogenes. In situ, wieners were inoculated with the spoilage organisms, Carnobacterium divergens and Brochothrix thermosphacta, followed by surface application of purified leucocin A, and inoculated with a cocktail of L. monocytogenes. Wieners were vacuum packaged and stored at 7°C for 16d. Leucocin A reduced the counts L. monocytogenes on wieners during storage, regardless of the presence of C. divergens. B. thermosphacta was unaffected by the presence of leucocin A on wieners over the duration of storage. This study suggests that leucocin A may be beneficial to industry as a surface application on wieners to help reduce L. monocytogenes counts due to post-processing contamination even in the presence of spoilage organisms. However, further

  14. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...... on the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the mold...

  15. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...... as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual...

  16. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  17. Draft Genome Sequence of Bacillus sp. FMQ74, a Dairy-contaminating Isolate from Raw Milk

    DEFF Research Database (Denmark)

    Okshevsky, Mira Ursula; Regina, Viduthalai R.; Marshall, Ian

    2017-01-01

    Representatives of the genus Bacillus are common milk contaminants that cause spoilage and flavor alterations of dairy products. Bacillus sp. FMQ74 was isolated from raw milk on a Danish dairy farm. To elucidate the genomic basis of this strain’s survival in the dairy industry, a high-quality draft...

  18. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  19. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  20. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  1. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds.

    Science.gov (United States)

    Paul, Saikat; Singh, Pankaj; Rudramurthy, Shivaprakash M; Chakrabarti, Arunaloke; Ghosh, Anup K

    2017-12-01

    To standardize the matrix-assisted laser desorption ionization-time of flight mass spectrometry protocols and expansion of existing Bruker Biotyper database for mold identification. Four different sample preparation methods (protocol A, B, C and D) were evaluated. On analyzing each protein extraction method, reliable identification and best log scores were achieved through protocol D. The same protocol was used to identify 153 clinical isolates. Of these 153, 123 (80.3%) were accurately identified by using existing database and remaining 30 (19.7%) were not identified due to unavailability in database. On inclusion of missing main spectrum profile in existing database, all 153 isolates were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can be used for routine identification of clinically important molds.

  2. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage.

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Desmonts, Marie Hélène; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-05-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.

  3. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Hélène Desmonts, Marie; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-01-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota. PMID:25333463

  4. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  5. Hydrosols of orange blossom (Citrus aurantium), and rose flower (Rosa damascena and Rosa centifolia) support the growth of a heterogeneous spoilage microbiota.

    Science.gov (United States)

    Labadie, Cécile; Ginies, Christian; Guinebretiere, Marie-Hélène; Renard, Catherine M G C; Cerutti, Céline; Carlin, Frédéric

    2015-10-01

    Hydrosols are hydrodistillation products of aromatic plants. They contain less than 1g/L of dispersed essential oils giving organoleptic properties. Hydrosols are subjected to microbial proliferation. Reasons for spoilage have to be found in the nature of substrates supporting growth and of microbiological contaminants. The composition in essential oils and the microbiota of 22 hydrosol samples of Citrus aurantium L. ssp. amara L. (orange blossom), Rosa damascena Miller (rose D.), and Rosa centifolia L. (rose C.) flowers were analyzed to determine the factors responsible for decay. The median concentrations in essential oils were 677mg/L for orange blossom hydrosols, 205mg/L for rose D. hydrosols, and 116mg/L for rose C. hydrosols. The dry matter content of these hydrosols varied between 4.0mg/L and 702mg/L, and the carbohydrate content varied between 0.21mg/L and 0.38mg/L. These non-volatile compounds were likely carried over during distillation by a priming and foaming effect, and could be used as nutrients by microorganisms. A microbial proliferation at ambient temperature and also at 5°C has been observed in all studied hydrosols when stored in a non-sterile container. In contaminated hydrosols, maximal counts were about 7log 10 CFU/mL, while the French pharmacopeia recommends a maximal total bacterial count of 2log 10 CFU/mL. Neither yeast nor mold was detected. The isolated microbial population was composed of environmental Gram-negative bacteria, arranged in four major genera: Pseudomonas sp., Burkholderia cepacia complex, and presumably two new genera belonging to Acetobacteraceae and Rhodospirillaceae. Among those bacteria, Burkholderia vietnamiensis and Novosphingobium capsulatum were able to metabolize volatile compounds, such as geraniol to produce 6-methyl-5-hepten-2-one or geranic acid, or phenylethyl acetate to produce 2-phenylethanol. EO concentrations in hydrosols or cold storage are not sufficient to insure microbiological stability. Additional

  6. Characteristics and infl uence factors of mold fi lling process in permanent mold with a slot gating system

    Directory of Open Access Journals (Sweden)

    Chen Changjun

    2009-11-01

    Full Text Available The main problems caused by improper gating are entrained aluminum oxide fi lms and entrapped gas. In this study, the slot gating system is employed to improve mold fi lling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum fl owing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the fl ow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many infl uencing factors on the mold fi lling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fi ll into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold fi lling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidifi cation.

  7. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  8. Spoilage-Related Activity of Carnobacterium maltaromaticum Strains in Air-Stored and Vacuum-Packed Meat ▿ †

    Science.gov (United States)

    Casaburi, Annalisa; Nasi, Antonella; Ferrocino, Ilario; Di Monaco, Rossella; Mauriello, Gianluigi; Villani, Francesco; Ercolini, Danilo

    2011-01-01

    One hundred three isolates of Carnobacterium spp. from raw meat were analyzed by random amplification of polymorphic DNA (RAPD) and PCR and were identified by 16S rRNA gene sequencing. Forty-five strains of Carnobacterium maltaromaticum were characterized for their growth capabilities at different temperatures, NaCl concentrations, and pH values and for in vitro lipolytic and proteolytic activities. Moreover, their spoilage potential in meat was investigated by analyzing the release of volatile organic compounds (VOCs) in meat stored in air or vacuum packs. Almost all the strains were able to grow at 4, 10, and 20°C, at pH values of 6 to 9, and in the presence of 2.5% NaCl. The release of VOCs by each strain in beef stored at 4°C in air and vacuum packs was evaluated by headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) analysis. All the meat samples inoculated and stored in air showed higher numbers of VOCs than the vacuum-packed meat samples. Acetoin, 1-octen-3-ol, and butanoic acid were the compounds most frequently found under both storage conditions. The contaminated meat samples were evaluated by a sensory panel; the results indicated that for all sensory odors, no effect of strain was significant (P > 0.05). The storage conditions significantly affected (P meat, and mozzarella cheese odors, which were more intense in meat stored in air than in vacuum packs but were never very intense. In conclusion, different strains of C. maltaromaticum can grow efficiently in meat stored at low temperatures both in air and in vacuum packs, producing volatile molecules with low sensory impacts, with a negligible contribution to meat spoilage overall. PMID:21784913

  9. Spoilage of lightly salted lumpfish (Cyclopterus lumpus) roe at 5°C

    DEFF Research Database (Denmark)

    Basby, Merethe; Jeppesen, V.F.; Huss, Hans Henrik

    1998-01-01

    sulphury, sour odors. The microflora consisted of lactic acid bacteria, Enterobacteriaceae and Vibrio spp. Concentration of lactic acid, acetic acid, trimethylamine and total volatile bases were unrelated to spoilage odors. Volatile sulfur compounds (H2S, probably CS2, CH3SH and CH3CH2SH or CH3SCH3...

  10. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  11. Thermotolerance of meat spoilage lactic acid bacteria and their inactivation in vacuum-packaged vienna sausages.

    Science.gov (United States)

    Franz, C M; von Holy, A

    1996-02-01

    Heat resistance of three meat spoilage lactic acid bacteria was determined in vitro. D-values at 57, 60 and 63 degrees C were 52.9, 39.3 and 32.5 s for Lactobacillus sake, 34.9, 31.3 and 20.2 s for Leuconostoc mesenteroides and 22.5, 15.6 and 14.4 s for Lactobacillus curvatus, respectively. The three lactic acid bacteria were heat sensitive, as one log reductions in numbers were achieved at 57 degrees C in less than 60 s. Z-values could not be accurately determined as D-values did not change by a factor of 10 over the temperature range studied. In-package pasteurization processes were calculated using the highest in vitro D-value and applied to vacuum-packaged vienna sausages. Microbiological shelf life (time for lactic acid bacteria count to reach 5 x 10(6) CFU/g) increased from 7 days for non-pasteurized samples to 67, 99 and 119 days for samples of the three pasteurization treatments at 8 degrees C storage. Enterobacteriaceae were detected at levels of log 4.0 CFU/g in non-pasteurized samples, but were reduced to < log 1.0 CFU/g in pasteurized samples. The incidence of listeriae in non-pasteurized samples was low as only one Listeria innocua strain was isolated. No Listeria spp. were isolated from pasteurized samples. Numbers of Clostridium isolates increased from one in non-pasteurized samples to 25 in pasteurized samples. Increasing incidences of clostridia, and the presence of C. perfringens in pasteurized samples indicated that in-package pasteurization could compromise product safety.

  12. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  13. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  14. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    that are superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano......- and microstructured silicon is electroplated with nickel and the resulting nickel shim with inverse polarity is used in an injection molding process. A versatile injection molding process capable of producing different nano- and microstructures on areas larger than 10 cm2 is developed. Variotherm mold heating is used...... hierarchical structures with nanograss and holes. Water wetting tests are carried out using a pressure cell to control the water pressure. Microscopic wetting behavior of the structures is studied by optical transmission microscopy. Interestingly, it is found that the surface chemistry of the polymer changes...

  15. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  16. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    Science.gov (United States)

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating

  17. Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures.

    Science.gov (United States)

    Chang, Su-Sen; Kang, Dong-Hyun

    2004-01-01

    The first Alicyclobacillus spp. was isolated in 1982, and was originally thought to be strictly limited to thermophilic and acidic environments. Two years later, another Alicyclobacillus sp., A. acidoterrestris, was identified as the causative agent in spoilage of commercially pasteurized apple juice. Subsequent studies soon found that Alicyclobacillus spp. are soilborne bacteria, and do not strictly require thermophilic and acidic environments. Alicyclobacillus spp. posess several distinct characteristics; the major one is their ability to survive commercial pasteurization processes and produce off-flavors in fruit juices. The fruit juice industry has acknowledged Alicyclobacillus spp. as a major quality control target microorganism. Guaiacol and halophenols were identified as the offensive smelling agent in many Alicyclobacillus spp. related spoilage. Though the exact formation pathway of these off-flavors by Alicyclobacillus spp. are not yet identified, studies report that the presence of Alicyclobacillus spp. in the medium may be a major contributor to the formation of these off-flavors. Many identification methods and isolation media were developed in the last two decades. However, most of these methods were developed specifically for A. acidoterrestris, which was the first identified off-flavor producing Alicyclobacillus. However, recent studies indicate that other species of Alicyclobacillus may also produce guaiacol or the halophenols. In this respect, all Alicyclobacillus spp. should be monitored as potential spoilage bacteria in fruit juices. This article includes an overall review of the history of Alicyclobacillus spp., characteristics, suggested off-flavor production pathways, and commonly used identification methods for the currently identified Alicyclobacillus spp.

  18. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  19. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  20. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2013-04-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils. Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  1. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2014-02-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils.  Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  2. Applying simulation to optimize plastic molded optical parts

    Science.gov (United States)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  3. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  4. Validation of three-dimensional micro injection molding simulation accuracy

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must...... be minimized to avoid introducing uncertainties in the simulation calculations. Simulations of bulky sub-100 milligrams micro molded parts have been validated and a methodology for accurate micro molding simulations was established....

  5. Cemaran Kapang pada Pakan Sapi dan Uji In Vitro Sirih terhadap Pertumbuhan Kapang Aspergillus flavus (MOLD CONTAMINATION IN CATTLE FEED AND IN VITRO ASSAY OF PIPER BETEL AGAINTS GROWTH OF MOLD CONTAMINANT ASPERGILLUS FLAVUS

    Directory of Open Access Journals (Sweden)

    Riza Zainuddin Ahmad

    2017-09-01

    Full Text Available Contamination of mold in feed and Ingridients of feed is important because pathogenic and toxigenic mold will contaminate and cause mycotic and mycotoxicosis on livestock especially cattle. Information regarding the data is required in an attempt to controll of mold contaminant. Base on the previous study piper betel leaf (Piper betle showed high activity as antimold. The aim of this study were to obtain data of mold contamination in cattle feed and ingredients of feed from the provinces of Banten, Lampung, Jakarta and West Java, and to test piper betel as an antimold herbal from traditional medicinal plants originated from Indonesia. Isolation and identification of fungi were conducted on the flour, glycerides, onggok, corn, peanut, coconut, coffee, concentrates, lamtoro, pineapple, rice, grass, palm, cassava, tofu lees, fish meal, bone meal from the provinces of Banten, Lampung, Jakarta and West Java. Isolation was done by plating the samples on agar medium, The mold have grown on media was identified. Feed that has been mixed with the extracts and powders plus mold inoculum was incubated. After 3=7 days incubation, colony forming unit (CFU of the mixtures were counted. The results showed that the majority of feed contaminated with mold, but still below the threshold. The mold contamination in wheat flour, corn, concentrates and tofu lees exceeds from the threshold. Aspergillus sp, A. amstelodami, A. clavatus, A. Candidus, A. flavus, A. fumigatus, A. glaucus, A. niger, Cladosporium sp., Curvularia sp., Fusarium sp., Hyphomycetes sp., Mycelia sterilata, Mucor sp., Paecilomyces sp., Penicillium sp., and Rhizopus sp. Penicillium sp were most commonly found in the feed as much as 2.56 x 107 CFU. At a concentration of 10%. in vitro test showed that the piper betel leaf in powder form is more effective than extract form to inhibit the growth of A.flavus The conclusion of this study was flour, corn, concentrates and tofu lees contaminated by molds

  6. Facts about Stachybotrys chartarum and Other Molds

    Science.gov (United States)

    ... there is moisture from water damage, excessive humidity, water leaks, condensation, water infiltration, or flooding. Constant moisture is ... visible mold. The conditions causing mold (such as water leaks, condensation, infiltration, or flooding) should be corrected to ...

  7. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Li, Bing; Peters, Brian M; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2017-06-01

    This study aimed to investigate the spoilage capability of Lactobacillus lindneri during the induction and resuscitation of viable but nonculturable (VBNC) state. L. lindneri strain was identified by sequencing the PCR product (amplifying 16S rRNA gene) using ABI Prism 377 DNA Sequencer. During the VBNC state induction by low temperature storage and beer adaption, total, culturable, and viable cells were assessed by acridine orange direct counting, plate counting, and Live/Dead BacLight bacterial viability kit, respectively. Organic acids and diacetyl concentration were measured by reversed-phase high performance liquid chromatography and head dpace gas chromatography, respectively. VBNC state of L. lindneri was successfully induced by both beer adaption and low temperature storage, and glycerol frozen stock was the optimal way to maintain the VBNC state. Addition of catalase was found to be an effective method for the resuscitation of VBNC L. lindneri cells. Furthermore, spoilage capability remained similar during the induction and resuscitation of VBNC L. lindneri. This is the first report of induction by low temperature storage and resuscitation of VBNC L. lindneri strain, as well as the first identification of spoilage capability of VBNC and resuscitated L. lindneri cells. This study indicated that the potential colonization of L. lindneri strain in brewery environment, formation and resuscitation of VBNC state, as well as maintenance in beer spoilage capability, may be an important risk factor for brewery environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Effect of Epoxy Molding Compound Floor Life to Reliability Performance and mold ability for QFN Package

    Science.gov (United States)

    Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak

    2017-09-01

    This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing

  9. Deformation analysis considering thermal expansion of injection mold

    International Nuclear Information System (INIS)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok

    2015-01-01

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations

  10. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  11. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  12. Prevention of fungal spoilage in food products using natural compounds: A review.

    Science.gov (United States)

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, Jose Manuel

    2017-04-10

    The kingdom Fungi is the most important group of microorganism contaminating food commodities, and chemical additives are commonly used in the food industry to prevent fungal spoilage. However, the increasing consumer concern about synthetic additives has led to their substitution by natural compounds in foods. The current review provides an overview of using natural agents isolated from different sources (plants, animals, and microorganisms) as promising antifungal compounds, including information about their mechanism of action and their use in foods to preserve and prolong shelf life. Compounds derived from plants, chitosan, lactoferrin, and biocontrol agents (lactic acid bacteria, antagonistic yeast, and their metabolites) are able to control the decay caused by fungi in a wide variety of foods. Several strategies are employed to reduce the drawbacks of some antifungal agents, like their incorporation into oil-in-water emulsions and nanoemulsions, edible films and active packaging, and their combination with other natural preservatives. These strategies facilitate the addition of volatile agents into food products and, improve their antifungal effectiveness. Moreover, biological agents have been investigated as one of the most promising options in the control of postharvest decay. Numerous mechanisms of action have been elucidated and different approaches have been studied to enhance their antifungal effectiveness.

  13. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  14. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured...

  15. Characterization of wood-based molding bonded with citric acid

    OpenAIRE

    Umemura, Kenji; Ueda, Tomohide; Kawai, Shuichi

    2012-01-01

    The wood-based moldings were fabricated by using only citric acid as an adhesive. The mechanical properties, water resistances, thermal properties and chemical structure were investigated. Wood powder obtained from Acacia mangium was mixed with citric acid under certain weight ratios (0-40 wt%), and each powder mixture was molded using two types of metal molds at 200 °C and 4MPa for 10 min. The modulus of rupture (MOR) and the modulus of elasticity (MOE) values of the wood-based molding conta...

  16. Microbiological Spoilage of Canned Foods

    Science.gov (United States)

    Evancho, George M.; Tortorelli, Suzanne; Scott, Virginia N.

    Nicolas Appert (1749-1841) developed the first commercial process that kept foods from spoiling in response to an offer from the French government for a method of preserving food for use by the army and navy. Appert, a confectioner and chef, began to experiment in his workshop in Massy, near Paris, but since little was known about bacteriology and the causes of spoilage (Louis Pasteur had yet to formulate the germ theory), much of his work involved trial and error. In 1810, after years of experimenting, he was awarded the prize of 12,000 francs for his method of preservation, which involved cooking foods in sealed jars at high temperatures. He described his method of preserving food in a book published in 1811, "L'Art De Conserver, Pendant Plusiers Annes, Toutes les Substances Animales et Végétales," which translated means "The Art of Preserving All Kinds of Animal and Vegetable Substances for Several Years." He later built a bottling factory and began to produce preserved foods for the people of France and is credited with being the "Father of Canning."

  17. Direct molding of pavement tiles made of ground tire rubber

    Science.gov (United States)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  18. Fungi in Ontario maple syrup & some factors that determine the presence of mold damage.

    Science.gov (United States)

    Frasz, Samantha L; Miller, J David

    2015-08-17

    Maple syrup is a high value artisanal product produced mainly in Canada and a number of States primarily in the northeast USA. Mold growth (Wallemia sebi) on commercial product was first reported in syrup in 1908. Since then, few data have been published. We conducted a systematic examination for fungi in maple syrup from 68 producers from all of the syrup-producing areas of Ontario, Canada. The mean pH of the samples was pH 6.82, sugar content averaged 68.0±0.89 °Brix and aw averaged 0.841±0.011. Some 23 species of fungi were isolated based on morphology and molecular techniques. The most common fungus in the maple syrup samples was Eurotium herbariorum, followed by Penicillium chrysogenum, Aspergillus penicillioides, Aspergillus restrictus, Aspergillus versicolor and two species of Wallemia. Cladosporium cladosporioides was also common but only recovered when fungi known from high sugar substrates were also present in the mold damaged sample. The rarely reported yeast Citeromyces matrinsis was found in samples from three producers. There appear to be three potential causes for mold damage observed. High aw was associated with about one third of the mold damage. Independently, cold packing (bottling at ~25 °C) was a risk factor. However, syrup of good quality and quite low aw values was contaminated. We hypothesize that sanitation in the bottling line and other aspects of the bottling process may be partial explanations. Clarifying this requires further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Study on the flow of molten polymers in a mold an investigation on mold printability; Kobunshi yoyutai no kanagatanai bisho ryudo. Kanagata tenshasei no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kano, Y.; Nishimura, T.; Ito, S. [Ube Industries Ltd. Yamaguchi (Japan)] Usui, H. [Kobe Univ. (Japan)] Saeki, T. [Yamaguchi Univ. (Japan)

    1998-09-15

    A visualization experiment was carried out using a small metal mold with rectangular grooves as a mold printable model to observe the micro-flow of molten polymer in a metal mold. The glitter, which is an index of printability, was correlated with blow velocity and space area. Since it is highly correlated with space area, it can be thought that filling up well the fine grooves of mold heighten the glitter and printability as well. The effect of such factors as mold temperature, polymer melt temperature, air blow pressure and air blow velocity on the mold printability was investigated. For high density polyethylene and polypropylene, the glitter depended the most on the mold temperature. The higher the temperature, the higher the glitter. It was also found that the increase in blow pressure was effective. For high density polyethylene, the effect of blow velocity and polymer melt temperature was also recognized. 3 refs., 6 figs., 3 tabs.

  20. 21 CFR 177.2410 - Phenolic resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phenolic resins in molded articles. 177.2410... as Components of Articles Intended for Repeated Use § 177.2410 Phenolic resins in molded articles. Phenolic resins identified in this section may be safely used as the food-contact surface of molded...

  1. Jamur Perusak Pendap Makanan Khas Tradisional Bengkulu

    Directory of Open Access Journals (Sweden)

    Hasanuddin Hasanuddin

    2016-04-01

    ABSTRACT. Pendap is a traditional Bengkulu food prepared from fermentation of fish. The research was conducted to identify molds caused spoilage of pendap, and to select the species of molds which were able to use for other process in microbiology. The data in this study were laboratory analysis. Samples were collected weekly in a month from productions centre of Pendap  and traditional markets, and analyzed microbiologically to determine and identify the  molds which were contaminated. There were four specieses of molds found in pendap after three days storage in room condition, namely Rhizopus stolonifer, Mucor sp, Aspergillus terreus, and Penicillim sp. While two specieses which were not produce toxin and the other two were known as the molds which were produced mycotoxin.

  2. Taxonomic re-evaluation of black koji molds

    NARCIS (Netherlands)

    Hong, S.B.; Yamada, O.; Samson, R.A.

    2013-01-01

    Black koji molds including its albino mutant, the white koji mold, have been widely used for making the distilled spirit shochu in Northeast Asia because they produce citric acid which prevents undesirable contamination from bacteria. Since Inui reported Aspergillus luchuensis from black koji in

  3. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  4. Photocatalytic disinfection of spoilage bacteria Pseudomonas fluorescens and Macrococcus caseolyticus by nano-TiO2

    Science.gov (United States)

    Photocatalytic disinfection of spoilage bacteria gram-negative (G-) P. fluorescens and gram-positive (G+) M. caseolyticus by nano-TiO2 under different experimental conditions and the disinfection mechanism were investigated. The experimental conditions included the initial bacterial populations, nan...

  5. Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    Science.gov (United States)

    Lyu, Peisheng; Wang, Wanlin; Long, Xukai; Zhang, Kaixuan; Gao, Erzhuo; Qin, Rongshan

    2018-02-01

    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed.

  6. Three-dimensional numerical simulation for plastic injection-compression molding

    Science.gov (United States)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  7. Multi-height structures in injection molded polymer

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2015-01-01

    of different geometries, and electroforming a nickel mold from a polymer foil. The injection-molded samples are characterized by contact angle hysteresis obtained by the tilting method. We find that the receding contact angle depends on the surface coverage of the random surface structure, while the advancing...

  8. Ultrasound - Aided ejection in micro injection molding

    Science.gov (United States)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  9. Injection molded polymer optics in the 21st Century

    Science.gov (United States)

    Beich, William S.

    2005-08-01

    Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.

  10. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.com [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China); Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China)

    2011-04-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  11. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    International Nuclear Information System (INIS)

    Zhao Guangying; Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin

    2011-01-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  12. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    NARCIS (Netherlands)

    Boer, de P.; Caspers, M.; Sanders, J.W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R.

    2015-01-01

    Background
    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon

  13. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria

    Czech Academy of Sciences Publication Activity Database

    Pastorková, E.; Žáková, T.; Landa, Přemysl; Nováková, J.; Vadlejch, J.; Kokoška, L.

    2013-01-01

    Roč. 161, č. 3 (2013), s. 209-213 ISSN 0168-1605 R&D Projects: GA MŠk(CZ) LD11005 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phenolic compound * Antimicrobial activity * Wine spoilage microorganism Subject RIV: GM - Food Processing Impact factor: 3.155, year: 2013

  14. Replication of optical microlens arrays using photoresist coated molds

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Dam-Hansen, Carsten; Stubager, Jørgen

    2016-01-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating...... with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from...

  15. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  16. Mold production for polymer optics

    Science.gov (United States)

    Boerret, Rainer; Raab, Jonas; Speich, Marco

    2014-09-01

    The fields of application for polymer optics are huge and thus the need for polymer optics is steadily growing. Most polymer optics are produced in high numbers by injection molding. Therefore molds and dies that fulfill special requirements are needed. Polishing is usually the last process in the common process chain for production of molds for polymer optics. Usually this process step is done manually by experienced polishers. Due to the small number of skilled professionals and health problems because of the monotonous work the idea was to support or probably supersede manual polishing. Polishing using an industrial robot as movement system enables totally new possibilities in automated polishing. This work focuses on the surface generation with a newly designed polishing setup and on the code generation for the robot movement. The process starts on ground surfaces and with different tools and polishing agents surfaces that fulfill the requirements for injection molding of optics can be achieved. To achieve this the attention has to be focused not only on the process itself but also on tool path generation. A proprietary software developed in the Centre for Optical Technologies in Aalen University allows the tool path generation on almost any surface. This allows the usage of the newly developed polishing processes on different surfaces and enables an easy adaption. Details of process and software development will be presented as well as results from different polishing tests on different surfaces.

  17. A poly(dimethylsiloxane)-coated flexible mold for nanoimprint lithography

    International Nuclear Information System (INIS)

    Lee, Nae Yoon; Kim, Youn Sang

    2007-01-01

    In this paper, we introduce an anti-adhesion poly(dimethylsiloxane) (PDMS)-coated flexible mold and its applications for room-temperature imprint lithography. The flexible mold is fabricated using an ultraviolet-curable prepolymer on a flexible substrate, and its surface is passivated with a thin layer of PDMS to impart an anti-adhesion property. The highly flexible mold enables conformal contact with a substrate on which a low-viscosity polymer resist is spin-cast in a thin layer. Large-area imprinting is then realized at room temperature under significantly reduced pressure. The mold was durable even after repetitive imprinting of over 200 times. Also, we show a double imprinting on the substrate with a PDMS-coated replica polymeric mold having 500 nm line patterns. This enables the formation of matrix patterns with varying feature heights in less than 7 min

  18. Production application of injection-molded diffractive elements

    Science.gov (United States)

    Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.

    1995-12-01

    We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.

  19. MALDI-Imaging Mass Spectrometry of Ochratoxin A and Fumonisins in Mold-Infected Food.

    Science.gov (United States)

    Hickert, Sebastian; Cramer, Benedikt; Letzel, Matthias C; Humpf, Hans-Ulrich

    2016-09-06

    Mycotoxins are toxic secondary metabolites produced by various fungi. Their distribution within contaminated material is of high interest to obtain insight into infection mechanisms and the possibility of reducing contamination during food processing. Various vegetable foodstuffs were infected with fungi of the genera Fusarium and Aspergillus. The localization of the produced mycotoxins was studied by matrix assisted laser desorption ionization time of flight imaging mass spectrometry (MALDI-MSI) of cryosections obtained from infected material. The results were confirmed by HPLC-electrospray ionization triple quadrupole mass spectrometry (HPLC/MS/MS). The mycotoxins ochratoxin A (OTA) and fumonisins of the B- and C-series (FB 1 , FB 2 , FB 3 , FB 4 , FC 2/3 , and FC 4 ) as well as partially hydrolyzed fumonisins (pHFB 1 , pHFB 2 , pHFB 3 , pHFC 1 , and pHFC 2/3 ) could successfully be detected by MALDI-IMS in mold-infested foodstuffs. The toxins are distributed differently in the material: OTA is co-localized with visible fungal spoilage while fumonisins could be detected throughout the whole sample. This work shows the applicability of MALDI-Imaging Mass Spectrometry (MALDI-MSI) to mycotoxin analysis. It has been demonstrated that the analyzed mycotoxins are differently distributed within moldy foodstuffs. These findings show the potential of MALDI-MSI for the localization of these hazardous compounds in various plant tissues. This article is protected by copyright. All rights reserved.

  20. Differential allergy induction by molds found in water-damaged homes**

    Science.gov (United States)

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports (NAS, 2004) and World Health Organization guidelines (WHO, 2009) concluded that the role of molds in asthma indu...

  1. Behaviour of co-inoculated pathogenic and spoilage bacteria on poultry following several decontamination treatments.

    Science.gov (United States)

    Alonso-Hernando, Alicia; Capita, Rosa; Alonso-Calleja, Carlos

    2012-10-01

    The potential of chemical decontaminants to cause harmful effects on human health is among the causes of the rejection of antimicrobial treatments for removing surface contamination from poultry carcasses in the European Union. This study was undertaken to determine whether decontaminants might give a competitive advantage to pathogenic bacteria on poultry and involve a potential risk to consumer. A total of 144 chicken legs were co-inoculated with similar concentrations of pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica serotype Enteritidis or Escherichia coli) and spoilage bacteria (Brochothrix thermosphacta or Pseudomonas fluorescens). Samples were dipped for 15min in solutions (w/v) of trisodium phosphate (12%; TSP), acidified sodium chlorite (1200ppm; ASC), citric acid (2%; CA), peroxyacids (220ppm; PA) or chlorine dioxide (50ppm; CD), or were left untreated (control). Microbiological analyses were carried out on day 0 and every 24h until day 7 of storage (at 10±1°C). The modified Gompertz equation was used as the primary model to fit observed data. TSP, ASC and CA were effective in extending the lag phase (L, ranging from 1.47±1.34days to 4.06±1.16days) and in decreasing the concentration of bacteria during the stationary phase (D, ranging from 2.46±0.51 log(10) cfu/cm(2) to 8.64±0.53 log(10) cfu/cm(2)), relative to the control samples (L values ranging from 0.59±0.38days and 2.52±2.28days, and D values ranging from 6.32±0.89 log(10) cfu/cm(2) to 9.39±0.39 log(10) cfu/cm(2), respectively). Both on untreated and on most decontaminated samples the overgrowth of spoilage bacteria among the species tested was observed throughout storage, suggesting that spoilage would occur prior to any noteworthy increase in the levels of pathogenic microorganisms. However, L. monocytogenes counts similar to, or higher than, those for spoilage bacteria were observed on samples treated with TSP, ASC or CA, suggesting that these

  2. Injection molded polymeric hard X-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  3. Performance of U-Pu-Zr fuel cast into zirconium molds

    International Nuclear Information System (INIS)

    Crawford, D.C.; Lahm, C.E.; Tsai, H.

    1992-01-01

    Current fabrication techniques for the integral fast reactor (IFR) fuel utilize injection casting into quartz molds after reprocessing in the IFR fuel cycle facility. The quartz molds are destroyed during the fuel demolding process, and the quartz residue must therefore be treated as contaminated waste. Alternatively, if the fuel can be cast into molds that remain as part of the fuel slugs (i.e., if the fuel can be left inside the molds for irradiation), then the quartz mold contribution to the waste stream can be eliminated. This possibility is being addresssed in an ongoing effort to evaluate the irradiation performance of fuel cast into zirconium sheaths rather than quartz molds. Zirconium was chosen as the sheath material because it is the component of the U-Pu-Zr fuel alloy that raises the alloy solidus temperatures and provides resistance to fuel-cladding chemical interaction (FCCI)

  4. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Oh, Ji Eun; Woo, Seung Tae

    2008-01-01

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [ 18 F]FDG solution were used as fiduciary markers. After injection of [ 18 F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  5. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [ORNL; Chesser, Phillip C. [ORNL; Lind, Randall F. [ORNL; Sallas, Matthew R. [ORNL; Love, Lonnie J. [ORNL

    2018-01-01

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. and the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.

  6. Effects of aqueous extract of Cinnamomum verum on growth of bread spoilage fungi

    Directory of Open Access Journals (Sweden)

    Monir Doudi

    2016-01-01

    Full Text Available Food waste has been identified as a considerable problem and bread is the most wasted food. This study aimed to evaluate In-vitro anti-fungal activity of cinnamon extract on bread spoilage fungi and to determine its anti-fungal effect in the bread slices. At first, the MIC and MFC values of the extract were determined against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Penicillium chrysogenum, Penicillium notatum and Rhizopus oryzae. Then, Aspergillus sp was selected to assess antifungal activities of different doses of cinnamon extract in bread slices. Cinnamon extract at a dose of 64 mg/ml completely inhibited all standard and bread isolated fungi. This concentration of extract also inhibited Aspergillus growth on bread slices and delayed colony formation but adversely affected the sensory characteristics of bread. Cinnamon extract at 32 mg/ml not only delayed fungal growth, but also improved bread shelf life and delayed its staling. Moreover, 32mg/ml of extract did not adversely affect bread aroma, flavor and texture. However, sodium acetate inhibited the growth of Aspergillus sp but is not recommended for fungal control because it is considered as chemical. Therefore 32 mg/ml of extract is recommended for increasing the shelf-life of flat bread.

  7. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  8. Identification of microbial isolates from vacuum-packaged ground pork irradiated at 1 kGy

    International Nuclear Information System (INIS)

    Ehioba, R.M.; Kraft, A.A.; Molins, R.A.; Walker, H.W.; Olson, D.G.; Subbaraman, G.; Skowronski, R.P.

    1988-01-01

    Bacterial cultures from irradiated (1 kGy) and nonirradiated, vacuum-packaged ground pork held at 5 0 C were isolated and characterized over a 12-day storage period. The initial flora of the meat was composed mostly of Pseudomonas sp., and Enterobacter sp. Although the microflora of nonirradiated samples gradually shifted from Gram-negative to Gram-positive microorganisms, 76% of the isolates were characterized as Gram-negative at the onset of spoilage (9 days at 5 0 C). In contrast, the irradiated ground pork microflora was mainly Gram-positive (66%) shortly after irradiation and increased to 97% after 9 days at 5 0 C. A total of 720 isolates were identified to genus

  9. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [ORNL; Lloyd, Peter D. [ORNL

    2018-02-01

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  10. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  11. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Science.gov (United States)

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  12. Characterization of spoilage bacteria in pork sausage by PCR-DGGE analysis

    Directory of Open Access Journals (Sweden)

    Francesca Silva Dias

    2013-09-01

    Full Text Available To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE. The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005 increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.

  13. Isolation of Lactic Acid Bacteria That Produce Protease and Bacteriocin-Like Substance From Mud Crab (Scylla sp. Digestive Tract (Isolasi Bakteri Asam Laktat yang Menghasilkan Protease dan Senyawa Bacteriocin-Like dari Saluran Pencernaan Kepiting

    Directory of Open Access Journals (Sweden)

    Heru Pramono

    2015-03-01

    Kata kunci: Bakteri Asam Laktat, Bakteriosin-like substance, Protease, Scylla  sp. Digestive tract is complex environment consist of large amount of bacteria’s species. Fish intestine bacteria consist of aerobic or facultative anaerob bacteria which can produce antibacterial and enzym. The objectives of this research were to isolated lactic acid bacteria that produce bacteriocin-like and protease from mud crab digestive tract. Isolation and characterization of isolates were conducted employing media MRS.  Neutralized cell free supernatant of isolates were tested using disc diffusion agar of against pathogenic and spoilage bacteria to indicate bacteriocin-like-producing lactic acid bacteria. Protease-producing isolate was tested using disc diffusion method in casein agar. Among a hundred isolates, 96 isolates were showed clear zone in MRS+CaCO3,, catalase negative, and Gram positive bacteria. Thirty four isolates produced protease and only four isolates (i.e. IKP29, IKP30, IKP52, and IKP94 showed strong inhibition against pathogenic and spoilage bacteria. There were three patterns of inhibition among three isolates against Bacillus subtilis, Staphylococcus aureus, Eschericia coli, and Salmonella sp. All three isolates showed potential uses for produce starter culture for fishery product fermentation purpose. This is the first report of isolation lactic acid bacteria that produced protease and bacteriocin-like from digestive tract of mud crab. Keywords: Lactic acid bacteria, Bacteriocin-like substance, Protease, Scylla  sp.

  14. Method and mold for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  15. Analysis of cracking in glass molds made of cast iron

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2014-09-01

    The cracking in the parts of cast iron molds intended for glass is considered, and this cracking substantially affects the operation of glass-blowing equipment, maintainability, and the replacement of mold sets. The processes that cause cracking in the parts of glass molds and initiate crack growth are studied.

  16. Index change of chalcogenide materials from precision glass molding processes

    Science.gov (United States)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  17. Injection molding of bushes made of tribological PEEK composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  18. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon ( Salmo salar ) at 2 degrees C

    DEFF Research Database (Denmark)

    Emborg, Jette; Laursen, B.G.; Rathjen, T.

    2002-01-01

    series of storage trials with naturally contaminated fresh and thawed modified atmosphere-packed (MAP) salmon at 2 degrees C. Photobacterium phosphoreum dominated the spoilage microflora of fresh MAP salmon at more than 106 cfu g-1 and the activity of this specific spoilage organism (SSO) limited...... small amounts of biogenic amines in this product. The elimination of P. phosphoreum by freezing allowed this bacteria to be identified as the SSO in fresh MAP salmon.Significance and Impact of the Study: The identification of P. phosphoreum as the SSO in fresh MAP salmon facilitates the development...

  19. Diagnosis of mold allergy by RAST and skin prick testing.

    Science.gov (United States)

    Nordvall, S L; Agrell, B; Malling, H J; Dreborg, S

    1990-11-01

    Sera from 33 patients with mold allergy proven by bronchial provocation were analyzed for specific IgE against six mold species comparing an improved Phadebas RAST with four other techniques. The new method was more sensitive and gave significantly higher IgE antibody concentrations for all tested molds except Cladosporium herbarum.

  20. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  1. Design and Checking Analysis of Injection Mold for a Plastic Cup

    Science.gov (United States)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  2. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    Science.gov (United States)

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-03-10

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.

  3. Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages.

    Science.gov (United States)

    Lozano-Ojalvo, Daniel; Rodríguez, Alicia; Cordero, Mirian; Bernáldez, Victoria; Reyes-Prieto, Mariana; Córdoba, Juan J

    2015-02-01

    Moulds responsible for black spot spoilage of dry-cured fermented sausages were characterised. For this purpose, samples were taken from those dry-cured fermented sausages which showed black spot alteration. Most of the mould strains were first tentatively identified as Penicillium spp. due to their morphological characteristics in different culture conditions, with one strain as Cladosporium sp. The Cladosporium strain was the only one which provoked blackening in culture media. This strain was further characterised by sequencing of ITS1-5.8S-ITS2 rRNA and β-tubulin genes. This mould strain was able to reproduce black spot formation in dry-cured fermented sausage 'salchichón' throughout the ripening process. In addition, a specific and sensitive real-time PCR method was also developed to detect Cladosporium oxysporum responsible for the black spot formation in sausages. This method could be of great interest for the meat industry to detect samples contaminated with this mould before spoilage of product avoiding economic losses for this sector.

  4. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed based...

  5. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  6. Molding apparatus. [for thermosetting plastic compositions

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  7. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    Science.gov (United States)

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  8. Evaluation of the role of Carnobacterium piscicola in spoilage of vacuum- and modified-atmosphere-packed cold-smoked salmon stored at 5 degrees C.

    Science.gov (United States)

    Paludan-Müller, C; Dalgaard, P; Huss, H H; Gram, L

    1998-02-17

    The microflora on spoiled cold-smoked salmon often consists of a mixture of lactic acid bacteria (LAB) and Gram-negative bacteria. To elucidate the role of the different groups, a storage trial was carried out in which nisin and CO2 were used for the selective inhibition of the two bacterial groups. The shelf-life of vacuum-packed cold-smoked salmon, recorded by sensory evaluation, was four weeks at 5 degrees C and the microflora was composed of LAB (10(6)-10(7) cfu/g) with an associate Gram-negative flora in varying levels (10(5)-10(7) cfu/g). The addition of nisin and/or a CO2-atmosphere increased the shelf-life to five or six weeks and limited the level of LAB to about 10(4)-10(6), 10(3)-10(6) and 10(2)-10(4) cfu/g, respectively. CO2-atmosphere +/- nisin inhibited the growth of Gram-negative bacteria, whereas nisin had no effect on these in vacuum packages. The Gram-negative flora on vacuum-packed salmon was dominated by a Vibrio sp., resembling V. marinus, Enterobacteriaceae (Enterobacter agglomerans, Serratia liquefaciens and Rahnella aquatilis) and occasionally Aeromonas hydrophila. Irrespective of the addition of nisin and/or CO2-atmosphere, the LAB microflora was dominated by Carnobacterium piscicola, which was found to account for 87% of the 255 LAB isolates characterized. Whole-cell-protein patterns analysed by SDS-PAGE confirmed the Carnobacterium species identification. The spoilage potential of C. piscicola isolates was further studied by inoculation of approx. 10(6) cfu/g in cold-smoked salmon stored at 5 degrees C. The salmon did not spoil within 4 weeks of storage in vacuum- or CO2-atmosphere, and it is concluded that despite high levels (> 10(7) cfu/g) of C. piscicola, sensory rejection was caused by autolytic changes. This was supported by the development of soft texture and sour, rancid and bitter off-flavours at the point of spoilage, irrespective of the length of shelf-life and low or high total counts of LAB and Gram-negative bacteria.

  9. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  10. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  11. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    Science.gov (United States)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  12. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  13. Isolation of microorganisms from red pepper powder and their radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, E H; Kim, Y B; Lee, S R [Korea Atomic Energy Research Inst., Seoul (Republic of Korea)

    1977-01-01

    From samples of red pepper powder sold in Korea were isolated and identified 13 species of molds (Aspergillus amsteodami, Asp. chevalieri, Asp. clavatus, Asp. Flavus, Asp. janus var. effusus, Asp. oryzae, Asp. oryzae var. brevis, Asp. repens, Asp. sydowi, Asp. thomii, Asp. tubingensis, Penicillium thomii, Scopulariopsis brevicaulis) and 5 species of bacteria (Bacillus pumilus, Bac. subtilis, Micrococus luteus, M. varians, Staphylococcus aureus). Radiosensitivity of these microorganisms was examined to give D/sub 10/ values of 14-41 krad for molds, 11-24 krad for bacterial vegetative cells and 190-250 krad for bacterial spores. The red pepper powder was contaminated with 2-3x10/sup 2/ mold counts/g and 3-6x10/sup 7/ bacterial counts/g, which would be sufficiently destroyed by irradiating 200 krad r-rays.

  14. Isolation of microorganisms from red pepper powder and their radiosensitivity

    International Nuclear Information System (INIS)

    Choi, E.H.; Kim, Y.B.; Lee, S.R.

    1977-01-01

    From samples of red pepper powder sold in Korea were isolated and identified 13 species of molds (Aspergillus amsteodami, Asp. chevalieri, Asp. clavatus, Asp. Flavus, Asp. janus var. effusus, Asp. oryzae, Asp. oryzae var. brevis, Asp. repens, Asp. sydowi, Asp. thomii, Asp. tubingensis, Penicillium thomii, Scopulariopsis brevicaulis) and 5 species of bacteria (Bacillus pumilus, Bac. subtilis, Micrococus luteus, M. varians, Staphylococcus aureus). Radiosensitivity of these microorganisms was examined to give D 10 values of 14-41 krad for molds, 11-24 krad for bacterial vegetative cells and 190-250 krad for bacterial spores. The red pepper powder was contaminated with 2-3x10 2 mold counts/g and 3-6x10 7 bacterial counts/g, which would be sufficiently destroyed by irradiating 200 krad r-rays. (Author)

  15. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  16. A microbial spoilage profile of half shell Pacific oysters (Crassostrea gigas) and Sydney rock oysters (Saccostrea glomerata).

    Science.gov (United States)

    Madigan, Thomas L; Bott, Nathan J; Torok, Valeria A; Percy, Nigel J; Carragher, John F; de Barros Lopes, Miguel A; Kiermeier, Andreas

    2014-04-01

    This study aimed to assess bacterial spoilage of half shell Pacific and Sydney rock oysters during storage using microbial culture and 16S rRNA pyrosequencing. Odour and pH of oyster meats were also investigated. Estimation of microbiological counts by microbial culture highlighted growth of psychrotrophic bacteria. During storage, odour scores (a score describing deterioration of fresh odours where a score of 1 is fresh and 4 is completely spoiled) increased from 1.0 to 3.0 for Pacific oysters and from 1.3 to 3.4 for Sydney rock oysters. pH results obtained for both species fluctuated during storage (range 6.28-6.73) with an overall increase at end of storage. Pyrosequencing revealed that the majority of bacteria at Day 0 represented taxa from amongst the Proteobacteria, Tenericutes and Spirochaetes that have not been cultured and systematically described. During storage, Proteobacteria became abundant with Pseudoalteromonas and Vibrio found to be dominant in both oyster species at Day 7. Analysis of the pyrosequencing data showed significant differences in bacterial profiles between oyster species and storage time (both P = 0.001). As oysters spoiled, bacterial profiles between oyster species became more similar indicating a common spoilage profile. Data presented here provides detailed insight into the changing bacterial profile of shucked oysters during storage and has identified two genera, Pseudoalteromonas and Vibrio, as being important in spoilage of shucked oysters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon

    DEFF Research Database (Denmark)

    Gimenez, B.; Dalgaard, Paw

    2004-01-01

    Aims: To evaluate and model the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon.Methods and Results: Growth kinetics of L. monocytogenes, lactic acid bacteria (LAB), Enterobacteriaceae, enterococci and Photobacterium phosphoreum were determined...

  18. NEW SOURCES OF GRAIN MOLD RESISTANCE AMONG SORGHUM ACCESSIONS FROM SUDAN

    Directory of Open Access Journals (Sweden)

    Louis Kajac Prom

    2009-05-01

    Full Text Available   Fifty-nine sorghum accessions from Sudan were evaluated in replicated plots at Isabela, Puerto Rico, for resistance against Fusarium thapsinum, one of the causal agents of grain mold.  The environmental conditions such as temperature, relative humidity, and rainfall during this study, especially at and after physiological maturity were optimal for grain mold development.  Highly significant negative correlations between grain mold severity ratings in the field and on threshed grains with germination rate and seed weight were recorded, indicating that germination and seed weight were adversely affected when challenged with F. thapsinum.  Temperature showed a significant negative correlation with grain mold severity and a significant positive correlation with germination rate.  However, no significant correlation was observed between rainfall and grain mold severity or germination rate.  Accessions PI570011, PI570027, PI569992, PI569882, PI571312, PI570759, and PI267548 exhibited the lowest grain mold severities and among the highest germination rates, indicating that these accessions may possess genetic resistance to grain mold and might be useful in sorghum enhancement programs.  Four of these accessions had significantly higher germination rates than the resistant control genotypes with PI267548 having the highest germination rate.  PI267548 was the only white seeded accessions showing significantly better grain mold resistance than the control genotypes.

  19. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  20. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been...... collected and used to predict coating lifetimes. Samples have been characterized immediately after coating, after 500+ IM cycles to test durability and after 7 months to test temporal stability. Sessile drop contact angle was measured for multiple fluids, namely water, di-iodomethane and benzylacohol....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...

  1. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    Directory of Open Access Journals (Sweden)

    Poornachandra Papireddy Vinayaka

    2016-09-01

    Full Text Available A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8 as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.

  2. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds.

    Directory of Open Access Journals (Sweden)

    Seung-Yoon Oh

    Full Text Available Tricholoma matsutake (pine mushroom, PM is a prized mushroom in Asia due to its unique flavor and pine aroma. The fruiting body of PM forms only in its natural habitat (pine forest, and little is known regarding the natural conditions required for successful generation of the fruiting bodies in this species. Recent studies suggest that microbial interactions may be associated with the growth of PM; however, there have been few studies of the bacterial effects on PM growth. In this study, we surveyed which bacteria can directly and indirectly promote the growth of PM by using co-cultures with PM and molds associated with the fruiting body. Among 16 bacterial species isolated from the fruiting body, some species significantly influenced the mycelial growth of PM and molds. Most bacteria negatively affected PM growth and exhibited various enzyme activities, which suggests that they use the fruiting body as nutrient source. However, growth-promoting bacteria belonging to the Dietzia, Ewingella, Pseudomonas, Paenibacillus, and Rodococcus were also found. In addition, many bacteria suppressed molds, which suggests an indirect positive effect on PM as a biocontrol agent. Our results provide important insights toward a better understanding of the microbial interactions in the fruiting body of PM, and indicate that growth-promoting bacteria may be an important component in successful cultivation of PM.

  3. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.

    Science.gov (United States)

    Golden, Max C; Wanless, Brandon J; David, Jairus R D; Lineback, D Scott; Talley, Ryan J; Kottapalli, Bala; Glass, Kathleen A

    2017-08-01

    Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.

  4. Aureobasidium pullulansas a biocontrol agent of blue mold in "Rocha" pear.

    Science.gov (United States)

    Ferreira-Pinto, M M; Moura-Guedes, M C; Barreiro, M G; Pais, I; Santos, M R; Silva, M J

    2006-01-01

    The blue mold of "Rocha" pear caused by Penicillium expansum is an important postharvest disease which is adequately controlled by application of synthetic fungicides. In recent years, strategies like biological control have been considered a desirable alternative to chemicals. Several studies have demonstrated the potential of the yeast-like fungus Aureobasidium pullulans for control of postharvest decay of pear. A Portuguese isolate of Aureobasidium pullulans was characterized and evaluated for its activity in reducing postharvest blue mold decay of "Rocha" pear caused by Penicillium expansum. Study of optimal conditions for antagonist growth was carried out in six different culture media. The effect of four maturity stages of fruits in the development of A. pullulans was also studied. Biocontrol studies were performed with two concentrations of the antagonist (3 x 10(8) and 4 x 10(9) CFU/ml). A. pullulans growth was significantly different (P Corn Meal Agar (CMA) and Potato Dextrose Agar (PDA) media which contains the higher concentration of glucose (20 mg/l). Medium resulted from fruits of the first harvest date presented lower colony diameter. Inoculation of A. pullulans at 3 x 10(8) and 4 x 10(9) CFU/ml reduced the incidence of the disease by 23 and 63%, and reduced the lesion diameter by 36 and 46%, respectively.

  5. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  6. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  7. Spoilage of vegetable crops by bacteria and fungi and related health hazards.

    Science.gov (United States)

    Tournas, V H

    2005-01-01

    After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. The most common bacterial agents are Erwinia carotovora, Pseudomonas spp., Corynebacterium, Xanthomonas campestris, and lactic acid bacteria with E. carotovora being the most common, attacking virtually every vegetable type. Fungi commonly causing spoilage of fresh vegetables are Botrytis cinerea, various species of the genera Alternaria, Aspergillus, Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, Phytophthora, Pythium and Rhizopus spp., Botrytis cinerea, Ceratocystis fimbriata, Rhizoctonia solani, Sclerotinia sclerotiorum, and some mildews. A few of these organisms show a substrate preference whereas others such as Botrytis cinerea, Colletotrichum, Alternaria, Cladosporium, Phytophthora, and Rhizopus spp., affect a wide variety of vegetables causing devastating losses. Many of these agents enter the plant tissue through mechanical or chilling injuries, or after the skin barrier has been broken down by other organisms. Besides causing huge economic losses, some fungal species could produce toxic metabolites in the affected sites, constituting a potential health hazard for humans. Additionally, vegetables have often served as vehicles for pathogenic bacteria, viruses, and parasites and were implicated in many food borne illness outbreaks. In order to slow down vegetable spoilage and minimize the associated adverse health effects, great caution should be taken to follow strict hygiene, good agricultural practices (GAPs) and good manufacturing practices (GMPs) during cultivation, harvest, storage, transport, and marketing.

  8. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices

    Science.gov (United States)

    Aneja, Kamal Rai; Dhiman, Romika; Aggarwal, Neeraj Kumar; Aneja, Ashish

    2014-01-01

    Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed. PMID:25332721

  9. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices

    Directory of Open Access Journals (Sweden)

    Kamal Rai Aneja

    2014-01-01

    Full Text Available Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.

  10. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices.

    Science.gov (United States)

    Aneja, Kamal Rai; Dhiman, Romika; Aggarwal, Neeraj Kumar; Aneja, Ashish

    2014-01-01

    Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.

  11. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  12. Combined Effect of Thermosonication and Slightly Acidic Electrolyzed Water to Reduce Foodborne Pathogens and Spoilage Microorganisms on Fresh-cut Kale.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-06-01

    This study evaluated the efficacy of individual treatments (thermosonication [TS+DW] and slightly acidic electrolyzed water [SAcEW]) and their combination on reducing Escherichia coli O157:H7, Listeria monocytogenes, and spoilage microorganisms (total bacterial counts [TBC], Enterobacteriaceae, Pseudomonas spp., and yeast and mold counts [YMC]) on fresh-cut kale. For comparison, the antimicrobial efficacies of sodium chlorite (SC; 100 mg/L) and sodium hypochlorite (SH; 100 mg/L) were also evaluated. Each 10 g sample of kale leaves was inoculated to contain approximately 6 log CFU/g of E. coli O157:H7 or L. monocytogenes. Each inoculated or uninoculated samples was then dip treated with deionized water (DW; control), TS+DW, and SAcEW at various treatment conditions (temperature, physicochemical properties, and time) to assess the efficacy of each individual treatment. The efficacy of TS+DW or SAcEW was enhanced at 40 °C for 3 min, with an acoustic energy density of 400 W/L for TS+DW and available chlorine concentration of 5 mg/L for SAcEW. At 40 °C for 3 min, combined treatment of thermosonication 400 W/L and SAcEW 5 mg/L (TS+SAcEW) was more effective in reducing microorganisms compared to the individual treatments (SAcEW, SC, SH, and TS+DW) and combined treatments (TS+SC and TS+SH), which significantly (P 3.24 log CFU/g, respectively. The results suggest that the combined treatment of TS+SAcEW has the potential as a decontamination process in fresh-cut industry. © 2015 Institute of Food Technologists®

  13. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  14. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma.

    Science.gov (United States)

    Patange, Apurva; Boehm, Daniela; Bueno-Ferrer, Carmen; Cullen, P J; Bourke, Paula

    2017-09-01

    Brochothrix thermosphacta is the predominant spoilage microorganism in meat and its control in processing environments is important to maintain meat product quality. Atmospheric cold plasma is of interest for control of pathogenic and spoilage microorganisms in foods. This study ascertained the potential of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for control of B. thermosphacta, taking microbial and food environment factors into consideration, and investigated the shelf-life of lamb chop after in-package plasma treatment in modified atmosphere. Community profiling was used to assess the treatment effects on the lamb microflora. ACP treatment (80 kV) for 30s inactivated B. thermosphacta populations below detection levels in PBS, while 5 min treatment achieved a 2 Log cycle reduction using a complex meat model medium and attached cells. The antimicrobial efficacy of plasma was reduced but still apparent on lamb chop surface-inoculated with high concentrations of B. thermosphacta. Lamb chop treated under modified atmosphere exhibited reduced microbial growth over the product shelf-life and community profiling showed no evident changes to the microbial populations after the treatment. The overall results indicated potential of ACP to enhance microbial control leading to meat storage life extension through adjusting the modality of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  16. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F

    2005-01-01

    non-significant, and at the same level as after placebo exposure. The developed exposure system based on the Particle-Field and Laboratory Emission Cell (P-FLEC) makes it possible to deliver a precise and highly controlled dose of mold spores from water-damaged building materials, imitating realistic......The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees....... In conclusion this is, to our knowledge, the first study to successfully conduct a human exposure to a highly controlled dose of fungal material aerosolized directly from wet building materials. This short-term exposure to high concentrations of two different molds induced no more reactions than exposure...

  17. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  18. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  19. Parylene C coating for high-performance replica molding.

    Science.gov (United States)

    Heyries, Kevin A; Hansen, Carl L

    2011-12-07

    This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.

  20. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Science.gov (United States)

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  1. Development of heat pipe technology for permanent mold casting of magnesium alloys

    International Nuclear Information System (INIS)

    Elalem, K.; Mucciardi, F.; Gruzleski, J.E.; Carbonneau, Y.

    2002-01-01

    One of the key techniques for producing sound permanent mold castings is to use controlled mold cooling such as air cooling, water cooling and heat pipe cooling. Air-cooling has limited applications in permanent mold casting due to its low cooling capability and high cost. Water-cooling is widely used in permanent mold casting, but has some disadvantages such as safety issues and the facilities required. The early applications of heat pipes in permanent mold casting have shown tremendous results due to their high cooling rates, low cost and safety. In this work, a permanent mold for magnesium casting has been designed with the intention of producing shrinkage defects in the castings. Novel heat pipes that can generate high cooling rates have been constructed and used to direct the solidification in order to reduce the shrinkage. In this paper, the design of the mold and that of the heat pipes are presented. The results of some of the computer simulations that were conducted to determine casting conditions along with the potential of using heat pipes to direct the solidification are also presented. Moreover, a preliminary evaluation of the performance of heat pipes in the permanent mold casting of magnesium will also be discussed. (author)

  2. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  3. Bacterial Community and Spoilage Profiles Shift in Response to Packaging in Yellow-Feather Broiler, a Highly Popular Meat in Asia

    Directory of Open Access Journals (Sweden)

    Huhu Wang

    2017-12-01

    Full Text Available The consumption of yellow-feathered broiler has been advocated for purchasing with chilled meat rather than live broilers in Asia due to the outbreaks of animal influenza. Here, the microbial community of chilled yellow-feathered broiler response to modified-air packaging (MAP, 80% CO2/20% N2 and penetrated-air packaging (PAP, air-filling during storage was revealed by a combination of whole-metagenome shotgun sequencing and traditional isolation methods, and the volatile organic compounds and proteolytic activity of representative dominant isolates were also accessed. The results revealed that MAP prolonged shelf life from 4 to 8 days compared to PAP, when the numbers of total viable counts and lactic acid bacteria reached more than 7 log CFU/g. Aeromonas, Acinetobacter, Escherichia, and Streptococcus occupied the bacteria communities in initial broiler carcasses. MAP dramatically increased the bacteria diversity during storage compared to PAP. Clear shifts of the dominant bacteria species were obviously observed, with the top genera of Aeromonas, Lactococcus, Serratia, and Shewanella in MAP, whereas the microbial communities in PAP were largely dominated by Pseudomonas. The isolates of Pseudomonas from PAP carcasses and Aeromonas from MAP carcasses displayed strong proteolytic activities. Meanwhile, the principal component analysis based on the volatile organic compounds indicated that the metabolic profiles greatly varied between each treatment, and no link between the natural odor of spoilage meat in situ and the volatile odor of the dominant isolates incubated in standard culture was found. These data could lead to new insights into the bacteria communities of yellow-feathered broiler meat during storage and would benefit the development of novel preservative approaches.

  4. Bacterial Community and Spoilage Profiles Shift in Response to Packaging in Yellow-Feather Broiler, a Highly Popular Meat in Asia

    Science.gov (United States)

    Wang, Huhu; Zhang, Xinxiao; Wang, Guangyu; Jia, Kun; Xu, Xinglian; Zhou, Guanghong

    2017-01-01

    The consumption of yellow-feathered broiler has been advocated for purchasing with chilled meat rather than live broilers in Asia due to the outbreaks of animal influenza. Here, the microbial community of chilled yellow-feathered broiler response to modified-air packaging (MAP, 80% CO2/20% N2) and penetrated-air packaging (PAP, air-filling) during storage was revealed by a combination of whole-metagenome shotgun sequencing and traditional isolation methods, and the volatile organic compounds and proteolytic activity of representative dominant isolates were also accessed. The results revealed that MAP prolonged shelf life from 4 to 8 days compared to PAP, when the numbers of total viable counts and lactic acid bacteria reached more than 7 log CFU/g. Aeromonas, Acinetobacter, Escherichia, and Streptococcus occupied the bacteria communities in initial broiler carcasses. MAP dramatically increased the bacteria diversity during storage compared to PAP. Clear shifts of the dominant bacteria species were obviously observed, with the top genera of Aeromonas, Lactococcus, Serratia, and Shewanella in MAP, whereas the microbial communities in PAP were largely dominated by Pseudomonas. The isolates of Pseudomonas from PAP carcasses and Aeromonas from MAP carcasses displayed strong proteolytic activities. Meanwhile, the principal component analysis based on the volatile organic compounds indicated that the metabolic profiles greatly varied between each treatment, and no link between the natural odor of spoilage meat in situ and the volatile odor of the dominant isolates incubated in standard culture was found. These data could lead to new insights into the bacteria communities of yellow-feathered broiler meat during storage and would benefit the development of novel preservative approaches. PMID:29312261

  5. Effects of aqueous extract of Cinnamomum verum on growth of bread spoilage fungi

    OpenAIRE

    Monir Doudi; Mahbubeh Setorki; Zahra Rezayatmand

    2016-01-01

    Food waste has been identified as a considerable problem and bread is the most wasted food. This study aimed to evaluate In-vitro anti-fungal activity of cinnamon extract on bread spoilage fungi and to determine its anti-fungal effect in the bread slices. At first, the MIC and MFC values of the extract were determined against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Penicillium chrysogenum, Penicillium notatum and Rhizopus oryzae. Then, Aspergillus sp was sele...

  6. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    Directory of Open Access Journals (Sweden)

    Kenneth G. Furton

    2007-08-01

    Full Text Available Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs. Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  7. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  8. Glass molding of 3mm diameter aspheric plano-convex lens

    Science.gov (United States)

    Sung, Hayeong; Hue, Myung sang; Lee, Giljae; Ryu, Geunman; Kim, Dongguk; Yang, Suncheol

    2017-10-01

    The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.

  9. Understanding the impact of molds on indoor air quality and possible links to health effects Indoor Molds - More than Just a Musty Smell

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed ...

  10. CT use for nasopharingeal molds realization in endocavitary brachytherapy

    International Nuclear Information System (INIS)

    Lopez, J. Torrecilla; Crispin, V.; Chust, M.; Guinot, J.; Arribas, L.; Mengual, J.; Carrasco, P.; Miragall, E.; Hernandez, A.; Guardino, C.; Carrascosa, M.; Cardenal, R.; Casana, M.; Prats, C.

    1996-01-01

    Purpose: We present the following procedure for the making of individual molds with dental silicone for endocavitary brachytherapy of nasopharingeal cancer aided by CT scan. Procedure: Head immobilization during the realization of nasopharynx CT. Planification of treatment using these CT images, to determine the optimum position of radioactive sources. Printing on paper CT images with the nasopharynx contoured walls and the radioactive sources position. Realization of the mold in plastiline with the aid of the cuts of printer paper cut out with the nasopharynx form. Obtaining of the negative of the mold of plastiline by means of the use of alginate. Placement of two number 20 rectal rigid catheters with metal malleable bars inside them, in order to give them an adequate form in relation to the previous carried out planning. Filling in of alginato negative, where rectal catheters were placed, with Provil MCD Bayer Dental, a silicone based material for precision impression. We recommend to crossing the catheters' end with a number 2 silk thread to secure the catheter. An end of the silk thread is left outside the mold in order to help the extraction at the end of application. We advise to carry out a neuroleptic anaesthesia for its insertion, for the purpose of achieving a soft palate suitable relaxation. It makes the insertion easier. Repeat CT with the mold and phantoms in position to know a definitive dose distribution calculation. Conclusion: This method avoids the necessity of general anaesthesia in the realization of individual molds of nasopharyx for endocavitary brachytherapy and it improves the implant dosimetry

  11. Microinjection molding of microsystem components: new aspects in improving performance

    International Nuclear Information System (INIS)

    Yang, Can; Yin, Xiao-Hong; Cheng, Guang-Ming

    2013-01-01

    Microinjection molding (µIM) is considered to be one of the most flexible, reliable and cost effective manufacturing routes to form plastic micro-components for microsystems. The molding machine, mold tool fabrication, material selection and process controlling in this specific field have been greatly developed over the past decades. This review aims to present the new trends towards improving micro-component performance by reviewing the latest developments in this area and by considering potential directions. The key concerns in product and mold designing, essential factors in simulation, and micro-morphology and resultant properties are evaluated and discussed. In addition, the applications, variant processes and outlook for µIM are presented. Throughout this review, decisive considerations in seeking improved performance for microsystem components are highlighted. (topical review)

  12. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  13. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  14. Micro Injection Molding of Thin Walled Geometries with Induction Heating System

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness...... and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios...... of small structures. ABS was used as material and different combinations of injection velocity, pressure and mold temperature were tested. The replicated test objects were measured by means of an optical CMM machine. On the basis of the experimental investigation the efficacy of the embedded induction...

  15. Understanding the impact of molds on indoor air quality and ...

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  16. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  17. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  18. Treatment principles for the management of mold infections.

    Science.gov (United States)

    Kontoyiannis, Dimitrios P; Lewis, Russell E

    2014-11-06

    Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. IMPROVEMENT OF EQUIPMENT FOR EFFECTIVE HARDENING SAND MIXTURE BY VACUUM MOLDING

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review deals with the design flask tooling and patterns for effective hardening sand mixture in the vacuum molding (V-Process, and molding on a one-off patterns (Lost Foam Casting. Sealing and evacuating sand mixture – two major factors influence the strength of the casting mold and casting quality, management practices which will enable to improve the casting process.

  20. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Science.gov (United States)

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  1. CAE for Injection Molding — Past, Present and the Future

    Science.gov (United States)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE

  2. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates.

    Science.gov (United States)

    Van Lancker, Fien; Adams, An; Delmulle, Barbara; De Saeger, Sarah; Moretti, Antonio; Van Peteghem, Carlos; De Kimpe, Norbert

    2008-10-01

    An automated headspace solid phase microextraction method followed by GC-MS analysis was used to evaluate and compare the in vitro production of microbial volatile organic compounds (MVOCs) on malt extract agar, plasterboard and wallpaper. Five fungal strains were isolated from the walls of water-damaged houses and identified. In addition, four other common molds were studied. In general, MVOC production was the highest on malt extract agar. On this synthetic medium, molds typically produced 2-methylpropanol, 2-methylbutanol and 3-methylbutanol. On wallpaper, mainly 2-ethylhexanol, methyl 2-ethylhexanoate and compounds of the C8-complex such as 1-octene-3-ol, 3-octanone, 3-octanol and 1,3-octadiene were detected. The detection of 2-ethylhexanol and methyl 2-ethylhexanoate indicates an enhanced degradation of the substrate by most fungi. For growth on plasterboard, no typical metabolites were detected. Despite these metabolite differences on malt extract agar, wallpaper and plasterboard, some molds also produced specific compounds independently of the used substrate, such as trichodiene from Fusarium sporotrichioides and aristolochene from Penicillium roqueforti. Therefore, these metabolites can be used as markers for the identification and maybe also mycotoxin production of these molds. All five investigated Penicillium spp. in this study were able to produce two specific diterpenes, which were not produced by the other species studied. These two compounds, which remain unidentified until now, therefore seem specific for Penicillium spp. and are potentially interesting for the monitoring of this fungal genus. Further experiments will be performed with other Penicillium spp. to study the possibility that these two compounds are specific for this group of molds.

  3. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. © 2015 Institute of Food Technologists®

  4. Impact of Mucorales and Other Invasive Molds on Clinical Outcomes of Polymicrobial Traumatic Wound Infections.

    Science.gov (United States)

    Warkentien, Tyler E; Shaikh, Faraz; Weintrob, Amy C; Rodriguez, Carlos J; Murray, Clinton K; Lloyd, Bradley A; Ganesan, Anuradha; Aggarwal, Deepak; Carson, M Leigh; Tribble, David R

    2015-07-01

    Combat trauma wounds with invasive fungal infections (IFIs) are often polymicrobial with fungal and bacterial growth, but the impact of the wound microbiology on clinical outcomes is uncertain. Our objectives were to compare the microbiological features between IFI and non-IFI wounds and evaluate whether clinical outcomes differed among IFI wounds based upon mold type. Data from U.S. military personnel injured in Afghanistan with IFI wounds were examined. Controls were matched by the pattern/severity of injury, including blood transfusion requirements. Wound closure timing was compared between IFI and non-IFI control wounds (with/without bacterial infections). IFI wound closure was also assessed according to mold species isolation. Eighty-two IFI wounds and 136 non-IFI wounds (63 with skin and soft tissue infections [SSTIs] and 73 without) were examined. The time to wound closure was longer for the IFI wounds (median, 16 days) than for the non-IFI controls with/without SSTIs (medians, 12 and 9 days, respectively; P Mucorales growth than for wounds with non-Mucorales growth (median, 17 days versus 13 days; P Mucorales and Aspergillus spp. growth were compared, there was no significant difference in wound closure timing. Trauma wounds with SSTIs were often polymicrobial, yet the presence of invasive molds (predominant types: order Mucorales, Aspergillus spp., and Fusarium spp.) significantly prolonged the time to wound closure. Overall, the times to wound closure were longest for the IFI wounds with Mucorales growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. A new instrument for statistical process control of thermoset molding

    International Nuclear Information System (INIS)

    Day, D.R.; Lee, H.L.; Shepard, D.D.; Sheppard, N.F.

    1991-01-01

    The recent development of a rugged ceramic mold mounted dielectric sensor and high speed dielectric instrumentation now enables monitoring and statistical process control of production molding over thousands of runs. In this work special instrumentation and software (ICAM-1000) was utilized that automatically extracts critical point during the molding process including flow point, viscosity minimum gel inflection, and reaction endpoint. In addition, other sensors were incorporated to measure temperature and pressure. The critical point as well as temperature and pressure were then recorded during normal production and then plotted in the form of statistical process control (SPC) charts. Experiments have been carried out in RIM, SMC, and RTM type molding operations. The influence of temperature, pressure chemistry, and other variables has been investigated. In this paper examples of both RIM and SMC are discussed

  6. Effect of reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si composites

    Directory of Open Access Journals (Sweden)

    Reza Vatankhah Barenji

    2018-01-01

    Full Text Available In the present study, the effects of mold temperature, superheat, mold thickness, and Mg2Si amount on the fluidity of the Al-Mg2Si as-cast in-situ composites were investigated using the mathematical models. Composites with different amounts of Mg2Si were fabricated, and the fluidity and microstructure of each were then analyzed. For this purpose, the experiments were designed using a central composite rotatable design, and the relationship between parameters and fluidity were developed using the response surface method. In addition, optical and scanning electron microscopes were used for microstructural observation. The ANOVA shows that the mathematical models can predict the fluidity accurately. The results show that by increasing the mold temperature from 25 °C to 200 °C, superheat from 50 °C to 250 °C, and thickness from 3 mm to 12 mm, the fluidity of the composites decreases, where the mold thickness is more effective than other factors. In addition, the higher amounts of Mg2Si in the range from 15wt.% to 25wt.% lead to the lower fluidity of the composites. For example, when the mold temperature, superheat, and thickness are respectively 100 °C, 150 °C, and 7 mm, the fluidity length is changed in the range of 11.9 cm to 15.3 cm. By increasing the amount of Mg2Si, the morphology of the primary Mg2Si becomes irregular and the size of primary Mg2Si is increased. Moreover, the change of solidification mode from skin to pasty mode is the most noticeable microstructural effect on the fluidity.

  7. Applying dynamic mold temperature control to cosmetic package design

    Directory of Open Access Journals (Sweden)

    Hsiao Shih-Wen

    2017-01-01

    Full Text Available Owing to the fashion trend and the market needs, this study developed the eco-cushion compact. Through the product design and the advanced process technology, many issues have improved, for instance, the inconvenience of transportation, the lack of multiuse capability, the increase of costs, and the low yield rate. The eco-cushion compact developed in this study was high quality, low cost, and meets the requirements of the eco market. The study aimed at developing a reusable container. Dynamic mold temperature control was introduced in the injection modeling process. The innovation in the product was its multi-functional formula invention, eco-product design, one-piece powder case design, and multifunctional design in the big powder case, mold flow and development of dynamic mold temperature control. Finally, through 3D drawing and modeling, and computer assistance for mold flow and verification to develop and produce models. During the manufacturing process, in order to solve the problems of tightness and warping, development and manufacture of dynamic mold temperature control were introduced. This decreased the injection cycle and residual stress, and deformation of the products has reduced to less than 0.2 mm, and the air tightness increased. In addition, air leakage was less than 2% and the injection cycle decreased to at least 10%. The results of the study can be extended and applied on the future design on cosmetic package and an alternative can be proposed to solve the problems of air tightness and warping. In this study, dynamic mold temperature control is considered as a design with high price-performance ratio, which can be adopted on industrial application for practical benefit and improvement.

  8. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    Science.gov (United States)

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  9. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield.

    Directory of Open Access Journals (Sweden)

    Stanton Hector

    Full Text Available Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans, while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation.

  10. Enzymatic activity of fungi isolated from crops

    Directory of Open Access Journals (Sweden)

    Wioletta A. Żukiewicz-Sobczak

    2016-12-01

    Full Text Available Aim: To detect and assess the activity of extracellular hydrolytic enzymes and to find differences in enzymograms between fungi isolated from wheat and rye samples and grown on Czapek-Dox Broth and Sabouraud Dextrose Broth enriched with cereal (wheat or rye. Isolated strains were also classified in the scale of biosafety levels (BSL. Material and methods: The study used 23 strains of fungi cultured from samples of wheat and rye (grain, grain dust obtained during threshing and soil collected in the Lublin region (eastern Poland. API ZYM test (bioMérieux was carried out according to the manufacturer’s instructions. Classification of BSL (Biosafety levels was based on the current literature. Results : High enzymatic activity was found in strains cultured in media containing 1% of wheat grain ( Bipolaris holmi, Penicillium decumbens and with an addition of 1% of rye grain ( Cladosporium herbarum, Aspergillus versicolor, Alternaria alternata . The total number of enzymes varied depending on the type of media, and in most cases it was higher in the culture where an addition of cereal grains was used. Conclusions : Isolated strains of fungi reveal differences in the profiles of the enzyme assay. It can be assumed that the substrate enriched in grains stimulate the higher activity of mold enzymes. Key words: enzymatic activity, mold fungi, zymogram, biohazards.

  11. Adaptive temporal refinement in injection molding

    Science.gov (United States)

    Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek

    2018-05-01

    Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.

  12. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  13. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  14. Resistance of Botrytis cinerea to fungicides controlling gray mold on strawberry in Brazil

    Directory of Open Access Journals (Sweden)

    Ueder Pedro Lopes

    Full Text Available ABSTRACT The aim of this study was to evaluate the resistance of Botrytis cinerea to the fungicides currently used for its control in Brazil. Isolates of the fungus were collected from different strawberry-producing fields in the states of Espírito Santo, Minas Gerais, and São Paulo, Brazil. First, a total of 183 isolates were identified at the species level using specific primers for the glyceraldehyde-3-phosphate dehydrogenase (G3PDH gene. The isolates were grown on potato dextrose agar (PDA containing the fungicides procymidone, iprodione, and thiophanate-methyl in different concentrations: 0.0 (control, 0.1; 1.0; 10.0; 100.0 and 1,000.0 μg∙mL−1. The percentage of mycelial growth inhibition was used to determine the effective concentration of the fungicide that was able to inhibit colony growth by 50% (EC50. Approximately 25.7% of the isolates were resistant to iprodione, 53.0% were resistant to procymidone, and 93.0% were resistant to thiophanate-methyl. Moreover, crossresistance and multiple resistance were verified, with 19.7% of the isolates showing resistance to 3 fungicides simultaneously. This finding explains the ineffectiveness of fungicides application to control gray mold in strawberry fields in Brazil and highlights the need for new strategies to manage this disease in the culture.

  15. Effects of water activity on the performance of potassium sorbate and natamycin as preservatives against cheese spoilage moulds

    Directory of Open Access Journals (Sweden)

    Marín P.

    2017-10-01

    Full Text Available This work investigated the effects of the food preservatives potassium sorbate and natamycin, combined with different levels of ionic (sodium chloride and non-ioinic (glycerol water activity (aw, on growth of fungi involved in cheese spoilage. In general, the combined effect of water stress and presence of preservatives enhanced fungal inhibition. However, some doses of potassium sorbate (0.02% and natamycin (1, 5 and 10 ppm were able to stimulate growth of Aspergillus varians, Mucor racemosus, Penicillium chrysogenum and P. roqueforti at aw values in the range of 0.93–0.97. P. solitum was the only species whose growth was consistently reduced by any doses of preservative. The results also showed that sodium chloride and glycerol differentially affected the efficacy of preservatives. This study indicates that aw of cheese is a critical parameter to be considered in the formulation of preservative coatings used against fungal spoilage.

  16. Coping With Cleft: A Conceptual Framework of Caregiver Responses to Nasoalveolar Molding.

    Science.gov (United States)

    Sischo, Lacey; Broder, Hillary L; Phillips, Ceib

    2015-11-01

    To present a conceptual framework of caregiver coping and adaptation to early cleft care using nasoalveolar molding. In-depth interviews were conducted at three time points with caregivers of infants with cleft lip or cleft lip and palate whose children had nasoalveolar molding to treat their cleft. Qualitative data were analyzed using modified grounded theory. Most caregivers expressed initial apprehension and anxiety about the responsibilities of care associated with nasoalveolar molding (e.g., changing and positioning tapes, cleaning the appliance). In subsequent interviews, caregivers often reported positive feelings related to their active participation in their child's treatment for cleft. These positive feelings were associated with increased self-esteem and feelings of empowerment for the caregivers. Although caregivers also identified burdens associated with nasoalveolar molding (e.g., stress related to lip taping, concerns about the appliance causing sores in their child's mouth, travel to weekly appointments), they tended to minimize the impact of these issues in comparison with the perceived benefits of nasoalveolar molding. Despite the increased burden of care, many caregivers of infants with cleft used nasoalveolar molding as a problem-focused coping strategy to deal with their child's cleft. Completing nasoalveolar molding was often associated with positive factors such as increased empowerment, self-esteem, and bonding with their infant.

  17. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  18. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning.

    Science.gov (United States)

    Ellis, David I; Broadhurst, David; Kell, Douglas B; Rowland, Jem J; Goodacre, Royston

    2002-06-01

    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable "fingerprints." Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria.g(-1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

  19. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  20. A Modular, Reconfigurable Mold for a Soft Robotic Gripper Design Activity

    Directory of Open Access Journals (Sweden)

    Jiawei Zhang

    2017-09-01

    Full Text Available Soft robotics is an emerging field with strong potential to serve as an educational tool due to its advantages such as low costs and shallow learning curves. In this paper, we introduce a modular and reconfigurable mold for flexible design of pneumatic soft robotic grippers. By using simple assembly kits, students at all levels are able to design and construct soft robotic grippers that vary in function and performance. The process of constructing the modular mold enables students to understand how design choices impact system performance. Our unique modular mold allows students to select the number and length of fingers in a gripper, as well as to adjust the internal geometry of the pneumatic actuator cavity, which dictates how and where bending of a finger occurs. In addition, the mold may be deconstructed and reconfigured, which allows for fast iterative design and lowers material costs (since a new mold does not need to be made to implement a design change. We further demonstrate the feasibility of the modular mold by implementing it in a soft robot design activity in classrooms and showing a sufficiently high rate of student success in designing and constructing a functional soft robotic gripper.

  1. Infant origins of childhood asthma associated with specific molds.

    Science.gov (United States)

    Reponen, Tiina; Lockey, James; Bernstein, David I; Vesper, Stephen J; Levin, Linda; Khurana Hershey, Gurjit K; Zheng, Shu; Ryan, Patrick; Grinshpun, Sergey A; Villareal, Manuel; Lemasters, Grace

    2012-09-01

    The specific cause or causes of asthma development must be identified to prevent this disease. Our hypothesis was that specific mold exposures are associated with childhood asthma development. Infants were identified from birth certificates. Dust samples were collected from 289 homes when the infants were 8 months of age. Samples were analyzed for concentrations of 36 molds that comprise the Environmental Relative Moldiness Index (ERMI) and endotoxin, house dust mite, cat, dog, and cockroach allergens. Children were evaluated at age 7 years for asthma based on reported symptoms and objective measures of lung function. Host, environmental exposure, and home characteristics evaluated included a history of parental asthma, race, sex, upper and lower respiratory tract symptoms, season of birth, family income, cigarette smoke exposure, air conditioning, use of a dehumidifier, presence of carpeting, age of home, and visible mold at age 1 year and child's positive skin prick test response to aeroallergens and molds at age 7 years. Asthma was diagnosed in 24% of the children at age 7 years. A statistically significant increase in asthma risk at age 7 years was associated with high ERMI values in the child's home in infancy (adjusted relative risk for a 10-unit increase in ERMI value, 1.8; 95% CI, 1.5-2.2). The summation of levels of 3 mold species, Aspergillus ochraceus, Aspergillus unguis, and Penicillium variabile, was significantly associated with asthma (adjusted relative risk, 2.2; 95% CI, 1.8-2.7). In this birth cohort study exposure during infancy to 3 mold species common to water-damaged buildings was associated with childhood asthma at age 7 years. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Azole-based antimycotic agents inhibit mold on unseasoned pine

    Science.gov (United States)

    Carol. A. Clausen; Vina W. Yang

    2005-01-01

    Inhibiting the growth of mold fungi on cellulose-based building materials may be achievable through the use of azole-based antimycotics. Azoles were variably effective against mold fungi that are frequently found on wood and wood products. Unseasoned southern yellow pine specimens that were dip-treated with varying concentrations of eight azoles were evaluated for...

  3. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... position was measured on the polymer μ-parts to evaluate filling behavior of the polymer melt flowing through μ-features. Experimental results obtained under different processing conditions were evaluated to correlate the process parameter levels influence on the selected responses. Results showed...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  4. Numerical simulation of mold shape’s influence on NbTi cold-pressing superconducting joint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng, E-mail: zhoufeng@mail.iee.ac.cn; Cheng, Junsheng; Dai, Yinming; Wang, Qiuliang; Yan, Luguang

    2014-03-15

    Highlights: • Four different shape molds’ influence on NbTi cold-pressing joint are analyzed. • Deformation of filaments is the most uniform in the case of radial compression. • The square mold is the optimum one for decreasing joint resistance in practice. - Abstract: The cold-pressing welding methods are employed to fabricate joints between NbTi multi-filamentary conductors, and a series of joints are made with the molds of different shapes for nuclear magnetic resonance (NMR) magnet applications. The Abaqus–Explicit method was used to do a quasi-static analysis of the cold-pressing welding process. In the simulation, we analyzed four molds with different shapes: plate mold, cap mold, square mold, and radial compression. The simulation shows that the deformation of filaments is the most uniform in the case of radial compression and the square mold is the optimum one for decreasing joint resistance.

  5. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  6. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  7. Microlens fabrication by replica molding of frozen laser-printed droplets

    Science.gov (United States)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  8. Effect of Residence Time of Graphitisation on Thermal Conductivity of Molded Graphite

    Directory of Open Access Journals (Sweden)

    Pedy Artsanti

    2010-06-01

    Full Text Available The effect of residence time of graphitisation on thermal conductivity of molded graphite has been examined. The examination has been conducted by varying residence time of graphitisation of molded carbon with petroleum coke as raw material and coal tar pitch. Graphitisation has been conducted by heating molded graphite at 2500 °C in argon atmosphere with residention time of 10, 30 and 90 minutes. Graphitisation degree, density, shrinking mass and porosity of molded graphite were examined and so was its thermal conductivity. The result showed that the decrease of porosity and the increase of graphitisation degree due to the increasing of residention time of graphitisation will increase the thermal conductivity of graphite. Molded graphite graphitisized with residence time for 90 minutes residention time gave thermal conductivity of 2.134 Watt/mK and graphitization degree 0.718.

  9. Hydrolytic potential of a psychrotrophic Pseudomonas isolated from refrigerated raw milk

    Directory of Open Access Journals (Sweden)

    Ana Paula F. Corrêa

    2011-12-01

    Full Text Available The production of extracellular hydrolases by a psychrotrophic bacterium isolated from refrigerated raw milk, and identified as a Pseudomonas sp. belonging to the Pseudomonas jenssenii group, was studied. This bacterium produced proteolytic and lipolytic enzymes in all media investigated (skim milk, cheese whey, casein broth, and tryptone soy broth. High levels of α-glucosidase were produced in skim milk broth. Hydrolytic enzymes detected in skim milk broth are of particular concern, indicating that these enzymes could be produced by Pseudomonas sp. during the cold storage of raw milk, contributing to the spoilage problem in milk and dairy products.

  10. RANCANG BANGUN MOLD UNTUK PROSES TERMOFORMING PROSTHETIC BELOW KNEE (B/K

    Directory of Open Access Journals (Sweden)

    Bambang Waluyo Febriantoko

    2017-10-01

    ABSTRACT   The growing of industry has the effect to the increase of plastic need.  However, the application of plastic forming process often experiences constraints. One of them is depreciation. Depreciation often occurs in the plastic forming process, especially forming with mechanical thermoforming system. So it is necessary to analyze the things that cause shrinkage on the product. Some of the things that are identified to influence the shrinkage are the molds, temperatures and types of used plastics. The used method is to make mechanical thermoforming test and make mold which will be used to analyze depreciation. There are 2 kinds of molds, namely upper foot sole mold and bottom foot sole mold. In addition to the variations of the mold, the analysis is also aimed at the temperature of polypropylene plastic (PP and PVC plastic which will be processed. The temperature variations are 1000C, 1200C and 140oC and the types of plastics that are tested is polypropylene plastic (PP and PVC plastic. The results show that on mechanical thermoforming process for polypropylene (PP plastic with 1.0 mm thickness, the percentage of shrinkage can not be analyzed because of the low viscous nature of plastic. PP type plastic can form a pattern, but not perfect. PP plastic material does not experience a good expansion after pressing process with 100ºC-120ºC plastic temperature. This is because the plastic is still elastic. At 140ºC, the plastic undergoes expansion, but when the plastic pressing process, it undergoes an imperfect pattern. The reason is the temperature is too high. Meanwhile for the PVC plastic, it was found that in the upper foot sole mold with height of 2 cm and 1.0 mm plastic thickness, the percentages of shrinkage average are 7.85% with temperature 100ºC, 9.80% with temperature 120ºC and 12.11% with temperature of 140ºC. In the bottom foot sole mold with 2 cm height and 1.0 mm plastic thickness, the percentages of shrinkage average are 10.01% with

  11. A novel vision-based mold monitoring system in an environment of intense vibration

    International Nuclear Information System (INIS)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-01-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration. (paper)

  12. A novel vision-based mold monitoring system in an environment of intense vibration

    Science.gov (United States)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-10-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration.

  13. Desain dan Optimasi Injection Mold Sistem Slider pada Produk Stick T15

    Directory of Open Access Journals (Sweden)

    Lutfi Khoirul Miftakhul Ni'am

    2017-12-01

    Full Text Available The design of injection molding is the initial process to produce a large-scale product of plastic material which heated and injected into the mold. Design of the preform mold using the plastic material polyethylene terephthalate with the construction of the slider, so that the products which was made have undercut and can’t be made in the core section and cavity. The purpose of this design is to design the slider on the product preform. The software which used for this design using CATIA V5R19 and simulation software production using Autodesk Moldflow Insight 2016. The step on designing a unit injection mold in the preform includes several steps. The first step is identify the product, the calculation of the cooling and input the data calculation result to an moldflow. The second step is design construction slider and determine the mold material as well as calculating the construction mold. The third step is pour the results of the design in figure 2D. Based on the analysis results from moldflow obtained cooling optimal.i.e. the type of cooling series type 2, and if can be concluded construction of the mold said to be safe if the stress, the style and the determination  of material which occurs under the stress and style of permit.

  14. Anti-sticking behavior of DLC-coated silicon micro-molds

    International Nuclear Information System (INIS)

    Saha, B; Tor, S B; Liu, E; Khun, N W; Hardt, D E; Chun, J H

    2009-01-01

    Pure carbon- (C), nitrogen- (N) and titanium- (Ti) doped diamond-like carbon (DLC) coatings were deposited on silicon (Si) micro-molds by dc magnetron sputtering deposition to improve the tribological performance of the micro-molds. The coated and uncoated Si molds were used in injection molding for the fabrication of secondary metal-molds, which were used for the replication of micro-fluidic devices. The bonding structure, surface roughness, surface energy, critical load and friction coefficient of the DLC coatings were characterized with micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle, microscratch and ball-on-disc sliding wear tests, respectively. It was observed that the doping conditions had significant effects on Raman peak positions, mechanical and tribological properties of the coatings. The G peak shifted toward a lower position with N and Ti doping. The DLC coating deposited with 1 sccm N 2 flow rate showed the lowest G peak position and the smoothest surface. The surface energies of the pure carbon and Ti-doped DLC coatings were lower than that of the N-doped DLC, which was more significant at a higher N 2 flow rate. In terms of adhesion and friction coefficient, it was observed that the Ti-doped DLC coating had the best performance. Ti incorporated in the DLC coating decreased the residual stress of the coating, which improved the adhesive strength of the coating with the Si substrate

  15. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, F; Funatsu, A; Yazawa, H [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  16. Growth Modeling of Aspergillus niger Strains Isolated from Citrus Fruit as a Function of Temperature on a Synthetic Medium from Lime (Citrus latifolia T.) Pericarp.

    Science.gov (United States)

    Sandoval-Contreras, T; Marín, S; Villarruel-López, A; Gschaedler, A; Garrido-Sánchez, L; Ascencio, F

    2017-07-01

    Molds are responsible for postharvest spoilage of citrus fruits. The objective of this study was to evaluate the effect of temperature on growth rate and the time to visible growth of Aspergillus niger strains isolated from citrus fruits. The growth of these strains was studied on agar lime medium (AL) at different temperatures, and growth rate was estimated using the Baranyi and Roberts model (Int. J. Food Microbiol. 23:277-294, 1994). The Rosso et al. cardinal model with inflexion (L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, J. Theor. Biol. 162:447-463, 1993) was used as a secondary model to describe the effect of temperature on growth rate and the lag phase. We hypothesized that the same model could be used to calculate the time for the mycelium to become visible (t v ) by substituting the lag phase (1/λ and 1/λ opt ) with the time to visible colony (1/t v -opt and 1/t v ), respectively, in the Rosso et al. High variability was observed at suboptimal conditions. Extremes of temperature of growth for A. niger seem to have a normal variability. For the growth rate and time t v , the model was satisfactorily compared with results of previous studies. An external validation was performed in lime fruits; the bias and accuracy factors were 1.3 and 1.5, respectively, for growth rate and 0.24 and 3.72, respectively, for the appearance time. The discrepancy may be due to the influence of external factors. A. niger grows significantly more slowly on lime fruit than in culture medium, probably because the nutrients are more easily available in medium than in fruits, where the peel consistency may be a physical barrier. These findings will help researchers understand the postharvest behavior of mold on lime fruits, host-pathogen interactions, and environmental conditions infecting fruit and also help them develop guidelines for future work in the field of predictive mycology to improve models for control of postharvest fungi.

  17. Differential Allergy Induction by Molds Found in Water-Damaged Homes

    Science.gov (United States)

    Abstract: We compared the allergy induction potential of high concentration molds found in water-damaged homes and molds found more universally to house dust mite (HDM) in our mouse allergy/asthma model. Female BALB/c mice received 1 or 4 exposures by intratracheal aspiration of ...

  18. 3D printed metal molds for hot embossing plastic microfluidic devices.

    Science.gov (United States)

    Lin, Tung-Yi; Do, Truong; Kwon, Patrick; Lillehoj, Peter B

    2017-01-17

    Plastics are one of the most commonly used materials for fabricating microfluidic devices. While various methods exist for fabricating plastic microdevices, hot embossing offers several unique advantages including high throughput, excellent compatibility with most thermoplastics and low start-up costs. However, hot embossing requires metal or silicon molds that are fabricated using CNC milling or microfabrication techniques which are time consuming, expensive and required skilled technicians. Here, we demonstrate for the first time the fabrication of plastic microchannels using 3D printed metal molds. Through optimization of the powder composition and processing parameters, we were able to generate stainless steel molds with superior material properties (density and surface finish) than previously reported 3D printed metal parts. Molds were used to fabricate poly(methyl methacrylate) (PMMA) replicas which exhibited good feature integrity and replication quality. Microchannels fabricated using these replicas exhibited leak-free operation and comparable flow performance as those fabricated from CNC milled molds. The speed and simplicity of this approach can greatly facilitate the development (i.e. prototyping) and manufacture of plastic microfluidic devices for research and commercial applications.

  19. White mold of Jerusalem artichoke

    Science.gov (United States)

    Jerusalem artichoke (Helianthus tuberosus) is a Native American food plant closely related to the common sunflower (Helianthus annuus). Tubers of Jerusalem artichoke are increasingly available in retail grocery outlets. White mold (Sclerotinia stem rot), caused by the fungus, Sclerotinia sclerotioru...

  20. Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding

    Directory of Open Access Journals (Sweden)

    Manuel Felix

    Full Text Available Abstract Soy Protein Isolate (SPI has been evaluated as useful candidate for the development of protein-based bioplastic materials processed by injection molding. The influence of sorbitol (SB as plasticizer in mechanical properties and water uptake capacity was evaluated in SPI-based bioplastics. A mixing rheometer that allows monitoring torque and temperature during mixing and a small-scale-plunger-type injection molding machine were used to obtain SPI/Plasticizer blends and SPI-based bioplastics, respectively. Dynamic measurements were carried out to obtain mechanical spectra of different bioplastics. Moreover, the mechanical characterization was supplemented with uniaxial tensile tests. Additionally, the influence of SB in water uptake capacity was also evaluated. The introduction of SB leads to increase the rigidity of bioplastics as well as the water uptake capacity after 24h, however it involves a decrease in strain at break. Final bioplastics are plastic materials with both adequate properties for the substitution of conventional petroleum plastics and high biodegradability.

  1. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  3. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  4. Casting metal microstructures from a flexible and reusable mold

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2009-01-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10–100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool

  5. Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods.

    Science.gov (United States)

    Brandt, Mary; Brown, Clive; Burkhart, Joe; Burton, Nancy; Cox-Ganser, Jean; Damon, Scott; Falk, Henry; Fridkin, Scott; Garbe, Paul; McGeehin, Mike; Morgan, Juliette; Page, Elena; Rao, Carol; Redd, Stephen; Sinks, Tom; Trout, Douglas; Wallingford, Kenneth; Warnock, David; Weissman, David

    2006-06-09

    Extensive water damage after major hurricanes and floods increases the likelihood of mold contamination in buildings. This report provides information on how to limit exposure to mold and how to identify and prevent mold-related health effects. Where uncertainties in scientific knowledge exist, practical applications designed to be protective of a person's health are presented. Evidence is included about assessing exposure, clean-up and prevention, personal protective equipment, health effects, and public health strategies and recommendations. The recommendations assume that, in the aftermath of major hurricanes or floods, buildings wet for health effects in susceptible persons regardless of the type of mold or the extent of contamination. For the majority of persons, undisturbed mold is not a substantial health hazard. Mold is a greater hazard for persons with conditions such as impaired host defenses or mold allergies. To prevent exposure that could result in adverse health effects from disturbed mold, persons should 1) avoid areas where mold contamination is obvious; 2) use environmental controls; 3) use personal protective equipment; and 4) keep hands, skin, and clothing clean and free from mold-contaminated dust. Clinical evaluation of suspected mold-related illness should follow conventional clinical guidelines. In addition, in the aftermath of extensive flooding, health-care providers should be watchful for unusual mold-related diseases. The development of a public health surveillance strategy among persons repopulating areas after extensive flooding is recommended to assess potential health effects and the effectiveness of prevention efforts. Such a surveillance program will help CDC and state and local public health officials refine the guidelines for exposure avoidance, personal protection, and clean-up and assist health departments to identify unrecognized hazards.

  6. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Risk assessment of fungal spoilage: A case study of Aspergillus niger on yogurt.

    Science.gov (United States)

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2017-08-01

    A quantitative risk assessment model of yogurt spoilage by Aspergillus niger was developed based on a stochastic modeling approach for mycelium growth by taking into account the important sources of variability such as time-temperature conditions during the different stages of chill chain and individual spore behavior. Input parameters were fitted to the appropriate distributions and A. niger colony's diameter at each stage of the chill chain was estimated using Monte Carlo simulation. By combining the output of the growth model with the fungus prevalence, that can be estimated by the industry using challenge tests, the risk of spoilage translated to number of yogurt cups in which a visible mycelium of A. niger is being formed at the time of consumption was assessed. The risk assessment output showed that for a batch of 100,000 cups in which the percentage of contaminated cups with A. niger was 1% the predicted numbers (median (5 th , 95 th percentiles)) of the cups with a visible mycelium at consumption time were 8 (5, 14). For higher percentages of 3, 5 and 10 the predicted numbers (median (5 th , 95 th percentiles)) of the spoiled cups at consumption time were estimated to be 24 (16, 35), 39 (29, 52) and 80 (64, 94), respectively. The developed model can lead to a more effective risk-based quality management of yogurt and support the decision making in yogurt production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Activity of R(+) limonene on the maximum growth rate of fish spoilage organisms and related effects on shelf-life prolongation of fresh gilthead sea bream fillets.

    Science.gov (United States)

    Giarratana, Filippo; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro; Panebianco, Antonio

    2016-11-21

    R(+)limonene (LMN) is the major aromatic compound in essential oils obtained from oranges, grapefruits, and lemons. The improvement of preservation techniques to reduce the growth and activity of spoilage microorganisms in foods is crucial to increase their shelf life and to reduce the losses due to spoilage. The aim of this work is to evaluate the effect of LMN on the shelf life of fish fillets. Its effectiveness was preliminarily investigated in vitro against 60 strains of Specific Spoilage Organisms (SSOs) and then on gilt-head sea bream fillets stored at 2±0.5°C for 15days under vacuum. LMN showed a good inhibitory effect against tested SSOs strains. On gilt-head sea bream fillets, LMN inhibited the growth SSOs effectively, and its use resulted in a shelf-life extension of ca. 6-9days of treated fillets, compared to the control samples. The LMN addition in Sparus aurata fillets giving a distinctive smell and like-lemon taste to fish fillets that resulted pleasant to panellists. Its use contributed to a considerable reduction of fish spoilage given that the fillets treated with LMN were still sensory acceptable after 15days of storage. LMN may be used as an effective antimicrobial system to reduce the microbial growth and to improve the shelf life of fresh gilt-head sea bream fillets. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  10. Combination treatment of gamma radiation and paraben in controlling spoilage of poultry meat

    International Nuclear Information System (INIS)

    Shiralkar, N.D.; Rege, D.V.

    1977-01-01

    With a view of controlling spoilage, combination treatment of poultry meat with gamma radiation and a chemical preservative has been investigated. Raw poultry pieces of about 25 g. weight were dipped in 0.1% propyl-paraben solution for two hours and were given a 0.1 Mrad dose from 60 Co gamma radiation. It was found that paraben was not affected by irradiation. The flavour evaluation scores indicated the shelf-life of poultry meat was prolonged by a couple of days as compared to untreated controls in refrigerated storage. (M.G.B.)

  11. Reaction of common bean lines and aggressiveness of Sclerotinia sclerotiorum isolates.

    Science.gov (United States)

    Silva, P H; Santos, J B; Lima, I A; Lara, L A C; Alves, F C

    2014-11-07

    The aims of this study were to evaluate the reaction of common bean lines to white mold, the aggressiveness of different Sclerotinia sclerotiorum isolates from various common bean production areas in Brazil, and comparison of the diallel and GGE (genotype main effect plus genotype-by-environment interaction) biplot analysis procedures via study of the line-by-isolate interaction. Eleven common bean (Phaseolus vulgaris) lines derived from 3 backcross populations were used. Field experiments were performed in the experimental area of the Departamento de Biologia of the Universidade Federal de Lavras, Lavras, MG, Brazil, in the 2011 and 2012 dry crop season and 2011 winter crop season through a randomized block design with 3 replications. This study was also set up in a greenhouse. Inoculations were performed 28 days after sowing by means of the straw test method. The reaction of the bean lines to white mold was assessed according to a diagrammatic scale from 1 (plant without symptoms) to 9 (dead plant). Estimations of general reaction capacity (lines) and general aggressiveness capacity (isolates) indicated different horizontal levels of resistance in the lines and levels of aggressiveness in the isolates. Therefore, it was possible to select more resistant lines and foresee those crosses that are the most promising for increasing the level of resistance. It was also possible to identify the most aggressive isolates that were more efficient in distinguishing the lines. Both diallel and GGE biplot analyses were useful in identifying the genotypic values of lines and isolates.

  12. Injection molding of coarse 316L stainless steel powder

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Subuki, I; Ali, E.A.G.E.; Ismail, F.; Hassan, N.

    2007-01-01

    Metal injection molding (MIM) process using 316L stainless steel powder of 45 μm was investigated. The binder system consists of a major fraction of palm stearins and minor fraction of polyethylene with a powder loading of 65 vol. %. The rheological behaviour of the feedstock was determined using Capillary Rheometer. The feedstock then injected using vertical injection molding machine into the tensile test bar. Then molded parts were de bound and sintered in vacuum at temperature of 1360 degree Celsius. The results show that the viscosity of the feedstock decreased with the temperature increased. The best sintered density achieved was about 7.5 g/cm 3 with the tensile strength of more than 460 MPa. The properties of the sintered specimens could be increased with the increasing of sintering temperature. (author)

  13. Fabricating microfluidic valve master molds in SU-8 photoresist

    Science.gov (United States)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  14. Fabricating microfluidic valve master molds in SU-8 photoresist

    International Nuclear Information System (INIS)

    Dy, Aaron J; Cosmanescu, Alin; Sluka, James; Glazier, James A; Amarie, Dragos; Stupack, Dwayne

    2014-01-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution. (technical note)

  15. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urea-formaldehyde resins in molded articles. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1900 Urea-formaldehyde resins in molded articles. Urea-formaldehyde resins may be safely used as the food-contact surface...

  16. Evaluation of Additive Manufacturing for High Volume Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    ORNL worked with TruDesign, LLC to develop viable coating solutions to enable the use of large scale 3D printing for both low-temperature and high-temperature composite molds. This project resulted in two commercial products and successfully demonstrated the use of printed molds for autoclave processing for the first time.

  17. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  18. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    International Nuclear Information System (INIS)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri; Raghavan, Vijay R.

    2016-01-01

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time

  19. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    Energy Technology Data Exchange (ETDEWEB)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri [Mechanical Engineering Dept., Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Raghavan, Vijay R. [OYL Manufacturing, Sungai Buloh (Malaysia)

    2016-11-15

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time.

  20. Study on the performance of MoS2 modified PTFE composites by molding process

    Science.gov (United States)

    Ma, Weiqiang; Hou, Genliang; Bi, Song; Li, Ping; Li, Penghui

    2017-10-01

    MoS2 filled PTFE composites were prepared by cold pressing and sintering molding. The compressive and creep properties of composite materials were analyzed by controlling the size of molded composites during molding. The results show that the composites have the best compressive and creep resistance when the molding pressure is 55 MPa in the MoS2 composites with 15% mass fraction, which is a practical reference for the preparation of MoS2-modified PTFE composites.

  1. Prevalence of Residential Dampness and Mold Exposure in a University Student Population

    Directory of Open Access Journals (Sweden)

    Mathieu Lanthier-Veilleux

    2016-02-01

    Full Text Available The impact of residential dampness or mold on respiratory health is well established but few studies have focused on university students. This study aims to: (a describe the prevalence of exposure to residential dampness or mold in university students according to socio-geographic factors and (b identify associated housing characteristics. A web survey was conducted in 2014 among the 26,676 students registered at the Université de Sherbrooke (QC, Canada. Residential dampness and mold being closely intertwined, they were considered as a single exposure and assessed using a validated questionnaire. Exposure was compared according to socio-geographic and housing characteristics using chi-square tests and logistic regressions. Among the 2097 participants included in the study (response rate: 8.1%, over 80% were tenants. Residential exposure to dampness or mold was frequent (36.0%, 95% CI: 33.9–38.1. Marked differences for this exposure were noted according to home ownership (39.7% vs. 25.5% among tenants and owners respectively; OR = 1.92%, 95% CI: 1.54–2.38. Campus affiliation, household composition and the number of residents per building were associated with exposure to dampness or mold (p < 0.01, while sex and age were not. Exposure was also associated with older buildings, and buildings in need of renovations and lacking proper ventilation (p < 0.001. This study highlights the potential risk of university students suffering from mold-related health effects given their frequent exposure to this agent. Further research is needed to fully evaluate the mold-related health impact in this at risk group.

  2. Structural and compositional analysis of a casting mold sherd from ancient China.

    Science.gov (United States)

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  3. Structural and compositional analysis of a casting mold sherd from ancient China.

    Directory of Open Access Journals (Sweden)

    Yunbing Zong

    Full Text Available Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  4. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  5. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Directory of Open Access Journals (Sweden)

    Haolong Shangguan

    2018-03-01

    Full Text Available 3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  6. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold

    Directory of Open Access Journals (Sweden)

    Xu-bin Zhang

    2017-11-01

    Full Text Available Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases (steel, slag and air, and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.

  7. Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III

    2009-01-01

    This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  8. Stability of FDTS monolayer coating on aluminum injection molding tools

    International Nuclear Information System (INIS)

    Cech, Jiri; Taboryski, Rafael

    2012-01-01

    Highlights: ► We present novel and highly useful results on FDTS monolayer coating of aluminum. ► The coating is particularly applicable for coating of prototyping injection molding tools, which often are made of Al. ► We have demonstrated that the coating prevails in injection molding conditions and that the coating will prevent wear of the tools. - Abstract: We have characterized perfluorodecyltrichlorosilane (FDTS) molecular coating of aluminum molds for polymer replication via injection molding (IM). X-ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energies and roughness data have been collected. Samples have been characterized immediately after coating, after more than 500 IM cycles to test durability, and after 7 months to test temporal stability. The coating was deposited in an affordable process, involving near room temperature gas phase reactions. XPS shows detectable fluorine presence on both freshly coated samples as well as on post-IM samples with estimated 30 at.% on freshly coated and 28 at.% on post-IM samples with more than 500 IM cycles with polystyrene (PS) and ABS polymer.

  9. MATERIALS FOR PRODUCTION OF METAL MOLDS

    Directory of Open Access Journals (Sweden)

    A. Ju. Jakovlev

    2007-01-01

    Full Text Available The influence of alloying with manganese, chromium, nickel, copper and molybdenum on mechanical characteristics and thermocyclic endurance of grayed steel and possibility of its application for metal casting molds is investigated.

  10. Kinetics of spoilage fermentation in radurized fish and optimization of irradiation process

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.

    1997-01-01

    Kinetic studies on radiation-inactivation and the postirradiation growth of spoilage microorganisms during chill storage and their product formation inradurized fish were carried out. Anchovy (Engraulis encrasicholus) samples unirradiated, and those irradiated at 1,2 and 3 kGy doses of gamma radiation were stored at +2 o C for 21 days. Microbiological analyses of mesophilic, psycrophilic and total bacterial counts (TBC) and chemical analyses of trimethylamine (TMA) and total volatile bases (TVB) of the samples were done immediately after irradiation and periodically during storage. Radiation induced inactivations of bacteria were expressed with a first-order decreasing kinetics. A spoilage fermentation modeling was used to evaluate the quality control parameters of radurized fish in which the increase in TBC of survivor microorganisms during storage was described by a first-order growth with a lag phase and the production of TMA and TVB was described by a growth associated product formation. Examinations of the dose effects on the kinetic parameters resulted in that the relation between the product formation rate constants and the irradiation dose represented a parabolic function which was satisfactorily used to determine optimum irradiation dose. Optimum irradiation dose was found 1.719+- 0.471 kGy with TVB data resulting in an extended shelf-life of 15-16 days of fish. It is suggested that the kinetic evaluation method developed in this study may be substitute for or used with the analytical estimate in use comprising microbiological chemical and organoleptic controls for quality assessment and dose optimization of radurization processing of fish and other sea foods.(2 tab s. and 24 refs.)

  11. Molds on Food: Are They Dangerous?

    Science.gov (United States)

    ... refrigerator every few months with 1 tablespoon of baking soda dissolved in a quart of water. Rinse ... Francisco, Italian, and Eastern European types — have a characteristic thin, white mold coating which is safe to ...

  12. Underground processing method for radiation-contaminated material and transferring method for buffer molding material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Asano, Eiichi; Yamagata, Junji; Ninomiya, Nobuo; Kawakami, Susumu.

    1995-01-01

    A bottomed molding material (buffer molding material) is formed into a bottomed cylindrical shape by solidifying, under pressure, powders such as of bentonite into a highly dense state by a cold isotropic pressing or the like, having a hole for accepting and containing a vessel for radiation-contaminated materials. The bottomed cylindrical molding material is loaded on a transferring vessel, and transferred to a position near the site for underground disposal. The bottomed cylindrical molding material having a upwarded containing hole is buried in the cave for disposal. The container for radiation-contaminated material is loaded and contained in the containing hole of the bottomed cylindrical molding material. A next container for radiation-contaminated materials is juxtaposed thereover. Then, a bottomed cylindrical molding material having a downwarded containing hole is covered to the container for the radiation-contaminated material in a state being protruded upwardly. The radiation-contaminated material is thus closed by a buffer material of the same material at the circumference thereof. (I.N.)

  13. Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold

    International Nuclear Information System (INIS)

    Han, Kwangjoon; Kang, Kwang-Sun; Kim, Jaehwan

    2009-01-01

    This paper deals with a gold micro-patterning process on a cellulose film using a polyurethane acrylate (PUA) mold. Recently, cellulose electro-active paper (EAPap) has been found to be a smart material that can be used for biodegradable sensors, actuators and MEMS devices. However, the hydrophilic and flexible characteristics of cellulose EAPap are major drawbacks for applying a conventional lithography process to fabricate MEMS devices. To overcome these drawbacks, an unconventional lithography process, the so-called micro-transfer printing technique based on a PUA mold, was employed. A master pattern for the PUA mold was fabricated using the conventional photolithography process with an SU-8 photoresist, and the replica of the master pattern was fabricated using PUA. Gold was deposited onto the PUA mold, and a mercaptopropyltrimethoxysilane (MPTMS) self-assembly monolayer was made on the gold surface to securely transfer the gold layer onto the cellulose film. The effect of MPTMS was investigated. Further investigation of the factors to optimize the repeated stamping process will lead to a practical, reusable mold

  14. Evolution of Additively Manufactured Injection Molding Inserts Investigated by Thermal Simulations

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David B.; Tosello, Guido

    Injection molding using inserts from vat polymerization, an additive manufacturing technology, has been investigated for pilot production and rapid prototyping purposes throughout the past years. A standard mold is equipped with additively manufactured inserts in a rectangular shape of (20 x 20 x 2...

  15. Dimensional accuracy of Acrylonitrile Butadiene Styrene injection molded parts produced in a pilot produc

    DEFF Research Database (Denmark)

    Mischkot, Michael; Davoudinejad, Ali; Charalambis, Alessandro

    of a geometry including micro-features have been injection-molded in Acrylonitrile Butadiene Styrene (ABS) with a single 20x20x2.5 mm^3 injection molding insert manufactured in a photopolymer composite material. This research investigates the dimensional accuracy of the injection molded parts as a function...

  16. Characterization of curing behavior of UV-curable LSR for LED embedded injection mold

    Science.gov (United States)

    Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.

    2016-11-01

    For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.

  17. Numerical modeling of magnetic induction and heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Hattel, Jesper Henri

    2013-01-01

    the temperatures as close as possible to the cavity surface, by means of an integrated induction heating system in the injection molding tool, to improve the fluidity of the polymer melt hereby ensuring that the polymer melt will continue to flow until the mold cavity is completely filled. The presented work uses......Injection molding of parts with special requirements or features such as micro- or nanostructures on the surface, a good surface finish, or long and thin features results in the need of a specialized technique to ensure proper filling and acceptable cycle time. The aim of this study is to increase...

  18. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    Science.gov (United States)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  19. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2010-01-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  20. Increasing the resistance of common bean to white mold through recurrent selection

    Directory of Open Access Journals (Sweden)

    Monik Evelin Leite

    2016-02-01

    Full Text Available ABSTRACT White mold, caused by Sclerotinea sclerotiorum (Lib. de Bary is one of the most important diseases of the common bean (Phaseolus vulgaris L. worldwide. Physiological resistance and traits related to disease avoidance such as architecture contribute to field resistance. The aim of this study was to verify the efficiency of recurrent selection in physiological resistance to white mold, “Carioca” grain type and upright habit in common bean. Thirteen common bean lines with partial resistance to white mold were intercrossed by means of a circulant diallel table, and seven recurrent selection cycles were obtained. Of these cycles, progenies of the S0:1, S0:2 and S0:3 generations of cycles III, IV, V and VI were evaluated. The best (8 to 10 progenies of the seven cycles were also evaluated, in two experiments, one in the greenhouse and one in the field. Lattice and/or randomized block experimental designs were used. The traits evaluated were: resistance to white mold by the straw test method, growth habit and grain type. The most resistant progenies were selected based on the average score of resistance to white mold. Subsequently, they were evaluated with regard to grain type and growth habit. Recurrent selection allowed for genetic progress of about 11 % per year for white mold resistance and about 15 % per year for the plant architecture. There was no gain among cycles for grain type. Progeny selection and recurrent selection were efficient for obtaining progenies with a high level of resistance to white mold with “Carioca” grain type and upright habit.

  1. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...

  2. Reusable molds for casting U-Zr alloys

    International Nuclear Information System (INIS)

    Chen, P.S.; Stevens, W.C.; Trybus, C.L.

    1992-09-01

    Refractory oxides, carbides, nitrides and sulfides were examined as mold coating materials for use in casting nuclear fuel. The molds require excellent high temperature chemical and mechanical stability combined with reasonable room temperature ductility to allow for fuel removal. Coatings were applied onto quartz and refractory metal coupons using various techniques. Sessile drop tests employing molten U-10%Zr (by weight) at 1550 degrees C were used to characterize coating performance. Results indicate that NbC, TiN, and Y 2 O 3 were non-wetting with U-10%Zr. However, only the Y 2 O 3 coating completely prevented adhesion of the fuel. The paper describes coating methods and details of the sessile drop experiments

  3. Mold contamination in a controlled hospital environment: a 3-year surveillance in southern Italy.

    Science.gov (United States)

    Caggiano, Giuseppina; Napoli, Christian; Coretti, Caterina; Lovero, Grazia; Scarafile, Giancarlo; De Giglio, Osvalda; Montagna, Maria Teresa

    2014-11-15

    Environmental monitoring of airborne filamentous fungi is necessary to reduce fungal concentrations in operating theaters and in controlled environments, and to prevent infections. The present study reports results of a surveillance of filamentous fungi carried out on samples from air and surfaces in operating theaters and controlled environments in an Italian university hospital. Sampling was performed between January 2010 and December 2012 in 32 operating theaters and five departments with high-risk patients. Indoor air specimens were sampled using a microbiological air sampler; Rodac contact plates were used for surface sampling. Fungal isolates were identified at the level of genera and species. Sixty-one samples (61/465; 13.1%) were positive for molds, with 18 from controlled environments (18/81; 22.2%) and 43 (43/384; 11.2%) from operating theaters. The highest air fungal load (AFL, colony-forming units per cubic meter [CFU/m(3)]) was recorded in the ophthalmology operating theater, while the pediatric onco-hematology ward had the highest AFL among the wards (47 CFU/m(3)). The most common fungi identified from culture of air specimens were Aspergillus spp. (91.8%), Penicillium spp., (6%) and Paecilomyces spp. (1.5%). During the study period, a statistically significant increase in CFU over time was recorded in air-controlled environments (p = 0.043), while the increase in AFL in operating theaters was not statistically significant (p = 0.145). Molds were found in 29.1% of samples obtained from surfaces. Aspergillus fumigatus was the most commonly isolated (68.5%). Our findings will form the basis for action aimed at improving the air and surface quality of these special wards. The lack of any genetic analysis prevented any correlation of fungal environmental contamination with onset of fungal infection, an analysis that will be undertaken in a prospective study in patients admitted to the same hospital.

  4. Influence of melt mixer on injection molding of thermoset elastomers

    Science.gov (United States)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  5. Reduction of birefringence in a skin-layer of injection molded polymer strips using CO{sub 2} laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yasuo; Satoh, Isao; Saito, Takushi [Tokyo Inst. of Tech. (Japan). Dept. of Mechanical Intelligent Systems Engineering

    1995-12-31

    Injection molding of polymers is currently utilized for numerous industrial applications. Because of high productivity and stable quality of molded products, the injection-molding process makes the production costs lower, and therefore, is expected to spread more widely in the future. This paper deals with a technique for improving the optical quality of injection molded polymer products using radiative heating. The birefringence frozen in a skin-layer of the molded part was reduced by CO{sub 2} laser heating, and the efficiency of this technique was investigated experimentally. Namely, a simple numerical calculation was performed to estimate the heating efficiency of CO{sub 2} laser in the polymer, effects of radiation heating on the skin-layer of the molded polymer were observed by using a mold with transparent windows, and the residual birefringence frozen in the final molded specimen was measured. The results clearly showed that the birefringence in the skin-layer of injection molded polymer strips was reduced with CO{sub 2} laser heating. The authors believe that the proposed method for reducing the birefringence frozen in injection-molded polymer products is suitable for practical molding, because process time required for the injection-molding is only slightly increased with this method.

  6. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  7. Development of magnesium semi-solid injection molding; Magnesium han`yoyu shashutsu seikei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, K; Sakate, N; Ishida, K; Yamamoto, Y; Nishimura, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Magnesium semi-solid injection molding is safety and clean process. We have investigated influence of molding conditions on mechanical properties and dimension accuracy of products by semi-solid injection molding. As a result it was proved that the accuracy of products by this process is superior to die casting. This advantage as well as better mechanical properties can be utilized for net shape molding of some automobile parts. 4 refs., 8 figs., 3 tabs.

  8. Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization

    OpenAIRE

    Sato, Yuki; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji

    2017-01-01

    Manufacturing methods using molds, such as casting and injection molding, are widely used in industries. A basic requirement when using such manufacturing methods is that design engineers must design products so that they incorporate certain geometrical features that allow the mold parts to be removed from the created solid object. In the present study, we propose a manufacturability evaluation method especially adapted for the use of molds. To evaluate the manufacturability, we introduce fic...

  9. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    Science.gov (United States)

    Gao, Pan; Qin, Jiaxing; Li, Delong; Zhou, Shanyue

    2018-01-01

    The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  10. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Pan Gao

    Full Text Available The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC. Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  11. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    Science.gov (United States)

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  12. Customized mold radiotherapy with prosthetic apparatus for oral cancers

    International Nuclear Information System (INIS)

    Noguchi, Tadahide; Tsuchiya, Yoshiyuki; Hayasaka, Junichi; Itoh, Hiroto; Jinbu, Yoshinori; Kusama, Mikio; Takahashi, Satoru; Nakazawa, Masanori

    2014-01-01

    Eight patients (6 males, 2 females; median age, 78 years; age range, 31-94 years) were treated by mold radiotherapy with a prosthetic apparatus for oral cancers between October 2006 and March 2013. The primary sites were the tongue in 3 cases, hard palate and buccal mucosa in 2 cases each, and oral floor in 1 case. The type of treatment consisted of radical radiotherapy and palliative radiotherapy in 2 cases each, and preoperative radiotherapy, postoperative radiotherapy, additional radiotherapy after external beam radiotherapy and systemic chemotherapy in 1 case each. Patients received 40-50 Gy in 8-10 fractions with mold radiotherapy. Two patients who received radical radiotherapy showed no signs of recurrence or metastasis. The present therapy contributed to patients' palliative, postoperative, and preoperative therapy. Mold radiotherapy with a prosthetic appliance was performed safely and was a useful treatment for several types of oral cancer. (author)

  13. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  14. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  15. The development of lab-on-a-chip fabricated from two molds

    Science.gov (United States)

    Pramuanjaroenkij, A.; Bunta, J.; Thiangpadung, J.; Sansaradee, S.; Kamsopa, P.; Sodsai, S.; Vichainsan, S.; Wongpanit, K.; Maturos, T.; Lomas, T.; Tuantranont, A.; Cetin, B.; Phankhoksoong, S.; Tongkratoke, A.

    2018-01-01

    Development of diagnostic technique of microfluidic or lab-on-a-chip (LOCs) is currently of great interest for researchers and inventors for their many advantages. It can be used as a real laboratory was many ways to help to the diagnosis faster. This research aims to develop Polydimethylsiloxane (PDMS) lab-on-a-chip (LOCs) which were produced from different molds; the silicon wafer mold and the stainless mold to investigate the flow of the biological sample as the flow in nanochannels. In addition, this research proposes a means to leakage and the blockage of the channel flow. The experimental results were found that the LOCs casted from the silicon wafer mold sandwiched by both the plasma cleaner machine and H shaped acrylic sheets showed leakages around the electrode areas because the first new electrodes were too thick, the proper thickness of the nickel electrode was at 0.05 millimeters. The LOCs casted from the stainless mold were inserted by the nickel electrodes produced by the from the prototype shaped electroplating process; this LOCs using nickel plated electrodes 2 times to make a groove on the nickel electrode backsides when pouring the PDMS into the LOCs casted from the stainless mold. It was found that PDMS was able to flow under the nickel electrode and the PDMS sheet could stick with the glass slide smoothly. In conclusion, it was possible to develop these LOC designs and new electrode fabrications continually under helps from Micro-Electro-Mechanical system, Thailand National Electronics and Computer Technology Center, since causes of the LOC problems were found, and demonstrated the feasibility of developing the LOCs for chemical detection and disease diagnostics.

  16. Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics.

    Science.gov (United States)

    Ammor, Mohammed Salim; Argyri, Anthoula; Nychas, George-John E

    2009-03-01

    Fourier transform infrared (FTIR) spectroscopy was exploited to measure biochemical changes within fresh minced beef in an attempt to rapidly monitor beef spoilage. Minced beef packaged either aerobically, under modified atmosphere and using an active packaging were held from freshness to spoilage at 0, 5, 10, and 15°C. Frequent FTIR measurements were collected directly from the sample surface using attenuated total reflectance, in parallel the total viable counts of bacteria, the sensory quality and the pH were also determined. Principal components analysis allowed illuminating the wavenumbers potentially correlated with the spoilage process. Qualitative interpretation of spectral data was carried out using discriminant factorial analysis and used to corroborate sensory data and to accurately determine samples freshness and packaging. Partial least-squares regressions permitted estimates of bacterial loads and pH values from the spectral data with a fit of R(2)=0.80 for total viable counts and fit of R(2)=0.92 for the pH. Obtained results demonstrated that a FTIR spectrum may be considered as a metabolic fingerprint and that the method in tandem with chemometrics represents a powerful, rapid, economical and non-invasive method for monitoring minced beef freshness regardless the storage conditions (e.g. packaging and temperature).

  17. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  18. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-12

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  19. Injection molding simulation to improve the efficiency and quality of metal molding designs. Kanagata no sekkei koritsu ka to hinshitsu kojo wo hakaru shashutsu seikei simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y. (Sony Corp., Tokyo (Japan))

    1992-01-01

    In order to improve the efficiency and quality of metal molding designs, Sony Corp. has adopted an injection molding simulation system since the first half of 1980s. Since, however, molding materials are thermal fluids, which transit their phase from liquid into solid, and boundary conditions will be changed in the middle of their cycles, their analyzing works are very difficult. Therefore, softwares in this field are still on the way to be developed. Since this corporation has joined to the Cornell Injection Molding Program (CIMP) project in Cornell University, they have added improvements on their programs to be supplied, and have used them with their own programs developed additionally based on transformation processes. They have carried out minimizing of shape of boss root and examining holding pressure control by this simulation system. Since actually input works for CAD process have been carried out by hand now, it takes a time a little, though, they have also considered to make it easy by automating for applications of the full model. 4 refs., 7 figs.

  20. Effective Control of Molds Using a Combination of Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Ariana Auyeung

    Full Text Available Molds are filamentous fungi able to grow on a variety of surfaces, including constructed surfaces, food, rotten organic matter, and humid places. Mold growth is characterized by having an unpleasant odor in enclosed or non-ventilated places and a non-aesthetic appearance. They represent a health concern because of their ability to produce and release mycotoxins, compounds that are toxic to animals and humans. The aim of this study was to evaluate commercial nanoparticles (NPs that can be used as an additive in coatings and paints to effectively control the growth of harmful molds. Four different NPs were screened for their antifungal activities against the mycotoxin producing mold strains Aspergillus flavus and A. fumigatus. The minimal inhibitory concentrations of the NPs were determined in broth media, whereas an agar diffusion test was used to assess the antimold activity on acrylic- and water-based paints. The cytotoxic activity and the inflammatory response of the NPs were also evaluated using the established human derived macrophage cell line THP-1. Results showed that a combination of mix metallic- and ZnO-NPs (50:10 μg/mL effectively inhibited the fungal growth when exposed to fluorescent light. Neither cytotoxic effect nor inflammatory responses were recorded, suggesting that this combination can be safely used in humid or non-ventilated environments without any health concerns.

  1. Injection molding tools with micro/nano-meter pattern

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for embedded a micrometer and/or nanometer pattern into an injection molding tool. In a first main aspect, a micro/nanometer structured imprinting device is applied in, or on, an active surface so as to transfer the micro/nanometer patterned structure...... to the tool while the imprinting device is, at least partly, within a cavity of the injection molding tool. In a second main aspect, a base plate with a micro/nanometer structured pattern positioned on an upper part is positioned on the active surface within the tool, the lower part of the base plate facing...

  2. Extremely environment-hard and low work function transfer-mold field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Masayuki, E-mail: m-nakamoto@rie.shizuoka.ac.jp [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan); Moon, Jonghyun [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2013-06-15

    Extremely environment-hard and low work function field-emitter arrays (FEAs) were fabricated by a transfer-mold emitter fabrication method to produce highly reliable vacuum nanoelectronic devices able to operate stably at low voltage in highly oxidizing atmospheres. Amorphous carbon (a-C) having a work function of 3.6 eV and sp{sup 3} fraction of 85.6% prepared by plasma-enhanced chemical vapor deposition was used as the emitter material. The field-emission characteristics of the obtained transfer-mold FEAs strongly depended on their work function and morphology. The environment-hard characteristics of the transfer-mold a-C FEAs were compared with those of the transfer-mold titanium nitride FEAs and nickel FEAs. X-ray photoelectron spectroscopy was used to confirm the stable chemical states of the FEAs after oxygen radical treatment. The small amount of material oxidized (6.3%) at the surface of the a-C FEAs compared with 11.8% for the TiN-FEAs and 39.0% for Ni FEAs after oxygen radical treatment explained their almost constant work function in oxidizing atmospheres. The emission fluctuation rates of transfer-mold a-C FEAs without resistive layers under in situ radical treatment were as low as ±5.0%, compared with 5–100% for conventional FEAs with resistive layers not under highly oxidizing atmospheres. Therefore, the present environment-hard and low work function transfer-mold a-C FEAs are expected to be useful for reliable vacuum nanoelectronic devices.

  3. Study on Improving Thickness Uniformity of Microfluidic Chip Mold in the Electroforming Process

    Directory of Open Access Journals (Sweden)

    Liqun Du

    2016-01-01

    Full Text Available Electroformed microfluidic chip mold faces the problem of uneven thickness, which decreases the dimensional accuracy of the mold, and increases the production cost. To fabricate a mold with uniform thickness, two methods are investigated. Firstly, experiments are carried out to study how the ultrasonic agitation affects the thickness uniformity of the mold. It is found that the thickness uniformity is maximally improved by about 30% after 2 h electroforming under 200 kHz and 500 W ultrasonic agitation. Secondly, adding a second cathode, a method suitable for long-time electroforming is studied by numerical simulation. The simulation results show that with a 4 mm width second cathode used, the thickness uniformity is improved by about 30% after 2 h of electroforming, and that with electroforming time extended, the thickness uniformity is improved more obviously. After 22 h electroforming, the thickness uniformity is increased by about 45%. Finally, by comparing two methods, the method of adding a second cathode is chosen, and a microfluidic chip mold is made with the help of a specially designed second cathode. The result shows that the thickness uniformity of the mold is increased by about 50%, which is in good agreement with the simulation results.

  4. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Science.gov (United States)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  5. Analysis of Cavity Pressure and Warpage of Polyoxymethylene Thin Walled Injection Molded Parts: Experiments and Simulations

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2014-01-01

    Process analysis and simulations on molding experiments of 3D thin shell parts have been conducted. Moldings were carried out with polyoxymethylene (POM). The moldings were performed with cavity pressure sensors in order to compare experimental process results with simulations. The warpage...... was characterized by measuring distances using a tactile coordinate measuring machine (CMM). Molding simulations have been executed taking into account actual processing conditions. Various aspects have been considered in the simulation: machine barrel geometry, injection speed profiles, cavity injection pressure......, melt and mold temperatures, material rheological and pvT characterization. Factors investigated for comparisons were: injection pressure profile, short shots length, flow pattern, and warpage. A reliable molding experimental database was obtained, accurate simulations were conducted and a number...

  6. Effect of Origanum heracleoticum L. essential oil on food-borne Penicillium aurantiogriseum and Penicilium chrysogenum isolates

    Directory of Open Access Journals (Sweden)

    Čabarkapa Ivana S.

    2011-01-01

    Full Text Available Molds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes. The difficulty of controlling these undesirable molds, as well as the growing interest of the consumers in natural products, have been forcing the industry to find new alternatives for food preservation. The modern trends in nutrition suggest the limitation of synthetic food additives or substitution with natural ones. Aromatic herbs are probably the most important source of natural antimicrobial agents. Origanum heracleoticum L. essential oil has been known as an interesting source of antimicrobial compounds to be applied in food preservation. In the this work, we have investigated the effect of essential oil obtained from O. heracleoticum on growth of six isolates of Penicillium aurantiogriseum and four isolates of Penicillium chrysogenum isolated from meat plant for traditional Petrovacka sausage (Petrovská klobása production. The findings reveal that the essential oil of O. heracleoticum provides inhibition of all of fungal isolates tested. O. heracleoticum L. essential oil exhibited higher antifungal activity against the isolates of P. chrysogenum than the isolates of P. aurantiogriseum. O. heracleoticum essential oil showed a MIC value ranging from 25 to 100 μL/mL. The fungi cultivated in the medium with higher concentration of essential oil showed certain morphological changes. The alterations included lack of sporulation and loss of pigmentation.

  7. Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend

    International Nuclear Information System (INIS)

    Xin, Zhen Xiang; Zhang, Zhen Xiu; Pal, Kaushik; Byeon, Jong Ung; Lee, Sung Hyo; Kim, Jin Kuk

    2010-01-01

    Microcellular polypropylene/waste ground rubber tire powder blend processing was performed on an injection-molding machine with a chemical foaming agent. The molded samples produced based on the design of experiments (DOE) matrices were subjected to tensile testing and scanning electron microscope (SEM) analyses. Molding conditions and waste ground rubber tire (WGRT) powder have been found to have profound effects on the cell structures and mechanical properties of polypropylene (PP) and waste ground rubber tire powder composite samples. The result shows that microcellular PP/WGRT blend samples exhibit smaller cell size and higher cell density compare with polypropylene resin. Among the molding parameters studied, chemical foaming agent weight percentage has the most significant effect on cell size, cell density, and tensile strength. The results also suggest that tensile strength of microcellular PP/WGRT composites is sensitive to weight reduction, and skin thickness.

  8. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Science.gov (United States)

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  9. Tool application CAD / CAM for design and construction of a prototype of plastic injection mold

    Directory of Open Access Journals (Sweden)

    Albert Miyer Suárez Castrillón

    2015-11-01

    Full Text Available The study, development and production of injection molds comes with the implementation of CAD and CAM tools available on the market; using these tools, a prototype injection mold for thermoplastic materials was designed and built, based on a mold is injection in the laboratory of the University of Pamplona, in which a couple of modifications were made in order to experiment with its design. The prototype was manufactured through a 3D scan of the original mold to provide the CAD / CAM files with the simulated 3D printing technique for performing an experimental study with the prototype for adjusting temperature and pressure sensors and for coatings metallic materials for use in the injection molding process.

  10. Diseño y construcción de un molde permanente utilizando un software por elementos finitos Design and construction of a permanent mold using finite element software

    Directory of Open Access Journals (Sweden)

    Fausto Oviedo Fierro

    2013-06-01

    Full Text Available (Recibido: 2012/11/07 - Aceptado: 2013/06/18El proyecto fue desarrollado con especificaciones técnicas de un método de elementos finitospara el cálculo de las variables de campo dentro de un contorno del molde de estudio yeligiendo un modelo matemático apropiado con la incorporación de software. El desarrollo fueuna aplicación físico-practica seleccionando una pieza de aluminio a ser construida, y seanaliza las funciones y solicitaciones a las que está sometida. Se diseña el molde metálico parala producción de las mencionadas piezas con la ayuda del software VULCAN basado en elMétodo de Elementos Finitos (MEF. La simulación se realiza en las tres etapas del proceso defusión: llenado, solidificación y, enfriamiento. En el llenado se considera que existenvelocidades que no produzcan mayores turbulencias y que las piezas se llenen completamente.En la Solidificación se analiza que el sistema de alimentación sea óptimo para que solidifiqueen última instancia y no lo hagan las piezas a producir, evitando así el defecto de falta dematerial en la cavidad del molde (rechupes. En el enfriamiento se analiza la presencia dedeformaciones y tensiones residuales. Paralelamente se validan los resultados de maneraanalítica. Con esta información se define la geometría final del molde metálico y se confirma laaleación con la que se construirá. Posteriormente se utiliza el sistema CAD-CAM-CAE para eldiseño y desarrollo del molde, y así llevar a cabo la construcción. En el molde terminado sevierte la aleación de aluminio seleccionada para obtener las piezas (mancuernas, y finalmenterealizar las pruebas y conclusiones.(Received: 2012/11/07 - Accepted: 2013/06/18The project was developed with specifications of a finite element method for the calculation ofthe field variables within a mold contour by choosing an appropriate mathematical model whichpermitted to incorporate simulation software. The development was a physical

  11. Antimicrobial Effect of Filipendula ulmaria Plant Extract Against Selected Foodborne Pathogenic and Spoilage Bacteria in Laboratory Media, Fish Flesh and Fish Roe Product

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2011-01-01

    Full Text Available Water-methanol extract from Filipendula ulmaria contains a variety of phenolic compounds, such as caffeic, p-coumaric and vanillic acid, myricetin, etc, which demonstrate antibacterial activity. Monitoring this activity in the broth using absorbance measurements showed that species of the Enterobacteriaceae family were more resistant than other Gram-negative and Gram-positive bacteria tested. Acidic environment enhanced the antibacterial activity of Filipendula ulmaria extract when it was tested against Salmonella Enteritidis PT4 and Listeria monocytogenes Scott A. The efficacy of Filipendula ulmaria extract against selected foodborne psychrotrophic bacteria was also tested using solid laboratory media and low incubation temperatures for better simulation of food preservation conditions. Higher concentrations of the extract, compared to minimum inhibitory concentration determined in the broth, were needed for satisfactory inhibition of spoilage bacteria. Potential use of Filipendula ulmaria extract as natural food preservative was also examined against natural spoilage flora and inoculated pathogenic bacteria on fish flesh and fish roe product (tarama salad. No significant differences of viable populations of spoilage or pathogenic bacteria were found between the treated samples and controls. Further trials of Filipendula ulmaria extract should be carried out in acidic foods with low fat and protein content, supplemented with additional adjuncts, in order to explore its potential as effective natural food antimicrobial agent.

  12. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    , comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear......Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos...

  13. Long fiber polymer composite property calculation in injection molding simulation

    Science.gov (United States)

    Jin, Xiaoshi; Wang, Jin; Han, Sejin

    2013-05-01

    Long fiber filled polymer composite materials have attracted a great attention and usage in recent years. However, the injection and compression molded long fiber composite materials possess complex microstructures that include spatial variations in fiber orientation and length. This paper presents the recent implemented anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation distribution[1] and a newly developed fiber breakage model[2] for predicting fiber length distribution in injection and compression molding simulation, and Eshelby-Mori-Tanaka model[3,4] with fiber-matrix de-bonding model[5] have been implemented to calculate the long fiber composite property distribution with predicted fiber orientation and fiber length distributions. A validation study on fiber orientation, fiber breakage and mechanical property distributions are given with injection molding process simulation.

  14. Comparison Of Simulation Results When Using Two Different Methods For Mold Creation In Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Kaushikbhai C. Parmar

    2017-04-01

    Full Text Available Simulation gives different results when using different methods for the same simulation. Autodesk Moldflow Simulation software provide two different facilities for creating mold for the simulation of injection molding process. Mold can be created inside the Moldflow or it can be imported as CAD file. The aim of this paper is to study the difference in the simulation results like mold temperature part temperature deflection in different direction time for the simulation and coolant temperature for this two different methods.

  15. Reirradiation of nasopharyngeal carcinoma with intracavitary mold brachytherapy: an effective means of local salvage

    International Nuclear Information System (INIS)

    Law, Stephen C.K.; Lam, W.-K.; Ng, M.-F.; Au, S.-K.; Mak, W.-T.; Lau, W.-H.

    2002-01-01

    Purpose: To assess the role of intracavitary mold brachytherapy in salvaging local failure of nasopharyngeal carcinoma (NPC). Methods and Materials: The outcomes of 118 consecutive NPC patients with local failure treated with mold brachytherapy between 1989 and 1996 were retrospectively reviewed. Eleven patients received additional external radiotherapy. Results: All molds were tailor-made, and the whole procedure was performed under local anesthesia. Pharyngeal recess dissection was routinely performed to allow direct contact of the radioactive source with the pharyngeal recess, a common site of local failure. Initially, the molds were preloaded with 192 Ir wires, but since 1992, the sources have been manually afterloaded; the mold has also been redesigned for better conformity, ease of insertion, and radiation safety. Using brachytherapy alone, 50-55 Gy was given for recurrence in 4-7 days; for persistence, 40 Gy was administered. The overall complete remission rate was 97%. The rates of 5-year local control, relapse-free survival, disease-specific survival, overall survival, and major complication were 85%, 68.3%, 74.8%, 61.3%, and 46.9%, respectively. Major complications included nasopharyngeal necrosis with headache, necrosis of cervical vertebrae with atlantoaxial instability, temporal lobe necrosis, and palsy of the cranial nerves. The afterloaded mold was as effective as the preloaded version, but with fewer complications. Conclusions: Intracavitary mold brachytherapy was effective in salvaging NPC with early-stage local persistence or first recurrence

  16. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    Science.gov (United States)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  17. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  18. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

    Directory of Open Access Journals (Sweden)

    Sujata A. Sirsat

    2013-11-01

    Full Text Available Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce. Following this, an intervention study was performed to combat foodborne pathogen surrogates (Salmonella and E. coli, spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid significantly reduced Salmonella, E. coli, coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless, it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  19. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce.

    Science.gov (United States)

    Sirsat, Sujata A; Neal, Jack A

    2013-11-11

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce). Following this, an intervention study was performed to combat foodborne pathogen surrogates ( Salmonella and E. coli ), spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid) significantly reduced Salmonella , E. coli , coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless), it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  20. Validation of precision powder injection molding process simulations using a spiral test geometry

    DEFF Research Database (Denmark)

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant ....... The necessary data and the implementation procedure of the new material models are outlined. In order to validate the simulation studies and evaluate their accuracy, the simulation results are compared with experiments performed using a spiral test geometry...... for powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software...

  1. Fundamentals of mold growth in indoor environments and strategies for healthy living

    NARCIS (Netherlands)

    Adan, O.C.G.; Samson, R.A.

    2011-01-01

    Today, indoor mold and moisture, and their associated health effects, are a society-wide problem. The economic consequences of indoor mold and moisture are enormous. Their global dimension has been emphasized in several recent international publications, stressing that the most important means for

  2. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats, as determined by PCR amplification procedure.

    Science.gov (United States)

    Broda, D M; Boerema, J A; Brightwell, G

    2009-07-01

    To determine possible preslaughter and processing sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats. Molecular methods based on the polymerase chain reaction (PCR) amplification of specific 16S rDNA fragments were used to detect the presence of Clostridium gasigenes, Clostridium estertheticum, Clostridium algidicarnis and Clostridium putrefaciens in a total of 357 samples collected from ten slaughter stock supply farms, slaughter stock, two lamb-processing plants, their environments, dressed carcasses and final vacuum-packed meat stored at -0.5 degrees C for 5(1/2) weeks. Clostridium gasigenes, C. estertheticum and C. algidicarnis/C. putrefaciens were commonly detected in farm, faeces, fleece and processing environmental samples collected at the slaughter floor operations prior to fleece removal, but all these micro-organisms were detected in only 4 out of 26 cooling floor and chiller environmental samples. One out of 42 boning room environmental samples tested positive for the presence of C. gasigenes and C. estertheticum, but 25 out of 42 of these samples were positive for C. algidicarnis/C. putrefaciens. Nearly all of the 31 faecal samples tested positive for the presence of C. gasigenes and C. estertheticum; however, only two of these samples were positive for C. algidicarnis and/or C. putrefaciens. Clostridial species that were subject to this investigation were frequently detected on chilled dressed carcasses. The major qualitative and quantitative differences between the results of PCR detection obtained with the primers specific for 'blown pack' -causing clostridia (C. gasigenes and C. estertheticum) and those obtained with primers specific for C. algidicarnis and C. putrefaciens suggest that the control of meat spoilage caused by different groups of meat clostridia is best approached individually for each group. This paper provides information significant for controlling meat spoilage-causing clostridia

  3. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Science.gov (United States)

    2010-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal casting...

  4. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  5. Host ranges of North American isolates of Penicillium causing blue mold of bulb crops

    Science.gov (United States)

    Single isolates of four Penicillium species belonging to series Corymbifera (Penicillium allii, P. hirsutum, P. tulipae, P. venetum) plus an isolate of P. polonicum, all from North American sources, were inoculated individually into Crocus sativus, Allium sativum (garlic), A. cepa (onion), Iris holl...

  6. Transferencia de calor en la colada continua de aceros. I parte. El molde

    Directory of Open Access Journals (Sweden)

    Cicutti, C.

    1997-10-01

    Full Text Available The continuous casting mold plays the important role of receiving the liquid steel and allowing an uniform and defect free solidified skin to be developed. In this work, the different heat transfer mechanisms which are present from the liquid steel to the mold cooling water are reviewed. The effect of operating variables on heat extraction and the relationship between global and distributed heat flux are also analyzed.

    El molde de colada continua cumple la importante función de recibir el acero líquido y permitir que se desarrolle una capa solidificada uniforme y libre de defectos. En este trabajo se revisan los distintos mecanismos implicados en el proceso de transferencia de calor, desde el acero líquido hasta el agua de refrigeración del molde. Se analiza también el efecto de las distintas variables de funcionamiento en la extracción calórica producida y la relación entre el flujo global de calor y su distribución a lo largo del molde.

  7. Optimization of injection molding process parameters for a plastic cell phone housing component

    Science.gov (United States)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  8. ISOLATION AND IDENTIFICATION OF MICROORGANISMS DURING SPONTANEOUS FERMENTATION OF MAIZE [Isolasi dan Identifikasi Mikroorganisme pada Fermentasi Spontan Jagung

    Directory of Open Access Journals (Sweden)

    Rahmawati1,2

    2013-06-01

    Full Text Available Maize was traditionally the second most common staple food in Indonesia. Conversion to maize flour has been accomplished to improve its convenience. Traditionally, maize flour is produced by soaking the kernels in water followed by grinding. It was reported that final physicochemical characteristics of the maize flour were influenced by spontaneous fermentation which occurred during soaking. This research aimed to isolate and identify important microorganisms that grew during fermentation thus a standardized starter culture can be developed for a more controlled fermentation process. Soaking of maize grits was conducted in sterile water (grits:water=1:2, w/v in a closed container at room temperature (±28ºC for 72 hours. After 0, 4, 12, 24, 36, 48, 72 hours, water and maize grits were sampled and tested for the presence of mold, yeast, and lactic acid bacteria (LAB. Isolates obtained from the spontaneous fermentation were reinoculated into the appropriate media containing starch to observe their amylolytic activity. Individual isolate was then identified; mold by slide culture method, while yeast and LAB by biochemical rapid kits, i.e. API 20C AUX and API CH50, respectively. The number of each microorganism was plotted against time to obtain the growth curve of the microorganisms during spontaneous fermentation. The microorganisms were identified as Penicillium chrysogenum, P. citrinum, A. flavus, A. niger, Rhizopus stolonifer, R.oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri, Candida krusei/incospicua, Lactobacillus plantarum 1a, Pediococcus pentosaceus, L. brevis 1, L. plantarum 1b, and L. paracasei ssp paracasei 3. Four molds and one yeast were amylolytic while none of the LAB was capable of starch hydrolysis. The growth curve suggested that the amylolitic mold and yeast grew to hydrolyze starch during the course of fermentation, while the LABs benefited from the hydrolyzed products and dominated the later

  9. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    Science.gov (United States)

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  11. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-06-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  12. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  13. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  14. Real-time parameter optimization based on neural network for smart injection molding

    Science.gov (United States)

    Lee, H.; Liau, Y.; Ryu, K.

    2018-03-01

    The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.

  15. Experimental Investigation of Comparative Process Capabilities of Metal and Ceramic Injection Molding for Precision Applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2016-01-01

    and discussion presented in the paper will be useful for thorough understanding of the MIM and CIM processes and to select the right material and process for the right application or even to combine metal and ceramic materials by molding to produce metal–ceramic hybrid components.......The purpose of this paper is to make a comparative study on the process capabilities of the two branches of the powder injection molding (PIM) process—metal injection molding (MIM) and ceramic injection molding (CIM), for high-end precision applications. The state-of-the-art literature does...

  16. Development of integrated control system for smart factory in the injection molding process

    Science.gov (United States)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  17. Respiratory Diseases in University Students Associated with Exposure to Residential Dampness or Mold

    Directory of Open Access Journals (Sweden)

    Mathieu Lanthier-Veilleux

    2016-11-01

    Full Text Available University students are frequently exposed to residential dampness or mold (i.e., visible mold, mold odor, dampness, or water leaks, a well-known contributor to asthma, allergic rhinitis, and respiratory infections. This study aims to: (a describe the prevalence of these respiratory diseases among university students; and (b examine the independent contribution of residential dampness or mold to these diseases. An online survey was conducted in March 2014 among the 26,676 students registered at the Université de Sherbrooke (Quebec, Canada. Validated questions and scores were used to assess self-reported respiratory diseases (i.e., asthma-like symptoms, allergic rhinitis, and respiratory infections, residential dampness or mold, and covariates (e.g., student characteristics. Using logistic regressions, the crude and adjusted odd ratios between residential dampness or mold and self-reported respiratory diseases were examined. Results from the participating students (n = 2097; response rate: 8.1% showed high prevalence of allergic rhinitis (32.6%; 95% CI: 30.6–34.7, asthma-like symptoms (24.0%; 95% CI: 22.1–25.8 and respiratory infections (19.4%; 95% CI: 17.7–21.2. After adjustment, exposure to residential dampness or mold was associated with allergic rhinitis (OR: 1.25; 95% CI: 1.01–1.55 and asthma-like symptoms (OR: 1.70; 95% CI: 1.37–2.11, but not with respiratory infections (OR: 1.07; 95% CI: 0.85–1.36. Among symptomatic students, this exposure was also associated with uncontrolled and burdensome respiratory symptoms (p < 0.01. University students report a high prevalence of allergic rhinitis, asthma-like symptoms and respiratory infections. A common indoor hazard, residential dampness or mold, may play a role in increasing atopic respiratory diseases and their suboptimal control in young adults. These results emphasize the importance for public health organizations to tackle poor housing conditions, especially amongst university

  18. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dimensional accuracy optimization of the micro-plastic injection molding process using the Taguchi design method

    Directory of Open Access Journals (Sweden)

    Chil-Chyuan KUO KUO

    2015-06-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 µm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5864

  20. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    DEFF Research Database (Denmark)

    Tanzi, Simone; Larsen, Simon Tylsgaard; Taboryski, Rafael J.

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3,4-ethylen...